
From Discrete Task Plans to Continuous Trajectories

Ozan Caldiran and Kadir Haspalamutgil and Abdullah Ok and Can Palaz
Esra Erdem and Volkan Patoglu

Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, TURKEY

Abstract
We present a logic-based framework to provide robots with
high-level reasoning, such as planning. This framework uses
the action description language C+ to represent actions and
changes, and the system CCALC to reason about them. In
particular, we can represent action domains that involve con-
current actions and additive fluents; based on this descrip-
tion, we can compute shortest plans to a planning problem
that involves cost constraints. We show the applicability of
this framework on two LEGO MINDSTORMS NXT robots:
we compute a discrete task plan (possibly with concurrency)
with a cost less than a specified value, and transform this plan
into a continuous collision-free trajectory.

Introduction
There have been various studies to close the gap between tra-
ditional robotics and cognitive robotics (Levesque and Lake-
meyer 2007), by implementing high-level robot control sys-
tems based on different families of formalisms for reason-
ing about actions and change. For instance, (Levesque and
Pagnucco 2000) describes a system, LEGOLOG1, that con-
trols a LEGO MINDSTORMS RIS robot using the high-
level control language GOLOG (Levesque et al. 1997)
based on the situation calculus (McCarthy 1963; Levesque,
Pirri, and Reiter 1998). (Hähnel, Burgard, and Lakemeyer
1998) presents an execution monitoring system for GOLOG
and the RHINO control software which operates on RWI
B21 and B14 mobile robots. (Ferrein, Fritz, and Lake-
meyer 2005) studies coordination of soccer playing robots,
using an extension of GOLOG. In the WITAS Unmanned
Aerial Vehicle Project2 temporal action logic (Doherty et al.
1998), features and fluents (Sandewall 1994), and cognitive
robotics logic (Sandewall 1998) are used for representing the
actions and the events, as a part of a helicopter control sys-
tem (Doherty et al. 2000). (Shanahan and Witkowski 2000)
describes how event calculus (Kowalski and Sergot 1986;
Miller and Shanahan 1999) can be used to provide high-level
control for a Khepera robot. The agent programming lan-
guage FLUX (Thielscher 2005), based on the fluent calculus
(Thielscher 1998), has also been used to control the execu-
tion of some robots.3 For instance, (Fichtner, Großmann,

1http://www.cs.toronto.edu/cogrobo/Legolog
2http://www.ida.liu.se/ext/witas
3http://www.fluxagent.org/projects.htm

Execute the plan

Compute a plan

Action Domain Description
(formalized in C+)

Planning Problem

Plan

Obtain a trajectory

Trajectory

MASTER COMPUTER

NXT

SENSORS MOTORS Log file

Messages

CCalc

C++

Send messages NeXTTOOL

NXC

Python

LEGO MINDSTORMS

BLU
ETO

O
TH

Figure 1: The overall system architecture.

and Thielscher 2003) presents how FLUX can be used for
monitoring the execution of a plan, on a Pioneer 2 mobile
robot.

Recently (Caldiran et al. 2009) has presented a formal
framework for high level reasoning in the style of cog-
nitive robotics, using the action description language C+
(Giunchiglia and Lifschitz 2004) with the reasoner CCALC4

on LEGO MINDSTORMS NXT robots. C+ can handle
the frame problem (McCarthy and Hayes 1969), the qual-
ification problem (McCarthy 1980), ramifications (Finger
1986), concurrency, numeric-valued fluents (Lee and Lif-
schitz 2003; Erdem and Gabaldon 2005). LEGO MIND-
STORMS NXT is available at a relatively low price and is
widely available all over the world compared to more so-

4http://www.cs.utexas.edu/users/tag/cc

42

phisticated robots. It allows one to build various kinds of
robots, and write programs to control them. We continue
this line of research by extending this framework to plan-
ning problems with cost constraints. In particular, we study
planning problems that require two robots to pick up and
carry a payload from an initial location to a goal location,
on a maze, while avoiding obstacles and that satisfy some
cost constraints. The idea is for the robots to automatically
generate a plan, and then execute it collaboratively (Fig. 1).

In the rest of the paper, first we describe the overall sys-
tem shown in Fig. 1. After we describe the particular action
domain and the kind of planning problems we are interested
in, we formalize them in the language of CCALC. After that,
we explain how a plan computed by CCALC is executed by
a LEGO MINDSTORMS NXT robot. We conclude with a
discussion on the results and the challenges, as well as the
future work.

The Overall System Architecture
The overall architecture of our high-level reasoning and con-
trol platform is illustrated in Fig. 1.

We start with a description of an action domain in the
action description language C+ (Giunchiglia and Lifschitz
2004). The idea is, based on this description, to plan the ac-
tions of two LEGO MINDSTORMS NXT robots to achieve
a common goal. For that, we use the reasoner CCALC.
Given an initial state and goal conditions, CCALC computes
a discrete plan to reach a goal state, and displays the com-
plete history (including the state information). From such a
history, we extract the continuous trajectories of the robots
(including the positions and the orientations of the joints
of the robots) using inverse kinematics; these trajectories
are obtained from a history automatically with a C++ pro-
gram. After that, we pass these trajectories to the robots,
by means of messages via Bluetooth communication, using
the program NeXTTool. All these tasks are automatically
performed on a PC using a Python program.

The brain of a LEGO MINDSTORMS NXT robot is
NXT—an embedded controller (with an ARM7 micropro-
cessor) capable of processing messages via the Bluetooth
communication, and sending signals to three motors. In our
work, two motors are used for movements of the robot on
a plane; a third motor is used for the rotation of the robot
arm. Since gripping would require an additional degree of
freedom, a permanent magnet is used as the end-effector;
by this way, a payload with metal endpoints can be grabbed
by the robots. Several methods and languages exist for pro-
gramming NXTs. Due to its documentation and relative ease
of use, we use the programming language NXC to control
the movements of the robots according to the received mes-
sages.

Example: Two Robots and a Payload
Consider two robots, and a payload (a long metal stick) on
a platform. Suppose that each robot has a magnet at its end-
effector so that it can hold the payload only at one end. None
of the robots can carry the payload alone; they have to hold
the payload at both ends to be able to carry it. Moving in

any direction by more than one step increments the cost of a
plan by 1 unit. The goal is to place the payload at a specified
goal position on the platform with a total cost less than a
specified value.

Action Domain Description
We view the platform as a maze. We represent the robots by
the constants r1 and r2. We describe the payload by its end
points, and denote them by the constants pl1 and pl2.

We characterize each robot by its end-effector, and de-
scribe its position by a grid point on the maze. The location
(X,Y) of a robot R is specified by two functional fluents,
xpos(R)=X and ypos(R)=Y. Similarly, the location (X,Y)
of an end point P1 of the payload is specified by two flu-
ents, xpay(P1)=X and ypay(P1)=Y. Movements of a robot
R in some direction D are described by actions of the form
move(R,D). Each such action has an attribute that specifies
the number of steps to be taken by the robot. We describe
the cost of a plan by an additive fluent cost.5

In the following, suppose that R denotes a robot, P1 and
P2 denote the end points of the payload, N and N1 range over
nonnegative integers 1, ..., maxN, and D and D1 range over all
directions, up, down, right, left. Also suppose that X1,
X2, Y1, Y2 range over nonnegative integers 1, ..., maxXY.

We present the causal laws in the language of CCALC.

Direct effects of actions We describe the effect of a
robot’s moving right, by the causal laws

move(R,right) causes xpos(R)=X2
if steps(R,right)=N & xpos(R)=X1
where X2=X1+N & X2 =< maxN.

Similarly, we describe the effects of moving in other direc-
tions.

Moving in any direction by more than 1 step increments
the cost of a plan by 1 unit.

move(R,D) increments cost by 1
if steps(R,D)>1.

Ramifications If a robot R is at the same location as an
end point P1 of the payload, the end-effector of that robot
attracts that end point:

caused on(R,P1) if xpos(R)=xpay(P1) &
ypos(R)=ypay(P1).

Then the location of the payload is determined by the loca-
tions of the robots:

caused xpay(P1)=X1 if on(R,P1) & xpos(R)=X1.
caused ypay(P1)=Y1 if on(R,P1) & ypos(R)=Y1.

Preconditions of actions We describe that a robot cannot
move in opposite directions by the causal laws

nonexecutable move(R,up) & move(R,down).
nonexecutable move(R,left) & move(R,right).

5An additive fluent is a numeric-valued fluent on which the ef-
fect of a concurrent action is computed by adding the effects of its
primitive actions.

43

We describe each robot’s range of motion, taking into ac-
count the Pythagorean Theorem, by the causal laws
nonexecutable move(R,D) & move(R,D1)

if D @< D1 & steps(R,D)=N & steps(R,D1)=N1
where N*N+N1*N1 > maxN*maxN.

The robots can carry the payload only if both of them hold
the payload at its end points.
nonexecutable move(R,D) if -canCarry & on(R,P1).

The conditions under which two robots can carry the pay-
load are described by canCarry:
caused canCarry

if on(r1,P1) & on(r2,P2) & P1\=P2
after on(r1,P1) & on(r2,P2) & P1\=P2.

Note that it is required by the causal laws above that the
robots wait for one step immediately after they hold the pay-
load at both ends.

Constraints We make sure that the cost of a plan is less
than or equal to a specified value maxCost by the causal
law
caused false if cost > maxCost.

We describe the constraint that a payload cannot move
places unless it is carried by the causal laws
caused false if xpay(P1)=X1 & X1\=X2

after -canCarry & xpay(P1)=X2.
caused false if ypay(P1)=Y1 & Y1\=Y2

after -canCarry & ypay(P1)=Y2

Since CCALC can only deal with integers, we cannot keep
track of the exact locations of the payload. (Consider, for
instance, moving one end of the horizontally-situated pay-
load up by 2 steps.) Therefore, we allow the payload’s
length change with a small tolerance for a more flexible
motion. Suppose that linklengthsq denotes the square
of the length of the payload; and tolerance denotes the
maximum change allowed in the payload’s length. The
following laws ensure that the payload’s length cannot in-
crease/decrease more than tolerance:
caused false

if xpay(pl1)=X1 & xpay(pl2)=X2 &
ypay(pl1)=Y1 & ypay(pl2)=Y2

where
(X2-X1)*(X2-X1)+(Y2-Y1)*(Y2-Y1) <

(linklengthsq-tolerance) ++
(X2-X1)*(X2-X1)+(Y2-Y1)*(Y2-Y1) >

(linklengthsq+tolerance).

To take care of obstacles on the platform (to prevent col-
lisions), we add the following causal laws:
caused false if xpos(R)=X1 & ypos(R)=Y1

after xpos(R)=X2 & ypos(R)=Y2
where collision(X1,Y1,X2,Y2) &

between(X2-maxN,X2+maxN,X1) &
between(Y2-maxN,Y2+maxN,Y1).

caused false
if xpay(pl1)=X1 & ypay(pl1)=Y1 &

xpay(pl2)=X2 & ypay(pl2)=Y2
where collision(X1,Y1,X2,Y2).

Here collision is an external function defined in C++, and
between is an external SWI Prolog function; both are eval-
uated in SWI Prolog while grounding the causal laws. The
first law above prevents the robot end-effectors from mov-
ing to a position occupied by an obstacle. The second law
ensures that at every state of the world the payload cannot
collide with an obstacle.

Task Planning with CCALC

With the action domain description above, CCALC can com-
pute solutions to a given planning problem. For instance,
suppose that initially the robots r1 and r2 are at (0,0) and
(0,5) respectively, and the end points of the payload are
at the same locations. The goal is to move the payload to a
location so that its end points are at (10,0) and (10,5).
This planning problem can be described in the language of
CCALC by means of a “query” as follows:

:- query
maxstep :: 0..infinity;
0: -canCarry, xpos(r1)=0, ypos(r1)=0,

xpos(r2)=0, ypos(r2)=5,
xpay(pl1)=0, ypay(pl1)=0,
xpay(pl2)=0, ypay(pl2)=5;

maxstep: xpay(pl1)=10, ypay(pl1)=0,
xpay(pl2)=10, ypay(pl2)=5.

CCALC then computes the following plan (Plan 1) of
length 11 for this problem:

0:
1: move(r1,right,steps=1)

move(r2,right,steps=1)
2: move(r1,right,steps=1)

move(r2,right,steps=1)
3: move(r1,up,steps=1)

move(r1,right,steps=1)
move(r2,right,steps=4)

.

.

.
10: move(r1,right,steps=1)

move(r1,down,steps=1)
move(r2,right,steps=1)
move(r2,down,steps=1)

CCALC computes Plan 1 in the style of satisfiability plan-
ning (Kautz and Selman 1992):

1. transforms the domain description into a propositional
theory ΓD,

2. transforms the planning problem P into a propositional
theory ΓP ,

3. computes a satisfying interpretation for ΓD ∪ ΓP , and

4. extracts a plan from the satisfying interpretation.

A detailed description of each step above can be found in
(Giunchiglia and Lifschitz 2004).

Finding a Collision-Free Task Plan
The constraints included in the action domain description
above ensure at each step that the length of a payload does
not change more than a specified tolerance, and the robot

44

Algorithm 1 PLAN
Input: An action domain description D, a planning prob-

lem P
Output: A collision-free plan P of length at most n, if ex-

ists
plan := false; // no collision-free plan
while ¬plan do

plan, P,H ← Compute a plan P of length at most n,
within a history H , using CCALC with D and P , if
there exists such a plan;
if plan then

collision := false; // no trajectory collision
i := 0;
while ¬collision AND i ≤ |P | do

∆← Extract the relevant parameters from the his-
tory H to uniquely identify the positions of the
robot end-effectors at Steps i and i+ 1;
// Extract the location L of the payload and the ac-
tion A executed at Step i, if a collision is detected
collision, L,A← trajectoryCollision(∆);
i+ +;

end while
if ¬collision then

return P
else
P ←Modify the planning problem P to compute
a plan that does not execute A at a state where the
payload is located at L;
plan := false;

end if
end if

end while

end-effectors and the payload do not collide with an obsta-
cle. However, during the plan execution, between any two
steps of the plan, the length of a payload can change out of
the specified range, and there may be collisions. To ensure
collision-free trajectories for the robot end-effectors and the
payload, a collision detection algorithm is required. Such
an algorithm is described in Algorithm 1. The idea is to
compute a plan with the given action description D using
CCALC, and then to check whether such a plan could lead
to a trajectory collision. If such a collision is detected be-
tween Steps i and i+1, then we extract the location L of the
payload and the action A executed at Step i and ask CCALC
for a different plan that does not execute A at a state where
the payload is located at L.

Consider, for instance, the planning problem described in
the previous section. According to Plan 1, at Step 2, each
robot moves up by 1 unit and moves right by 1 unit at the
same time. However, while executing this plan, between
time units 3 and 4, the payload collides with the obstacle
as illustrated in Fig. 2. Therefore, from the history CCALC
computed, we extract the position L of the payload at Step
3:

xpay(pl1)=2 xpay(pl2)=2
ypay(pl1)=0 ypay(pl2)=5

and the actions A executed at Step 3:
move(r1,up,steps=1) move(r1,right,steps=1)
move(r2,right,steps=4)

After that, we ask CCALC to find a different plan that does
not execute the actions A at a state where the payload is
located at L, by modifying the query above as follows:
:- query
maxstep :: 10..infinity;
0: -canCarry, xpos(r1)=0, ypos(r1)=0,

xpos(r2)=0, ypos(r2)=5,
xpay(pl1)=0, ypay(pl1)=0,
xpay(pl2)=0, ypay(pl2)=5;

maxstep: xpay(pl1)=10, ypay(pl1)=0,
xpay(pl2)=10, ypay(pl2)=5;

T<maxstep ->> (
((T: xpay(pl1)=2) && (T: ypay(pl1)=0) &&
(T: xpay(pl2)=2) && (T: ypay(pl2)=5))
->>
-((T: move(r1,up)) &&

(T: steps(r1,up)=1) &&
(T: move(r1,right)) &&
(T: steps(r1,right)=1) &&
(T: move(r2,right)) &&
(T: steps(r2,up)=4))).

By this way, at the 9’th iteration of Algorithm 1, CCALC

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0, 1

0, 1

2

2

3

3

4

4

5

6

5

6

7

7

8

8

9

9

10

10

11

11

Robot 1
Robot 2
Obstacles
Payload

Figure 2: This figure illustrates the execution of Plan 1 on
the robot system. Colors blue, red, green and black are asso-
ciated with the Robots 1 and 2, the payload, and the obsta-
cles, respectively. Circles and their labels indicate the posi-
tions of the robot end-effectors. The green lines denote the
position of the payload: the ones connecting larger circles
are obtained from the history calculated by CCALC, whereas
the others are constructed from the motor encoder data. For
instance, according to the computed history, at Step 3, the
end-effectors of Robots 1 and 2 are located at (2,0) and (2,5)
respectively, holding the end points of the payload. Observe
that, although at time steps 3 and 4 the payload does not col-
lide with the obstacles, between time steps 3 and 4 it does
collide with the obstacles. Also the length of the payload
changes more than the allowable tolerance.

45

computes the following collision-free plan (Plan 2) of
length 11 for this problem:

0:
1: move(r1,up,steps=1)

move(r2,up,steps=1)
move(r2,right,steps=1)

2: move(r1,up,steps=1)
move(r1,right,steps=1)
move(r2,up,steps=1)
move(r2,right,steps=1)

3: move(r1,up,steps=1)
move(r1,right,steps=1)
move(r2,up,steps=1)
move(r2,right,steps=1)

.

.

.
10: move(r1,right,steps=1)

move(r2,down,steps=1)
move(r2,right,steps=1)

Recall that CCALC computes a plan, such as Plan 2, in
four steps, as described above. In this example, CCALC
transforms the domain description and the planning prob-
lem into a propositional theory (Steps 1 and 2) in 48.5 CPU
seconds, and then computes Plan 2 (Steps 3 and 4) at the 9’th
iteration in 6.8 CPU seconds.6 Here the propositional theory
ΓD ∪ ΓP consists of 12491 variables and 271782 clauses.
It is important to emphasize here that the grounding of the
domain description (Step 1) is performed by CCALC only
once, at the very first iteration of Algorithm 1.

Finding a Collision-Free Trajectory Plan
Once CCALC computes a plan for a given problem, it logs
the complete history (including the state information). From
such a plan, the positions of the robot end-effectors at each
time step can be extracted. The simplest approach for exe-
cuting the plan would be to convert these state values into
motor angles and use these values as set-point references for
the motors. However, set-point tracking does not guarantee
a linear motion of the end-effector, and may cause collisions
with the obstacles. To obtain more straight trajectories, a
simplified trajectory tracking controller is implemented by
introducing intermediate steps to the plan using linear in-
terpolation. Then, these intermediate points are mapped to
robot joint variables.

Fig. 3 depicts a schematic representation of two planar
robots carrying a payload. For each robot i, its end-effector
is located at a grid point (xi,yi) and its corresponding joint
variables are denoted as (si,θi). The forward kinematics of
each robot maps its joint variables to its end-effector coordi-
nates and reads as

xi = si + li cos(θi) (1)
yi = li sin(θi) (2)

6The CPU times are for a PC with 1.66 GHz Celeron processor,
2x512 MB RAM, and Ubuntu 9.04 Linux. We have used CCALC
(Version 2.0) with SWI-Prolog (Version 5.6.64) and MiniSAT (Ver-
sion 2.0).

θ2

θp

θ1

s2
s1

l1 l2

lp

robot 1

payload

robot 2

(x ,y)2 2(x ,y)1 1

Figure 3: Schematic representation of two robots carrying a
payload.

Algorithm 2 NXC Program
Input: Trajectories (a list of reference angles)
Output: Log file

Check for the Bluetooth communication
Go to the initial configuration
Wait for the start signal
while There is a trajectory to follow do

Read the reference angles
while Not at the reference angles do

Read the motor angles
Calculate the error in motor position
Rotate the motor to compensate for the error
Record the motor angles

end while
end while

while the inverse kinematics maps the end-effector coordi-
nates to the joint variables and is given as

si = xi ±
√
l2i − y2

i (3)

θi = atan2
(
±
√
l2i − y2

i , yi

)
(4)

where li represents the length of each robot arm. One can
observe that two feasible solutions exist for the inverse kine-
matics of each robot and the± signs in equations (3) and (4)
are coupled.

Executing a Plan on LEGO Robots
After the joint space trajectories are calculated, they are
passed to the robots, by means of messages via Bluetooth
communication, using the NeXTTool program. Based on
these joint space trajectories, the computed plan is executed
by the robots via an NXC program. Algorithm 2 presents the
structure of the NXC program used for the low level control
of the robots.

To locate a robot at a reference configuration within an
acceptable error margin, it is essential that the actual con-
figuration of the robot is checked with respect to the refer-
ence configuration. Hence, a feedback controller is necessi-
tated. Due to its ease of implementation, a proportional feed-
back controller (P-controller) is employed to ensure a robust
tracking of the robots in the joint space. The P-controller
continually compares the reference and actual joint variables

46

0: Initial State 1 2

3

6

9

4

7

5

8

10: Goal State

Figure 4: Snapshot taken at each step of the plan.

and compensates for the error term by commanding a coun-
teracting motion that is proportional to the magnitude of the
error signal. The P-controller gain is tuned empirically to
achieve acceptably low overshoot and steady state error of
the motor response.

For instance, consider the planning problem described in
the previous section. After CCALC computes a collision-
free plan (Plan 2) for the problem as described in the pre-
vious sections, the intermediate points are interpolated and
mapped to the robot joint space as explained above. Then,
the LEGO robots trace these trajectories as in Fig.s 4 and 5.

Fig. 4 presents snapshots taken at each step of the plan, while
Fig. 5 depicts the trajectories of the robot end-effectors and
the payload.

Discussion
We have demonstrated with some planning problems in
a sample action domain, with concurrency and cost con-
straints, how the logic-based formalism C+ can be used to
endow two LEGO MINDSTORMS NXT robots with high-
level reasoning in the style of cognitive robotics, by trans-
forming a discrete task plan into a collision-free continuous

47

trajectory.
The action domain considered involves concurrent exe-

cution of actions, direct effects of actions on additive flu-
ents, ramifications of actions, qualification constraints, and
the frame problem. These challenges can be handled easily
within C+ and using the reasoner CCALC, unlike the other
logic-based reasoning systems (mentioned in the introduc-
tion) and the state-of-the-art planners.

LEGO MINDSTORMS NXT robots are available at a rel-
atively low price and widely available all over the world
compared to more sophisticated robots. They can be built
easily in various forms; the availability of the software sys-
tems and the programming languages (with good documen-
tation) allow us to implement programs to control these
robots.

Although the language C+ and using the reasoner CCALC
provided us a formal framework expressive in many ways,
and LEGO MINDSTORMS NXT robots provided us an in-
expensive platform to test our ideas, we encountered many
challenges. For instance, that CCALC can handle integers
only, caused some difficulties in calculating the exact posi-

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0, 1

0, 1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

Robot 1
Robot 2
Obstacles
Payload

Figure 5: This figure illustrates the execution of the colli-
sion free plan (Plan 2) on the robot system. Colors blue,
red, green and black are associated with the Robots 1 and
2, the payload, and the obstacles, respectively. Circles and
their labels indicate the positions of the robot end-effectors.
The green lines denote the position of the payload: the ones
connecting larger circles are obtained from the history cal-
culated by CCALC, whereas the others are constructed from
the motor encoder data. For instance, according to the com-
puted history, initially, the end-effectors of robots are lo-
cated at the grid point (0,0) and (0,5) respectively, holding
the end points of the payload; at Step 11, the end-effectors
of robots are located at (10,0) and (10,5) respectively, hold-
ing the end points of the payload. Blue and red lines repre-
sent the end-effector trajectories of each robot, while thinner
green lines denote the payload configuration as constructed
from the motor encoder data. The black lines represent the
obstacles.

tions of the robots. To deal with this problem, we assumed
that the length of the payload might increase/decrease within
a specified tolerance.

We also faced control challenges: Lack of floating point
operations in NXC; low encoder resolution, high friction and
backlash of the LEGO motors; and the flexible robot struc-
ture due to plastic parts. To address these challenges we have
to upgrade the hardware/software of LEGO MINDSTORMS
NXT robots.

The modification of the overall architecture to include ex-
ecution monitoring is a part of the ongoing work.

Acknowledgments
Thanks to anonymous reviewers for helpful comments. This
work has been partially supported by Sabancı University
IRP Grant.

References
Caldiran, O.; Haspalamutgil, K.; Ok, A.; Palaz, C.; Erdem,
E.; and Patoglu, V. 2009. Bridging the gap between high-
level reasoning and low-level control. In Proc. of LPNMR.
Doherty, P.; Gustafsson, J.; Karlsson, L.; and Kvarnström,
J. 1998. Tal: Temporal action logics language specification
and tutorial. ETAI 2:273–306.
Doherty, P.; Granlund, G.; Kuchcinski, K.; Sandewall, E.;
Nordberg, K.; Skarman, E.; and Wiklund, J. 2000. The
WITAS unmanned aerial vehicle project. In Proc. of ECAI,
747–755.
Erdem, E., and Gabaldon, A. 2005. Cumulative ef-
fects of concurrent actions on numeric-valued fluents. In
Proc. AAAI, 627–632.
Ferrein, A.; Fritz, C.; and Lakemeyer, G. 2005. Using
GOLOG for deliberation and team coordination in robotic
soccer. Künstliche Intelligenz 1.
Fichtner, M.; Großmann, A.; and Thielscher, M. 2003. In-
telligent execution monitoring in dynamic environments.
In Proc. of Workshop on Issues in Designing Physical
Agents for Dynamic Real-Time Environments: World mod-
eling, planning, learning, and communicating.
Finger, J. 1986. Exploiting Constraints in Design Synthe-
sis. Ph.D. Dissertation, Stanford University. PhD thesis.
Giunchiglia, E., and Lifschitz, J. L. V. 2004. Nonmono-
tonic causal theories. AIJ 153:2004.
Hähnel, D.; Burgard, W.; and Lakemeyer, G. 1998.
GOLEX - bridging the gap between logic (GOLOG) and
a real robot. In Proc. of KI, 165–176.
Kautz, H., and Selman, B. 1992. Planning as satisfiability.
In Proc. ECAI-92, 359–363.
Kowalski, R., and Sergot, M. 1986. A logic-based calculus
of events. New Gen. Comput. 4(1):67–95.
Lee, J., and Lifschitz, V. 2003. Describing additive fluents
in action language C+. In Proc. IJCAI-03.
Levesque, H., and Lakemeyer, G. 2007. Cognitive robotics.
In Handbook of Knowledge Representation. Elsevier.

48

Levesque, H. J., and Pagnucco, M. 2000. Legolog: In-
expensive experiments in cognitive robotics. In Proc. of
CogRob, 104–109.
Levesque, H. J.; Reiter, R.; Lin, F.; and Scherl, R. B. 1997.
GOLOG: A logic programming language for dynamic do-
mains. JLP 31.
Levesque, H. J.; Pirri, F.; and Reiter, R. 1998. Foundations
for the situation calculus. ETAI 2:159–178.
McCarthy, J., and Hayes, P. 1969. Some philosophical
problems from the standpoint of artificial intelligence. In
Meltzer, B., and Michie, D., eds., Machine Intelligence,
volume 4. Edinburgh: Edinburgh University Press. 463–
502.
McCarthy, J. 1963. Situations, actions, and causal laws.
Technical report, Stanford University.
McCarthy, J. 1980. Circumscription—a form of
non-monotonic reasoning. Artificial Intelligence 13:27–
39,171–172.
Miller, R., and Shanahan, M. 1999. The event calculus in
classical logic - alternative axiomatisations. ETAI 3(A):77–
105.
Sandewall, E. 1994. Features and Fluents: A Systematic
Approach to the Representation of Knowledge about Dy-
namical Systems. Oxford University Press.
Sandewall, E. 1998. Cognitive robotics logic and its
metatheory: Features and fluents revisited. ETAI 2:307–
329.
Shanahan, M., and Witkowski, M. 2000. High-level robot
control through logic. In ATAL, 104–121.
Thielscher, M. 1998. Introduction to the fluent calculus.
ETAI 2:179–192.
Thielscher, M. 2005. FLUX: A logic programming method
for reasoning agents. TPLP 5(4-5):533–565.

49

