

Integrating task and PRM motion planning:

Dealing with many infeasible motion planning queries

Kris Hauser(1) and Jean-Claude Latombe(2)

(1) School of Informatics and Computing, Indiana University, Bloomington, USA
(2) Computer Science Department, Stanford University, California, USA

Abstract
To accomplish a task an autonomous robot must break this
task into “primitive” subtasks and order them to satisfy
precedence constraints. Each subtask requires performing a
motion. The existence of a feasible trajectory is an
additional precondition for the subtask, but a very expensive
one to test. Probabilistic RoadMaps (PRM) are an effective
approach to plan feasible trajectories when these exist.
However, PRM planners are unable to detect that no solution
exists. On the other hand, a task/motion planner must often
consider many subtasks, a fraction of which, only, admit
feasible trajectories. This paper proposes a general
algorithm (I‐TMP) that specifically addresses this issue. This
algorithm interweaves task and motion planning, and allows
distributing computational effort where it is most useful. It
is probabilistically complete in the following sense: if I‐TMP
can generate a sequence of subtasks that admits a feasible
trajectory, such a trajectory will eventually be found with
high probability. An application of I‐TMP to multi-limbed
robots navigating on rough terrain is presented.

I. Introduction
Consider an autonomous multi-limbed robot (e.g., a
humanoid robot) that must accomplish a complex task, like
gardening, repairing a bicycle, performing a scientific
experiment, navigating on rugged terrain. The robot must
break this task into primitive subtasks (e.g., move right
hand to grasp a screwdriver, bring grasped screwdriver in
contact with screw tip, move left foot onto a ladder rung)
and order them to satisfy logical precedence constraints.
Each primitive subtask requires performing a motion that
eventually creates or breaks contacts with the environment.
The existence of a feasible trajectory for this motion is an
additional precondition for the subtask, but a very
expensive one to test.
 Here we consider the case where the robot’s planner
must search a huge (possibly infinite) space of subtasks
represented by a graph – the subtask graph – whose nodes
are subtasks and arcs are precedence constraints. We

assume that the robot has many degrees of freedom, so that
the only available viable motion planning approach to
compute feasible trajectories is the Probabilistic RoadMap
(PRM) approach (Kavraki et al, 1996; Hsu et al., 1999;
LaValle and Kuffner, 1999; Sanchez and Latombe, 2002;
Akinc et al., 2005). A PRM planner approximates the
connectivity of the robot’s feasible motion space by a
network of simple trajectories connecting configurations
sampled according to some probability distribution (Hsu et
al., 2006). If properly implemented, this planner is
probabilistically complete and has fast convergence, i.e.,
the probability that it fails to find a solution trajectory
when one exists converges toward 0 exponentially in the
number of sampled configurations. However, it is unable to
detect that no solution exists. So, a PRM planner terminates
with failure after some cutoff time.
 A significant fraction of subtasks are often infeasible
because no trajectories exist to perform them (e.g., the
robot would collide with obstacles, lose balance, or lose
sight of a key object). If the cutoff time of the PRM planner
for each motion-planning query is set too high, then much
time will be wasted on infeasible subtasks; if it is set to
low, critical subtasks may be incorrectly labeled as
infeasible, and the overall task planner may eventually fail
to find a plan for the task at hand.

We propose a general algorithm (I‐TMP, for Incremental
Task/Motion Planner) that specifically addresses this issue.
I‐TMP interweaves task and motion planning, and allows
distributing computational effort where it is the most
useful. The algorithm is probabilistically complete in the
following sense: if I‐TMP can generate a sequence of
subtasks that admits a feasible trajectory, such a trajectory
will eventually be found with high probability. We also
describe heuristic techniques to distribute computational
effort in order to speed up the overall planner. Finally, we
present an application of I‐TMP to multi-limbed robots
navigating on rough terrain.

34

II. Related Work
The integration of task planning and PRM motion planning
has been recently studied in (Cambon, 2009) for
manipulation tasks. In this study the structure of the search
space is similar to the one considered here, but slightly
more specific. However, the key issue of the unfeasibility
of many subtasks is not directly addressed.

The integration of task/motion planning has also been
considered for mobile robots navigating among movable
obstacles (van den Berg et al., 2008). In this context, the
robot must displace movable obstacles in order to open
passageways to reach a specified goal position. However,
movable obstacles may interact in a complex way; for
instance, displacing an obstacle may require the prior
displacement of other obstacles. The proposed approach
tries to solve this problem by searching for a continuous
trajectory in a large configuration space that not only
encodes the parameters defining the placement of the robot
in the workspace, but also those of the movable obstacles.
Only planar problems and simple robots are considered, so
that a trajectory can be broken into segments, each of
which lies in a low-dimensional space.

The issue of the unfeasibility of motion planning queries
in a task/motion planner was introduced in (Bretl et al.
2005). Independently, other researchers have proposed
algorithms, called “disconnection planners”, to detect that
a motion planning problem has no solution (Basch et al.,
2001; Hirsch and Halperin, 2004; Zhang et al., 2008)).
However, these algorithms are only applicable to simple
robots with few degrees of freedom (2 or 3) and rely on
coarse approximation of the robot’s shape. In general, they
can only detect certain infeasibility. A more general
method based on semi-algebraic techniques is proposed in
(Bretl et al., 2005); however, it usually takes prohibitive
time to run.

The work described in this paper is an extension of the
planning framework proposed in (Bretl, 2006).

III. Structure of the Search Space

A. Subtask Graph
We assume that each possible subtask is described by
preconditions and effects using a logic-based language
(Russel and Norvig, 2003) similar to STRIPS (for the
purpose of this paper the details of this language are not
important). Ignore for a moment that feasible trajectories
are needed to perform subtasks. In a given state of the
world, a subtask is feasible if its preconditions (precedence
constraints) are satisfied in that state. The initial state of
the world, the conditions defining a goal state and the
subtask descriptions implicitly define a directed graph G,
which we call the subtask graph:

• A subtask is associated with each node of G.

• The preconditions of each subtask in G with no parent
are verified in the initial state of the world. The
corresponding node is a start node.

• Every continuous sequence of subtasks in G starting at
a start node is feasible as far as the preconditions of
the successive subtasks are concerned.

• Every subtask in G that achieves the goal conditions is
a goal node.

• So, every continuous sequence of subtasks between
the start node and a goal node is a plan for the task at
hand.

G may, or may not be finite. The same subtask may be
associated with several nodes of G.

B. Feasible Spaces
Let us now consider the requirement that feasible
trajectories are needed to perform subtasks.
 A robot trajectory can be represented by a continuous
curve segment in a parameter space C called the robot’s
configuration space (Lozano-Pérez, 1983). This space is
usually parameterized by the robot’s degrees of freedom
(e.g., its joint angles). For a humanoid robot it typically has
between 30 and 50 dimensions. C is a manifold, meaning
that it is locally similar to a linear space (Latombe 1991).
 Each subtask σ in G determines a feasible subset Fσ of
the robot’s configuration space C – the subtask’s feasible
space. Fσ consists of all the configurations that achieve the
constraints imposed by the subtask, e.g., avoiding collision,
maintaining certain contacts with the environment,
maintaining balance, and keeping certain objects in view.
For example, if the subtask σ requires the robot to move a
box held with both hands with its two feet making fixed
contacts with the terrain, then Fσ is the subset of all
configurations where (1) neither the robot nor the box
collide with obstacles, (2) the joint angles in the robot are
such that the torso, the two arms and the box form a closed
kinematic chain, (3) the pelvis, the two legs and the terrain
form another closed chain, and (4) the robot’s center of

Figure 1: Configuration space C, submanifold Cσ defined by
dimensionality-reducing constraints, and feasible space Fσ
defined by volume-reducing constraints.

C

Cσ

Fσ

35

mass (taking into account the box) is above the support
polygon.
 Fσ is a subset of a sub-manifold Cσ embedded in the
configuration space C (Fig. 1). The constraints defining Cσ
within C are dimensionality-reducing constraints of the
form Hσ(q) = 0; they usually are constraints requiring that
some contacts with the environment be maintained (Hauser
and Latombe, 2008). The constraints defining Fσ within Cσ
are volume-reducing constraints of the form Kσ(q) > 0
(e.g., collision avoidance). Fσ is usually high-dimensional
and geometrically complex. It may also be made of several
connected components. In some cases, it is empty, that is,
no configurations satisfy all the constraints.

In general, two distinct subtasks admit different feasible
spaces. For example, in a subtask σ’ different from the
above subtask σ, the robot may not hold any object and
may be standing on a single foot. Then, both the
dimensionality-reducing and volume-reducing constraints
are different, so that Fσ’ has greater dimensionality than Fσ
and a different geometric shape.

In the following, we assume that primitive subtasks are
chosen such that robot-environment contacts stay fixed
during any given subtask, except at the start and the end of
the subtask where new contacts may be created or existing
contacts may be broken (e.g., by grasping or un-grasping
an object, or making a new foot contact with a rugged
terrain or breaking one). Therefore, any feasible space Fσ
is contained in a sub-manifold Cσ of fixed dimensionality.
Two successive feasible spaces in a task plan often have
different dimensionalities. Subtasks that require multiple
changes of contact are encoded as a series (or if order is
unspecified, a subgraph) of primitive subtasks.

C. Transitions
Let σ and σ’ be two adjacent subtasks in G and let Fσ and
Fσ’ be their respective feasible spaces. We call the
intersection Fσ ∩ Fσ’ the transition space between σ and
σ’. Any point in this space is a transition configuration
between σ and σ’ (Fig. 2). It follows from the assumption
stated above that contacts can only be created or broken at
transition configurations. The execution of a task plan by a
robot can now be seen as a motion along a continuous
trajectory concatenating successive sub-trajectories, each
contained in the feasible space of a subtask. The endpoint
of a trajectory in one feasible space Fσ is the start of the
trajectory in the next feasible space Fσ’, hence a transition
configuration in Fσ ∩ Fσ’ (this does not require, however,
that a trajectory from Fσ to Fσ’ crosses Fσ ∩ Fσ’ at a single
configuration). So, for a task plan to be feasible, a
continuous trajectory must exist that connects the initial
robot configuration s to a goal configuration g through the
feasible spaces associated with the successive subtasks in
the plan.

Transitions play an important role, as they usually
constitute bottlenecks for motion planning. Indeed, the
transition space between two subtasks must satisfy the
constraints associated with both subtasks. For example,
when a robot un-grasps an object, two constraints, at least,
must be simultaneously satisfied: (1) the object must be at
a location where it will stay in equilibrium after it is un-
grasped and (2) the robot must hold the object at this
location. Similarly, when a legged robot breaks a contact to
move one of its feet to a new footfall, it is must both satisfy
the kinematic constraint that the foot is still at its initial
contact position and achieve balance without applying any
force at this contact position. So, transition spaces are more
likely to be empty than feasible spaces, or at least smaller.

IV. Task/Motion Planning

A. PRM Planning
For most robots, computing an exact explicit geometric
representation of a single feasible space Fσ is prohibitively
time consuming, due to the high dimensionality and the
geometric complexity of that space. Instead, a PRM planner
approximates the connectivity of such a space by a
network of simple trajectories, called a roadmap. The
nodes, called milestones, are configurations sampled using
some probabilistic distribution.

A property – expansiveness – was introduced to
characterize how quickly a PRM planner can solve motion
planning problems (Hsu et al., 1999). Roughly speaking, a
feasible space is expansive if it does not contain arbitrarily
narrow passages (regions of zero relative volume
connecting other regions). In that case, it can be shown that
the probability that the planner fails to find a solution when
one exists converges toward 0 exponentially in the number
of sampled configurations. However, a PRM planner is
unable to detect that no solution exists.

Smoothed analysis shows that narrow passages are
unstable under small perturbations of the geometry of the
robot and its environment (Chaudhuri and Koltun, 2007)

Figure 2: Two intersecting feasible spaces Fσ and Fσ’. To switch
between them the robot must cross the transition space Fσ ∩ Fσ’.
Fσ and Fσ’ often have different dimensionalities.

Transition space
Fσ

Fσ'

36

and therefore are unlikely to occur in practice when the
robot maintains a fixed set of contacts with its
environment. This is the case for every feasible space Fσ,
under the assumption that each subtask keeps contacts
fixed (except at the start and end). However, the union of
all the feasible spaces contains regions of varying
dimensionalities as the robot change contacts between
subtasks. So, this union is non-expansive, with subspaces
of lower dimensionalities forming arbitrarily narrow
passages between subspaces of higher dimensionalities.
PRM planning must be adapted to handle these passages.

B. Addressing the Varying Dimensionality Issue
A natural approach to deal with the varying dimensionality
issue is to sample each feasible space individually and
construct a separate roadmap in it. An aggregate roadmap
can then be constructed over the union of the feasible
spaces by connecting the individual roadmaps at
milestones specifically sampled in transition spaces. This is
the approach of the TMP (for Task/Motion Planner)
algorithm presented below.

Like in any PRM planner we need two functions to
define TMP, respectively to sample milestones (SAMPLE)
and to create connections between milestones (CONNECT):

‐ SAMPLE(X), where X is a feasible space Fσ (or a
transition space Fσ ∩ Fσ’), first samples a configuration q in
the Cσ ⊃ Fσ (or in the subspace Cσ ∩ Cσ’ ⊃ Fσ ∩ Fσ’) and then
tests whether q ∈ X. It returns q if q ∈ X and failure
otherwise. Cσ can always be parameterized using a set of
charts forming an atlas (Latombe, 1991). To sample q in Cσ
one may pick a chart from the atlas and independently
sample each coordinate in that chart (Cortés and Siméon,
2005). Another way is to (1) define a manifold M
containing Cσ that is easier to parameterize than Cσ (for
example, M a linear space), (2) sample a configuration in
M, and (3) use a numerical method to move this
configuration into Cσ (Yakey et al., 2001). The same
techniques can be used for sampling from Cσ ∩ Cσ’.

‐ CONNECT(q,q’,Fσ) tries to connect two milestones q
and q’ in Fσ. It picks a sequence of charts in the atlas of Cσ
such that the first chart in the sequence covers q and the
last one covers q’. Then, for every two successive charts in
this sequence it picks a configuration contained in both
charts. Finally, it connects q to q’ by a trajectory made of
successive line segments (one in each successive chart)
joining these intermediate configurations. If this trajectory
fully lies in Fσ, then CONNECT returns the trajectory.
Alternatively, CONNECT may compute the trajectory by
joining q and q’ with a straight line in M and numerically
deforming this line into Fσ (Hauser, 2008).

Suppose that an explicit representation of the subtask
graph G can be pre-computed (in that case, G must have
finite size). TMP concurrently builds roadmaps in all the
feasible spaces associated with the subtasks in G,
connecting them at transition milestones:

TMP(G,s,g,N)
1. For each subtask σ associated with a node of G, initialize

Rσ to the empty roadmap.
2. For each subtask σ associated with a start node of G add

the start configuration s as a milestone of the roadmap
Rσ.

3. Similarly, for each subtask σ associated with a goal node
of G add the goal configuration g as a milestone of the
roadmap Rσ.

4. Repeat N times:
a. For every subtask σ in G, if SAMPLE(Fσ) succeeds,

add the returned configuration q to Rσ as a new
milestone and try to connect q to each previously
existing milestone q’ in Rσ using CONNECT(q,q’,Fσ).

b. For every pair of adjacent subtasks σ and σ’ in G, if
SAMPLE(Fσ ∩ Fσ') succeeds, add the returned q as a
new milestone to both Rσ and Rσ’, and try to connect
q to each previously existing milestone q’ in Rσ and
Rσ’ with CONNECT(q,q’,Fσ) and CONNECT(q,q’,Fσ’).

5. Let R be the aggregate roadmap obtained by connecting
the roadmaps Rσ at matching transition milestones. If s
and g are connected by a path in R, then return a solution
trajectory; otherwise return failure.

It is shown in (Hauser, 2008; Hauser and Latombe,
2008) that, when there actually exists a solution trajectory,
the probability that TMP returns failure converges toward 0
exponentially with N, under the following two (usually
satisfied) assumptions: (1) each non-empty feasible space
Fσ is expansive and (2) SAMPLE(X) succeeds with non-zero
probability whenever X is non-empty. It is also shown that
if TMP iterates until a solution is found, the mean and
variance of the running time to find a solution, when one
exists, are bounded.

However, the running time of TMP is linear in the size of
G, which in most practical cases is huge or even infinite.
So, TMP can only be used on small problems.

C. Incremental Planning
In practice, even when G is huge, most tasks can be solved
by plans made of a relatively small number of subtasks
(typically a few dozens, or less). The underlying idea of the
incremental planning algorithm I‐TMP is to restrict TMP to
a small portion of G containing these subtasks. Since these
subtasks are not known in advance, I‐TMP iteratively
executes two successive steps: subtask selection and
roadmap construction.

At each cycle i = 1, 2, …, I‐TMP builds a subgraph Gi of
G such that Gi−1 ⊂ Gi and creates roadmaps in each of the
feasible spaces Fσ associated with the subtasks in Gi.
Specifically, it performs the following:

For i = 1, 2, … do:
1. Subtask selection: Construct Gi
2. Roadmap construction: TMP(Gi,s,g,N)

37

In practice, the roadmaps built at cycle i−1 are not
forgotten, but instead incremented with new milestones
and connections at cycle i. I‐TMP returns failure if it has
not found a solution after a certain number of cycles or a
given cutoff time. When G is finite, I‐TMP is
probabilistically complete and has the same asymptotic
convergence as TMP because the subgraphs Gi will
eventually grow to G in its entirety. However, I‐TMP does
not require G to be pre-computed (the subgraphs Gi can be
built by searching G), so it can work even when G is
infinite. In this case, the completeness of I‐TMP depends on
the completeness of the algorithm searching G. If I‐TMP
can generate a sequence of subtasks that admits a feasible
trajectory, this trajectory will eventually be found with
high probability.

However, for I‐TMP to be efficient, it must select the
successive subgraphs Gi so that a trajectory joining s and g
can be found at a cycle i where Gi is still reasonably small.
A simple heuristic is to extract, at each cycle i, one or a
few new paths joining start to goal nodes in G and insert
these new paths into Gi−1 to produce Gi. Thus, I‐TMP will
not waste time sampling feasible and transition spaces in
subtask sequences that do not eventually lead to a goal
node in G. However, this heuristic alone does not
necessarily lead to generating sequence of subtasks that
admit feasible trajectories. We now address this critical
issue.

D. Dealing with Infeasible Queries
As mentioned before, transition spaces are the bottlenecks
for motion trajectories as each such space must satisfy the
constraints associated with two subtasks. So, the non-
emptiness of every transition space Fσ ∩ Fσ’ along a
sequence of subtasks in Gi is not only a necessary
condition for the existence of a feasible trajectory through
these tasks; it is also a good indication that such a
trajectory actually exists. Moreover, they are not a
computational bottleneck, because it is usually much faster
to sample transition spaces than to build roadmaps in
feasible spaces. These two observations lead to
constructing Gi by searching G using a heuristic function
that estimates the non-emptiness of the transition spaces.

More precisely, let Σ be the search tree constructed
while searching G and let Q be a priority queue of
transition spaces T sorted by decreasing values of a priority
function p(T) discussed below. At the beginning of cycle
i=1, Σ is initialized to contain only the initial nodes in G
and Q is initialized to contain all the transition spaces
associated with the arcs stemming from these nodes in G.
Each transition space is inserted into Q with some initial
priority. At cycle i the search algorithm is then as follows:

1. Repeat until either Σ contains a path to a goal node such
that this path is not contained in Gi−1, or a cutoff time has
been reached:

a. Remove the first transition space T from Q. Perform
SAMPLE(T).

b. On failure, reduce p(T) and reinsert T into Q.
c. On success, let T = Fσ ∩ Fσ’. Add σ’ to Σ as a child

of σ. For each transition space T’ stemming from σ’
in G, insert T’ into Q with some initial priority.

2. If the cutoff time has been reached, then return failure.
3. If a new path has been found, then insert this path into

Gi−1 to produce Gi.

Note that:
- Transition configurations returned by SAMPLE are stored

to be later inserted into the appropriate roadmaps Rσ.
- The algorithm can easily be modified to perform

backward or bi-directional search.
There are multiple ways to define the priority function

p(T). One approach is to consider p(T) as an estimate of the
probability that T is not empty. In (Hauser et al., 2005)
supervised learning is used to acquire a statistical model
p(T), as a function of features of the two subtasks meeting
at T (e.g., the locations of the contacts made by the robot).
This model can then be used to initialize p(T) whenever a
new transition space T is inserted into Q. When SAMPLE(T)
returns failure, p(T) is reduced to reflect the posterior
probability, in such a way that p(T) → 0 with the number
of unsuccessful runs of SAMPLE(T).

In addition, the running time of I‐TMP can be
significantly reduced by tuning appropriately the number
of sampling operations in each feasible and transition space
in Gi at each cycle i. This requires adapting slightly the
TMP algorithm given above. For example, it is suboptimal
to run SAMPLE the same number of times in feasible and
transition spaces. Because it usually takes much more
work to build connected roadmaps in feasible spaces than
to sample transition spaces, feasible spaces should be more
heavily sampled. In addition, since PRM planning in a
feasible space has fast convergence, SAMPLE should be run
a smaller number of times in spaces that have already been
highly sampled. In particular, since roadmaps existing at
cycle i−1 are re-used at cycle i, the numbers of SAMPLE
runs performed at cycle i should be greater in feasible and
transition spaces that were not in Gi−1 than in those that
were already in Gi−1. Finally, at any stage of cycle i if the
roadmap in a feasible space Fσ is fully connected, there is
no immediate need to perform further runs of SAMPLE in
Fσ (however, the transition space Fσ ∩ Fσ’ should still be
sampled further if the roadmap in Fσ’ is not fully
connected).

For most parameter values in the heuristics, I‐TMP
embedding the above modifications has the same
probabilistic completeness as the original TMP, but with
different convergence constants.

38

V. Robot Navigation on Rough Terrain
We have used variants of I‐TMP to plan the motion of
multi-limbed robots on rough terrain, in particular:
- Capuchin, a 4-limbed climbing robot (Zhang, 2008),
- ATHLETE, a 6-legged robot designed to navigate on

natural, possibly steep terrain (Hauser et al., 2008;
Hauser, 2008),

- HRP-2, a humanoid robot (Hauser et al., 2008; Hauser,
2008).

With Capuchin, tests were conducted on the real robot
(Fig. 3). With ATHLETE and HRP-2, they were only
conducted on simulation (Fig. 4-6).

ATHLETE consists of 6 identical legs attached to a
hexagonal chassis. Each leg has 6 actuated revolute joints.
So, the robot’s configuration space has 42 dimensions.
Contacts between ATHLETE and the terrain are restricted
to wheel-shaped feet. Each contact, which is modeled as a
point, removes 3 degrees of freedom. So, when the robot
makes 6 contacts, its motion lies in a submanifold of
dimensionality 42 – 18 = 24. When it makes only 3
contacts (the minimum number of contacts that allows
quasi-static stability), its motion lies in a submanifold of
dimensionality 42 – 9 = 33. In our work we model HRP-2
so that its configuration space is 36-dimensional. We allow
the robot to contact the terrain with both its feet and hands,
and contacts can be described by points, edges, or faces.
Finally, Capuchin’s configuration space is 11-dimensional;
its contacts with the terrain are restricted to the endpoints
of it limbs and are modeled as points.

For each robot, a subtask consists of moving to a
configuration where the robot achieves a new contact or
breaks an existing one. For instance, consider subtask σ in
which ATHLETE makes 6 fixed contacts with the terrain.
Let the goal of σ be to break a contact c. So, the robot must
move to a configuration in Fσ where the force exerted at c
is zero, while remaining stable. Once σ is completed, the
robot switches to another task σ’ that may, for example, be
to bring the foot at the broken contact to another footfall c’.

Figure 4: ATHLETE navigating on rough terrain.

Figure 5: HRP-2 navigating on complex rock terrain requiring
hand contacts to maintain stability.

Figure 3: Capuchin performing a “traverse” on vertical terrain
with sparse features.

39

Figure 6: HRP-2 climbing a ladder with uneven rungs

For all these robots, the graph G is non-directed and
consists of all the contact state (we call then stances) that
might be feasible, i.e., where all the contacts are within a
disc or sphere whose diameter is approximately the limb
span of the robot. In most cases, there are several 100,000s
of stances in G. Two stances are connected by an edge of G
if they differ by only one contact (hence, we allow a single
contact to be created or broken in each transition). The
constraints on the motion are collision avoidance
(including self-collision avoidance), quasi-static stability
using a Coulomb friction model at the contacts (Bretl,
2006), torque limits in the joints, and kinematic closures to
maintain contacts. We assume all motions to be quasi-
static. Possible contact locations on the terrain are either
given (e.g., in the case of Capuchin), extracted from the
terrain geometry, or sampled at random. In many

examples, over 70% of the transition spaces in G are
empty.

Our experiments (Hauser, 2008; Hauser and Latombe,
2008) confirm that TMP is impractical, except for small
problems. I‐TMP is both reliable and reasonably fast (it still
takes from minutes to hours to solve a planning problem).
The heuristics used to tune the number of sampling
operations in each feasible and transition spaces greatly
improve running time, sometimes by several orders of
magnitude. Certain simplifications result in significant
speedups, but their reliability depends on the robot. For
example, we found out that for HRP-2 it is usually
sufficient to sample a single milestone per transition space
without affecting the reliability of the planner. But the
same simplification does not work for ATHLETE; the
planner then fails consistently to solve many problems that
I‐TMP can actually solve when the number of milestones in
each transition space is not limited. The reason for this
(shown by other tests) is that the feasible spaces of HRP-2
tend to be connected, while those of ATHLETE often
consist of multiple components.

VI. Conclusion
A key problem in integrating task and motion planning is
to deal with the fact that many motion planning queries are
infeasible. In high-dimensional configuration spaces no
effective motion planning techniques exist today to detect
that a query is infeasible. PRM planners can solve feasible
queries efficiently, but their running time is variable.
Allocating them too much time would lead the integrated
planner to waste time on many infeasible queries. But too
little time could lead them to fail on critical feasible
queries. The algorithm I‐TMP and the heuristics proposed
in this paper provide an approach that allocates
computational time adaptively where it is likely to be the
most useful. Experiments with several limbed robots
navigating on rough terrain show that this framework is
effective, at least for this type of application.
 Several issues remain for future research. In particular,
the running time of I‐TMP is still too long in many cases to
achieve close-to-real-time performance without major
simplifications that could impact completeness. More work
should be done to learn a probabilistic model of the
feasibility of subtasks. This model would then be used to
better select the subtasks added to the graphs Gi at each
cycle of I‐TMP. Decision-theoretic planning techniques
might also improve the way computational time is
allocated and eventually reduce total planning time
(Hauser, 2008).

Another possible improvement would be to design a
motion planner that can suggest subtasks to be included in
a task plan – e.g., displace an obstructive movable obstacle
to clear a passage (van den Berg, 2008). In a similar vein,
certain subtasks could be automatically inserted by the

40

motion planner based on the connectivity of the feasible
space. For example, an object may not be grasped and
placed at a goal location without un-grasping it at an
intermediate location where it can be re-grasped in a way
that makes it possible to eventually place it at the goal
location. Detecting the need for intermediate un-grasp and
re-grasp operations may be easier at the motion planning
level than at the task planning level.

References
M. Akinc, K. E. Bekris, B. Y. Chen, A. M. Ladd, E. Plaku,
and L. E. Kavraki 2005. Probabilistic roadmaps of trees for
parallel computation of multiple query roadmaps.
Algorithmic Foundations of Robotics VI, Springer Tracts in
Advanced Robotics, Vol. 17, p. 80-89.

J. Basch, L. Guibas, D. Hsu, and A. T. Nguyen 2001.
Disconnection proofs for motion planning. Proc. IEEE Int.
Conf. Rob. Aut., p. 1765–1772, Seoul, Korea.

T. Bretl 2006. Motion planning of multi-limbed robots
subject to equilibrium constraints: The free-climbing robot
problem. Int. J. Rob. Res., 25(4):317–342.

T. Bretl, S. Lall, J.C. Latombe, and S. Rock 2005. Multi-
step motion planning for free-climbing robots. Algorithmic
Foundations of Robotics VI, Springer Tracts in Advanced
Robotics, Vol. 17, p. 59-74.

S. Cambon, R. Alami, and F. Gravot 2009. A hybrid
approach to intricate motion, manipulation and task
planning. Int. J. Rob. Res., 28(1):104-126.

S. Chaudhuri and V. Koltun 2007. Smoothed analysis of
probabilistic roadmaps. Proc. 4th SIAM Workshop on
Analytic Algorithmics and Combinatorics (ANALCO07),
New Orleans.

J. Cortés and T. Siméon 2005. Sampling-based motion
planning under kinematic loop-closure constraints.
Algorithmic Foundations of Robotics VI, Springer Tracts in
Advanced Robotics, Vol. 17, p.75-90.

K. Hauser 2008. Motion Planning for Legged and
Humanoid Robots. Ph.D. Thesis, Stanford University.

K. Hauser, T. Bretl, and J.C. Latombe 2005. Learning-
assisted multi-step planning. Proc. IEEE Int. Conf. Rob.
Aut., Barcelona, Spain.

K. Hauser, T. Bretl, J.C. Latombe, K. Harada, and B.
Wilcox 2008. Motion planning for legged robots on varied
terrain. Int. J. Rob. Res., 27(11-12):1325-1349.

K. Hauser and J.C. Latombe 2008. Multi-modal motion
planning in non-expansive spaces. Workshop on
Algorithmic Found. of Rob. (WAFR), Guanajuato, Mexico.

S. Hirsch and D. Halperin 2004. Hybrid motion planning:
Coordinating two discs moving among polygonal obstacles
in the plane. Algorithmic Foundations of Robotics V,
Springer Tracts in Advanced Robotics, Vol. 7, p. 239-255.

D. Hsu, J.C. Latombe, and H. Kurniawati 2006. On the
probabilistic foundations of probabilistic roadmap
planning. Int. J. Rob. Res., 25(7):627–643.

D. Hsu, J.C. Latombe, and R. Motwani 1999. Path
planning in expansive configuration spaces. Int. J. of
Comp. Geometry and Applications, 9(4-5):495-512.

L.E. Kavraki, P. Svetska, J.C. Latombe, and M. Overmars
1996. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Tr. Rob. and
Autom., 12(4):566–580.

J.C. Latombe 1991. Robot Motion Planning. Kluwer
Acedemic Publishers.

S. LaValle and J. Kuffner 1999. Randomized kinodynamic
planning. Proc. IEEE Int. Conf. Rob. and Autom., p. 473-
479.

T. Lozano-Pérez 1983. Spatial planning: a configuration
space approach. IEEE Tr. On Comp., C-32(2):108-120.

S. Russell and P. Norvig 2003. Artificial Intelligence: A
Modern Approach. Prentice Hall.

G. Sanchez and J.C. Latombe 2002. On Delaying Collision
Checking in PRM Planning – Application to Multi-Robot
Coordination. Int. J. Rob. Res., 21(1):5-26.

J. van den Berg, M. Stilman, J. Kuffner, M. Lin, and D.
Manocha 2008. Path planning among movable obstacles: a
probabilistically complete approach. Workshop on
Algorithmic Found. of Rob. (WAFR), Guanajuato, Mexico.

J.H. Yakey, S.M. LaValle, and L.E. Kavraki 2001.
Randomized path planning for linkages with closed
kinematic chains. IEEE Tr. Robot. and Autom., 17(6):951–
958.

L. Zhang, Y.J. Kim, and D. Manocha 2008. Efficient cell
labeling and path non-existence computation using C-
obstacle query. Int. J. Rob. Res., 27(11-12):1246-125.

R. Zhang 2008. Design of a climbing robot: Capuchin.
Proc. 5th Intl. Conf. on Computational Intelligence,
Robotics, and Autonomous Systems, Linz, Austria.

41

