
PDRRTs: Integrating Graph-Based and Cell-Based Planning

Ananth Ranganathan
Honda Research Institute - USA

Cambridge, MA 02142
aranganathan@honda-ri.com

Sven Koenig
Computer Science Department

University of Southern California
Los Angeles, CA 90089-0781

skoenig@usc.edu

Abstract— Motion-planning problems can be solved by
discretizing the continuous configuration space, for exam-
ple with graph-based or cell-based techniques. We study
rapidly exploring random trees (RRTs) as an example of
graph-based techniques and the parti-game method as an
example of cell-based techniques. We then propose parti-
game directed RRTs (PDRRTs) as a novel technique that
combines them. PDRRTs are based on the parti-game
method but use RRTs as local controllers rather than the
simplistic controllers used by the parti-game method. Our
experimental results show that PDRRTs plan faster and
solve more motion-planning problems than RRTs and plan
faster and with less memory than the parti-game method.

I. I NTRODUCTION

Motion planning [1] involves finding trajectories in
high-dimensional continuous configuration spaces, for
example, by using discrete search methods after dis-
cretizing the configuration spaces. Configuration spaces
can be discretized in different ways, for example with
roadmap or cell-decomposition techniques:

Roadmap techniques[2] [3] [4] determine graphs
that lie in freespace and represent its connectivity.
Systematic techniques are not well suited for high-
dimensional spaces. An example is techniques that con-
struct Voronoi graphs. Consequently, researchers use
sampling techniques. An example is rapidly exploring
random trees (RRTs) [5], a simple but versatile roadmap
technique that builds trees. Sampling techniques are
typically probability-complete, meaning that they find
a trajectory, if one exists, with a probability that ap-
proaches one as their run time increases.

Cell-decomposition techniques[6] [7], on the other
hand, decompose the configuration space into cells.
They are typically systematic and thus resolution-
complete, meaning that they find a trajectory if one
exists within the minimum resolution of the decompo-
sition. Uniform terrain discretizations can prevent one
from finding a plan if they are too coarse-grained and
result in large spaces that cannot be searched efficiently
if they are too fine-grained. Consequently, researchers
use nonuniform terrain discretizations. An example is

the parti-game method [8], a reinforcement-learning
method that starts with a coarse terrain discretization and
refines it during execution by splitting cells only when
and where it is needed (for example, around obstacles).

In this paper, we propose a novel technique that
combines the advantages of RRTs and the parti-game
method. Our parti-game directed RRTs (PDRRTs) are
based on the parti-game method but use RRTs as local
controllers. PDRRTs differ from recent work that studied
hybrids of two different sampling techniques, such as
RRTs and probabilistic roadmaps [9], because they
provide a systematic way of improving the performance
of RRTs. The main insight of this paper is precisely that
the combination of sampling and systematic techniques
can result in very powerful motion-planning techniques.

Depending on their parameters, PDRRTs can behave
like RRTs, the parti-game method, or a hybrid. Our
experimental results show that PDRRTs can plan faster
and solve more motion-planning problems than RRTs
because the parti-game method directs the searches
performed by the RRTs, which allows PDRRTs to solve
more motion-planning problems with small passages.
Our results also show that PDRRTs can plan faster and
with less memory than the parti-game method because
RRTs are more capable controllers than the simplistic
controllers used by the parti-game method, which allows
PDRRTs to split fewer cells than the parti-game method.

The paper is organized as follows. Section II provides
a brief description of RRTs and the parti-game method.
Section III introduces our PDRRT method. Section IV
presents the experimental setup of our comparison of
PDRRTs, RRTs and the parti-game method, and Sec-
tion V presents our results. Section VI describes several
possible improvements of basic PDRRTs that extend
their applications. Section VII presents related work and
Section VIII presents ideas for future work.

II. BACKGROUND

In this section, we describe both RRTs and the parti-
game method in sufficient detail to be able to describe in
the following section how to combine them. We describe

1



the parti-game method in greater detail than RRTs since
robotics researchers tend to be less familiar with it.

A. RRTs

RRTs [5] build a tree in freespace, starting at the start
point. They repeatedly generate a random sample point
and then grow the tree by adding an edge of a given
length from the vertex on the tree that is closest to
the sample point toward the sample point. RRTs can
be biased to grow toward the goal by returning the goal
point (instead of a random point) as sample point with
small probability. RRTs overcome the problems of ear-
lier roadmap techniques, such as probabilistic roadmaps
[3], by biasing their search toward unexplored regions
of the freespace. There exist a number of variations of
basic RRTs, for example bi-directional versions, that try
to connect a tree that is grown from the start to the goal
with one that is grown in the opposite direction [10].

B. The Parti-Game Method

The parti-game method [8] discretizes configuration
space into cells of nonuniform size, where the cells are
hyper-rectangles of the same dimension as the configu-
ration space. The following description assumes for sim-
plicity that the configuration space is a two-dimensional
terrain. The parti-game method then starts with an initial
coarse terrain discretization and assumes that it has
several local controllers available in each cell, namely
one for each neighboring cell. These controllers must
be provided by the user. The parti-game method makes
the optimistic default assumption that the execution of
each controller from any point in the cell eventually
reaches some point in the intended neighboring cell
(with a cost that equals the Euclidean distance between
the center of the cells). However, this assumption is
not completely justified since the parti-game method
uses very simplistic controllers that just aim for the
centers of the intended neighboring cell and can thus,
for example, get blocked by obstacles. Once the parti-
game method has selected a controller, it continues to
use the same controller until it either gets blocked by an
obstacle or enters a new cell. It uses a minimax search to
determine which controller to use in each cell to reach
the cell that contains the goal point, under the current
assumptions about the effects of the controllers. It does
this by determining the minimax goal distance of each
cell and assigning it the controller that minimizes its
minimax goal distance.

• If the parti-game method finds a solution, it exe-
cutes it until it either reaches the cell that contains
the goal point (it does not need to reach the goal
point itself) or the currently used controller has one

of the following unexpected effects: it either does
not leave the current cell within a given amount
of time or it leaves the current cell but reaches a
cell different from the intended neighboring cell.
If the currently used controller has an unexpected
effect, the parti-game method records the newly
observed effect and, from now on, assumes that the
execution of the current controller from any point
in the current cell can also result in the same cell
that the current execution resulted in. The observed
effects overwrite the default assumption about the
effects. The parti-game method then uses another
minimax search to determine the controller to use
in each cell under the current assumptions about the
effects of the controllers, and repeats the process.

• If the parti-game method does not find a solution,
then it assumes that the terrain discretization is too
coarse-grained. It therefore refines the terrain dis-
cretization by splitting all cells that are unsolvable
(that is, have an infinite minimax goal distance),
have a size that is larger than the minimum cell
size, and border at least one solvable cell - to
try to make them solvable. It also splits all cells
that are solvable, have a size that is larger than
the minimum cell size, and border at least one
unsolvable cell - to ensure that neighboring cells
have similar sizes. Each cell is split into two cells
perpendicular to its longest axis. (The axis of the
split is chosen randomly for square cells.) The
parti-game method again assumes that it has several
local controllers available in each new cell, namely
one for each neighboring cell. It further makes
again the optimistic default assumption that the
execution of each controller from any point in the
new cell eventually reaches some point in the in-
tended neighboring cell. This assumption makes the
current cell solvable. It then uses another minimax
search to again determine which controller to use in
each cell under the current assumptions about the
effects of the controllers, and repeats the process.

Figure 1 illustrates the behavior of the parti-game
method in a two-dimensional terrain. The circle marks
the location of robot and the cross marks the goal region.
The robot initially moves up and gets blocked. It then
moves right (that is, towards the center of the lower-
right cell) and gets blocked again (a). At this point, the
lower-left cell becomes unsolvable. The lower-left cell is
now an unsolvable cell that borders solvable cells and
the upper-left and lower-right cells are solvable cells
that border an unsolvable cell. Thus, these three cells
are split. The robot now moves up and gets blocked

2



(a) (b) (c)

Fig. 1. Example behavior of the parti-game method

immediately. It then moves right and again gets blocked
immediately. Finally, it moves down (b) and eventually
succeeds in moving to the goal point (c).

The parti-game method can also be used as a multi-
query planner by maintaining the terrain discretization
between queries. If it repeatedly solves the same motion-
planning problem, for example, then it refines its terrain
discretization over time until it converges to both a
terrain discretization and a trajectory. All future queries
then return this trajectory. Figure 2 shows an example.

III. PARTI-GAME DIRECTED RRTS

Fig. 3. Example where PDRRTs find a trajectory to the intended
neighboring cell even if the parti-game method fails

We now describe a novel technique that combines the
advantages of RRTs and the parti-game method. Our
parti-game directed RRTs (PDRRTs) are based on the
parti-game method but use RRTs as local controllers.
PDRRTs can potentially plan faster and solve more
motion-planning problems than RRTs because the parti-
game method directs the searches performed by the
RRTs, which allows PDRRTs to solve more problems
than RRTs in terrain with lowε-goodness [11], whereε
is the minimum fraction of space visible over all points.
An example is terrain with small passages. PDRRTs can
also potentially plan faster and with less memory than

the parti-game method because RRTs are more capable
controllers than the simplistic controllers used by the
parti-game method, which allows PDRRTs to split fewer
cells than the parti-game method. The controllers of the
parti-game method just aim for the center of the intended
neighboring cell and can thus easily get blocked by
obstacles even if the neighboring cell can be reached.
This can make the current cell unsolvable and thus result
in the parti-game method splitting cells. Figure 3 shows
an example where the simplistic controllers of the parti-
game method get stuck but RRTs easily find a trajectory
to the intended neighboring cell, namely the upper cell.

PDRRTs use RRTs as local controllers in the follow-
ing way after the parti-game method has determined
which neighboring cell to move to: The start point is
the current point and the goal point is the center of the
intended neighboring cell. We impose a limit on the
number of nodes in the RRTs (we use 250) to limit the
search time. In addition, we could impose a bounding
box beyond which the RRTs cannot grow although we
did not do this in our experiments. Whenever the RRTs
add a node to the tree that belongs to the intended
neighboring cell, then the search terminates and they
return the trajectory to that node. If the RRTs fail
to find a trajectory to the intended neighboring cell
within the limit on the number of nodes, they could just
return failure, similar to the case when the simplistic
controllers of the parti-game method get blocked by
obstacles and thus fail to leave the current cell. However,
we found that we can reduce the run time of PDRRTs
if our RRTs return a trajectory to that node in the tree
that belongs to a different neighboring cell and whose
Euclidean distance to the goal point is minimal, similar
to the case when the simplistic controllers of the parti-
game method leave the current cell but reach a cell
that is different from the intended neighboring cell. Our
RRTs therefore return failure only if all nodes in the
tree belong to the current cell when it reaches the limit

3



Query 1. No. of cells: 574. Trajectory length: 387.

(a)
Query 2. No. of cells: 574. Trajectory length: 62.

(b)
Query 4. No. of cells: 574. Trajectory length: 52.

(c)
Query 6. No. of cells: 574. Trajectory length: 44

(d)

Fig. 2. The behavior of the parti-game method for a sequence of identical motion-planning queries for a zero-link (point) robot in a terrain
of size 100×100 with a step size of the local controller of one and a minimum cell size of three. The start location is at the bottom left.

on the number of nodes.
If the limit on the number of nodes is small, then the

RRTs need to strongly bias their search toward the goal
point to have a chance to find a trajectory to it. On the
other hand, if the limit on the number of nodes is large,
then they should not strongly bias their search toward
the goal point to avoid getting stuck in local minima.
We therefore bias our RRTs to grow toward the goal
point by returning the goal point (instead of a random
point) as sample point with the following probabilities
that depend on the limitN on the number of nodes:

P =







Pmax if N ≤ Nmin
Pmin−Pmax
Nmax−Nmin

(N −Nmin)+Pmax if Nmin < N < Nmax

Pmin if N ≥ Nmax

wherePmax, Pmin, Nmax andNmin are parameters with
Pmax > Pmin and Nmax > Nmin. We use Pmax = 1.00,
Pmin = 0.05, Nmax = 200 andNmin = 50. To summarize,
the larger the limit on the number of nodes, the less
greedy the local controllers are. Depending on both this
value and the minimum cell size, PDRRTs can behave
like RRTs, the parti-game method, or a hybrid. PDRRTs
behave like RRTs if both parameters have large values
and like the parti-game method if both parameters have
small values. This is an advantage of PDRRTs because it
allows them to behave more like RRTs for easy motion-
planning problems and more like the parti-game method
for harder motion-planning problems.

IV. EXPERIMENTAL SETUP AND IMPLEMENTATION

In order to compare PDRRTs, RRTs and the parti-
game method, we used motion-planning problems for
planar articulated robots [12]. Ann-dimensional planar
articulated robot hasn revolute joints and operates in
n + 2-dimensional configuration space (one dimension
for each of the joint angles and two dimensions for the

x and y coordinates of one of the joints). Thus, when we
refer in the following to a 5D motion-planning problem,
we mean one with a three-link robot in planar terrain.
Each link is of the same length and thus the robots
get longer as the number of dimensions increases. The
kinematic constraints were given by a limited angular
range for each joint and the need to avoid self-collisions.
No dynamic constraints were enforced. The robots op-
erated in different kinds of terrain, shown in Figure 4.
Terrain (a) is a modification of the one from [13]
and requires sudden changes in direction, especially for
higher dimensional cases. Terrain (b) and (c) are from
[14] and have narrow passages. Terrain (d) is from [15]
and somewhat easier than the other ones but, like the
other ones, still has a smallε-goodness. We used these
particular motion-planning problems as they allow us to
test the scaling of the various motion-planning methods
with respect to the dimensionality of the configuration
space without changing the basic nature of the motion-
planning problems or losing generality. The goal region
of each terrain was specified by ranges of allowable
joint angles and ranges for the x and y coordinates.
To measure the distance between two points in the
configuration space we used the weighted sum of the
squared differences of theirn+2 coordinates (“weighted
Euclidean distance”). Our weights scaled the difference
of each pair of coordinates to range from zero to one. For
example, the weights of all joint angles were 1/(2π).

Our implementation of RRTs uses the RRTExt
method with uni-directional search [10], similar to [16].
(It cannot use the RRTExt method with bi-directional
search since our motion-planning problems have goal
regions rather than goal points.) It uses kd-trees to
efficiently find the vertex on the tree that is closest to
the sample point [17]. The RRTs were biased to grow
toward the goal point by returning the goal point (instead

4



Fig. 4. Test terrains (a)-(d)

of a random point) as sample point with probability 0.05.
Our implementation of the parti-game method uses

kd-trees to find the neighbors of a cell efficiently. It
uses an efficient single-pass method to calculate the
minimax goal distances [18]. The local controllers are
implemented as follows: There are two actions for each
dimension available, which increase or decrease its value
by one step size. The parti-game method selects that
action that reduces the weighted Euclidean distance to
the center of the intended neighboring cell the most. It
then selects this action repeatedly as long as it continues
to reduce the weighted Euclidean distance. It selects a
new action and repeats the process when it no longer
reduces the weighted Euclidean distance. It returns when
the current cell is exited or a given amount of time has
passed. This way of selecting actions resulted in a better
trajectory quality than other action-selection strategies
that we experimented with.

Finally, our implementation of PDRRTs re-used our
implementations of RRTs and the parti-game method
whenever possible.

V. EXPERIMENTS AND RESULTS

We evaluated PDRRTs, RRTs and the parti-game
method according to the number of motion-planning
problems they could solve and, for the ones that they
could solve, the time taken and the quality of the
resulting trajectory. We used a step size of two for
the RRTs and a minimum cell size of five for the
parti-game method. The same parameters were used
for the PDRRTs. These step and cell sizes were found
to be optimal for both the PDRRT and the stand-
alone algorithms. Table 8 shows the run times of the
three motion-planning methods in our test terrains (a
dash indicates that at least one of the motion-planning
problems could not be solved within the cut-off time
of 60 CPU minutes), Table 10 shows the lengths of the
resulting trajectories, and Table 9 shows the number of
cells generated by PDRRTs and the parti-game method,
in all cases averaged over all motion-planning problems
that they solved in 20 runs within the cut-off time.

(a) (b)

Fig. 5. Solvability example: (a) RRTs and (b) PDRRTs

Goal

Fig. 6. Randomly generated terrain with a four-link robot at the start
location (upper-right corner) and a small square at the goal location
(lower-left corner)

A. Solvability

Earlier, we had hypothesized that PDRRTs are able
to solve more motion-planning problems than RRTs.
Indeed PDRRTs solved more motion-planning problems
within the cut-off time than RRTs and the parti-game
method, for example problems with four-link robots in
terrain (c) and, as shown in Figure 5, four-link robots
in terrain (b). For the latter motion-planning problems,
PDRRTs generate 35 cells in 3514.00 seconds before
they find a trajectory. PDRTTs appear to be at least
as good as RRTs and the parti-game method. (Note
that we formulated this statement carefully because the
run time of PDRRTs was close to the cut-off time in
some cases where PDRRTs solved all motion-planning
problems but the other methods did not.) To be able

5



Solvability

0

20

40

60

80

100

2-Dim 3-Dim 4-Dim 5-Dim 6-Dim 7-Dim

Environments

P
e
rc

e
n

ta
g

e
 s

o
lv

e
d

PDRRT

Partigame

RRT

Fig. 7. Number of motion-planning problems solved in random
terrain

Terrain Parti-Game RRTs PDRRTs
Method

(a) 2D 0.010 0.010 0.010
(a) 3D 0.070 1.410 0.360
(a) 4D 0.790 3.530 0.350
(a) 5D 2623.000 — 172.000
(a) 6D — — 2231.000
(b) 2D 0.980 0.850 0.150
(b) 3D 0.230 7.500 1.900
(b) 4D 105.000 38.000 9.760
(b) 5D 2171.000 — 24.900
(b) 6D — — 3514.000
(c) 2D 0.092 1.240 0.140
(c) 3D 1.370 12.700 0.690
(c) 4D 5.600 71.500 4.120
(c) 5D 2137.000 1483.000 531.000
(c) 6D — — 3263.000
(d) 2D 0.000 0.000 0.000
(d) 3D 0.087 0.140 0.190
(d) 4D 0.183 0.960 0.810
(d) 5D 0.453 1.600 6.610
(d) 6D 26.700 40.300 3.300
(d) 7D 302.000 930.000 172.000

Fig. 8. Run times (in seconds)

Terrain Parti-Game PDRRTs
Method

(a) 2D 41 1
(a) 3D 32 10
(a) 4D 108 18
(b) 2D 574 31
(b) 3D 70 80
(b) 4D 504 276
(c) 2D 103 30
(c) 3D 128 44
(c) 4D 488 80
(d) 2D 26 1
(d) 3D 35 1
(d) 4D 48 6
(d) 5D 568 120
(d) 6D 1648 64
(d) 7D 1936 192

Fig. 9. Cells generated

to quantify the advantage of PDRRTs over RRTs more
precisely, we tested all three motion-planning methods
also with zero- to five-link robots in 500 planar terrains
that were obtained by randomly generating and placing
between 8 to 16 rectangular obstacles into an empty
terrain of size 100 by 100, resulting in 2D to 7D motion
planning problems. Figure 6 shows an example. We
changed both the step size and the minimum cell size to
one for this experiment as it makes the largest number of
motion-planning problems solvable. Figure 7 shows that
PDRRTs solve more motion-planning problems within
the cut-off time than RRTs. For example, they solve
15 percent more motion-planning problems than RRTs
for the five-link robots. In comparison to the parti-
game method, PDRRTs seem to possess only marginally
greater solvability. The difference in the case of the five-
link robot is 6 percent which is not significant.

B. Run Time

Table 8 shows that PDRRTs seem to be faster than
RRTs and the parti-game method if the dimensionality
of the terrain is sufficiently large. This means, for exam-
ple, that PDRRTs solve more motion-planning problems
than RRTs without being slower.

Terrain Parti-Game Method RRTs PDRRTs Parti-Game Method PDRRTs
(post-processed) (post-processed)

(a) 2D 128.00 111.95 121.0 78.00 119.00
(a) 3D 717.80 216.22 497.90 523.20 409.40
(a) 4D 8307.00 341.93 520.30 4407.65 497.60
(b) 2D 3992.00 307.00 735.00 749.00 287.00
(b) 3D 2287.90 505.00 6991.80 1369.20 505.40
(b) 4D 156889.00 763.00 4264.60 31421.90 1123.90
(c) 2D 2430.00 299.00 1106.00 286.00 302.00
(c) 3D 12941.00 504.00 3746.30 8045.65 606.30
(c) 4D 26460.00 744.00 15374.20 17056.50 7006.50
(d) 2D 272.00 58.90 120.00 222.00 89.00
(d) 3D 499.80 203.00 165.60 349.70 165.00
(d) 4D 833.70 329.00 234.00 403.70 234.00
(d) 5D 917.70 417.00 241.60 514.40 241.00
(d) 6D 3711.00 525.00 1879.70 2221.10 485.60
(d) 7D 12782.10 625.00 6727.36 12037.50 1183.60

Fig. 10. Trajectory lengths

C. Trajectory Quality

Table 10 shows the lengths of the trajectories of
the three motion-planning methods. RRTs produce the
shortest trajectories, followed by PDRRTs and eventu-
ally the parti-game method. The trajectories of PDRRTs
and the parti-game method can be improved in two
different ways:

• They can be improved with a simple post-
processing step that removes cycles since both
motion-planning methods can move back and forth
while splitting cells. Figure 2, for example, shows
such loops and meanders, whose removal can
greatly improve the trajectory.

• They can also be improved by letting the motion-
planning methods repeatedly solve the same
motion-planning problem. In this case, they refine
the terrain discretization and the trajectory over
time. The quality of the trajectories tends to im-
prove, although the improvement is not monotonic
in time. For example, Figure 11 shows how the
length of the found trajectory changes over time
for a one-link robot in terrain (c)where the motion-
planning methods repeatedly solved the exact same
motion-planning problem. The trajectory lengths
are smaller for PDRRTs than they are for the
parti-game method. (For comparison purposes, the
average trajectory length is 504.00 for RRTs.) They
converge to a constant value after 15 iterations
for PDRRTs and 40 iterations for the parti-game
method if the trajectories are not post-processed,
and after 7 iterations for PDRRTs and 23 itera-
tions for the parti-game method if the trajectories
are post-processed. Thus, they converge earlier for
PDRRTs than for the parti-game method.

The length of the trajectories for a one-link robot
in terrain (c) is 3746.30 for PDRRTs without post-
processing. It can be reduced to 606.30 with post-
processing and to 402.38 by letting PDRRTs repeatedly
solve the same motion-planning problem. In this case,

6



post-processing is faster than letting PDRRTs repeatedly
solve the same motion-planning problem and the quality
of the resulting trajectory is only slightly worse.

D. Memory Consumption

In general, it is difficult to compare the memory
consumption of PDRRTs, RRTs, and the parti-game
method since RRTs and the parti-game method use
very different data structures. Table 9 therefore only
shows the number of cells generated by PDRRTs and
the parti-game method. Earlier, we have hypothesized
that PDRRTs generate fewer cells than the parti-game
method. This is indeed the case.

VI. PDRRT EXTENSIONS

Researchers have investigated various improvements
to RRTs and the parti-game method, all of which can
be used in the context of PDRRTs as well. Researchers
have, for example, investigated versions of RRTs that
repeatedly take steps toward the sample point until an
obstacle is encountered, instead of only a single step
[10]. They have also investigated versions of the parti-
game method that split cells in a different way than the
version used by us [18]. There are other ways how one
can improve PDRRTs. For example, whenever our RRTs
find trajectories to the intended neighboring cells, one
could cache them for later reuse. Whenever our RRTs,
during their search, find trajectories to neighboring cells
that are different from the intended neighboring cells,
one can cache them for later use in situations where
one actually wants to reach these cells. If one cached the
RRTs instead of the trajectories, one could even recover
trajectories to the neighboring cells after cells have been
split. These improvements could potentially reduce the
run time of PDRRTs and are especially important for
multi-query planning. One could also vary the step size
of the RRTs so that they use a small step size if the
sizes of the current and intended neighboring cells are
small and a larger step size if they are large. The idea
behind this suggestion is that small step sizes waste run
time in large cells but are necessary to find trajectories
in small cells. For example, the step size should not be
larger than the cell size. A simple heuristic thus would
be to set the step size to some fraction of the cell size
of the current cell.

VII. R ELATED WORK

PDRRTs relate to other research directions in motion
planning. For example, PDRRTs use more sophisticated
local controllers than the parti-game method. Amato
et al. studied the effect of local controllers in the
context of probabilistic roadmaps [19], that repeatedly

generate random sample points and then use the local
controllers to connect them to the existing roadmap.
Thus, roadmaps call the local controllers much more
frequently than PDRRTs, which explains why they tend
not to use sophisticated and thus slow local controllers.
Li and Shie studied the caching of results from previ-
ous queries in the context of RRTs that maintain the
trees between queries [20], but these rapidly-exploring
random forests need to prune the trees to be efficient.
Thus, PDRRTs have the potential to be faster multi-
query planners than rapidly-exploring random forests.

Combinations of sample and cell-based planning
methods have shot to prominence recently. Plaku et al.
developed DSLX, which combines coarse decomposi-
tion and expansion of a sample-based graph, and showed
that it can solve hard kinodynamic planning planning
problems efficiently [21]. Zhang et al. combined adap-
tive cell decomposition with PRMs [22], and Sucan and
Kavraki used cell decomposition to assist in searching
the state space in promising directions [23]. Iniguez
and Rosell used harmonic functions in conjunction with
potential fields [24], and Akinc et al. used RRTs as local
controllers for probabilistic roadmaps. Both motion-
planning techniques can be used as single-query and
multi-query planners. Disadvantages of combining two
different sampling techniques are that the performance
of the resulting motion planner is very sensitive to the
choice of parameter values and can completely degrade
in difficult environments, as was noted in both [9] and
[25]. The performance of PDRRTs, in contrast, is more
robust.

VIII. F UTURE WORK

While PDRRTs solve more motion-planning problems
than RRTs, they remain only probability-complete be-
cause their local controllers can fail to find trajectories
between cells even if they exist. It is future work to make
them resolution-complete. One could, for example, first
use the simplistic (but systematic) controllers of the
parti-game method in every cell and, only if they fail,
then switch to the (sampling-based) RRTs. One could
also use quasi-random number sequences, especially
incremental sequences [26], when generating “random”
sample points to grow the RRTs. This overcomes the
disadvantages of sampling-based methods while main-
taining their strengths. It is also future work to perform
more extensive experiments with PDRRTs, for example,
with different motion-planning problems than the ones
that we used here and for the proposed improvements
of the basic PDRRT method. This is interesting because
the parti-game method has been reported not to work
well for manipulator-trajectory problems [27]. If this is

7



0

2000

4000

6000

8000

1 6 11 16 21 26 31 36

Iterations

Partigame PDRRT

(a)

0

2000

4000

6000

8000

1 6 11 16 21

Iterations

Partigame PDRRT

(b)
Fig. 11. Performance profiles (a) without post-processing (b) with post-processing

due to the fact that the simplistic local controllers of
the parti-game method tend not to reach the intended
neighboring cells in the presence of non-holonomic
kinematic or dynamic constraints, then PDRRTs with
their more sophisticated controllers might work well
even for manipulator-trajectory problems. In general, it
is important to understand better when the parti-game
method as well as motion-planning methods based on
the parti-game method, such as PDRRTs, perform well
and when they do not.

IX. CONCLUSIONS

In this paper, we proposed parti-game directed RRTs
(PDRRTs) as a novel technique that combines rapidly
exploring random trees (RRTs), a graph-based dis-
cretization technique, and the parti-game method, a cell-
based discretization technique. PDRRTs are based on
the parti-game method but use RRTs as local con-
trollers rather than the simplistic controllers used by the
parti-game method. Our experimental results show that
PDRRTs plan faster and solve more motion-planning
problems than RRTs and plan faster and with less
memory than the parti-game method. We also described
several possible improvements to basic PDRRTs that
extend their applicability, including a version that uses
RRTs with variable step sizes.

ACKNOWLEDGMENTS

A slightly different version of this paper appeared first
in the proceedings of the IEEE International Conference
on Intelligent Robots and Systems (IROS) 2004 on
pages 2799-2808. The paper is reprinted here due to
the renewed interest in combining sample and cell-based
planning methods. We thank Andrew Moore for his
support of this work and Ronald Arkin for his valuable
comments. This research was supported under DARPA’s
Mobile Autonomous Robotic Software Program un-
der contract #DASG60-99-C-0081 and partly by NSF
awards to Sven Koenig under contracts IIS-9984827,
IIS-0098807, and ITR/AP-0113881. The views and con-
clusions contained in this document are those of the

authors and should not be interpreted as representing
the official policies, either expressed or implied, of the
sponsoring organizations, agencies, companies or the
U.S. government.

REFERENCES

[1] J.-C. Latombe,Robot Motion Planning. Boston, MA: Kluwer
Academic Publishers, 1991.

[2] M. Overmars and P. Svestka, “A probabilistic learning approach
to motion planning,” inProceedings of the Workshop on Algo-
rithmic Foundations of Robotics, 1995, pp. 19–37.

[3] L. Kavraki, P. Svestka, J.-C. Latombe, and M. vermars, “Proba-
bilistic roadmaps for path planning in high-dimensional config-
uration space,”IEEE Transactions on Robotics and Automation,
vol. 12, no. 4, pp. 566–580, 1996.

[4] N. Amato and Y. Wu, “A randomized roadmap method for
path and manipulation planning,” inProceedings of the IEEE
International Conference on Robotics and Automation, 1996, pp.
113–120.

[5] S. LaValle, “Rapidly-exploring random trees: A new tool for
path planning,” Computer Science Dept, Iowa State University,
Tech. Rep. TR 98-11, October 1998.

[6] S. Kambhampati and L. Davis, “Multiresolution path planning
for mobile robots,”IEEE Journal of Robotics and Automation,
vol. RA-2, no. 3, pp. 135–145, 1985.

[7] H. Noborio, T. Naniwa, and S. Arimoto, “A quadtree-based
path-planning algorithm for a mobile robot,”Journal of Robotic
Systems, vol. 7, no. 4, pp. 555–574, 1990.

[8] A. Moore and C. Atkeson, “The parti-game algorithm for
variable resolution reinforcement learning in multidimensional
state-spaces,”Machine Learning, vol. 21, no. 3, pp. 199–233,
1995.

[9] M. Akinc, K. Bekris, B. Chen, A. Ladd, E. Plakue, and
L. Kavraki, “Probabilistic roadmaps of trees for parallel com-
putation of multiple query roadmaps,” inProceedings of the
International Symposium on Robotics Research, 2003.

[10] J. Kuffner and S. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” inProceedings of the IEEE
International Conference on Robotics and Automation, 2000, pp.
995–1001.

[11] L. Kavraki, J.-C. Latombe, R. Motwani, and P. Raghavan,
“Randomized query processing in robot motion planning,” in
Proceedings of the Annual ACM Symposium on Theory of
Computing, 1995, pp. 353–362.

[12] E. Sacks, “Path planning for planar articulated robots using
configuration spaces and compliant motion,”IEEE Transactions
on Robotics and Automation, vol. 19, no. 3, pp. 381–390, 2003.

[13] V. Boor, M. Overmars, and A. van der Stappen, “The Gaussian
sampling strategy for probabilistic roadmap planners,” inPro-
ceedings of the IEEE International Conference on Robotics and
Automation, vol. 2, 1999, pp. 1018–1023.

8



[14] J. Kuffner, S. Kagami, M. Inaba, and H. Inoue, “Performance
benchmarks for path planning in high dimensions,” inProceed-
ings of the JSME Conference on Robotics and Mechatronics,
2001.

[15] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in
expansive configuration spaces,”International Journal of Com-
putational Geometry and Applications, vol. 9, no. 4/5, pp. 495–
512, 1999.

[16] J. Bruce and M. Veloso, “Real-time randomized path planning
for robot navigation,” inProceedings of the IEEE Conference on
Intelligent Robots and Systems, 2002, pp. 4138–4142.

[17] A. Moore, “An introductory tutorial on kd-trees,” Computer
Laboratory, University of Cambridge, Tech. Rep. No. 209, 1991.

[18] M. Al-Ansari, “Efficient reinforcement learning in continuous
environments,” Ph.D. dissertation, College of Computer Science,
Northeastern University, 2001.

[19] N. Amato, O. Bayazit, L. Dale, C. Jones, and D. Vallejo, “Choos-
ing good distance metrics and local planners for probabilisitc
roadmap methods,” inProceedings of the IEEE International
Conference on Robotics and Automation, 1998, pp. 630–637.

[20] T.-Y. Li and Y.-C. Shie, “An incremental learning approach to
motion planning with roadmap management,” inProceedings of
the IEEE International Conference on Robotics and Automation,
vol. 4, 2002, pp. 3411–3416.

[21] E. Plaku, L. Kavraki, and M. Vardi, “Discrete search leading
continuous exploration for kinodynamic motion planning,” in
Proceedings of Robotics: Science and Systems, 2007, pp. 326–
333.

[22] L. Zhang, Y. Kim, and D. Manocha, “A hybrid approach for
complete motion planning,” inProceedings of the IEEE Confer-
ence on Intelligent Robots and Systems, 2007, pp. 7–14.

[23] I. Sucan and L. Kavraki, “Kinodynamic motion planning by
interior-exterior cell exploration,” inProceedings of the Work-
shop on Algorithmic Foundations of Robotics, 2008.

[24] P. Iniguez and J. Rosell, “Probabilistic harmonic-function-based
method for robot motion planning,” inProceedings of the IEEE
Conference on Intelligent Robots and Systems, 2003, pp. 382–
387.

[25] S. LaValle and J. Kuffner, “Rapidly exploring random trees:
Progress and prospects,” inProceedings of the Workshop on the
Algorithmic Foundations of Robotics, 2000, pp. 293–308.

[26] S. Lindemann and S. LaValle, “Incremental low-discrepancy
lattice methods for motion planning,” inProceedings of the IEEE
International Conference on Robotics and Automation, 2003, pp.
2920–2927.

[27] M. Eldracher and R. Merklein, “Why the parti-game algorithm
does not work satisfyingly for manipulator trajectory genera-
tion,” Computer Science Department, Technical University Mu-
nich, Tech. Rep., unknown year (unpublished).

9




