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Abstract

This paper presents a multi-layered approach (SamplSGD)
to automatically compute collision-free and dynamically-
feasible trajectories that satisfy high-level specifications
given in a planning-domain definition language. A crucial
aspect of SamplSGD is an interplay between sampling-based
motion planning and symbolic action planning. SamplSGD
leverages from sampling-based motion planning the underly-
ing idea of searching for a solution trajectory by selectively
sampling and exploring the continuous space of collision-
free and dynamically-feasible motions. Drawing from AI,
SamplSGD uses symbolic action planning to identify re-
gions of the continuous space that sampling-based motion
planning can further explore to significantly advance the
search. The planning layers in SamplSGD interact with
each-other through estimates on the utility of each action,
which are computed based on information gathered during
the search. Simulation experiments on a challenging object-
manipulation task provide promising initial validation.

1. Introduction

Research in robotics has focused since its inception towards
increasing the ability of robots to plan and act on their own
in order to complete assigned high-level tasks. Toward this
goal, this paper studies the following problem:

Given a high-level specification, automatically plan the
sequence of motions the robot needs to execute so that
the resulting trajectory is dynamically feasible, avoids
collisions, and satisfies the high-level specification.

There are two crucial aspects to this fundamental planning
problem: (i) planning in the space of possible high-level ac-
tions and (ii) planning in the space of possible motions.

Action planning, which assumes a discrete world and
discrete actions, has been extensively studied in AI and
logic. Throughout the years, significant progress has been
made in addressing increasingly complex discrete plan-
ning problems. In fact, current methods based on sym-
bolic reasoning have made it possible to specify high-level
goals using sophisticated planning-domain languages, such
as STRIPS (Fikes and Nilsson 1971), ADL (Pednault 1994),
PDDL (Ghallab et al. 1998), HAL (Marthi, Russell, and
Wolfe 2007), and efficiently plan the sequence of discrete
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actions that accomplishes the specified goals even in discrete
spaces with billions of states (see summaries in (Ghallab,
Nau, and Traverso 2004; Baier and Katoen 2008)).

In contrast, motion planning assumes a continuous world
and continuous motions. The motivation comes from nav-
igation, exploration, search-and-rescue missions, and other
applications where it is essential to compute trajectories that
can be followed by the robot in the physical world. As a
result, the planned motions need to not only avoid colli-
sions with obstacles but also satisfy differential constraints
imposed by the underlying robot dynamics. Due to the
increased complexity, motion planning has generally been
limited to simpler goal specifications, such as reachabil-
ity, where the objective is to compute a collision-free and
dynamically-feasible trajectory from an initial to a goal state
(Choset et al. 2005; LaValle 2006).

Researchers have generally considered action planning
and motion planning separately. As a result, the problem of
planning motions that satisfy high-level specifications is typ-
ically approached by first using action planning to compute
a sequence of discrete actions that satisfies the goal speci-
fication. In a second step, motion planning based on con-
trollers is used to consecutively follow the discrete actions
in the continuous world (Arkin 1990; Payton, Rosenblatt,
and Keirsey 1990; Saffiotti, Konolige, and Ruspini 1995;
Belta et al. 2007; Fainekos et al. 2007).

There are, however, several limitations to these decou-
pled approaches. Since discrete actions could have differ-
ent meanings (e.g., “MoveTo,” “PickUp,” “PlaceOnTop”),
numerous controllers would have to be designed in order to
handle the potential diversity of the available discrete actions
and robot dynamics. Moreover, controllers are not always
available. In many cases, collision-avoidance requirements
and differential constraints imposed by dynamics make it
difficult or impossible to design a controller that can fol-
low a discrete action in the continuous world. As a result,
decoupled approaches have had limited success.

To efficiently plan collision-free and dynamically-feasible
trajectories that satisfy high-level specifications, this pa-
per treats it as a search problem over the discrete space
of actions and the continuous space of motions. A multi-
layered approach is presented, SamplSGD (Sampling-
based Motion Planning with Symbolic, Geometric, and
Differential constraints), which combines action planning
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with sampling-based motion planning. SamplSGD lever-
ages from sampling-based motion planning the underlying
idea of searching for a solution trajectory by selectively
sampling and exploring the continuous space of motions.
Sampling-based motion planners are widely applicable and
have had significant success in solving challenging reach-
ability motion-planning problems in high-dimensional con-
tinuous spaces (Kavraki et al. 1996; Amato et al. 1998;
LaValle and Kuffner 2001; Hsu et al. 2002; Sánchez and
Latombe 2002; Ladd and Kavraki 2005; Plaku, Kavraki, and
Vardi 2007; 2008b; Choset et al. 2005; LaValle 2006). To
handle both collision-avoidance requirements and differen-
tial constraints imposed by dynamics, SamplSGD uses a
tree-based exploration of the continuous space. The tree is
rooted at the initial state and is incrementally extended with
trajectories obtained by applying input controls to the states
in the tree and propagating the dynamics forward in time.
The success and computational efficiency of the tree-based
exploration depends on the ability of SamplSGD to effec-
tively guide the tree-based exploration toward the goal, and,
as a result, add as quickly as possible a vertex v such that the
trajectory from the root to v satisfies the high-level specifi-
cation. Drawing from AI, SamplSGD uses symbolic action
planning to guide the tree-based exploration by identifying
and selecting discrete actions and regions of the continuous
space that sampling-based motion planning can further ex-
plore to significantly advance the search for a solution trajec-
tory. The planning layers in SamplSGD interact with each-
other through estimates on the utility of discrete states and
actions, which are computed based on information gathered
during the tree-based exploration. Thus, the symbolic ac-
tion planning guides the sampling-based motion planning,
while the latter feeds back information in the form of util-
ity estimates to improve the guide in the next iteration. This
interplay between symbolic action planning and sampling-
based motion planning through the utility estimates allows
SamplSGD to make proper use of the computational time.
SamplSGD becomes increasingly successful in identifying
regions whose further exploration can significantly advance
the search while avoiding spending valuable computational
time exploring regions that do not advance the search. Sim-
ulation experiments provide promising initial validation.
SamplSGD is motivated by earlier work on manipulation

planning (Alami, Laumond, and Siméon 1995; Nielsen and
Kavraki 2000; Gravot, Cambon, and Alami 2003; Cambon,
Gravot, and Alami 2004; Cambon, Alami, and Gravot 2009)
and hybrid systems (Plaku, Kavraki, and Vardi 2007; 2008b;
2008a; 2009). The work in (Nielsen and Kavraki 2000) used
discrete search over the manipulation graph to guide a PRM
(Probabilistic RoadMap (Kavraki et al. 1996)) sampling-
based planner in the computation of transfer and transit
paths. Later work by (Gravot, Cambon, and Alami 2003;
Cambon, Gravot, and Alami 2004; Cambon, Alami, and
Gravot 2009) led to the aSyMov planner, which extended
the idea even further by combining PRM with symbolic ac-
tion planning, making it possible to specify high-level goals
in planning-domain definition languages.

A limitation of these approaches that rely on roadmaps
is that they cannot take into account differential constraints

imposed by dynamics. To construct a roadmap, each edge
(a, b) of the roadmap requires connecting the state a to b
via a trajectory that satisfies differential constraints imposed
by dynamics. Exact solutions to this steering problem are
available only in limited cases, while numerical solutions
impose significant computational cost (Keller 1992), render-
ing roadmap construction impractical.

In contrast, SamplSGD uses a tree-based exploration of
the state space, which does not require any steering, but
only the ability to propagate dynamics forward in time. For-
ward propagation is readily achieved through numerical in-
tegration, making it possible for SamplSGD to generate not
only collision-free but also dynamically-feasible trajectories
that satisfy the high-level specification. Moreover, an essen-
tial component of aSyMov is a computationally-intensive
backtracking procedure that checks for collisions to ensure
that a candidate action is grounded in a geometric context
that has at least a collision-free path from the initial state.
SamplSGD takes a different approach, which avoids back-
tracking, by validating (checking for collisions) each trajec-
tory before adding it to the tree.
SamplSGD builds upon earlier work (Plaku, Kavraki, and

Vardi 2007; 2008b; 2008a; 2009), which showed how to
effectively combine sampling-based motion planning with
discrete search to compute collision-free and dynamically-
feasible trajectories that satisfy high-level specifications
given by linear temporal logic. A limitation of the work
in (Plaku, Kavraki, and Vardi 2007; 2008b; 2008a; 2009),
is that it relies on an explicit representation of the dis-
crete space and the possible transitions between the discrete
states. To address this limitation, SamplSGD integrates
sampling-based motion planning with symbolic action plan-
ning, which can handle complex discrete planning prob-
lems. The integration of sampling-based motion planning
with symbolic action planning also makes it possible for
SamplSGD to handle high-level goal specifications given
by planning-domain languages.

2. Preliminaries

Discrete Specifications by Planning-Domain
Definition Languages

Drawing from research in AI, this paper uses planning-
domain definition languages, such as STRIPS, to allow for
sophisticated high-level planning specifications. Details can
be found in standard AI books (Russell and Norvig 2002;
Ghallab, Nau, and Traverso 2004). For completeness, a
summary follows. A discrete model is a tuple M =
(O,P,Q, qinit, φgoal,A), where

• O denotes the set of objects (or atoms).

• P denotes the set of predicates, which express relations
among objects in O.

• Q denotes the discrete state space. A discrete state is a
conjunction of all positive and grounded literals that cur-
rently hold in the world. A positive literal is of the form
P (t1, . . . , tm), where P ∈ P is a predicate and each ti
is an object or an object variable. A positive literal is
grounded if it does not contain any object variables.
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• qinit ∈ Q denotes the initial discrete state of the world.

• φgoal denotes the goal specification, which is given as a
formula constructed by combining positive grounded lit-
erals with Boolean operators ¬, ∨, and ∧.

• A denotes the set of action schemas. An action schema
A = (vars,pre,post) ∈ A is defined in terms of object
variables, a precondition that must hold before execution,
and a postcondition that will hold after execution. A pre-
condition is usually given as a conjunction of positive lit-
erals, while a postcondition is given as a conjunction of
positive or negative literals. An action a ∈ A is a specific
instantiation of the variables in A. If the precondition is
satisfied, the execution of a changes the current state ac-
cording to the postcondition, i.e., adding positive literals
and deleting negative literals. If the precondition is not
satisfied, a has no effect.

A discrete solution consists of a finite sequence of actions
[ai]

n
i=1 that transforms the world from qinit to a discrete state

that satisfies φgoal.

Interpretation over Continuous Spaces

The physical world, which includes the robotic system, ob-
stacles, and objects to be manipulated, is commonly mod-
eled in a continuous setting. The continuous space of the
world, denoted by S, consists of a finite collection of con-
tinuous variables that can describe the world, e.g., placement
of objects, joint values in a robot arm, vehicle velocity.

The continuous space S gives meaning to the predicates in
the discrete specification. As an example, On(book, table)
holds iff the book is actually on the table. Since a continuous
state s ∈ S specifies the placement of the objects, one can
determine whether or not the predicate holds at s. This inter-
pretation of which predicates actually hold at a continuous
state provides a mapping from the continuous space to the
discrete space, denoted as a function mapS7→Q : S → Q.

Moreover, trajectories over S give meaning to the actions
in the discrete specification. A trajectory over S is a contin-
uous function ζ : [0, T ] → S, parametrized by time. As the
continuous state changes according to ζ, the discrete state,
obtained by the mapping mapS7→Q : S → Q, may also
change. As a result, the trajectory ζ follows a discrete ac-
tion a if (i) mapS7→Q(ζ(0)) satisfies a’s precondition and
(ii) mapS7→Q(T ) satisfies a’s postcondition.
The underlying dynamics are specified as a set of differ-

ential equations f : S × U → Ṡ , where U is a control space
consisting of a finite set of input variables that can be ap-
plied to the system (e.g., a car can be controlled by setting
the acceleration and the rotational velocity of the steering
wheel). A dynamically-feasible trajectory ζ : [0, T ] → S
is obtained by computing a control function ũ : [0, T ] → U
and propagating the dynamics forward in time through nu-
merical integration from a given state s ∈ S, i.e.,

ζ(t) = s+

∫ t

0

f(γ(h), ũ(h)) dh.

The dynamically-feasible trajectory ζ : [0, T ] → S is con-
sidered collision free if each state along the trajectory avoids
collisions with the obstacles.

3. SamplSGD

To effectively compute a collision-free and dynamically-
feasible trajectory that starts at sinit ∈ S and satisfies the
discrete goal specification φgoal, SamplSGD conducts the
search both in the continuous space S and in the discrete
state and action spaces, Q and A.

In the continuous space S, SamplSGD maintains the
search data structure as a tree T = (V,E). Each vertex
v ∈ T [V ] is associated with some continuous state s ∈ S,
written as v.s. An edge (v′, v′′) ∈ T [E] indicates that
SamplSGD has computed a collision-free and dynamically-
feasible trajectory from v′.s to v′′.s.
Initially, T [V ] contains only one vertex, vinit, which is as-

sociated with the initial state sinit ∈ S, and T [E] is empty.
As SamplSGD explores S, new vertices and new edges are
added to T . The procedure consists of selecting a vertex
v ∈ T for expansion and then extending the tree from v by
generating a collision-free and dynamically-feasible trajec-
tory that starts at v.s. A common strategy is to apply some
control u ∈ U to v.s and simulate the dynamics forward in
time until a collision occurs, a state-constraint is violated, or
a maximum number of steps is exceeded (Choset et al. 2005;
LaValle 2006). The control u ∈ U is generally selected
uniformly at random to allow subsequent calls to extend
the tree along new directions. Intermediate states along
the trajectory are also added to the tree, as suggested in
(Choset et al. 2005; LaValle 2006). The search termi-
nates successfully when a vertex vnew is added to T such
that mapS7→Q(vnew.s) satisfies φgoal. The solution trajec-
tory is then obtained by concatenating the collision-free and
dynamically-feasible trajectories associated with the edges
in T [E] connecting vinit to vnew.

Due to challenges posed by the high dimensionality of
the continuous space S, collision-avoidance requirements,
differential constraints imposed by dynamics, and the com-
plexity of the discrete specification, the success of the search
depends on the ability of SamplSGD to effectively and se-
lectively sample and explore S. SamplSGD employs sym-
bolic action planning to identify regions in S that sampling-
based motion planning can then selectively sample and ex-
plore to significantly advance the search for a collision-free
and dynamically-feasible trajectory that satisfies φgoal.

In particular, SamplSGD groups the tree vertices accord-
ing to the mapping function mapS7→Q. Let Γ denote the list
of all such groups, where Γq ∈ Γ contains all the vertices
v ∈ T such that mapS7→Q(v.s) = q, i.e., each time a vertex
v is added to T , v is also added to ΓmapS7→Q(v.s).

Consider one such group Γq ∈ Γ and let a be an ac-
tion whose precondition is satisfied by q. Let a(q) de-
note the discrete state obtained as a result of a’s effect
on q. Sampling-based motion planning in SamplSGD,
denoted by EXPLOREACTION(T ,Γ,Γq, a), can then ad-
vance the search by extending T from vertices associated
with Γq (which satisfy a’s precondition) toward the region
of the continuous space S that satisfies a’s postcondition,
i.e., map−1

S7→Q
(a(q)) = {s : s ∈ S ∧ mapS7→Q(s) =

a(q)}. There is, however, an associated computational cost
with each invocation of EXPLOREACTION(T ,Γ,Γq, a).
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Algorithm 1 SamplSGD

Input: problem specification
tmax: upper bound on computation time

Output: A collision-free and dynamically-feasible trajectory
that satisfies the high-level goal specification or null if no
solution is found

♦ initialize data structures
1: T ← ∅; Γ← ∅
2: vroot ← new vertex; vroot.s← sinit; vroot.parent← null

3: ADDVERTEX(vroot, T , Γ)

♦ core loop: interplay between symbolic action planning and
sampling-based motion planning through action utilities

4: while ELAPSEDTIME < tmax ∧ no solution path do
5: Γq ← SELECTGROUP(Γ)
6: a← Γq.curr action
7: status← EXPLOREACTION(T , Γ, Γq, a)
8: if status = solved then
9: ζ ← concatenate tree trajectories from root to last vertex
10: return ζ
11: UPDATEUTIL(T , Γq, a, status)
12: Γq.curr action← SELECTACTION(Γq)
13: for each new Γqnew added to Γ do
14: [ai]

n
i=1 ← SYMBOLICACTIONPLANNER(A, qnew, φgoal)

15: Γqnew .actions← {a1} ∪ Γqnew .actions
16: return null

This raises a central issue about which group Γq ∈ Γ
and which action a, among the many available options,
should be selected for exploration at each invocation of
EXPLOREACTION. To address this issue, SamplSGDmain-
tains a running weight estimate

UTIL(Γq, a)

on the utility of having EXPLOREACTION(T ,Γq, a) spend
additional computational time attempting to extend T
from vertices associated with Γq toward the region

map−1
S7→Q

(a(q)). SamplSGD updates UTIL(Γq, a) based on
new information gathered by sampling-based motion plan-
ning during each invocation of EXPLOREACTION. The ob-
jective of UTIL(Γq, a) is three-fold:

(i) give high utility to (Γq, a) when the action plan from the
discrete state a(q) to a discrete state that satisfies φgoal is
short. This is to bias the search in the continuous space S
so that the sampling-based motion planner follows action
plans that can quickly lead to a solution.

(ii) give high utility to (Γq, a) when it is under-explored,
since additional exploration by the sampling-based mo-
tion planner could advance the search further.

(iii) give low utility to (Γq, a) when it is over-explored, since
over-exploration does not bring much new information
and wastes valuable computational time.

The core of SamplSGD interleaves symbolic action plan-
ning, sampling-based motion planning, and updates to util-
ity estimates in order to effectively compute a collision-free
and dynamically-feasible trajectory that satisfies φgoal:

• Use symbolic action planning and the utility estimates to
select a group Γq ∈ Γ and an action a whose precondition

is satisfied by q. Bias the selection process toward pairs
(Γq, a) associated with high utilities.

• Use EXPLOREACTION(T ,Γq, a) for a short period of
time to extend T from vertices associated with Γq toward

continuous states in map−1
S7→Q

(q), which satisfy a’s post-
condition.

• Update the utility estimates UTIL(Γq, a) based on new in-
formation gathered from EXPLOREACTION(T ,Γq, a).

This interplay of symbolic action planning and sampling-
based motion planning through the utility estimates is
a crucial component of the computational efficiency of
SamplSGD. In particular, it allows SamplSGD to make
proper use of the computational time by selectively sam-
pling and exploring those regions of the continuous space
S that allow SamplSGD to significantly advance the search
for a collision-free and dynamically-feasible trajectory that
satisfies φgoal. Pseudocode is given in Algo. 1. Details of
the main components in SamplSGD follow.

Symbolic Action Planning

SYMBOLICACTIONPLANNER(A, q, φgoal) computes an ac-
tion plan [ai]

n
i=1, which transforms the discrete state q to

a discrete state that satisfies φgoal. This is the only re-
quirement imposed on SYMBOLICACTIONPLANNER, since
SamplSGD uses it as a black-box. Therefore, SamplSGD
can take advantage of research in AI and plug-in effi-
cient symbolic actions planners (Blum and Furst 1997;
Bonet and Geffner 2001; Keyder and Geffner 2008; Hoff-
mann and Nebel 2001; Hoffmann 2003; Ghallab, Nau, and
Traverso 2004). These action planners, which reason about
the discrete problem symbolically, are capable of effectively
handling large discrete spaces and complex specifications.

Action Selection

Each Γq ∈ Γ maintains a list of actions, written as
Γq.actions, that are available for the selection process. This
list is generally a small subset of all the actions whose pre-
conditions are satisfied by q. For each a ∈ Γq.actions,
Γq maintains a utility estimate, UTIL(Γq, a). An action
a ∈ Γq.actions is then selected with probability propor-
tional to its utility, i.e.,

ProbSelectΓq
(a) =

UTIL(Γqa)
∑

a′∈Γq.actions UTIL(Γq′ , a′)
.

The selected action is kept as Γq.curr action.
In this way, actions associated with high utilities are se-

lected more often. This allows the sampling-based motion
planner to quickly expand the search toward promising di-
rections. At the same time, each available action has a non-
zero probability of being selected, which is important to en-
sure that the search also expands along new directions.

When the group Γq is first created, the function
SYMBOLICACTIONPLANNER(A, q, φgoal) is invoked to
compute an action plan [ai]

n
i=1, which transforms the dis-

crete state q to a discrete state that satisfies φgoal. Since
the overall objective is to satisfy φgoal, if there are no ac-
tion plans from q that satisfy φgoal, then Γq is deleted from
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Γ. Otherwise, the first action of the plan, a1, is added to
Γq.actions. Thus, initially, Γq.actions contains only one ac-
tion. Note that this provides an opportunity to use symbolic
action planners that can efficiently compute the first action
of an action plan.

As the search progresses and new information is gath-
ered by the sampling-based motion planner, the utilities
of actions in Γq.actions are updated to take into ac-
count this new information. When the utilities of all
the actions in Γq.actions fall below a certain thresh-
old, SYMBOLICACTIONPLANNER(A, q, φgoal) is invoked
again to compute a new action plan [ai]

n
i=1, where a1 6∈

Γq.actions. If it succeeds, as during initialization, the first
action of the plan is added to Γq.actions and is also made
available for selection.

In this way, the search is made broader when it becomes
difficult to make significant progress using the current ac-
tions to guide the sampling-based motion planner. This al-
lows the sampling-based motion planner to explore new di-
rections, which could lead to further progress in the search
for a collision-free a dynamically-feasible trajectory that sat-
isfies the goal specification.

Group Selection

The utility of a group Γq ∈ Γ is defined as the utility of the
action currently selected in Γq, i.e.,

UTIL(Γq) = UTIL(Γq,Γq.curr action).

Then, as during action selection, a group Γq is selected from
Γ with probability proportional to its utility, i.e.,

ProbSelectΓ(Γq) =
UTIL(Γq)

∑

Γ
q′∈Γ UTIL(Γq′)

,

which aims to strike a balance between being greedy and
being methodical by giving preference to groups associated
with high utilities, without ignoring other groups in Γ.

Action Utility

Drawing from earlier work in sampling-based motion plan-
ning (Burns and Brock 2007; Sánchez and Latombe 2002;
Ladd and Kavraki 2005; Plaku, Kavraki, and Vardi 2007;
2008b), the utility estimates proposed in this paper are de-
signed to be computationally efficient and to work well in
practice. Further improving the proposed utility estimates
remains an important direction for future research.

UTIL(Γq, a) is initialized based on the length of
the action plan [ai]

n
i=1 (with a = a1) computed by

SYMBOLICACTIONPLANNER(A, q, φgoal) when Γq is first
created. More specifically,

UTIL(Γq, a)←
1

|plan(a, q)|2 .

Since the overall objective is to compute a solution as
quickly as possible, this initialization assigns high utility to
(Γq, a1) when the action plan is short.
SamplSGD uses ideas from reinforcement learning to

update UTIL(Γq, a) based on information gathered by

the sampling-based motion planner. After each invoca-
tion of EXPLOREACTION(T ,Γ,Γq, a), the utility estimate
UTIL(Γq, a) is updated a as follows:

UTIL(Γq, a)← UTIL(Γq, a)(1− α(Γq, a)) +

α(Γq, a)(r(Γq, a) + γ max
a′∈Γa(q).actions

UTIL(Γa(q), a
′)).

The learning rate, which determines the extent at which
the new information will affect the utility value, is set to
α(Γq, a) = 1

1+
√

nsel(Γq,a)
, where nsel(Γq, a) denotes the

number of times a ∈ Γq.actions has been selected.
The discount factor, which determines the importance of

future rewards, is set to a constant value γ = 1/16. This
allows the utility function to be greedy toward current re-
wards, while also striving for long-term high rewards.

The reward r(Γq, a) is based on the success the
sampling-based motion planner has had in extending T to
map−1

S7→Q
(a(q)). In particular, r(Γq, a) depends on the

number of tree vertices in map−1
S7→Q

(a(q)). More specifi-
cally, it is computed as

r(Γq, a) =

{

0, if |Γa(q)| = 0

1/|Γa(q)|, otherwise.

In this way, the reward is zero when the sampling-based
motion planner has not yet extended T to the region
map−1

S7→Q
(a(q)). When T reaches map−1

S7→Q
(a(q)), the re-

ward becomes high, since now the search has advanced fur-
ther. As more and more tree vertices are added to Γa(q),
the region starts becoming over-explored, and, consequently,
the reward is reduced.

Sampling-based Motion Planning

The objective of EXPLOREACTION(T ,Γ,Γq, a) is to ex-

tend T toward the region map−1
S7→Q

(a(q)), so that T can
follow in the continuous space S the discrete action a.
EXPLOREACTION proceeds in an iterative fashion, as illus-
trated in Algo. 2. At each iteration, EXPLOREACTION first
selects a vertex v from which to extend T (Algo. 2:2). At
a second step, EXPLOREACTION generates a dynamically-
feasible trajectory ζ : [0, T ] → S that starts at v.s,
i.e., ζ(0) = v.s (Algo. 2:3). ζ is generated by sam-
pling a control u ∈ U uniformly at random and simulat-
ing the dynamics forward in time starting from v.s until
a collision occurs, a state-constraint is violated, or a max-
imum number of steps is exceeded (Choset et al. 2005;
LaValle 2006) (Algo. 2:4–11). Intermediate collision-free
states along ζ are added as new vertices to T (Algo. 2:9).
If a new vertex, vnew, satisfies the goal specification (i.e.,
mapS7→Q(vnew) satisfies φgoal), then a solution trajectory is
obtained by concatenating the tree trajectories from the root
of T to vnew (Algo. 2:10–11). Otherwise, the above steps
are repeated several times. The remainder of the section
describes in more detail the vertex-selection and trajectory-
generation strategies.

Vertex Selection: Over the years, numerous vertex-
selection strategies have been proposed in motion-planning
literature that rely on distance metrics, nearest neighbors,
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Algorithm 2 EXPLOREACTION(T ,Γ,Γq, a)

Input: P: problem specification
T : search tree
Γ: mapping of search tree over the discrete space
Γq: selected group
a: selected action

Output: A collision-free and dynamically-feasible trajectory
that satisfies the high-level goal specification or null if no
solution is found

1: for several times do
2: v ← SELECTVERTEX(T , Γq)
3: ζ ← GENERATETRAJ(v, a)
4: parent← v
5: status← ok

6: for t = δ; t ≤ |ζ| ∧ status 6= rejected; t← t + δ do
7: st ← ζ(t)
8: if st is valid, e.g., collision-free then
9: vnew.[s, parent]← new vertex [st, parent]
10: parent← vnew

11: ADDVERTEX(T , Γ, vnew, a)
12: if mapS7→Q(vnew.s) satisfies P.φgoal then
13: return TRAJ(T , vnew)
14: else
15: status← rejected

16: return null

probability distributions, and many others, as surveyed in
(Choset et al. 2005; LaValle 2006). Drawing from this
body of research and earlier work (Plaku, Kavraki, and Vardi
2007; 2008b), the vertex-selection strategy in this paper
combines the advantages of several successful techniques.

S1: To bias the growth of T toward map−1
S7→Q

(a(q)), one
approach, proposed in (LaValle and Kuffner 2001), that has
been shown to work well in practice is to first sample a con-
tinuous state, s, such that mapS7→Q(s) = a(q). The vertex
from which to extend T is then selected from the vertices in
Γq ∪ Γa(q) as the vertex whose associated continuous state,
v.s, is the closest to s according to a distance metric. The ef-
fect of this strategy is to pull T toward map−1

S7→Q
(a(q)). To

improve the computational efficiency, the distance metric in
this paper is defined over a low-dimensional projection (e.g.,
by considering only the position component). Moreover,
approximate nearest neighbors (Plaku and Kavraki 2006;
2007) are used to speed up computation without any sig-
nificant loss in accuracy.

S2: Another objective of EXPLOREACTION is to grow
T toward unexplored or sparsely explored areas. This
avoids over-exploration and leads the search toward new
directions. As proposed in (Sánchez and Latombe 2002;
Ladd and Kavraki 2005; Plaku, Kavraki, and Vardi 2007;
2008b), an effective strategy for these purposes is to fur-
ther group the vertices in Γq ∪ Γa(q) into cells based on a
low-dimensional projection of the continuous space S. A
vertex from which to extend T is then obtained by first se-
lecting a cell c and then selecting a vertex from c uniformly
at random. The cell c could be selected uniformly at random
(Sánchez and Latombe 2002) or based on coverage estimates
(Ladd and Kavraki 2005; Plaku, Kavraki, and Vardi 2007;
2008b). The effect of this strategy is to push T toward un-

explored or sparsely explored areas.
S3: A third objective of EXPLOREACTION is to further

extend the search forward by increasing the depth of T , sim-
ilar to depth-first search in a discrete setting. The vertex
from which to extend T is then selected uniformly at ran-
dom from the last vertices (around 20 is shown to work well
in practice) added to T as a result of previous invocations of
EXPLOREACTION(T ,Γ,Γq, a).
The overall vertex-selection strategy then simply selects

at each iteration one of the above strategies uniformly at
random. The effect is a vertex-selection strategy that pulls
T toward map−1

S7→Q
(a(q)), while avoiding over-exploration,

finding new directions, increasing sampling in sparsely ex-
plored areas, and expanding the search depth.

Trajectory Generation: The trajectory-generation strat-
egy discussed in this section is designed to work well in
practice for a wide class of systems and actions. It is
possible, however, to further improve these strategies by
taking advantage of the problem specification. In partic-
ular, one can design specific trajectory-generation strate-
gies for each action a. As an example, if the action is
“GraspObject,” then the trajectory-generation strategy can
be designed to produce open-and-closing motions of the
end-effector tool. In this way, action-specific strategies
can be used to further improve the overall effectiveness of
EXPLOREACTION(T ,Γ,Γq, a).

4. Experiments and Results

The proposed method is tested on a object-manipulation
task. As illustrated in Fig. 1, the high-level specification
requires the car to pickup the objects and transfer each ob-
ject to its corresponding area as indicated by the object label,
i.e., transfer object i to area i (i = 1, 2, 3, 4). The car picks
up an object by touching it, but it cannot pick up more than
one object at a time. The car can temporarily release and
pickup up objects at any location. The car should avoid col-
lisions with the objects at all times (except the object that it
picks up, which is allowed to be in contact with the car). No
collisions should occur between two objects.

The car is modeled as a second-order dynamical systems.
Details can be found in (LaValle 2006, pp. 744). The state
s = (x, y, θ, v, ψ) consists of the position (x, y) ∈ R

2

(|x|, |y| ≤ 3.75m), orientation θ ∈ [−π, π), velocity v
(|v| ≤ 3m/s), and steering-wheel angle ψ (|ψ| ≤ 50◦).
The car is controlled by setting the acceleration u0 (|u0| ≤
1m/s2) and the rotational velocity of the steering-wheel an-
gle u1 (|u1| ≤ 100◦/s). The equations of motions are

ẋ = v cos(θ); ẏ = v sin(θ); θ̇ = v tan(ψ)/L; v̇ =

u0; ψ̇ = u1, where L = 0.5m is the distance between the
front and rear axles. The body length and width are set to
L and 0.5L, respectively. The scaling factor is 1m = 0.14
workspace units.

This object-manipulation task provides several chal-
lenges. The discrete space is complex. There is a large num-
ber of action plans, which provide solutions in the discrete
setting. Due to the arrangement of objects and obstacles, the
objects cannot be transferred just in any order. As an ex-
ample, before transferring object 1 to area 1, the car must
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Figure 1: Object-manipulation task used in the experiments.
The car (with second-order dynamics) needs to pick up the
objects (shown in red) one at a time and place them in the
areas corresponding to their labels, i.e., object i should be
placed in area i. Obstacles are shown in blue.

transfer objects 3 and 4 to some other areas to make room
for object 1. The small openings and the second-order dy-
namics make it difficult for the car to wiggle its way through
as it transfers objects from one location to another.

The experiments provide a promising initial validation of
the proposed method, SamplSGD. These experiments high-
light the importance of the interplay between symbolic ac-
tion planning and sampling-based motion planning. In fact,
SamplSGD is significantly more efficient than state-of-the-
art sampling-based motion planners, such as RRT(LaValle
and Kuffner 2001), ADDRRT(Jaillet et al. 2005), EST(Hsu
et al. 2002). Without symbolic action planning, it is nearly
impossible for sampling-based motion planning just by it-
self to find a solution, since the solution trajectory must sat-
isfy complex high-level specifications. We conducted nu-
merous trials (20 per planner). In each case these sampling-
based path planners failed to find a solution, even though
the time limit was set to 2 hours per trial. On the other hand,
SamplSGDwas able to efficiently find a solution in a matter
of a few minutes (average 6 mins).

5. Discussion

This paper proposed a multi-layered approach, SamplSGD,
which incorporates symbolic, geometric, and differential
constraints into sampling-based motion planning. Given a
high-level goal specification in a planning-domain defini-
tion language, such as STRIPS, SamplSGD computes a
collision-free and dynamically-feasible trajectory that sat-
isfies the goal specification. The crucial component of
SamplSGD is the interplay between symbolic action plan-
ning and sampling-based motion planning. SamplSGD

leverages from state-of-the-art sampling-based motion plan-
ning the underlying idea of searching for a solution by se-
lectively sampling and exploring the continuous space. To
effectively incorporate collision-avoidance and differential

constraints imposed by underlying dynamics, SamplSGD
conducts a tree-based exploration of the continuous state
space. Drawing from research in AI, SamplSGD uses sym-
bolic action planning in novel ways to identify discrete ac-
tions and regions of the continuous space that sampling-
based motion planning can selectively sample and explore
to significantly advance the search. The planning layers
interact with each-other through estimates on the utility of
each action, which are computed by reinforcement-learning
techniques based on information gathered by the sampling-
based motion planner. Simulation experiments on an object-
manipulation task with a second-order dynamical model
provide promising initial validation.

An objective for future work is to further improve the
interplay between the different components in SamplSGD.
We are also working on adapting the proposed approach to
real robotic platforms. This will allow us to tackle increas-
ingly complex problems arising in robot manipulation and
automation.
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