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Abstract— Motion-planning problems can be solved by the parti-game method [8], a reinforcement-learning
discretizing the continuous configuration space, for exam- method that starts with a coarse terrain discretization and
ple with graph-based or cell-based techniques. We study refines it during execution by splitting cells only when

rapidly exploring random trees (RRTs) as an example of L
grgph)-/baslzd teghniques and thé parti-)game methodpas an and where it is needed (for example, around obstacles).

example of cell-based techniques. We then propose parti- I this paper, we propose a novel technique that
game directed RRTs (PDRRTSs) as a novel technique that combines the advantages of RRTs and the parti-game

combines them. PDRRTs are based on the parti-game method. Our parti-game directed RRTs (PDRRTS) are
method but use RRTs as local controllers rather than the based on the parti-game method but use RRTs as local

i isti troll d by th ti- thod. O . .
Zgggﬁ%gnﬁ? rrgsslrtz ussheow {hatepﬁ;’lé:qg-zmpe'a?ia;er aﬁgl controllers. PDRRTSs differ from recent work that studied

solve more motion-planning problems than RRTs and plan  hybrids of two different sampling techniques, such as
faster and with less memory than the parti-game method. RRTs and probabilistic roadmaps [9], because they

provide a systematic way of improving the performance
of RRTs. The main insight of this paper is precisely that
the combination of sampling and systematic techniques
Motion planning [1] involves finding trajectories in can result in very powerful motion-planning technigues.
high-dimensional continuous configuration spaces, for Depending on their parameters, PDRRTs can behave
example, by using discrete search methods after dijike RRTs, the parti-game method, or a hybrid. Our
cretizing the configuration spaces. Configuration spacesxperimental results show that PDRRTs can plan faster
can be discretized in different ways, for example withand solve more motion-planning problems than RRTs
roadmap or cell-decomposition techniques: because the parti-game method directs the searches
Roadmap techniques[2] [3] [4] determine graphs performed by the RRTs, which allows PDRRTSs to solve
that lie in freespace and represent its connectivitymore motion-planning problems with small passages.
Systematic techniques are not well suited for highOur results also show that PDRRTs can plan faster and
dimensional spaces. An example is techniques that comith less memory than the parti-game method because
struct Voronoi graphs. Consequently, researchers usRTs are more capable controllers than the simplistic
sampling techniques. An example is rapidly exploringcontrollers used by the parti-game method, which allows
random trees (RRTSs) [5], a simple but versatile roadmapPDRRTSs to split fewer cells than the parti-game method.
technique that builds trees. Sampling techniques are The paper is organized as follows. Section Il provides
typically probability-complete, meaning that they finda brief description of RRTs and the parti-game method.
a trajectory, if one exists, with a probability that ap-Section IIl introduces our PDRRT method. Section IV
proaches one as their run time increases. presents the experimental setup of our comparison of
Cell-decomposition techniqued6] [7], on the other PDRRTs, RRTs and the parti-game method, and Sec-
hand, decompose the configuration space into cellsion V presents our results. Section VI describes several
They are typically systematic and thus resolutionpossible improvements of basic PDRRTs that extend
complete, meaning that they find a trajectory if onetheir applications. Section VIl presents related work and
exists within the minimum resolution of the decompo-Section VIl presents ideas for future work.
sition. Uniform terrain discretizations can prevent one
from finding a plan if they are too coarse-grained and
result in large spaces that cannot be searched efficiently In this section, we describe both RRTs and the parti-
if they are too fine-grained. Consequently, researchegame method in sufficient detail to be able to describe in
use nonuniform terrain discretizations. An example ighe following section how to combine them. We describe

I. INTRODUCTION

Il. BACKGROUND



the parti-game method in greater detail than RRTs since
robotics researchers tend to be less familiar with it.

A. RRTs

RRTs [5] build a tree in freespace, starting at the start
point. They repeatedly generate a random sample point
and then grow the tree by adding an edge of a given
length from the vertex on the tree that is closest to
the sample point toward the sample point. RRTs can
be biased to grow toward the goal by returning the goal
point (instead of a random point) as sample point with
small probability. RRTs overcome the problems of ear-
lier roadmap techniques, such as probabilistic roadmaps
[3], by biasing their search toward unexplored regions
of the freespace. There exist a number of variations of
basic RRTSs, for example bi-directional versions, that try
to connect a tree that is grown from the start to the goal
with one that is grown in the opposite direction [10].

B. The Parti-Game Method

The parti-game method [8] discretizes configuration
space into cells of nonuniform size, where the cells are
hyper-rectangles of the same dimension as the configu-
ration space. The following description assumes for sim-
plicity that the configuration space is a two-dimensional
terrain. The parti-game method then starts with an initial
coarse terrain discretization and assumes that it has
several local controllers available in each cell, namely
one for each neighboring cell. These controllers must
be provided by the user. The parti-game method makes
the optimistic default assumption that the execution of
each controller from any point in the cell eventually
reaches some point in the intended neighboring cell
(with a cost that equals the Euclidean distance between
the center of the cells). However, this assumption is
not completely justified since the parti-game method
uses very simplistic controllers that just aim for the
centers of the intended neighboring cell and can thus,
for example, get blocked by obstacles. Once the parti-
game method has selected a controller, it continues to
use the same controller until it either gets blocked by an

of the following unexpected effects: it either does
not leave the current cell within a given amount
of time or it leaves the current cell but reaches a
cell different from the intended neighboring cell.
If the currently used controller has an unexpected
effect, the parti-game method records the newly
observed effect and, from now on, assumes that the
execution of the current controller from any point
in the current cell can also result in the same cell
that the current execution resulted in. The observed
effects overwrite the default assumption about the
effects. The parti-game method then uses another
minimax search to determine the controller to use
in each cell under the current assumptions about the
effects of the controllers, and repeats the process.
If the parti-game method does not find a solution,
then it assumes that the terrain discretization is too
coarse-grained. It therefore refines the terrain dis-
cretization by splitting all cells that are unsolvable
(that is, have an infinite minimax goal distance),
have a size that is larger than the minimum cell
size, and border at least one solvable cell - to
try to make them solvable. It also splits all cells
that are solvable, have a size that is larger than
the minimum cell size, and border at least one
unsolvable cell - to ensure that neighboring cells
have similar sizes. Each cell is split into two cells
perpendicular to its longest axis. (The axis of the
split is chosen randomly for square cells.) The
parti-game method again assumes that it has several
local controllers available in each new cell, namely
one for each neighboring cell. It further makes
again the optimistic default assumption that the
execution of each controller from any point in the
new cell eventually reaches some point in the in-
tended neighboring cell. This assumption makes the
current cell solvable. It then uses another minimax
search to again determine which controller to use in
each cell under the current assumptions about the
effects of the controllers, and repeats the process.

obstacle or enters a new cell. It uses a minimax search to Figure 1 illustrates the behavior of the parti-game
determine which controller to use in each cell to reachnethod in a two-dimensional terrain. The circle marks
the cell that contains the goal point, under the currenhe location of robot and the cross marks the goal region.
assumptions about the effects of the controllers. It do€phe robot initially moves up and gets blocked. It then
this by determining the minimax goal distance of eachnoves right (that is, towards the center of the lower-
cell and assigning it the controller that minimizes itsright cell) and gets blocked again (a). At this point, the
minimax goal distance. lower-left cell becomes unsolvable. The lower-left cell is
« If the parti-game method finds a solution, it exe-now an unsolvable cell that borders solvable cells and
cutes it until it either reaches the cell that containghe upper-left and lower-right cells are solvable cells
the goal point (it does not need to reach the goathat border an unsolvable cell. Thus, these three cells
point itself) or the currently used controller has oneare split. The robot now moves up and gets blocked
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Fig. 1. Example behavior of the parti-game method

immediately. It then moves right and again gets blockethe parti-game method because RRTs are more capable
immediately. Finally, it moves down (b) and eventuallycontrollers than the simplistic controllers used by the
succeeds in moving to the goal point (c). parti-game method, which allows PDRRTS to split fewer
The parti-game method can also be used as a multiells than the parti-game method. The controllers of the
query planner by maintaining the terrain discretizatiorparti-game method just aim for the center of the intended
between queries. If it repeatedly solves the same motiomeighboring cell and can thus easily get blocked by
planning problem, for example, then it refines its terrairobstacles even if the neighboring cell can be reached.
discretization over time until it converges to both aThis can make the current cell unsolvable and thus result
terrain discretization and a trajectory. All future queriedn the parti-game method splitting cells. Figure 3 shows
then return this trajectory. Figure 2 shows an examplean example where the simplistic controllers of the parti-
game method get stuck but RRTs easily find a trajectory
Ill. PARTI-GAME DIRECTED RRTS to the intended neighboring cell, namely the upper cell.

PDRRTSs use RRTs as local controllers in the follow-
ing way after the parti-game method has determined
ol which neighboring cell to move to: The start point is
i the current point and the goal point is the center of the
‘ intended neighboring cell. We impose a limit on the
number of nodes in the RRTs (we use 250) to limit the
search time. In addition, we could impose a bounding
box beyond which the RRTs cannot grow although we
did not do this in our experiments. Whenever the RRTs
add a node to the tree that belongs to the intended
neighboring cell, then the search terminates and they
Fig. 3. Example where PDRRTSs find a trajectory to the intended€turn the trajectory to that node. If the RRTs fail
neighboring cell even if the parti-game method fails to find a trajectory to the intended neighboring cell
within the limit on the number of nodes, they could just
We now describe a novel technique that combines theeturn failure, similar to the case when the simplistic
advantages of RRTs and the parti-game method. Owontrollers of the parti-game method get blocked by
parti-game directed RRTs (PDRRTSs) are based on thabstacles and thus fail to leave the current cell. However,
parti-game method but use RRTs as local controllersve found that we can reduce the run time of PDRRTs
PDRRTs can potentially plan faster and solve moréf our RRTs return a trajectory to that node in the tree
motion-planning problems than RRTs because the partihat belongs to a different neighboring cell and whose
game method directs the searches performed by thHeuclidean distance to the goal point is minimal, similar
RRTs, which allows PDRRTs to solve more problemdgo the case when the simplistic controllers of the parti-
than RRTSs in terrain with love-goodness [11], where  game method leave the current cell but reach a cell
is the minimum fraction of space visible over all points.that is different from the intended neighboring cell. Our
An example is terrain with small passages. PDRRTs caRRTs therefore return failure only if all nodes in the
also potentially plan faster and with less memory thartree belong to the current cell when it reaches the limit




Query 1. No. of cells: 574. Trajectory length: 387. Query 2. No. of cells: 574. Trajectory length: 62.  Query 4. No. of cells: 574. Trajectory length: 52.

Fig. 2. The behavior of the parti-game method for a sequence of identical motion-planning queries for a zero-link (point) robot in a terrain
of size 100x 100 with a step size of the local controller of one and a minimum cell size of three. The start location is at the bottom left.

on the number of nodes. x and y coordinates of one of the joints). Thus, when we
If the limit on the number of nodes is small, then therefer in the following to a 5D motion-planning problem,
RRTs need to strongly bias their search toward the goate mean one with a three-link robot in planar terrain.
point to have a chance to find a trajectory to it. On theEach link is of the same length and thus the robots
other hand, if the limit on the number of nodes is largeget longer as the number of dimensions increases. The
then they should not strongly bias their search towar#inematic constraints were given by a limited angular
the goal point to avoid getting stuck in local minima.range for each joint and the need to avoid self-collisions.
We therefore bias our RRTs to grow toward the goaNo dynamic constraints were enforced. The robots op-
point by returning the goal point (instead of a randonerated in different kinds of terrain, shown in Figure 4.
point) as sample point with the following probabilities Terrain (a) is a modification of the one from [13]
that depend on the limi on the number of nodes: and requires sudden changes in direction, especially for
higher dimensional cases. Terrain (b) and (c) are from

P if N < N, [14] and have narrow passages. Terrain (d) is from [15]
p_ ﬁﬂ_—mﬁ('\'_'\'m")*%ﬁx if Ny < N < Ny and somewhat easier than the other ones but, like the

other ones, still has a smatgoodness. We used these
particular motion-planning problems as they allow us to
wherePrax, Prin, Nmax @nd N are parameters with test the scaling of the various motion-planning methods
Prax > Prin and Npax > Nmin. We use Brax = 1.00,  with respect to the dimensionality of the configuration
Prin = 0.05, Njmax = 200 andNqin, = 50. To summarize, space without changing the basic nature of the motion-
the larger the limit on the number of nodes, the lesplanning problems or losing generality. The goal region
greedy the local controllers are. Depending on both thisf each terrain was specified by ranges of allowable
value and the minimum cell size, PDRRTs can behavpint angles and ranges for the x and y coordinates.
like RRTS, the parti-game method, or a hybrid. PDRRTS0 measure the distance between two points in the
behave like RRTs if both parameters have large valuesonfiguration space we used the weighted sum of the
and like the parti-game method if both parameters havsquared differences of their- 2 coordinates (“weighted
small values. This is an advantage of PDRRTSs becauseHiuclidean distance”). Our weights scaled the difference
allows them to behave more like RRTs for easy motionef each pair of coordinates to range from zero to one. For
planning problems and more like the parti-game methodxample, the weights of all joint angles werg(2m).
for harder motion-planning problems.

Prin if N > Nrax

Our implementation of RRTs uses the RRTExt
method with uni-directional search [10], similar to [16].

In order to compare PDRRTs, RRTs and the parti{lt cannot use the RRTExt method with bi-directional
game method, we used motion-planning problems fogsearch since our motion-planning problems have goal
planar articulated robots [12]. An-dimensional planar regions rather than goal points.) It uses kd-trees to
articulated robot has revolute joints and operates in efficiently find the vertex on the tree that is closest to
n+ 2-dimensional configuration space (one dimensiothe sample point [17]. The RRTs were biased to grow
for each of the joint angles and two dimensions for théoward the goal point by returning the goal point (instead

IV. EXPERIMENTAL SETUP AND IMPLEMENTATION



Fig. 4. Test terrains (a)-(d)

of a random point) as sample point with probability 0.05.

Our implementation of the parti-game method use: |
kd-trees to find the neighbors of a cell efficiently. It
uses an efficient single-pass method to calculate tt '
minimax goal distances [18]. The local controllers are - .
implemented as follows: There are two actions for eac ' =
dimension available, which increase or decrease its valt . H
by one step size. The parti-game method selects th &
action that reduces the weighted Euclidean distance s
the center of the intended neighboring cell the most. It (@) (b)
then selects this action repeatedly as long as it continues
to reduce the weighted Euclidean distance. It selects a
new action and repeats the process when it no longer
reduces the weighted Euclidean distance. It returns when
the current cell is exited or a given amount of time has B I=|
passed. This way of selecting actions resulted in a better .
trajectory quality than other action-selection strategies —
that we experimented with. u

Finally, our implementation of PDRRTs re-used our .
implementations of RRTs and the parti-game method J m

il

Fig. 5. Solvability example: (a) RRTs and (b) PDRRTs

whenever possible.

_Goal

V. EXPERIMENTS AND RESULTS Fig. 6. Randomly generated terrain with a four-link robot & start
location (upper-right corner) and a small square at the goal location
We evaluated PDRRTs, RRTs and the parti-gamgower_m comen)
method according to the number of motion-planning
problems they could solve and, for the ones that the -
could solve, the time taken and the quality of the)&' Solvability
resulting trajectory. We used a step size of two for Earlier, we had hypothesized that PDRRTs are able
the RRTs and a minimum cell size of five for theto solve more motion-planning problems than RRTSs.
parti-game method. The same parameters were uséttleed PDRRTSs solved more motion-planning problems
for the PDRRTs. These step and cell sizes were foundithin the cut-off time than RRTs and the parti-game
to be optimal for both the PDRRT and the stand-method, for example problems with four-link robots in
alone algorithms. Table 8 shows the run times of théerrain (¢) and, as shown in Figure 5, four-link robots
three motion-planning methods in our test terrains (@n terrain (b). For the latter motion-planning problems,
dash indicates that at least one of the motion-planninBDRRTs generate 35 cells in 3514.00 seconds before
problems could not be solved within the cut-off timethey find a trajectory. PDRTTs appear to be at least
of 60 CPU minutes), Table 10 shows the lengths of thas good as RRTs and the parti-game method. (Note
resulting trajectories, and Table 9 shows the number dhat we formulated this statement carefully because the
cells generated by PDRRTs and the parti-game methodyn time of PDRRTs was close to the cut-off time in
in all cases averaged over all motion-planning problemsome cases where PDRRTs solved all motion-planning
that they solved in 20 runs within the cut-off time. problems but the other methods did not.) To be able
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Fig. 7. Number of motion-planning problems solved in random
terrain
Terrain Parti-Game RRTs PDRRTs
Method

(a) 2D 0.010 0.010 0.010

(a) 3D 0.070 1.410 0.360

(a) 4D 0.790 3.530 0.350

(a) 5D 2623.000 — 172.000

(a) 6D — — 2231.000 Terrain Parti-Game PDRRTs
() 2D 0.980 0.850 0.150 Method

(b) 3D 0.230 7.500 1.900 (a) 2D 41 1
(b) 4D 105.000 38.000 9.760 (a) 3D 32 10
(b) 5D 2171.000 — 24.900 (a) 4D 108 18
(b) 6D — — 3514.000 (b) 2D 574 31
(c) 2D 0.092 1.240 0.140 (b) 3D 70 80
(c) 3D 1.370 12.700 0.690 (b) 4D 504 276
(c) 4D 5.600 71.500 4.120 ©) 2D 103 30
(c) 5D 2137.000 | 1483.000 531.000 (c) 3D 128 44
(c) 6D — — 3263.000 (c) 4D 488 80
(d) 2D 0.000 0.000 0.000 (d) 2D 26 1
(d) 3D 0.087 0.140 0.190 (d) 3D 35 1
(d) 4D 0.183 0.960 0.810 (d) 4D 48 6
(d) 5D 0.453 1.600 6.610 (d) 5D 568 120
(d) 6D 26.700 40.300 3.300 (d) 6D 1648 64
(d) 7D 302.000 930.000 172.000 (d) 7D 1936 192
Fig. 8. Run times (in seconds) Fig. 9. Cells generated

to quantify the advantage of PDRRTs over RRTs more
precisely, we tested all three motion-planning methods
also with zero- to five-link robots in 500 planar terrains
that were obtained by randomly generating and placing
between 8 to 16 rectangular obstacles into an empty
terrain of size 100 by 100, resulting in 2D to 7D motion
planning problems. Figure 6 shows an example. We
changed both the step size and the minimum cell size to
one for this experiment as it makes the largest number of
motion-planning problems solvable. Figure 7 shows that
PDRRTs solve more motion-planning problems within
the cut-off time than RRTs. For example, they solve
15 percent more motion-planning problems than RRTs
for the five-link robots. In comparison to the parti-
game method, PDRRTs seem to possess only marginally
greater solvability. The difference in the case of the five-
link robot is 6 percent which is not significant.

B. Run Time

(d) 4D
(d) 5D
(d) 6D
(d) 7D

100 1 (a) 3D 717.80 | 216.22 497.90 523.20 409.40

- ‘\_ (a) 4D 8307.00 | 341.93 520.30 4407.65 497.60
g 80 (b) 2D 3992.00 | 307.00 735.00 749.00 287.00
2 e \\\‘ = PDRRT (b) 3D 2287.90 | 505.00 6991.80 1369.20 505.40
s w&: s Ppartigame (b) 4D 156889.00 | 763.00 4264.60 31421.90 1123.90
£ (©) 2D 2430.00 | 299.00 1106.00 286.00 302.00
g e —+—RRT (c) 3D 12941.00 | 504.00 3746.30 8045.65 606.30
5 20 (c) 4D 26460.00 | 744.00 | 15374.20 17056.50 7006.50
& (d) 2D 272.00 58.90 120.00 222.00 89.00
0 (d) 3D 499.80 | 203.00 165.60 349.70 165.00

833.70
917.70
3711.00
12782.10

329.00
417.00
525.00
625.00

234.00
241.60
1879.70
6727.36

403.70
514.40
2221.10
12037.50

234.00
241.00
485.60
1183.60

Fig. 10. Trajectory lengths

C. Trajectory Quality

Table 10 shows the lengths of the trajectories of
the three motion-planning methods. RRTs produce the
shortest trajectories, followed by PDRRTs and eventu-
ally the parti-game method. The trajectories of PDRRTs
and the parti-game method can be improved in two
different ways:

« They can be

improved with a simple post-
processing step that removes cycles since both
motion-planning methods can move back and forth
while splitting cells. Figure 2, for example, shows
such loops and meanders, whose removal can
greatly improve the trajectory.

They can also be improved by letting the motion-
planning methods repeatedly solve the same
motion-planning problem. In this case, they refine
the terrain discretization and the trajectory over
time. The quality of the trajectories tends to im-
prove, although the improvement is not monotonic
in time. For example, Figure 11 shows how the
length of the found trajectory changes over time
for a one-link robot in terrain (c)where the motion-
planning methods repeatedly solved the exact same
motion-planning problem. The trajectory lengths
are smaller for PDRRTs than they are for the
parti-game method. (For comparison purposes, the
average trajectory length is 504.00 for RRTs.) They
converge to a constant value after 15 iterations
for PDRRTs and 40 iterations for the parti-game
method if the trajectories are not post-processed,
and after 7 iterations for PDRRTs and 23 itera-
tions for the parti-game method if the trajectories
are post-processed. Thus, they converge earlier for
PDRRTs than for the parti-game method.

Table 8 shows that PDRRTs seem to be faster than The length of the trajectories for a one-link robot
RRTs and the parti-game method if the dimensionalityn terrain (c) is 3746.30 for PDRRTs without post-
of the terrain is sufficiently large. This means, for exam{processing. It can be reduced to 606.30 with post-
ple, that PDRRTs solve more motion-planning problemprocessing and to 402.38 by letting PDRRTSs repeatedly

than RRTs without being slower.

solve the same motion-planning problem. In this case,



post-processing is faster than letting PDRRTSs repeatedenerate random sample points and then use the local
solve the same motion-planning problem and the qualitgontrollers to connect them to the existing roadmap.
of the resulting trajectory is only slightly worse. Thus, roadmaps call the local controllers much more
. frequently than PDRRTSs, which explains why they tend
D. Memory Consumption not to use sophisticated and thus slow local controllers.
In general, it is difficult to compare the memory Li and Shie studied the caching of results from previ-
consumption of PDRRTs, RRTs, and the parti-gameus queries in the context of RRTs that maintain the
method since RRTs and the parti-game method useees between queries [20], but these rapidly-exploring
very different data structures. Table 9 therefore onlyandom forests need to prune the trees to be efficient.
shows the number of cells generated by PDRRTs anfihus, PDRRTs have the potential to be faster multi-
the parti-game method. Earlier, we have hypothesizeduery planners than rapidly-exploring random forests.
that PDRRTs generate fewer cells than the parti-game Combinations of sample and cell-based planning
method. This is indeed the case. methods have shot to prominence recently. Plaku et al.
developed DSLX, which combines coarse decomposi-
VI. PDRRT EXTENSIONS tion anz expansion of a sample-based graph, and sr?owed
Researchers have investigated various improvemeng§at it can solve hard kinodynamic planning planning
to RRTs and the parti-game method, all of which carproblems efficiently [21]. Zhang et al. combined adap-
be used in the context of PDRRTs as well. Researchetge cell decomposition with PRMs [22], and Sucan and
have, for example, investigated versions of RRTs thakavraki used cell decomposition to assist in searching
repeatedly take steps toward the sample point until afhe state space in promising directions [23]. Iniguez
obstacle is encountered, instead of only a single stegnd Rosell used harmonic functions in conjunction with
[10]. They have also investigated versions of the partipotential fields [24], and Akinc et al. used RRTs as local
game method that split cells in a different way than thesontrollers for probabilistic roadmaps. Both motion-
version used by us [18]. There are other ways how onglanning techniques can be used as single-query and
can improve PDRRTSs. For example, whenever our RRTgulti-query planners. Disadvantages of combining two
find trajectories to the intended neighboring cells, oneglifferent sampling techniques are that the performance
could cache them for later reuse. Whenever our RRT$f the resulting motion planner is very sensitive to the
during their search, find trajectories to neighboring cellghoice of parameter values and can completely degrade
that are different from the intended neighboring cellsin difficult environments, as was noted in both [9] and
one can cache them for later use in situations wher@s]. The performance of PDRRTS, in contrast, is more
one actually wants to reach these cells. If one cached thgpust.
RRTs instead of the trajectories, one could even recover
trajectories to the neighboring cells after cells have been
split. These improvements could potentially reduce the While PDRRTS solve more motion-planning problems
run time of PDRRTs and are especially important fothan RRTS, they remain only probability-complete be-
multi-query planning. One could also vary the step size€ause their local controllers can fail to find trajectories
of the RRTs so that they use a small step size if th&etween cells even if they exist. It is future work to make
sizes of the current and intended neighboring cells ardiem resolution-complete. One could, for example, first
small and a larger step size if they are large. The idease the simplistic (but systematic) controllers of the
behind this suggestion is that small step sizes waste ryrarti-game method in every cell and, only if they fail,
time in large cells but are necessary to find trajectoriethen switch to the (sampling-based) RRTs. One could
in small cells. For example, the step size should not balso use quasi-random number sequences, especially
larger than the cell size. A simple heuristic thus wouldncremental sequences [26], when generating “random”
be to set the step size to some fraction of the cell sizeample points to grow the RRTs. This overcomes the
of the current cell. disadvantages of sampling-based methods while main-
taining their strengths. It is also future work to perform
more extensive experiments with PDRRTSs, for example,
PDRRTSs relate to other research directions in motionith different motion-planning problems than the ones
planning. For example, PDRRTs use more sophisticatettiat we used here and for the proposed improvements
local controllers than the parti-game method. Amatmf the basic PDRRT method. This is interesting because
et al. studied the effect of local controllers in thethe parti-game method has been reported not to work
context of probabilistic roadmaps [19], that repeatedlywell for manipulator-trajectory problems [27]. If this is

VIIl. FUTURE WORK

VIl. RELATED WORK
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