
Taking Into Account Geometric Constraints for Task-oriented Motion Planning

Julien Guitton
ONERA - DCSD

2 avenue Edouard Belin,
31055 Toulouse, France

julien.guitton@onera.fr

Jean-Loup Farges
ONERA - DCSD

2 avenue Edouard Belin,
31055 Toulouse, France

jean-loup.farges@onera.fr

Abstract
Planning a mission for a mobile robot involves the use
of a symbolic and a geometric planner. The gap be-
tween their internal representation of the environment
is an open issue and current researches are conducted
without unified formalisms and algorithms. In this pa-
per, we propose to extend the classical planning formal-
ism in order to model actions with geometric precon-
ditions and we propose, develop and test a constraint
satisfaction method that aims at defining a destination
attitude for motion planning.

Introduction
To accomplish its assigned mission, a mobile robot has to act
and move in the environment. Mission planning for mobile
robotics involves different reasoning: a symbolic reasoning
aiming at choosing the action the robot will have to under-
take to achieve the mission, and a geometric reasoning in
order to compute the motions of the robot and, more glob-
ally, to compute its travels in the environment.

Task planners become more and more efficient and are
able to solve complex problems (Hoffmann et al. 2006).
Nevertheless, their internal representation of the environ-
ment does not allow to deal with geometric information.
Coupling a symbolic task planner with a specialized geo-
metric reasoner, as for instance, a motion planner is often
the only realistic way to solve robotics problems.

In conventional robotic architectures, as three-layered ar-
chitectures (Alami et al. 1998), the task planner and the mo-
tion planner are decoupled: First a symbolic action plan is
found and, then, this plan is refined using geometric infor-
mation. In this kind of architecture, each layer has its own
description of the environment and actions, and the transla-
tion of computed results between layers is not easy. More-
over, if one motion needed to achieve an action is not possi-
ble, the entire plan has to be invalidated and recomputed.

Another type of architecture includes geometric prepro-
cessing which produces a graph: nodes are computed from
the current objectives and geometrical constraints on ac-
tions, and arcs may be computed using a motion planning
method. The main drawback of this approach is that geomet-
ric computations are performed even for actions that will not

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

be selected to belong to the final plan. This kind of architec-
ture is not generic but applied to specific problems (Chanth-
ery, Barbier, and Farges 2005; Baltié et al. 2008).

The idea of conceiving hybrid planning architecture was
first proposed by (Kambhampati et al. 1993). More re-
cently, other hybrid planning architectures have been devel-
oped (Guitton, Farges, and Chatila 2008; Cambon, Alami,
and Gravot 2009) in which symbolic and geometric reason-
ings are closely related. Figure 1 presents the hybrid plan-
ning architecture proposed in (Guitton, Farges, and Chatila
2008). In this planning architecture an interface dispatches
parts of the planning problem to a task planner and a path
planner. Then, during its planning process, the task plan-
ner produces motion requests to the path planner. The an-
swers to the requests and the advices given by the path plan-
ner allow an efficient symbolic plan search. Indeed, on one
hand, request and answer mechanism enables backtracking
not only at the task level but also at the path level and, on
the other hand, advices allow a reordering of tasks accord-
ing to geometric aspects. At the end of the search, the in-
terface gathers actions from the task planner and paths from
the path planner to produce a global plan.

Figure 1: Example of a hybrid planning architecture.

Even with the use of these hybrid planning architectures,
the link between task planning and motion planning can be
difficult to handle. Some research efforts have been done
to improve this link. In (Lamare and Ghallab 1998), the
link between the generic planner and an itinerary planner is

26

done using special symbolic attributes. However, the spe-
cialized planner builds its work on an accessibility graph
and does not integrate reasoning about the geometric con-
straints of the problem. The other approaches dealing with
the link between task planning and geometric reasoning are
mainly approaches for one kind of specific problems (Guéré
and Alami 2001; Zacharias, Borst, and Hirzinger 2006). In
(Cambon, Alami, and Gravot 2009), a planning architecture
is presented, in which the definition of states of the world
contains symbolic and geometric information. These data
are defined by the use of a set of types and specific predicates
that allow to establish a link between symbolic planning and
manipulation planning. None of these works propose a clear
and reusable way to specify geometric constraints for an ac-
tion achievement as well as a generic method to handle these
constraints.

In this paper, we place ourselves in the context of the plan-
ning architecture described in the figure 1 and we present a
method allowing to take into account geometric constraints
defined at the symbolic action specification level. These ge-
ometric constraints aim at defining the necessary motions for
the achievement of actions. The proposed method is based
on the translation of constraints into a set of mathematical
penalty functions and the use of an unconstrained non-linear
programming method to solve them. The goal of this work
is to go one step toward the possibility for a planning do-
main designer to express any kind of geometric constraints
to model an action.

In a first part, we present the language used to define ge-
ometric constraints at the symbolic level. Then, we spec-
ify the mathematical representation of these constraints as
well as the algorithm allowing to satisfy them. Finally,
through an example of mission planning for a mobile robot,
we present some results obtained with this model.

Expressing geometric constraints at the
symbolic planning level

The achievement of an action may require a specific atti-
tude of the robot, eg. a specific position, heading... This
attitude can be accurately defined or refer to a subset of the
environment. A way to specify a particular attitude is to use
geometric constraints between the robot state variables and
data from the environment objects (obstacles, waypoints,
targets...).

In order to take into account these specific attitudes, we
propose to extend the planning operators description to ex-
press geometric preconditions. These preconditions are in-
tended to the motion planner.

Augmenting the operators description
A task planning domain, written in the PDDL language (Fox
and Long 2003), is a set of planning operators. An operator
is defined as a set a preconditions specifying the necessary
conditions to achieve the corresponding action, and a set of
effects expressing changes in the state of the world result-
ing from the action achievement. Planning operators can be
defined in the same way for the HTN approach (Nau et al.
2003).

We suggest to improve the planning operator description
with a new kind of preconditions: the geometric precondi-
tions. Thereby, in order to be selected, an action will have to
respect a set of symbolic preconditions and a set of geomet-
ric preconditions. Definition 1 presents this new formalism.

Definition 1 (Augmented planning operator)
An augmented planning operator A is defined as a tuple :
〈 head(A), symb pre(A), geom pre(A), behav(A) eff(A),
ref geom eff(A) 〉
where:

• head(A) is the planning operator header (name);
• symb pre(A) is the set of symbolic preconditions;
• geom pre(A) is the set of geometric preconditions;
• behav(A) is the set of geometric constraints on behavior

during the action;
• eff(A) is the set of symbolic effects;
• ref geom eff(A) is the reference to geometric effects.

This paper focuses on geometric preconditions. Geomet-
ric preconditions consist of statements linking together the
symbolic variables and the corresponding elements known
by the motion planner, followed by:

• commands of direct assignment of the components of the
robot state vector; or

• constraints on the relative attitude that the robot has to
meet.

The purpose of direct assignment is mainly the manage-
ment of the initial state of the robot. Figures 2 and 3 illus-
trate these two kinds of geometric preconditions.

;; Operator !init rover attitude
(Operator (!init_rover_attitude ?r ?o)

;; symbolic preconditions
((location ?o)(not(initialized ?r)))

;; geometric preconditions
((agent ?r)(object ?o)
(setProperty(?r.x,?o.x))
(setProperty(?r.y,?o.y))
(setProperty(?r.heading,0))

;; symbolic effects
((initialized ?r))

)

Figure 2: Example of a planning operator description using
direct assignments.

In these two examples, statements are declared with the
predicates (agent ?r) and (object ?o). The first
predicate indicates the robot which will perform the action,
ie. the robot for which a path is required. This predicate is
not useful in a mono-agent context but appears in the state-
ments for future multi-agent uses. The second statement in-
dicates that the variable ?o must correspond to an element
of the list of the motion planner known objects. agent et
object are keywords that aim at specifying if the symbolic
variable corresponds to a mobile robot or a static object of
the environment.

27

;; Operator !take photo
(Operator (!take_photo ?r ?o ?c)

;; symbolic preconditions
((rover ?r)(available ?r)

(location ?o)(need_photo_of ?o)
(has_camera ?r ?c))

;; geometric preconditions
((agent ?r)(object ?o)
(distance(?r, ?o) >= 50)
(distance(?r, ?o) <= 100)
(rel_angle(?r,?o) = cos-and-sin(pi/2))

;; symbolic effects
((has_photo_of ?r ?o))

)

Figure 3: Example of a planning operator description using
geometric constraints.

The use of these statements allows to delegate entirely the
management of the robot and the geometric data of the en-
vironment to the motion planner. The task planner only ma-
nipulates labels identifying the robots and objects. Thus, it
does not need to be informed about the obstacles positions
for example.

The first example (figure 2), illustrates a direct as-
signment command of the robot state vector components.
This assignment is done through the use of the function
setProperty whose first argument is a component of the
robot state vector (eg. ?r.x), and the second argument is
either a numerical constant or a value determined by the ac-
cess to a field of an object data structure of the motion plan-
ner (eg. ?o.x).

The second example (figure 3) illustrates, following the
statements, a conjunction of geometric constraints on the
relative attitude that the robot has to meet in order to achieve
the action !take_photo.

These constraints relate to the state vector components of
the robot model used by the motion planner and are param-
eterized by the characteristics of the objects on which the
task refers. They are expressed in terms of functions (eg.
distance and rel_angle), logical comparators and nu-
merical constants.

In the next paragraph, we present a formal description of
the geometric preconditions syntax.

Formal description of geometric preconditions
Geometric preconditions expressed at the symbolic task
planner level will be interpreted by the motion planner.
Therefore, they have to be formulated in a language under-
standable by this one. Table 1 highlights the basic concepts
of this language under a Bacchus-Naur Form.

A geometric precondition is a list of statements followed
by a list of elements. An element is either a command or a
constraint. Statements are used to inform the motion plan-
ner of the agents and objects that it will have to manipu-
late. They allow to link symbolic labels with geometric
data. For instance, in figures 2 and 3, (rover ?r) and
(object ?o) are statements. Commands aim at acting
directly on the components of the agent’s state vectors. For

<precondition> :: (<statement>*<element>*)
<element> :: <command> |<constraint>
<statement> :: (<concept><var C>)
<command> :: c ident(<arg>1,...,<arg>n)
<constraint> :: <elt c> comparator<elt c>
<concept> :: agent | object
<C property> :: <var C>.<parameter>
<var C> :: variable

<parameter> :: robot parameter
<elt c> :: <function> |<C property> | constant
<function> :: f ident(<arg>1,...,<arg>n)
<f ident> :: function header
<c ident> :: command header
<arg> :: <elt c>

Table 1: Formal description of the geometric preconditions
syntax.

instance, in figure 2, (setProprety(?r.x,?o.x)) is
a command. Finally, constraints are used to describe the
state space subsets in which the action is achievable.

These preconditions involve concepts that identify agents
and objects jointly handled by both symbolic and motion
planners. A set of properties called concept properties is
associated to each concept. These concept properties cor-
respond to the fields in the data structure of an agent or an
object. For an agent, the concept properties are the compo-
nents of its state vector.

Geometric constraints are formulated with the use of log-
ical comparators specifying the type of the constraint (eg.
equality or inequality constraint), numerical constants or
concept properties, and element of constraint correspond-
ing to geometric functions. These functions are translated
by the motion planner into a set of mathematical functions.
The translation is done by selecting the mathematical func-
tions corresponding to the element of constraint in a library
of functions and derived codes (see table 2 for examples of
such functions).

Link between task and motion planning

During a search for a plan allowing to accomplish the given
mission, the symbolic task planner checks symbolic precon-
ditions and, in case of success, sends requests to the motion
planner. These requests contain the geometric preconditions
in which the symbolic variables are totally unified.

When the motion planner receives a direct assignment
command, it sets the robot state vector to the correspond-
ing values. This new state vector is now the current robot
state vector.

When the motion planner receives a set of geometric con-
straints, it proceeds in two steps. First, the planner tries to
satisfy the geometric constraints, ie. it tries to compute a
destination state satisfying these constraints as well as the
environment constraints. Then, it computes a path between
the current state of the robot and the destination state.

In the next section, we present the computation technique
used to satisfy the geometric constraints.

28

Solving geometric constraints
To satisfy geometric constraints, many resolution techniques
can be applied as, for instance, genetic algorithms, CSP on
continuous domains... We choose to represent geometric
constraints in terms of penalty functions at the motion plan-
ner level. To solve these geometric constraints, the adopted
method is based on a classical and robust non-linear pro-
gramming technique: the gradient descent.

Formal resolution model
Searching a destination state satisfying the constraints re-
lated to the request sent by the task planner is based on the
resolution of a problem of non-linear programming in which
the optimization variables are the components of the robot
state vector r. The criterion to optimize is composed of
penalty functions translated from the unverified constraints.

The non-linear programming problem is defined as fol-
lows:

min
r
F (r) (1)

with:

F (r) =
i=n∑
i=1

Gi(fi(r)) (2)

where:

• n is the number of mathematical functions derived from
constraints;

• Gi is the penalty function associated with the ith con-
straint;

• fi(r) is a function deducted from constraint rewriting.

Concerning the penalty function, it is necessary to distin-
guish the constraints of type equality from the other con-
straints. When the ith constraint is an equality constraint,
we have :

Gi(X) =
1
2
X2 (3)

Otherwise, we have :

Gi(X) =
1
2
X2H(X) (4)

where H(X) is the Heaviside function, taking a value of 0
for a negative X i.e., if the constraint is satisfied, and 1 oth-
erwise. The Heaviside function allows to penalize inequality
constraints only when they are not satisfied.

The construction of a function fi(r) by rewriting is done
by subtracting a function associated to a constraint element
elt_c present on the right side of the comparator to the
function associated to the constraint element of the left side.
If the comparator is ≥, the sign of the constructed function
is reversed.

Furthermore, some constraints may be expressed by more
than one mathematical function. For example, when the re-
ceived constraint involves angle computations, the model
matches it to two numerical constraints. One is related to
the cosine of the angle and the other to the sine.

Resolution algorithm
The minimization of the function F (equation 1) is done by
gradient descent. The resulting robot state vector is:

rk+1 = rk − λk∇F (rk) (5)
where :
• rk is the value of the robot state at the iteration k;
• λk is the optimized step length. At each iteration, λk is

initialized to 1 and divided by 2 until F (rk+1) < F (rk);
• ∇F (rk) is the gradient value of F () for the robot state at

the iteration k.

We have :

∇F (r) =
i=n∑
i=1

∇Fi(r)∇Gi(fi(r)) (6)

with two cases for∇Gi(X):
∇Gi(X) = X (7)

when Gi(X) is expressed by the equation 3, and:
∇Gi(X) = XH(X) (8)

when Gi(X) is expressed by the equation 4.

The computation of∇fi(r) is done by associating the de-
rived codes of each mathematical function of the geometric
constraints. Indeed, constructing the functions fi(r) from
the geometric constraints involves only additions, subtrac-
tions and sign changes. The impact of these operations on
the derivate function is easily computable. Moreover, the
constants appearing in the constraints have a zero derivative.

Implementation in the motion planner
The formal resolution described in the previous paragraph
allows, starting from the current robot state vector or from
a random vector, to compute a destination attitude. The im-
plementation is illustrated by the algorithm 1.

Algorithm 1 Geometric preconditions satisfaction
1: r0 = S; nbTries = 0
2: noPathFound = true;
3: while (noPathFound and nbTries < maxTries) do
4: k = 0;
5: while (F (rk) > 0 and k < maxK) do
6: compute∇F (rk);
7: compute rk+1;
8: k = k + 1;
9: end while

10: if (notInObstacle(rk+1)) then
11: noPathFound = findPath(S, rk+1);
12: if (noPathFound) then
13: r0 = Srand() ;
14: end if
15: else
16: r0 = Srand() ;
17: end if
18: nbTries = nbTries+ 1;
19: end while

29

This algorithm tries to compute a new robot state that:
• satisfies the geometric constraints (line 5);
• is not in an obstacle (line 10);
• is reachable by the motion planner (line 11).
The algorithm starts by initializing the gradient descent with
the current robot state S (line 1). If this initialization does
not allow to find a solution, successive random initializations
are tried (lines 12 and 15).

During a gradient descent, the algorithm computes the
gradient using the equations 6, 7 and 8 (line 5), and com-
putes a new state vector rk using the equation 5 (line 6).

The optimization of the step length λk is done by setting
initially the value at 1 and by dividing it by 2 until F (rk+1)
is greater than F (rk).

Experiments
After having presented the planning architecture used for
the experiments as well as the model of the robot used by
the motion planner, we propose to illustrate some interest-
ing results through different examples: In a first part, we
explain the computations done by the motion planner dur-
ing the satisfaction of a constraint. Then, we illustrate the
results obtained with this method on a mission planning in
which some actions need the satisfaction of geometric con-
straints. Finally, we show that, in addition to specifying how
to achieve an action, the use of geometric constraint and the
delegation of motions to a specialized planner allow to sim-
plify the internal representation of the state of the world in
the task planner and so, alleviate its computations.

Experimental platform and model of the robot
For the experimentations presented in this section, we used
an implementation of the hybrid planning architecture illus-
trated in the figure 1. This planning architecture is com-
posed of a symbolic planner and a geometric reasoner. The
symbolic planner is a HTN planner similar to SHOP2 (Nau
et al. 2003) in which the operators are defined using the
formalism defined by definition 1. The geometric reasoner
is a path planner named CELL-RRT (Guitton, Farges, and
Chatila 2009) which is based on the Rapidly-exploring Ran-
dom Trees algorithm (LaValle and Kuffner 1999) and opti-
mized with a cellular decomposition phase.

The mobile robot used to illustrate our approach is a car-
like vehicle. The state of such robot can be described by
three configuration variables (x, y, θ) : x and y are the Carte-
sian coordinates of the robot position and θ is its heading.
The robot is considered to move with a constant speed and
its turning angle is bounded:

−φmax ≤ φ ≤ φmax
The robot kinematic model is defined as follows:

ẋ = v.cos(θ)
ẏ = v.sin(θ)
θ̇ = v

L tan(φ)

where v is the speed and L is the vehicle’s axle length. Com-
puting a robot movement corresponds to integrating this

model on a time interval ∆t. In order to limit the search
space, changes of turning angle are modeled by a three-
valued command:

φ ∈ {−φmax, 0, φmax}

Examples of functions and associated derived codes
Table 2 presents the functions associated to the constraint
elements distance and rel_angle that are involved
in the geometric preconditions of the figure 3. The func-
tion distance is the Euclidean distance function and only
uses the robot position. The function rel_angle aims at
expressing angle constraints between the robot heading and
the vector formed by the couple (robot position, object posi-
tion).

In these examples of functions, we choose to define only
useful derived codes. For example, the function associated
to rel_angle has partial derivatives for the components of
the robot state vector related to the position, but we define
only the partial derivative for the robot heading because a
change of heading can be done by rotating the robot. The
derived codes not defined are equal to zero.

Example of constraint satisfaction
From the geometric preconditions:{

distance(r, o) ≥ 10
distance(r, o) ≤ 20

We obtain the following constraints :{
c1 = distance(r, o)− 10 ≥ 0
c2 = −distance(r, o) + 20 ≥ 0

So: {
f1 =

√
(xo − xr)2 + (yo − yr)2 − 10

f2 = −
√

(xo − xr)2 + (yo − yr)2 + 20

Let Gi be the penalty function used for f1 et f2

Gi(X) =
1
2
X2H(X)

We obtain:{
G1 = 1

2 (
√

(xo − xr)2 + (yo − yr)2 − 10)2H(f1)
G2 = −1

2 (
√

(xo − xr)2 + (yo − yr)2 + 20)2H(f2)

The global penalty function is:

F =
i=2∑
i=1

Gi = G1 +G2

Thus:

∇F =

 ∂G1
∂f1
∗ ∂f1∂x

∂G1
∂f1
∗ ∂f1∂y
0

H(f1) +

 ∂G2
∂f2
∗ ∂f2∂x

∂G2
∂f2
∗ ∂f2∂y
0

H(f2)

30

elt c associated functions some derivatives

distance(r, o) f1 =
√

(xo − xr)2 + (yo − yr)2 ∂f1
∂xr

= xr−xo√
(xo−xr)2+(yo−yr)2)

∂f1
∂yr

= yr−yo√
(xo−xr)2+(yo−yr)2)

rel_angle(r, o) f1 = (xo−xr)∗cos(θr)+(yo−yr)∗sin(θr)√
((xo−xr)2+(yo−yr)2

∂f1
∂θr

= −(xo−xr)∗sin(θr)+(yo−yr)∗cos(θr)√
(xo−xr)2+(yo−yr)2

f2 = (xo−xr)∗sin(θr)−(yo−yr)∗cos(r.θ)√
((xo−xr)2+(o.y−r.y)2

∂f2
∂θr

= (xo−xr)∗cos(θr)+(yo−yr)∗sin(θr)√
(xo−xr)2+(yo−yr)2

Table 2: Examples of constraint elements, associated functions and derived codes.

For example, let r0 = [20, 100, 0] be the initial robot
state vector and o = [50, 50] the position of an object, the
constraint c1 is satisfied but not c2 :

distance(r0, o) = 58.31

From the previous computations, we obtain:

r1 = r0 − λk∇F (r0) =

[20 + 19.71
100− 32.85

0

]
≈

[40
67
0

]
With λk = 1.

Now:
distance(r1, o) = 19.72

The constraints c1 and c2 are both satisfied.

Planning a mission for a rover
As a mission, a rover has to take photos of 8 different ob-
jectives. Figure 4 represents the environment used for the
mission. The obstacles are drawn in black and the yellow
squares are the objectives. The planning problem is defined
as follows :
(!init_rover_attitude rover0 location0)
(achieve-goals (list

(has_photo_of rover0 location1)
(has_photo_of rover0 location2)
(has_photo_of rover0 location3)
(has_photo_of rover0 location4)
(has_photo_of rover0 location5)
(has_photo_of rover0 location6)
(has_photo_of rover0 location7)
(has_photo_of rover0 location8)

))

The planning domain is composed of only two opera-
tors (and some methods): !init_rover_attitude and
!take_photo. (figures 2 and 3). We did not write an op-
erator of navigation because motions of the robot are geo-
metric preconditions to the actions achievement. Such an

Figure 4: The environment used for the mission.

operator would be redundant with the definition of other op-
erators.

The initial state is composed of symbolic predicates de-
scribing the robot and the environment:

(rover rover0)(available rover0)
(camera cam_0)(has_camera rover0 cam_0)
(location location0)(location location1)
(location location2)(location location3)
(location location4)(location location5)
(location location6)(location location7)
(location location8)

The motion planner holds geometric knowledges corre-
sponding to these symbolic predicates (table 3).

To achieve the mission, the robot takes 8 photos. For each
photo, it places itself perpendicularly to the objective, ie. its
lateral camera points to the objective. Figure 5 illustrates
a solution found by the hybrid planning architecture. The
blue dots represent the positions where the actions are un-
dertaken. The green dot is the initial position of the robot
and the red one is the final position. The black curve is the
path found by the motion planner to achieve this mission.

31

labels Cartesian coordinates
location0 (20, 20)
location1 (67, 171)
location2 (206, 542)
location3 (362, 350)
location4 (580, 526)
location5 (772, 301)
location6 (588, 278)
location7 (601, 20)
location8 (344, 145)

Table 3: Coordinates of objects.

Figure 5: One possible solution found for the mission.

The task planner sends back to the interface the following
symbolic plan:

SOLUTION PLAN:
1:(!init_rover_attitude rover0

location0)
2:(!take_photo rover0 location1 cam_0)
3:(!take_photo rover0 location2 cam_0)
4:(!take_photo rover0 location3 cam_0)
5:(!take_photo rover0 location4 cam_0)
6:(!take_photo rover0 location5 cam_0)
7:(!take_photo rover0 location6 cam_0)
8:(!take_photo rover0 location7 cam_0)
9:(!take_photo rover0 location8 cam_0)

Additional remarks

In the previous paragraph, we have seen that the new syn-
tax for describing a planning operator alleviates the plan-
ning domain. For the same reason, the initial state can
be reduced. Indeed, the domain used in the previous ex-
ample can be formulated only with logical predicates if
the geometric preconditions and the robot kinematic model
are not taken into account. In this case, possible paths
between the objectives are modeled with the predicate
can_traverse(?obj1 ?obj2) like in the academic
planning domain the rover domain proposed at the 3rd In-

ternational Planning Competition1.
We compare three different methods. First, symbolic ap-

proach with blind search, i.e. first waypoint is chosen. Then,
symbolic approach with nearest-first heuristic search, i.e.
nearest waypoint of the current robot position is chosen.
Finally, an hybrid approach in which a path from one ob-
jective to the next one in computed by an external short-
est path algorithm from a visibility graph: given a weighted
graph 〈V,E, l : E → R〉, find a path β from v to v′ so
that

∑
l(e), e ∈ β is minimal. The first and second meth-

ods use an HTN navigate method and a goTo opera-
tor while the third method delegates the navigation to the
shortest path algorithm. The graph representing the envi-
ronment is composed of 70 edges and 1126 vertices. Sym-
bolic approaches correspond to an abstract mission plan
search, i.e., the task planner reasons only on logical pred-
icates representing the environment and translated from the
visibility graph. We compare the computation time spent
by each method to find a solution plan as well as the the
solution quality in terms of traveled distance on 15 exam-
ples of increasing complexity. In order to be able to com-
pare the solution qualities in terms of traveled distance,
we add predicates indicating distances between waypoints:
distance(?obj1 ?obj2 ?value).

 0

 200

 400

 600

 800

 1000

 1200

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 C
om

pu
ta

tio
n

tim
e

(in
 s

ec
.)

 number of objectives

using task planner alone
task planner + heuristic

using specialized reasoner

Figure 6: Comparison of the computation time

Figure 6 depicts the evolution of computation time ac-
cording to the complexity (number of objectives) for the
three methods. The computation time is significantly re-
duced when using a specialized reasoner for paths compu-
tation. The evolution of computation time when the number
of goals increases is slower. Indeed, adding a new goal in-
creases the time by, in average, 50 seconds for symbolic ap-
proaches against 4 seconds for the hybrid approach. The task
planner alone or with heuristic takes so long because each
time the navigate method is applied to build a path, a
valid can_traverse predicate is searched for unification
among a list of 70 predicates. The use of the heuristic in the
task planner increases the computation time because it im-
plies the search and ordering of all valid can_traverse
predicates instead of only one.

1http://planning.cis.strath.ac.uk/competition/

32

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 d
is

ta
nc

e

 number of objectives

using task planner alone
task planner + heuristic

using specialized reasoner

Figure 7: Comparison of the overall distance

The comparison of the overall traveled distance is pre-
sented on the figure 7. Using a geometric reasoner allows
to obtain plans with a higher quality in terms of path length
than classical approaches even when a heuristic to improve
the overall traveled distance is used.

Conclusion
In this paper, we proposed a method allowing to take into
account geometric constraints at the symbolic description
of an action and to satisfy them. These constraints are for-
mulated through the addition of a new set of preconditions,
the geometric preconditions, which are sent to the motion
planner through planning requests. These geometric pre-
conditions are translated into a set of mathematical penalty
functions using a library of corresponding functions and de-
rived codes. Then, from the geometric constraints, the mo-
tion planner computes a destination state using a non-linear
programming method.

We illustrated the feasibility of our approach through an
example of mission planning for a mobile robot and shown
that the use of hybrid planning architectures with a special-
ized reasoner dedicated to the paths computation allows to
obtain better performances than the use of a task planner
alone reasoning only on the symbolic part of the problem.

Our future investigations will involve an improved func-
tions and derived codes database in order to plan more com-
plex missions. The main future improvement of our work
is to extend the formalism described in this paper in order
to take into account not only geometric preconditions on
the attitude the robot must adopt to achieve an action, but
also geometric preconditions allowing to describe the be-
havior of the robot during the achievement of actions and
proper geometric effects allowing to link different symbolic
actions through reference to geometric features as, for in-
stance, go_back_same_location. Another interest-
ing research tracks is the use of the G function to evaluate
already generated paths in order to detect opportunities to
achieve actions earlier and to produce advices for the task
planner.

References
Alami, R.; Chatila, R.; Fleury, S.; Ghallab, M.; and In-
grand, F. 1998. An architecture for autonomy. Interna-
tional Journal of Robotics Research 17:31–337.
Baltié, J.; Bensana, E.; Fabiani, P.; Farges, J.; Millet, S.;
Morignot, P.; Patin, B.; Petitjean, G.; Pitois, G.; and Pon-
cet, J. 2008. Multi-vehicle missions : architecture and
algorithms for distributed online planning. In Artificial In-
telligence for Advanced Problem Solving Techniques. In-
formation Science Reference. 1–22.
Cambon, S.; Alami, R.; and Gravot, F. 2009. A hy-
brid approach to intricate motion, manipulation and task
planning. The International Journal of Robotics research
28:104–126.
Chanthery, E.; Barbier, M.; and Farges, J.-L. 2005. Plan-
ning algorithms for autonomous aerial vehicle. In 16th
IFAC World Congress, volume 16.
Fox, M., and Long, D. 2003. PDDL 2.1: an extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research 20:61–124.
Guéré, E., and Alami, R. 2001. Let’s reduce the gap be-
tween task planning and motion planning. In IEEE Inter-
national Conference on Robotics and Automation, 15–20.
Guitton, J.; Farges, J.-L.; and Chatila, R. 2008. A plan-
ning architecture for mobile robotics. In 1st Mediterranean
Conf. on Intelligent Systems and Automation, 162–167.
Guitton, J.; Farges, J.-L.; and Chatila, R. 2009. Cell-
RRT: Decomposing the environment for better plan. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems (to appear).
Hoffmann, J.; Edelkamp, S.; Thiébaux, S.; Englert, R.; Li-
porace, F.; and Trug, S. 2006. Engineering benchmarks
for planning: the domains used in the deterministic part of
ipc-4. Journal of Artificial Intelligence 26:453–541.
Kambhampati, S.; Cutkosky, M.; Tenenbaum, J.; and Lee,
S. 1993. Integrating general purpose planners and special-
ized reasoners: case study of a hybrid planning architec-
ture. In IEEE Transactions on Systems, Man and Cyber-
netics, volume 23, 1503–1518.
Lamare, B., and Ghallab, M. 1998. Integrating a temporal
planner with a path planner for a mobile robot. In AIPS
Workshop Integrating planning, scheduling and execution
in dynamic and uncertain environments, 144–151.
LaValle, S., and Kuffner, J. 1999. Randomized kino-
dynamic planning. In IEEE International Conference on
Robotics and Automation, volume 1, 473–479.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, J. W.;
Wu, D.; and Yaman, F. 2003. SHOP2 : An HTN planning
system. Artificial Intelligence Research 20:380–404.
Zacharias, F.; Borst, C.; and Hirzinger, G. 2006. Bridging
the gap between task planning and path planning. In IEEE
International Conference on Intelligent Robot ans Systems,
4490–4495.

33

