
A Comparison of Risk Sensitive Path Planning Methods
for Aircraft Emergency Landing

Nicolas Meuleau∗ and Christian Plaunt and David E. Smith and Tristan Smith†
Intelligent Systems Division

NASA Ames Research Center
Moffet Field, California 94035-1000

{nicolas.f.meuleau, christian.j.plaunt, david.smith, tristan.b.smith}@nasa.gov

Abstract

Determining the best site to land a damaged aircraft presents
some interesting challenges for standard path planning tech-
niques. There are multiple possible locations to consider, the
space is 3-dimensional with dynamics, the criteria for a good
path is determined by overall risk rather than distance or time,
and optimization really matters, since an improved path cor-
responds to greater expected survival rate. We have investi-
gated a number of different path planning methods for solving
this problem, including cell decomposition, visibility graphs,
probabilistic road maps (PRMs), and local search techniques.
In their pure form, none of these techniques have proven to
be entirely satisfactory – some are too slow or unpredictable,
some produce highly non-optimal paths or do not find certain
types of paths, and some do not cope well with the dynamic
constraints when controllability is limited. In the end, we are
converging towards a hybrid technique that involves seeding
a roadmap with a layered visibility graph, using PRM to ex-
tend that roadmap, and using local search to further optimize
the resulting paths. We describe the techniques we have in-
vestigated, report on our experiments with these techniques,
and discuss when and why various techniques were unsatis-
factory.

1. Introduction
In two previous papers, we described a planning system
designed to aid the pilot of a damaged aircraft choose an
appropriate emergency landing site (Meuleau et al. 2008;
2009b). The system assumes that an onboard flight man-
agement system and diagnostic system provide information
about:

• current position, heading, altitude and airspeed

• relevant weather information

• the current flight envelope of the aircraft (bank,
climb/descent rate, and speed limitations)

The objective is to quickly produce a ranked list of emer-
gency landing sites ordered by risk. Relevant factors in com-
puting risk include:

• en route weather conditions such as thunderstorms, turbu-
lence, and icing
∗Carnegie Mellon University
†Mission Critical Technologies

• ceiling, visibility and wind conditions at the landing site

• runway length, width and surface condition1

• population density along the final approach path

• emergency facilities at the landing site (fire, rescue, and
medical personnel and equipment)

The controllability of the aircraft along the different axes
influences the importance of these different factors. For ex-
ample, if an aircraft has limited ability to bank to the right,
turbulence becomes increasingly dangerous, and the aircraft
may not be able to cope with a right crosswind on approach
and landing. This in turn influences the choice of runway
and the path to get there.

This problem can be mapped into the following
search/planning problem: for each landing site within range,
find a minimal risk path to the landing site, and evaluate the
risk of the path and landing site combination. The results
are then ordered according to total risk. There are various
heuristics that can be used to improve the efficiency of this
search, such as ordering the candidate landing sites accord-
ing to distance and landing risk. However, the central step
in this process is finding a minimal risk path to each candi-
date landing site. Fundamentally, this is a 3D path planning
problem. There has been extensive previous work on path
planning and obstacle avoidance to address similar prob-
lems. See (Choset et al. 2004) for a survey of this field.
However, a characteristic of the emergency landing planning
(ELP) problem is that it gathers several difficulties that are
rarely encountered simultaneously:

• There are multiple possible goals (landing sites) to con-
sider

• As human lives are at stake, we are not interested in just
any feasible path, but in trajectories that are as close as
possible to optimal

• Weather obstacles are traversible, but flying through them
incurs a higher risk. Consequently, the cost of a path can-
not be summarized by its length or duration – the nature
of the “terrain” traversed must also be taken into account

1We consider only runways here, but the same criteria apply to
possible off airport landing sites such as roads, fields, beaches and
bodies of water.

71

• The aircraft dynamic constraints play a very important
role in determining whether a path is flyable or not. This
contrasts strongly with many robotic path planning prob-
lems where every robot move is reversible. Because dam-
aged aircraft may have very reduced controllability, dy-
namic constraints are particularly important

• Optimization is constrained: the aircraft may have a lim-
ited range or limited time and must land before exhausting
either of these non-replenishable resources

The problem of optimal path planning among a set of soft
polygonal (or polyhedral) obstacles with different costs per
step is known as the weighted region problem. It has been
studied extensively since the end of the 80’s (see for instance
(Mitchell and Papadimitriou 1991) and (Rowe and Alexan-
der 2000)). However, this work is largely theoretical and, to
our knowledge, has not lead to a practical solution for 3D
Euclidean spaces of the size of our problem instances.

We have considered and investigated a number of more
practical path planning methods for solving this problem,
including cell decomposition, visibility graphs, probabilis-
tic road maps (PRMs), and local search techniques. In their
pure form, none of these techniques have proven to be en-
tirely satisfactory – some are too slow or unpredictable,
some produce highly non-optimal paths or do not find cer-
tain types of paths, and some do not cope well with the
dynamic constraints when controllability is limited. In the
end, we are converging towards a hybrid technique that in-
volves seeding a roadmap with a layered visibility graph, us-
ing PRM techniques to extend that roadmap, and using local
search to further optimize the resulting paths. In this paper,
we describe the techniques and combinations of techniques
we have investigated, report on some experiments with these
techniques, and discuss when and why various techniques
were unsatisfactory.

2. Path Planning
We distinguish between two different kinds of algorithms:
path planners (in the strict sense) generate candidate solu-
tions (paths) based on problem data (aircraft state, target
and obstacles). Local search algorithms use the path pro-
duced by another component (path planner or local search)
as a seed to try to produce an improved path.

Another important distinction is between algorithms that
take into account the aircraft dynamics and those that do not.
The later neglect variables that are important in determining
the flyability of a path (aircraft heading and speed).2 They
work in 3D Euclidean space: aircraft states are represented
as triples (latitude, longitude, altitude), and paths between
states are straight line segments. As a result, the paths pro-
duced by these algorithms are not necessarily flyable, and
need to be post-processed by a path planner that accounts
for the aircraft dynamics and turn radius. The other class of
algorithms works in 4D (Euclidian space plus heading) and

2One way to compensate partially for ignoring dynamics is to
expand each obstacle by an amount determined by the aircraft con-
trollability. This allows sufficient space for the aircraft to be able
to turn around the obstacle.

attempts to produce paths that do respect the dynamic con-
straints, and can therefore be used without post-processing.3

Figure 1 shows the way in which various possible algo-
rithms can be combined for this problem. Problem data can
be fed into a path planner with or without dynamics, and
the resulting path can be fed through local search algorithms
with or without dynamics. The Trajectory Planner 4 shown
in Fig. 1 takes as input a raw 3D path that does not account
for aircraft dynamics, and outputs a flyable 4D path that
goes through the same sequence of waypoints, but respects
heading and speed constraints. It does so by essentially con-
structing Dubins paths between the waypoints it is given.
The Trajectory Planner is for our purposes a black box that
is essentially part of the aircraft flight management system.
It has a richer model of aircraft control, and is tailored to the
way in which flight plans are represented and interpreted by
pilots. Note that the path produced by the Trajectory Planner
is always at least as long as the input path without dynam-
ics, but could be considerably longer, so it may exhaust a
resource even if the seed path does not.

2.1 Path Planners
All of our path planners construct and search over a
roadmap. A roadmap is a topological representation of the
environment that captures the connectivity of the free space.
Formally, it is a graph G = (V, E) where vertices v ∈ V
represent specific locations in the environment, including
the starting aircraft location (v0) and the targeted destination
(vg), and edges e ∈ E represent possible transition between
neighboring locations. Path planners typically work by first
building a roadmap, and then finding the shortest path in the
roadmap between the aircraft and the target.

In all our algorithms, search is performed by the A* al-
gorithm. This guarantees that optimal solutions are found
within each given roadmap. The heuristic value of a state is
obtained by computing the Euclidean distance to the target
and assuming this distance has to be flown in clear weather.
It constitutes an admissible heuristic with a sufficient in-
formativeness to prune a consequent portion of the search
space. If there is a maximum distance or time before land-
ing, A* search nodes must be augmented with a state vari-
able representing the remaining level of each limited re-
source. That is, two search nodes are considered equal if
they represent the same state of the aircraft (Euclidean or
configuration state), and if they have the same level of re-
maining resources (distance and time). This is necessary to
guarantee that the search graph below a node depends only
on the description of this node. It impacts the complexity of
the algorithm both negatively (by increasing the number of
search states) and positively (by limiting the search to tra-
jectories within the resource bounds).

Our path planners differ on the nature of the roadmap they

3We currently treat airspeed as constant. Including airspeed
makes the space 5D.

4In the path planning literature “trajectory” is commonly used
to refer to a time-paramaterized version of a path. We do not imply
that here, although the two are equivalent given aircraft speed, since
the initial time is fixed.

72

Problem
Data

Path w/o
Dynamics

Path with
Dynamics

Path Planner
w/o Dynamics

Path Planner
with Dynamics

Trajectory Planner

Local Search
w/o Dynamics

Local Search
with Dynamics

Figure 1: Combining path planning algorithms.

use. A selection of approaches that we have investigated is
presented below. We first present the algorithms that ignore
the aircrafts dynamics, then we show how some of them can
be augmented to respect the aircrafts dynamic constraints

Visibility Graph: One of the earliest and most common
roadmaps is called the visibility graph (VG). This graph is
defined in two-dimensional space. For our domain, obsta-
cles are naturally columnar in nature (thunderstorms, icing
regions, etc.) and are therefore represented as 2D poly-
gons with an associated floor, ceiling and risk. It there-
fore makes sense to consider a 2D projection of the space.
For the purpose of building the visibility graph, we consider
all obstacles to be untraversable (risk = 1), we ignore the
floors and ceilings of the obstacle and use only their two-
dimensional polygonal representation. The nodes V of the
visibility graph include: the start location v0, the possible
destinations vg , and all the obstacle vertices (corners be-
tween two edges of the polygons). The edges E are straight
lines between vertices that do not traverse any obstacle. In
2D, the visibility graph is guaranteed to contain the shortest
path from the start to the goal. Unfortunately, this property
does not hold if the same approach is applied in higher di-
mensions, or if some of the obstacles are traversable.

The reduced visibility graph or tangent graph is a sub-
graph of the visibility graph that is also guaranteed to con-
tain the shortest 2D path. Because it contains fewer edges,
it is easier to solve. It is based on the observation that the
shortest path in the standard visibility graph traverses only
edges that are tangent to obstacles. Therefore, non-tangent
edges can be safely removed from E (see Fig. 2). Deter-
mining the set of tangent edges can be a difficult problem
(Liu and Arimoto 2004). Instead of computing this set ex-
actly, we eliminate edges whose extremities are not “locally
tangent” to an obstacle. Consider an edge e incident to ver-
tex v, between two sides s and s′ of the polygonal obstacle.
Then, e is locally tangent in v if s and s′ fall on the same
side on the straight line passing through e. A tangent edge
may not contain an extremity that is not locally tangent (but

the converse is not true). Therefore, we can safely elimi-
nate edges with an extremity that is not locally tangent. This
eliminates fewer edges than the real tangent graph; however,
since testing for local tangency is very cheap, it is a good
overall compromise (Cormen et al. 2001).

When a 2D solution is found, altitude is linearly interpo-
lated along this path (from the current altitude to the target
altitude). The resulting path does not account for the air-
crafts dynamic constraints, and so it must be transformed
by the path planner or a local search algorithm. This path is
often of poor quality, because the possibility to fly above, be-
low or through an obstacle is omitted. However, local search
algorithms may sometimes transform it into an interesting
path, allowing the traversal of soft obstacles. Using the visi-
bility graph in our simulation is a way to measure how much
work the local search algorithms can do when they are pro-
vided a low quality initial path.

Layered Visibility Graph: So far, we have limited the
discussion to a 2D framework. In our emergency landing
domain, obstacles have a floor and a ceiling, and it is some-
times possible to fly above, through or below some of them.
The layered visibility graph (LVG) is an extension of the vis-
ibility graph to account for some opportunities of 3D move-
ments.

An LVG waypoint is a 3D Euclidean waypoint. From
each two-dimensional vertex in the visibility graph, we cre-
ate a set of vertices in the LVG by varying the altitude.We
create vertices at the ceiling and floor of the obstacle, at the
aircraft’s starting altitude (if it is between the the obstacle’s
ceiling and floor) and at each increment of 10000 feet be-
tween the ceiling and floor of the obstacle.

We add an edge to our LVG between any two vertices for
which the corresponding vertices in the 2D visibility graph
were connected. In addition, we also add: (i) an edge be-
tween the start and goal; (ii) extra edges so that the start and
end vertices are connected to their 100 nearest neighbors.
Notice that these edges may go above, through or below an
obstacle.

73

Figure 2: Three types of roadmaps (from left to right): visibility graph (58 edges), tangent graph (45 edges), and hybrid roadmap
(69 edges). The aircraft is represented by the small triangle in the center of the figure, and the targeted landing site is the small
circle at the top of the figure.

The LVG inherits some of its properties from the visibility
graph. Because the roadmap contains edges along the sides
of obstacles, the search algorithm is able to find near-optimal
ways to go around obstacles. The roadmap also allows some
movements above, through or below obstacles. However:
(i) this is limited to a restricted set of line segments (the
edges of the LVG); (ii) there is no attempt to optimize the
vertical dimension along these edges. For instance, if the
line segment from the aircraft to the target intersects an un-
traversable obstacle, the algorithm will make no attempt at
passing above or below this obstacle. In other words, the
algorithm does not try to minimize the set of obstacle tra-
versed by varying the aircraft altitude. Nevertheless, this
limited set of edges is sometimes sufficient to exhibit qual-
itatively interesting trajectories that local search algorithms
can optimize.

Hybrid Roadmap: The hybrid roadmap (HRM) is a more
sophisticated attempt at deriving a 3D path planning algo-
rithm from the 2D visibility graph. It exploits the fact that
obstacles are columnar in nature and represented as 2D poly-
gons with a floor and a ceiling.

The HRM is called “hybrid” because it contains states
s = (v, h), where v is a vertex of the graph and h ∈ R
is real-valued altitude. Being in state (v, h) represents be-
ing at location v and altitude h. To connect two vertices
of the HRM, we enumerate all obstacles that intersect the
straight line segment between these vertices and all ground-
level variations along this segment. As shown in Fig. 3, this
path is divided into a series of slices inside of which the
ground level is constant and the same set of obstacles is tra-
versed. An edge in the HRM is a complex data structure that
represents a cut through the 3D space as such a sequence of
slices. There is one such edge connecting:

• The start and goal locations;

• The start or goal location and any corner of an obstacle, if
the segment does not pass through this obstacle and does
not have a non-locally tangent extremity;

ice

turb.

ice

terrain

R-min
R-max

sli
ce
-1

sli
ce
-2

sli
ce
-3

sli
ce
-4

sli
ce
-5

sli
ce
-6

sli
ce
-7

sli
ce
-8

sli
ce
-9

Figure 3: Cut of the 3D space along the segment from the
aircraft to the targeted landing site. The cut is divided into 9
slices where ground elevation and obstacles are constant.

• Two corners of different obstacles, if the segment does not
traverse either of the two obstacles and does not have any
non-locally tangent extremity.

The resulting graph contains more edges than the tangent
graph, and often contains more edges than the visibility
graph. Although it is not guaranteed to contain the shortest
path in 3D space, it allows for some possibilities of move-
ment such as going above, below, or through an obstacle.

The HRM is exploited by a 3D path planning algorithm
called Hybrid A* (HA*). HA* is an extension of the A*
algorithm that can handle a form of continuous state vari-
ables. It can also be seen as a deterministic special case of
the HAO* algorithm (Meuleau et al. 2009a).

HA* associates with each vertex v of the HRM a finite
set of intervals Rv = {(li, ui), i = 1, 2, . . . , kv} represent-
ing the altitudes at which v can be reached from the current
position of the aircraft. The setsRv , v ∈ V can be are com-
puted incrementally, by propagating altitude intervals along
the edges of the HRM. An ε-length interval is created to rep-
resent the initial position of the aircraft. This seed is then
pushed through every edge starting in v0, which creates new
altitude intervals that are propagated through the graph in

74

turn.
Given:(i) the data structure representing a vertical cut of

the terrain as in Fig. 3; (ii) an initial altitude interval repre-
senting the set of altitudes reachable at the start of this edge;
(iii) the aircraft minimum and maximum descent rate; it is
possible to compute the set of altitudes reachable at the end
of the edge as a finite set of intervals. Moreover, if we as-
sume that:

1. The cost of traversing an obstacle depends only on the
nature of this obstacle and the 2D-distance travelled in
the obstacle (that is, we neglect altitude variations when
computing the distance travelled)5;

2. The cost of traversing a slice of the terrain cut depends
only on the most expensive obstacle traversed (that is, this
cost is computed by assuming that all the slice length is
travelled inside of the most expensive obstacle traversed);

then the basic node evaluation function of the A* algorithm
(traditionally denoted as g, h and f = g + h) are constant
over each altitude interval of the arrival node.

This property is the basis of the HA* algorithm. Based
on it, the algorithm computes finite partitions of the (infi-
nite) hybrid-state space, such that the basic A* functions are
constant over each partition. Then it performs standard A*
search in the space of partitions. The partitions are built on
the fly, as the search progresses. A detailed presentation of
the algorithm can be found in previous versions of this paper
(Meuleau et al. 2008; 2009b).

As with the VG and LVG, the HRM is able to find opti-
mal ways to go around obstacles by following the sides of
obstacles. As with the LVG, it is capable of a limited num-
ber of traversals above, through or below obstacles. In con-
trast with LVG, it finds near-optimal ways to traverse a set of
obstacles by varying the aircraft altitude along a given direc-
tion. It also suffers from the restricted set of edges that are
considered: in many cases, a path that traverses some obsta-
cles can be improved by shortening the distance travelled in
the most costly obstacles, which requires breaking an HRM
edge is several sub-edges that are not co-linear. However,
local search algorithms can compensate for this drawback.
HA* is often able to find a solution that is qualitatively in-
teresting and that local search can optimize.

An important drawback of the HRM approach is its sen-
sitivity to the number of obstacle vertices (corners). This is
also true for the VG and LVG, but the HRM is more sen-
sitive to the number of waypoints, because HA* is much
more costly than standard A* search per edge calculation.
At the other end of the problem spectrum, the HRM may
also fail to find obvious solutions in situations when there
are few obstacles, because the roadmap is too sparse to con-
tain interesting paths. This drawback is also shared with VG
and LVG. One way to remove it is to add random waypoints.
This observation inspired the VPRM approach presented be-
low.

5The horizontal speed of an aircraft is so much greater than
the vertical speed that the difference between 2D distance and 3D
distance is usually negligible.

Probabilistic Roadmaps: Another approach we have
adapted to our domain is the probabilistic roadmap (PRM).6
A standard motion planning technique in robotics, this al-
gorithm has two phases. The first builds the graph; V ver-
tices are randomly generated in the reachable state space and
edges are considered between each vertex and its n nearest
neighbors. If an edge is traversable, it is added to the graph.
In the second phase, the start and end vertices are connected
to the graph (again, by connecting each to nearest neigh-
bors), and a graph search algorithm looks for a path between
them.

We adapt this approach to the ELP problem in the follow-
ing way:

• Our roadmaps contain 2000 waypoints generated within
the range of the aircraft. Each waypoint is connected to
its 200 nearest neighbors, resulting in a graph with around
400,000 edges.

• Edges are directed and can go through traversable obsta-
cles. In our domain, very few edges pass through un-
traversable obstacles, but many can be expensive;

• As explained before, our graph search algorithm is A*
with an informed heuristic and search nodes possibly aug-
mented to account for remaining resources;

• Because the expensive part of the algorithm is the edge
computations, we use a lazy approach that does not com-
pute the traversibility and cost of an edge until that edge
is reached during A* search. Once computed, results are
stored for the rest of the search.7

The advantage of the PRM approach is its ability to build
and consider non-trivial paths through traversable obstacles,
and insensitivity to the complexity of obstacles (number of
corners). Because of this it represents an attractive alterna-
tive to the systematic approaches presented above. Its main
drawbacks are (i) the complexity of nearest neighbors com-
putation, and (ii) the inability of the algorithm to find lo-
cally optimal solutions. For Example, in the presence of un-
traversable obstacles, VG-based roadmaps find near-optimal
trajectories that cut as close as possible to the obstacles. In
contrast, PRM may find a path that wanders far from the
obstacles, and so is judged infeasible because of limited re-
sources. If the PRM path is not discarded as too costly, local
search can compensate for this drawback and move it closer
to the obstacles.

VPRMs: We developed the VPRM in an attempt to com-
bine the advantages of the PRM and systematic approaches
derived from the visibility graph. The idea is to seed the
graph of a PRM using some or all of the layered-visibility

6Our code extends the OOPSMP motion planning library,
http://www.kavrakilab.org/OOPSMP/index.html.

7Note that this is different from the classical lazy-PRM ap-
proach (LPRM). In LPRM, the edge costs do not account for pos-
sible collision with obstacles until an optimal solution is found.
Collision checking is performed only along the edges traversed by
the optimal solution. If the path collides, the cost of these edges is
updated and search is restarted.

75

graph vertices and edges. Since they can be ideal for skirt-
ing obstacles efficiently, the PRM finds shorter, smoother
paths around obstacles. Conversely, random waypoints and
the additional edges introduced by the PRM help the LVG to
find non-trivial paths through, above, and below obstacles.

Some previous work used notions of visibility inside of a
PRM approach. For instance, Siméon et al. (2000) use visi-
bility to reduce the number of vertices in a PRM. The idea is
that both building the roadmap and extracting a solution are
faster if there are fewer waypoints. Our motivations and our
approach are different here. Because we want optimal paths
to the goal (as opposed to any solution), we are not interested
in drastically reducing the number of nodes in the roadmap.
Instead, we want to cover the reachable space as completely
and uniformly as possible, so that a near optimal solution
has a good chance of being included in the graph (at least
a solution that is qualitatively optimal and that local search
can turn into a true optimal solution). By adding some of
the visibility graph edges to the PRM, we actually increase
the size of the roadmap. However, we hope to include edges
that have a good chance to be in optimal solution, and that
would probably not be discovered just by random generation
of waypoints.

Path Planners with Dynamics: The LVG, PRM and
VPRM path planners can be augmented with aircraft dynam-
ics to output trajectories that are directly flyable. We refer to
these planners as DLVG, DPRM and DVPRM respectively.
To achieve this, we replace the 3D Euclidean state space by a
4D configuration space that includes aircraft heading.8 Then
the Trajectory Planner can be used to find flyable paths be-
tween neighboring states, and the cost of such a path can
be computed given the risk of the regions traversed by the
resulting path.

DPRM waypoints are generated by sampling the 4 dimen-
sions of the space. DLVG waypoints are generated in the
following way: for each LVG waypoint we now add two
vertices, one for each of the headings tangent to the corner
of the obstacle.9 Planning is performed as in the Euclidean
space, except that edge costs reflect the aircrafts dynamic
constraints, and so the resulting path is guaranteed to be fly-
able.

Taking into account the dynamics while generating the
initial path can be a considerable advantage. There may be a
locally optimal path that attracts all algorithms without dy-
namics but is not feasible. For instance, suppose that all
algorithms without dynamics try to pass to the North of an
obstacle to avoid turbulence to the South. However, this so-
lution may not by flyable because of limited aircraft maneu-
verability. Only PRM with dynamics can identify this fact
and look for a path to the South and through the region of
turbulence. In this case, this is a crucial advantage because

8The experiments reported in this paper assume a constant
speed, and so the search space is only 4D rather than 5D.

9We only connect two vertices inherited from the visibility
graph if the difference in heading between them is less than 90
degrees. This avoids, for example, connecting two vertices on adja-
cent corners of an obstacles that are heading in opposite directions.

even local search algorithms can not make a qualitative jump
such as changing the side that a path goes around an obsta-
cle. However, taking into account dynamics has a cost in
terms of complexity. First, the computation of the cost of an
edge is more expensive. More importantly, the dimension
of the search space is augmented when we move from Eu-
clidean to configuration states, and so more waypoints are
needed to cover the space adequately.

2.2 Local Search
Local search algorithms are responsible for trying to im-
prove a pre-existing path to find a better solution. We report
on two such algorithms.

Euclidean Local Search (ELS): As its name indicates,
this algorithms works in the 3D Euclidean space, and so
it outputs trajectories that cannot be flown directly because
they do not respect the aircrafts dynamic constraints. The
basic idea is to try to improve the given path by skipping
some of its waypoints. It was later augmented to allow the
creation of new waypoints.

ELS works in the following way:
1. A new graph is created by taking the transitive closure

of the initial path. That is, each waypoint in the path is
connected to all of its descendants.10 The resulting graph
is searched and its optimal solution is passed to the next
stage. It is the best path that can be built from the set of
waypoints in the initial path, and so it is at least as good
as the initial path.

2. The path output at stage 1 is densified. That is, waypoints
are added at regular intervals along each leg of the path
(every two nautical miles). Waypoints are then connected
as in the first step, and the new graph is searched for an
optimal solution. Note that the new set of waypoints sub-
sumes the waypoints in the initial path, and so this stage
is also guaranteed to improve the path.

3. Stage 2 is repeated as long as the path improves by more
than a certain percentage (1%).

Graph search at stage 1 and 2 is performed using the A*
algorithm with the same heuristic as for path planners.

This simple mechanism proved very efficient in practice.
It is capable of important quantitative improvements such
as:
• Bringing closer to an obstacle a path that wanders far

away from it (e.g., a PRM path);
• Conversely, moving a path that uselessly follows the

edges of obstacles (e.g., an HRM path) away from those
obstacles;

• Finding optimal (shortest) cuts through the most costly
obstacles.

Of course, there is no guarantee of such improvements, as
the performances of ELS depends on the seed path pro-
vided. For example, local search will not be able to improve
a straight line path, even though it may be very costly.

10A descendant of a node is either an immediate successor, or a
descendant of an immediate successor.

76

Another drawback of this technique is that its worst-case
complexity is exponential in the length of the path: in the
worst-case, A* enumerates all trajectories that can be built
from a set of waypoints. If there are n waypoints, then there
are 2n such trajectories. Moreover, the number of waypoints
n in the densified path is proportional to the path length. To
limit this effect, we modified stage 2 so that the search skips
all trajectories that have more than two consecutive way-
points taken from the same leg of the initial path. It avoids
considering trajectories with three aligned waypoints, which
are as well represented by discarding the middle waypoint.
As a result, the worst-case complexity of the algorithm be-
comes exponential in the number of legs in the initial path,
which is always much lower.

Dynamics Local Search (DLS): As explained above, the
Trajectory Planner takes a 3D Euclidean path and outputs
a 4D path that flies through the same set of locations and
respects the aircraft dynamics. This translation is a crucial
step in our system as the trajectories output by all 3D Eu-
clidean path planners (a majority of our path planners) need
to go through it to be usable by the pilot. However, it is
hard to predict the results of this process, particularly if the
aircraft has low controllability and the path is long. More-
over, the path planner ignores obstacles, and so it sometimes
makes non-optimal choices. For instance, it might make
a left turn and hit an obstacle while a right turn, although
slightly longer, would avoid the obstacles.

For these reasons, we tried to develop a local search algo-
rithm that can perform the same translation while optimizing
the output path. The DLS is an attempt at generalizing the
ELS second stage in that way. The idea is to use the Trajec-
tory Planner to evaluate the same set of Euclidean paths as
generated by ELS, and to return the best 4D path obtained.

The major problem with this simple schema is the follow-
ing: the cost of an edge between two states depends on the
four variables of states. In other words, there is no well de-
fined cost between two 3D Euclidean states that can account
for aircraft dynamics. As a consequence, the A* algorithm
cannot be used to find the optimal path. Therefore, DLS
generates all dynamics-free paths in a systematic depth-first
search, evaluates each of them globally using the Trajectory
Planner, and then returns the highest valued. It is still an
optimal algorithm, but it does not benefit from all compu-
tational advantages of A*. As a result, the worst-case 2n

complexity is realized at each run. However, it is reduced
to being exponential in the number of legs using the same
technique as in ELS.

As the set of 3D trajectories explored by ELS and DLS
contains the seed path, DLS is guaranteed to produce a path
that is at least as good as that produced by the Trajectory
Planner.

3. Results
3.1 Experimental Setup
We have run our algorithms on a wide variety of data. In
many situations, solutions are obvious and all algorithms

find them quickly. For this paper, we have selected four dif-
ferent emergencies, which include a variety of interesting
obstacles that serve to differentiate our approaches (even for
these, many airports are either impossible or trivial to reach):

1. An aircraft near Flagstaff, AZ with large thunderstorms to
the north and west, and a small gap between them. There
are some minor terrain obstacles at lower altitudes and
relatively few airports within range.

2. A second version of the Flagstaff emergency where the
large thunderstorms are merged.

3. An aircraft near Washington DC, with some nearby re-
gions of turbulence, icing and rain, as well as some
special-use (restricted) areas that should be avoided if
possible. Terrain is not relevant, and there are many air-
ports nearby.

4. An aircraft near Dubuque, IA with some large weather
cells to the north. Terrain is not relevant and there are an
average number of airports nearby.

We vary each emergency in three ways. First, we use
either 90 or 150 nautical miles as the aircraft’s maximum
range11. Second, we vary the aircraft’s ability to turn, using
bank angles that are either normal (45 degrees) or severly
limited (5 degrees); the latter results in wide turns. Finally,
we vary the aircraft’s ability to ascend and descend, either
leaving it effectively unconstrained, or severly limited.

This gives us 8 different versions of each emergency. For
each version, we consider the top 100 candidate runways (if
there are that many), based on a heuristic that measures the
obstacle-free distance and the quality of the runway itself,
resulting in a total of 616 problem instances.

For each runway in each version of each emergency, we
run each of these algorithms (note that we do not include
results for the visibility graph since it is strictly dominated
by LVG):

1. Straight: This computes a straight-line edge between the
start and goal, to provide a baseline comparison. In many
cases, even in the presence of obstacles, this is the best
solution.

2. HRM: The hybrid roadmap.

3. LVG, DLVG: The layered visibility graph, both with and
without dynamics

4. PRM, DPRM: The probabilistic roadmap, both with and
without dynamics.

5. VPRM, DVPRM: The probabilistic roadmap seeded with
visibility graph vertices and edges, both with and without
dynamics.

Finally, we can measure the quality of the path planner by
itself (PP), or when combined with Euclidean local search
(PP+ELS), local search with dynamics (PP+DLS), or both
(PP+ELS+DLS). Each individual algorithm is given a 30
second time limit.

11For DC we only use a 90 mile range.

77

3.2 Results
Table 1 summarizes our results. For each combination of
algorithm and local search, we provide the average proba-
bility of success and the number of failures out of the 2464
runs. We also show the average and standard deviation of
runtimes. These are cumulative; for example, the entry for
PP+ELS includes the time to run PP.

First, consider the algorithms without local search (PP).
While all algorithms outpeform Straight, as expected, the
differences vary significantly. While HRM and LVG are
only 7% better than Straight, on average, DVPRM is 14%
better. The best approaches are the ones that incorporate dy-
namics. This makes sense. Planners that ignore dynamics
tend to produce solutions that turn out to be illegal when
converted to a flyable path, usually because they end up ex-
ceeding the aircraft’s range. This is especially true with lim-
ited bank angles; for example, the difference between LVG
and DLVG is 0% with normal bank angles, but 2.5% for runs
with limited bank angles.

While limiting the bank angles tends to hurt planners that
do not include dynamics, limiting the ability to descend is
different because the approaches that do not use dynamics
still incorporate the descent limits into their search. HRM
handles descent limits well, due to the hybrid nature of its
search. We feared that PRM approaches would have more
difficulty, because more edges in the original roadmap are
untraversable, but this does not appear to be a significant
issue.

When local search is included, things get interesting. As
expected, the approaches that did not include dynamics are
improved quite a bit, especially by local search with dynam-
ics (preceding DLS with ELS does not seem to help). For
example HRM jumps from .35 to .38 and VPRM jumps from
.37 to .40. These improvements can mostly be attributed to
cases where local search produces a feasible path out of one
that is not flyable. For example, VPRM has 1333 failures
before DLS but only 1078 afterwards.

The majority of the local search improvements are due to
scenarios where the aircraft has limited controllability. For
example, local search only improves HRM from 44.1% to
45.6% when the aircraft has full controllability but improves
it from 24.7% to 29.2% with limited bank angles. Again,
this is due mostly to the fact that local search reduces the
number of failures by converting solutions that are unflyable
(usually because the aircraft’s range is exceeded) into flyable
trajectories.

Notice that for approaches that did use dynamics, local
search makes no improvement. For these approaches, if the
original path planner failed, there is no path that local search
can attempt to improve. Notice that local search never re-
duces the number of failures for these planners.

One advantage of local search does not show up in these
numbers. When using visual inspection, local search tra-
jectories tend to look cleaner and simpler, and sometimes
avoid extraneous turns or loops. Due to how probabilities
are calculated, the cost of traveling extra distance in free
space is negligible compared to the cost of traversing obsta-
cles, therefore these better-looking trajectories hardly vary
the overall probability of success. Therefore, even if local

search does not help rank the runways appropriately, it may
be important for producing the final flight plan for a pilot.

While Euclidean local search (ELS) does improve re-
sults before dynamics are considered, and results in modest
improvements after dynamics are considered, it is outper-
formed by DLS. For example, ELS improves HRM success
from 35% to 36% in 2.1 seconds, on average, but DLS can
make a bigger improvement (35% to 38%) in less time (1.6
seconds).

Now consider running times of the path planners. At a
high level, PRM approaches are slowest, taking at least 5
seconds per airport. Also, it takes between 25% and 100%
more time for any approach to use dynamics, due to the extra
cost of each edge evaluation.

HRM, as well as all PRM-based approaches have high
standard deviations, due the fact that they have large search
graphs to explore in worst-case scenarios. Out of 2464
runs, HRM reaches the cutoff (30 seconds) 130 times, PRM
reaches it 48 times, and VPRM hits it 135 times.

As expected, local search is fast, with very small increases
in total runtime for ELS and negligible increases for DLS.
In fact, our results show no change in DLS; we would need
another decimal place for the differences to be seen.

Finally, note that for these experiments we recreate and
reevaluate the roadmap for every runway. Because all of our
planners could reuse that roadmap for multiple runways, we
do not expect it to take much longer to evaluate all nearby
runways than to evaluate a single one; the times reported
here can be amortized across all runways. While we cannot
do the same for the local search algorithms, they appear fast
enough to run separately for each individual runway.

We conclude with a couple of examples that show why the
randomly generated points created by the PRM approaches
can help.

3.3 Example: KCMR 18
This runway in the Flagstaff emergency lies to the west of
the aircraft, and one of the thunderstorms is between the air-
craft and the runway (Figure 4) Because the shortest dis-
tance around the thunderstorm (the tall rectangle) slightly
exceeds the 90 mile aircraft range, non-PRM approaches
all end up with a straight-line solution through the thunder-
storm. PRM, however, is able to find a solution that mostly
goes around the storm but cuts through a corner of it to meet
the 90 mile cutoff. This results in a solution that scores .71
instead of .32.

3.4 Example: KLFI 08
This runway in the DC emergency lies to the south of the
aircraft in a large area of rain (Figure 5). Non-PRM path
planners fly directly to the goal because no other waypoints
(obstacle corners) are helpful. PRM uses a randomly gen-
erated waypoint to come in from a different angle which al-
lows the aircraft to spend less time in the area of rain; this
improves the probability of success from negligible to .05.

4. Conclusions and Future Work
We have tried a wide variety of algorithms, and each has
strengths and weaknesses. Ordinary visibility graphs are fast

78

PP PP+ELS PP+DLS PP+ELS+DLS
success sec. success sec. success sec. success sec.

Algorithm avg. #fail avg. σ avg. #fail avg. σ avg. #fail avg. σ avg. #fail avg. σ

Straight .28 1152 0.0 0.0 .28 1152 0.1 0.1 .28 1152 0.0 0.0 .28 1152 0.1 0.1
HRM .35 1327 1.6 6.8 .36 1255 2.1 6.7 .38 1172 1.6 6.8 .38 1150 2.1 6.7
LVG .35 1202 0.1 0.2 .36 1161 0.5 0.9 .37 1058 0.2 0.2 .37 1058 0.5 0.9

DLVG .37 1085 0.2 0.2 .37 1086 0.4 0.7 .37 1085 0.2 0.2 .36 1090 0.4 0.7
PRM .37 1304 5.3 5.7 .39 1228 5.9 5.9 .40 1062 5.3 5.7 .41 1010 5.9 5.9

DPRM .41 991 8.2 6.0 .41 993 8.6 6.1 .41 992 8.2 6.0 .39 1006 8.6 6.1
VPRM .37 1333 6.8 7.8 .38 1264 7.4 7.9 .40 1078 6.8 7.8 .40 1060 7.4 7.9

DVPRM .42 996 8.6 6.4 .42 997 9.0 6.5 .42 996 8.6 6.4 .41 1006 9.0 6.5g

Table 1: Average performance comparison of the eight planning algorithms with and without local search processing.

Figure 4: HRM and PRM solutions to runway KCMR 18.
PRM is able to mostly avoid the thunderstorm because it can
cut the corner, improving the probability of success from .32
to .71.

and work well when the space can reasonably be projected
into two dimensions (as with columnar obstacles). If obsta-
cles are reasonably sparse, dynamics can be accommodated
to a large extent by placing buffers around the obstacles.
This approach can even be extended to three dimensions by
taking a series of slices through the obstacles at different alti-
tudes and adding edges connecting the points in the different
altitude layers. This is essentially what we do in LVG and
to seed VPRM. Where the visibility graph approach really
breaks down is when it is possible to traverse obstacles, but
with increased risk. The HRM technique was one attempt
to extend the visibility graph with additional edges that al-
low traversing obstacles. However, with this approach only
a small subset of the possible ways of traversing an obsta-
cle are considered, and the resulting path may be far from
optimal. In addition, the HRM technique seems to suffer
from the resulting explosion in the number of nodes in the
visibility graph.

In contrast, PRMs can be adapted to permit paths both
around and through obstacles. In theory, they should always
be able to find a high quality path. However, unless one
generates a very large number of points (a big roadmap), the
resulting paths can be highly non-optimal, and sometimes
quite bizarre. Seeding the PRM with a visibility graph helps,
because it permits intuitive, optimal paths around obstacles
when that turns out to be the best route. The PRM is then rel-

Figure 5: HRM and PRM solutions to runway KLFI 18.
PRM find a path that travels along the outside of the ob-
stacle before cutting in as late as possible, improving the
probability of success from negligible to .05.

egated to the task of adding additional edges that go through
the soft obstacles. A second problem with PRMs is that the
resulting paths can be quite jagged. Adding local search as
a post-processing step helps to cut corners, eliminate way-
points, and generally smooth out the path. As a result, we
are finding that this combination approach produces more
natural higher quality paths.

There are several ways the algorithms we have described
here can potentially be improved. We have not spent time
trying to improve the cases where individual algorithms run
slowly. For example, we expect to be able to modify HRM
to avoid the cases where it times out, and to modify the local
search algorithms to be fast even if the input path contains
many waypoints. We should also be able to correct for the
case where PRM techniques fail only because the final path
is evaluated at a finer granularity than that used in search.

Acknowledgments
This work was supported by the Intelligent Resilient Air-
craft Control program of the NASA Aeronautics Research
Mission Directorate. We thank John Kaneshige and Stefan
Campbell for help with the FLTZ Trajectory Planner, and
the full motion simulator. We thank United Captain Mi-
etek Steglinski for discussion on the factors most relevant to
deciding between alternative emergency landing sites. We
thank the anonymous reviewers for pointers to relevant liter-

79

ature and for their comments on terminology and alternative
approaches.

References
Choset, H.; Lynch, K.; Hutchinson, S.; Kantor, G.; Bur-
gard, W.; Kavraki, L.; and Thrun, S. 2004. Principles of
Robotic Motion: Theory, Algorithms, and Implementation.
Cambridge, MA: MIT Press.
Cormen, T.; Leiserson, C.; Rivest, R.; and Stein, C. 2001.
Introduction to Algorithms, Second Edition. Cambridge,
MA: MIT Press. Chap. 33.
Liu, Y., and Arimoto, S. 2004. Computation of the tangent
graph of polygonal obstacles by moving-line processing.
IEEE Trans. on Robotics and Automation 823–830.
Meuleau, N.; Plaunt, C.; Smith, D.; and Smith, T. 2008.
Emergency landing planning for damaged aircraft. In
ICAPS-08: Proceedings of the Scheduling and Planning
Applications Workshop.
Meuleau, N.; Benazera, E.; Brafman, R.; Hansen, E.; and
Mausam. 2009a. A heuristic approach to planning with
continuous resources in stochastic domains. JAIR 34:27–
59.
Meuleau, N.; Plaunt, C.; Smith, D.; and Smith, T. 2009b.
An emergency landing planner for damaged aircraft. In
Proceedings of the Twenty First Innovative Applications of
Artificial Intelligence Conference. To appear.
Mitchell, J., and Papadimitriou, C. 1991. The weighted
region problem: finding shortest paths through a weighted
planar subdivision. Journal of the ACM 38(1):18–73.
Rowe, N., and Alexander, R. 2000. Finding optimal-path
maps for path planning across weighted regions. Interna-
tional Journal of Robotics Research 19(2):83–95.
Siméon, T.; Laumond, J.; and Nissoux, C. 2000. Visibility-
based probabilistic roadmaps for motion planning. Ad-
vanced Robotics 14(6):477–493.

80

