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Abstract 
To accomplish a task an autonomous robot must break this 
task into “primitive” subtasks and order them to satisfy 
precedence constraints. Each subtask requires performing a 
motion. The existence of a feasible trajectory is an 
additional precondition for the subtask, but a very expensive 
one to test. Probabilistic RoadMaps (PRM) are an effective 
approach to plan feasible trajectories when these exist. 
However, PRM planners are unable to detect that no solution 
exists. On the other hand, a task/motion planner must often 
consider many subtasks, a fraction of which, only, admit 
feasible trajectories. This paper proposes a general 
algorithm (I‐TMP) that specifically addresses this issue. This 
algorithm interweaves task and motion planning, and allows 
distributing computational effort where it is most useful. It 
is probabilistically complete in the following sense: if I‐TMP 
can generate a sequence of subtasks that admits a feasible 
trajectory, such a trajectory will eventually be found with 
high probability. An application of I‐TMP to multi-limbed 
robots navigating on rough terrain is presented. 
 

I. Introduction 
Consider an autonomous multi-limbed robot (e.g., a 
humanoid robot) that must accomplish a complex task, like 
gardening, repairing a bicycle, performing a scientific 
experiment, navigating on rugged terrain. The robot must 
break this task into primitive subtasks (e.g., move right 
hand to grasp a screwdriver, bring grasped screwdriver in 
contact with screw tip, move left foot onto a ladder rung) 
and order them to satisfy logical precedence constraints. 
Each primitive subtask requires performing a motion that 
eventually creates or breaks contacts with the environment. 
The existence of a feasible trajectory for this motion is an 
additional precondition for the subtask, but a very 
expensive one to test. 
 Here we consider the case where the robot’s planner 
must search a huge (possibly infinite) space of subtasks 
represented by a graph – the subtask graph – whose nodes 
are subtasks and arcs are precedence constraints. We 

assume that the robot has many degrees of freedom, so that 
the only available viable motion planning approach to 
compute feasible trajectories is the Probabilistic RoadMap 
(PRM) approach (Kavraki et al, 1996; Hsu et al., 1999; 
LaValle and Kuffner, 1999; Sanchez and Latombe, 2002; 
Akinc et al., 2005). A PRM planner approximates the 
connectivity of the robot’s feasible motion space by a 
network of simple trajectories connecting configurations 
sampled according to some probability distribution (Hsu et 
al., 2006). If properly implemented, this planner is 
probabilistically complete and has fast convergence, i.e., 
the probability that it fails to find a solution trajectory 
when one exists converges toward 0 exponentially in the 
number of sampled configurations. However, it is unable to 
detect that no solution exists. So, a PRM planner terminates 
with failure after some cutoff time.  
 A significant fraction of subtasks are often infeasible 
because no trajectories exist to perform them (e.g., the 
robot would collide with obstacles, lose balance, or lose 
sight of a key object). If the cutoff time of the PRM planner 
for each motion-planning query is set too high, then much 
time will be wasted on infeasible subtasks; if it is set to 
low, critical subtasks may be incorrectly labeled as 
infeasible, and the overall task planner may eventually fail 
to find a plan for the task at hand. 

We propose a general algorithm (I‐TMP, for Incremental 
Task/Motion Planner) that specifically addresses this issue. 
I‐TMP interweaves task and motion planning, and allows 
distributing computational effort where it is the most 
useful. The algorithm is probabilistically complete in the 
following sense: if I‐TMP can generate a sequence of 
subtasks that admits a feasible trajectory, such a trajectory 
will eventually be found with high probability. We also 
describe heuristic techniques to distribute computational 
effort in order to speed up the overall planner. Finally, we 
present an application of I‐TMP to multi-limbed robots 
navigating on rough terrain. 
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II. Related Work 
The integration of task planning and PRM motion planning 
has been recently studied in (Cambon, 2009) for 
manipulation tasks. In this study the structure of the search 
space is similar to the one considered here, but slightly 
more specific. However, the key issue of the unfeasibility 
of many subtasks is not directly addressed. 

The integration of task/motion planning has also been 
considered for mobile robots navigating among movable 
obstacles (van den Berg et al., 2008). In this context, the 
robot must displace movable obstacles in order to open 
passageways to reach a specified goal position. However, 
movable obstacles may interact in a complex way; for 
instance, displacing an obstacle may require the prior 
displacement of other obstacles. The proposed approach 
tries to solve this problem by searching for a continuous 
trajectory in a large configuration space that not only 
encodes the parameters defining the placement of the robot 
in the workspace, but also those of the movable obstacles. 
Only planar problems and simple robots are considered, so 
that a trajectory can be broken into segments, each of 
which lies in a low-dimensional space. 

The issue of the unfeasibility of motion planning queries 
in a task/motion planner was introduced in (Bretl et al. 
2005). Independently, other researchers have proposed 
algorithms, called “disconnection planners”, to detect that 
a motion planning problem has no solution (Basch et al., 
2001; Hirsch and Halperin, 2004; Zhang et al., 2008)). 
However, these algorithms are only applicable to simple 
robots with few degrees of freedom (2 or 3) and rely on 
coarse approximation of the robot’s shape. In general, they 
can only detect certain infeasibility. A more general 
method based on semi-algebraic techniques is proposed in 
(Bretl et al., 2005); however, it usually takes prohibitive 
time to run.  

The work described in this paper is an extension of the 
planning framework proposed in (Bretl, 2006). 

III. Structure of the Search Space 

A. Subtask Graph 
We assume that each possible subtask is described by 
preconditions and effects using a logic-based language 
(Russel and Norvig, 2003) similar to STRIPS (for the 
purpose of this paper the details of this language are not 
important). Ignore for a moment that feasible trajectories 
are needed to perform subtasks. In a given state of the 
world, a subtask is feasible if its preconditions (precedence 
constraints) are satisfied in that state. The initial state of 
the world, the conditions defining a goal state and the 
subtask descriptions implicitly define a directed graph G, 
which we call the subtask graph: 

• A subtask is associated with each node of G.  

• The preconditions of each subtask in G with no parent 
are verified in the initial state of the world. The 
corresponding node is a start node. 

• Every continuous sequence of subtasks in G starting at 
a start node is feasible as far as the preconditions of 
the successive subtasks are concerned.  

• Every subtask in G that achieves the goal conditions is 
a goal node. 

• So, every continuous sequence of subtasks between 
the start node and a goal node is a plan for the task at 
hand. 

G may, or may not be finite. The same subtask may be 
associated with several nodes of G. 
 

B. Feasible Spaces 
Let us now consider the requirement that feasible 
trajectories are needed to perform subtasks.  
 A robot trajectory can be represented by a continuous 
curve segment in a parameter space C called the robot’s 
configuration space (Lozano-Pérez, 1983). This space is 
usually parameterized by the robot’s degrees of freedom 
(e.g., its joint angles). For a humanoid robot it typically has 
between 30 and 50 dimensions. C is a manifold, meaning 
that it is locally similar to a linear space (Latombe 1991). 
 Each subtask σ in G determines a feasible subset Fσ of 
the robot’s configuration space C – the subtask’s feasible 
space. Fσ consists of all the configurations that achieve the 
constraints imposed by the subtask, e.g., avoiding collision, 
maintaining certain contacts with the environment, 
maintaining balance, and keeping certain objects in view. 
For example, if the subtask σ requires the robot to move a 
box held with both hands with its two feet making fixed 
contacts with the terrain, then Fσ is the subset of all 
configurations where (1) neither the robot nor the box 
collide with obstacles, (2) the joint angles in the robot are 
such that the torso, the two arms and the box form a closed 
kinematic chain, (3) the pelvis, the two legs and the terrain 
form another closed chain, and (4) the robot’s center of 

 
Figure 1: Configuration space C, submanifold Cσ defined by 
dimensionality-reducing constraints, and feasible space Fσ
defined by volume-reducing constraints. 

C

Cσ 

Fσ 
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mass (taking into account the box) is above the support 
polygon. 
 Fσ is a subset of a sub-manifold Cσ embedded in the 
configuration space C (Fig. 1). The constraints defining Cσ 
within C are dimensionality-reducing constraints of the 
form Hσ(q) = 0; they usually are constraints requiring that 
some contacts with the environment be maintained (Hauser 
and Latombe, 2008). The constraints defining Fσ within Cσ 
are volume-reducing constraints of the form Kσ(q) > 0 
(e.g., collision avoidance). Fσ is usually high-dimensional 
and geometrically complex. It may also be made of several 
connected components. In some cases, it is empty, that is, 
no configurations satisfy all the constraints. 

In general, two distinct subtasks admit different feasible 
spaces. For example, in a subtask σ’ different from the 
above subtask σ, the robot may not hold any object and 
may be standing on a single foot. Then, both the 
dimensionality-reducing and volume-reducing constraints 
are different, so that Fσ’ has greater dimensionality than Fσ 
and a different geometric shape. 

In the following, we assume that primitive subtasks are 
chosen such that robot-environment contacts stay fixed 
during any given subtask, except at the start and the end of 
the subtask where new contacts may be created or existing 
contacts may be broken (e.g., by grasping or un-grasping 
an object, or making a new foot contact with a rugged 
terrain or breaking one). Therefore, any feasible space Fσ 
is contained in a sub-manifold Cσ of fixed dimensionality. 
Two successive feasible spaces in a task plan often have 
different dimensionalities.  Subtasks that require multiple 
changes of contact are encoded as a series (or if order is 
unspecified, a subgraph) of primitive subtasks. 

C. Transitions 
Let σ and σ’ be two adjacent subtasks in G and let Fσ and 
Fσ’ be their respective feasible spaces. We call the 
intersection Fσ ∩ Fσ’ the transition space between σ and 
σ’. Any point in this space is a transition configuration 
between σ and σ’ (Fig. 2). It follows from the assumption 
stated above that contacts can only be created or broken at 
transition configurations. The execution of a task plan by a 
robot can now be seen as a motion along a continuous 
trajectory concatenating successive sub-trajectories, each 
contained in the feasible space of a subtask. The endpoint 
of a trajectory in one feasible space Fσ is the start of the 
trajectory in the next feasible space Fσ’, hence a transition 
configuration in Fσ ∩ Fσ’ (this does not require, however, 
that a trajectory from Fσ to Fσ’ crosses Fσ ∩ Fσ’ at a single 
configuration). So, for a task plan to be feasible, a 
continuous trajectory must exist that connects the initial 
robot configuration s to a goal configuration g through the 
feasible spaces associated with the successive subtasks in 
the plan. 

Transitions play an important role, as they usually 
constitute bottlenecks for motion planning. Indeed, the 
transition space between two subtasks must satisfy the 
constraints associated with both subtasks. For example, 
when a robot un-grasps an object, two constraints, at least, 
must be simultaneously satisfied: (1) the object must be at 
a location where it will stay in equilibrium after it is un-
grasped and (2) the robot must hold the object at this 
location. Similarly, when a legged robot breaks a contact to 
move one of its feet to a new footfall, it is must both satisfy 
the kinematic constraint that the foot is still at its initial 
contact position and achieve balance without applying any 
force at this contact position. So, transition spaces are more 
likely to be empty than feasible spaces, or at least smaller. 

IV. Task/Motion Planning 

A. PRM Planning 
For most robots, computing an exact explicit geometric 
representation of a single feasible space Fσ is prohibitively 
time consuming, due to the high dimensionality and the 
geometric complexity of that space. Instead, a PRM planner 
approximates the connectivity of such a space by a 
network of simple trajectories, called a roadmap. The 
nodes, called milestones, are configurations sampled using 
some probabilistic distribution.  

A property – expansiveness – was introduced to 
characterize how quickly a PRM planner can solve motion 
planning problems (Hsu et al., 1999). Roughly speaking, a 
feasible space is expansive if it does not contain arbitrarily 
narrow passages (regions of zero relative volume 
connecting other regions). In that case, it can be shown that 
the probability that the planner fails to find a solution when 
one exists converges toward 0 exponentially in the number 
of sampled configurations. However, a PRM planner is 
unable to detect that no solution exists. 

Smoothed analysis shows that narrow passages are 
unstable under small perturbations of the geometry of the 
robot and its environment (Chaudhuri and Koltun, 2007) 

 
Figure 2: Two intersecting feasible spaces Fσ and Fσ’. To switch 
between them the robot must cross the transition space Fσ ∩ Fσ’. 
Fσ and Fσ’ often have different dimensionalities. 

Transition space
Fσ 

Fσ' 
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and therefore are unlikely to occur in practice when the 
robot maintains a fixed set of contacts with its 
environment. This is the case for every feasible space Fσ, 
under the assumption that each subtask keeps contacts 
fixed (except at the start and end). However, the union of 
all the feasible spaces contains regions of varying 
dimensionalities as the robot change contacts between 
subtasks. So, this union is non-expansive, with subspaces 
of lower dimensionalities forming arbitrarily narrow 
passages between subspaces of higher dimensionalities. 
PRM planning must be adapted to handle these passages. 

B. Addressing the Varying Dimensionality Issue 
A natural approach to deal with the varying dimensionality 
issue is to sample each feasible space individually and 
construct a separate roadmap in it. An aggregate roadmap 
can then be constructed over the union of the feasible 
spaces by connecting the individual roadmaps at 
milestones specifically sampled in transition spaces. This is 
the approach of the TMP (for Task/Motion Planner) 
algorithm presented below. 

Like in any PRM planner we need two functions to 
define TMP, respectively to sample milestones (SAMPLE) 
and to create connections between milestones (CONNECT): 

‐  SAMPLE(X), where X is a feasible space Fσ (or a 
transition space Fσ ∩ Fσ’), first samples a configuration q in 
the Cσ ⊃ Fσ (or in the subspace Cσ ∩ Cσ’ ⊃ Fσ ∩ Fσ’) and then 
tests whether q ∈ X. It returns q if q ∈ X  and failure 
otherwise. Cσ can always be parameterized using a set of 
charts forming an atlas (Latombe, 1991). To sample q in Cσ 
one may pick a chart from the atlas and independently 
sample each coordinate in that chart (Cortés and Siméon, 
2005). Another way is to (1) define a manifold M 
containing Cσ that is easier to parameterize than Cσ (for 
example, M a linear space), (2) sample a configuration in 
M, and (3) use a numerical method to move this 
configuration into Cσ (Yakey et al., 2001).  The same 
techniques can be used for sampling from Cσ ∩ Cσ’. 

‐  CONNECT(q,q’,Fσ) tries to connect two milestones q 
and q’ in Fσ. It picks a sequence of charts in the atlas of Cσ 
such that the first chart in the sequence covers q and the 
last one covers q’. Then, for every two successive charts in 
this sequence it picks a configuration contained in both 
charts. Finally, it connects q to q’ by a trajectory made of 
successive line segments (one in each successive chart) 
joining these intermediate configurations. If this trajectory 
fully lies in Fσ, then CONNECT returns the trajectory. 
Alternatively, CONNECT may compute the trajectory by 
joining q and q’ with a straight line in M and numerically 
deforming this line into Fσ (Hauser, 2008). 

Suppose that an explicit representation of the subtask 
graph G can be pre-computed (in that case, G must have 
finite size). TMP concurrently builds roadmaps in all the 
feasible spaces associated with the subtasks in G, 
connecting them at transition milestones:  

TMP(G,s,g,N) 
1. For each subtask σ associated with a node of G, initialize 

Rσ to the empty roadmap.  
2. For each subtask σ associated with a start node of G add 

the start configuration s as a milestone of the roadmap 
Rσ. 

3. Similarly, for each subtask σ associated with a goal node 
of G add the goal configuration g as a milestone of the 
roadmap Rσ. 

4. Repeat N times: 
a. For every subtask σ in G, if SAMPLE(Fσ) succeeds, 

add the returned configuration q to Rσ as a new 
milestone and try to connect q to each previously 
existing milestone q’ in Rσ using CONNECT(q,q’,Fσ). 

b. For every pair of adjacent subtasks σ and σ’ in G, if 
SAMPLE(Fσ ∩ Fσ') succeeds, add the returned q as a 
new milestone to both Rσ and Rσ’, and try to connect 
q to each previously existing milestone q’ in Rσ and 
Rσ’ with CONNECT(q,q’,Fσ) and CONNECT(q,q’,Fσ’). 

5. Let R be the aggregate roadmap obtained by connecting 
the roadmaps Rσ at matching transition milestones. If s 
and g are connected by a path in R, then return a solution 
trajectory; otherwise return failure.  

It is shown in (Hauser, 2008; Hauser and Latombe, 
2008) that, when there actually exists a solution trajectory, 
the probability that TMP returns failure converges toward 0 
exponentially with N, under the following two (usually 
satisfied) assumptions: (1) each non-empty feasible space 
Fσ is expansive and (2) SAMPLE(X) succeeds with non-zero 
probability whenever X is non-empty. It is also shown that 
if TMP iterates until a solution is found, the mean and 
variance of the running time to find a solution, when one 
exists, are bounded.  

However, the running time of TMP is linear in the size of 
G, which in most practical cases is huge or even infinite. 
So, TMP can only be used on small problems. 

C. Incremental Planning 
In practice, even when G is huge, most tasks can be solved 
by plans made of a relatively small number of subtasks 
(typically a few dozens, or less). The underlying idea of the 
incremental planning algorithm I‐TMP is to restrict TMP to 
a small portion of G containing these subtasks. Since these 
subtasks are not known in advance, I‐TMP iteratively 
executes two successive steps: subtask selection and 
roadmap construction.  

At each cycle i = 1, 2, …, I‐TMP builds a subgraph Gi of 
G such that Gi−1 ⊂ Gi and creates roadmaps in each of the 
feasible spaces Fσ associated with the subtasks in Gi. 
Specifically, it performs the following: 

For i = 1, 2, … do: 
1. Subtask selection: Construct Gi 
2. Roadmap construction: TMP(Gi,s,g,N) 
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In practice, the roadmaps built at cycle i−1 are not 
forgotten, but instead incremented with new milestones 
and connections at cycle i. I‐TMP returns failure if it has 
not found a solution after a certain number of cycles or a 
given cutoff time. When G is finite, I‐TMP is 
probabilistically complete and has the same asymptotic 
convergence as TMP because the subgraphs Gi will 
eventually grow to G in its entirety. However, I‐TMP does 
not require G to be pre-computed (the subgraphs Gi can be 
built by searching G), so it can work even when G is 
infinite. In this case, the completeness of I‐TMP depends on 
the completeness of the algorithm searching G. If I‐TMP 
can generate a sequence of subtasks that admits a feasible 
trajectory, this trajectory will eventually be found with 
high probability. 

However, for I‐TMP to be efficient, it must select the 
successive subgraphs Gi so that a trajectory joining s and g 
can be found at a cycle i where Gi is still reasonably small. 
A simple heuristic is to extract, at each cycle i, one or a 
few new paths joining start to goal nodes in G and insert 
these new paths into Gi−1 to produce Gi. Thus, I‐TMP will 
not waste time sampling feasible and transition spaces in 
subtask sequences that do not eventually lead to a goal 
node in G. However, this heuristic alone does not 
necessarily lead to generating sequence of subtasks that 
admit feasible trajectories. We now address this critical 
issue. 

D. Dealing with Infeasible Queries 
As mentioned before, transition spaces are the bottlenecks 
for motion trajectories as each such space must satisfy the 
constraints associated with two subtasks. So, the non-
emptiness of every transition space Fσ ∩ Fσ’ along a 
sequence of subtasks in Gi is not only a necessary 
condition for the existence of a feasible trajectory through 
these tasks; it is also a good indication that such a 
trajectory actually exists. Moreover, they are not a 
computational bottleneck, because it is usually much faster 
to sample transition spaces than to build roadmaps in 
feasible spaces. These two observations lead to 
constructing Gi by searching G using a heuristic function 
that estimates the non-emptiness of the transition spaces.  

More precisely, let Σ be the search tree constructed 
while searching G and let Q be a priority queue of 
transition spaces T sorted by decreasing values of a priority 
function p(T) discussed below. At the beginning of cycle 
i=1, Σ is initialized to contain only the initial nodes in G 
and Q is initialized to contain all the transition spaces 
associated with the arcs stemming from these nodes in G. 
Each transition space is inserted into Q with some initial 
priority. At cycle i the search algorithm is then as follows: 

1. Repeat until either Σ contains a path to a goal node such 
that this path is not contained in Gi−1, or a cutoff time has 
been reached: 

a. Remove the first transition space T from Q. Perform 
SAMPLE(T). 

b. On failure, reduce p(T) and reinsert T into Q. 
c. On success, let T = Fσ ∩ Fσ’. Add σ’ to Σ as a child 

of σ. For each transition space T’ stemming from σ’ 
in G, insert T’ into Q with some initial priority.  

2. If the cutoff time has been reached, then return failure. 
3. If a new path has been found, then insert this path into 

Gi−1 to produce Gi. 

 

Note that: 
- Transition configurations returned by SAMPLE are stored 

to be later inserted into the appropriate roadmaps Rσ. 
- The algorithm can easily be modified to perform 

backward or bi-directional search. 
There are multiple ways to define the priority function 

p(T). One approach is to consider p(T) as an estimate of the 
probability that T is not empty. In (Hauser et al., 2005) 
supervised learning is used to acquire a statistical model 
p(T), as a function of features of the two subtasks meeting 
at T (e.g., the locations of the contacts made by the robot). 
This model can then be used to initialize p(T) whenever a 
new transition space T is inserted into Q. When SAMPLE(T) 
returns failure, p(T) is reduced to reflect the posterior 
probability, in such a way that p(T) → 0 with the number 
of unsuccessful runs of SAMPLE(T). 

In addition, the running time of I‐TMP can be 
significantly reduced by tuning appropriately the number 
of sampling operations in each feasible and transition space 
in Gi at each cycle i. This requires adapting slightly the 
TMP algorithm given above. For example, it is suboptimal 
to run SAMPLE the same number of times in feasible and 
transition spaces.  Because it usually takes much more 
work to build connected roadmaps in feasible spaces than 
to sample transition spaces, feasible spaces should be more 
heavily sampled. In addition, since PRM planning in a 
feasible space has fast convergence, SAMPLE should be run 
a smaller number of times in spaces that have already been 
highly sampled. In particular, since roadmaps existing at 
cycle i−1 are re-used at cycle i, the numbers of SAMPLE 
runs performed at cycle i should be greater in feasible and 
transition spaces that were not in Gi−1 than in those that 
were already in Gi−1.  Finally, at any stage of cycle i if the 
roadmap in a feasible space Fσ is fully connected, there is 
no immediate need to perform further runs of SAMPLE in 
Fσ (however, the transition space Fσ ∩ Fσ’ should still be 
sampled further if the roadmap in Fσ’ is not fully 
connected).  

For most parameter values in the heuristics, I‐TMP 
embedding the above modifications has the same 
probabilistic completeness as the original TMP, but with 
different convergence constants. 
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V. Robot Navigation on Rough Terrain 
We have used variants of I‐TMP to plan the motion of 
multi-limbed robots on rough terrain, in particular: 
- Capuchin, a 4-limbed climbing robot (Zhang, 2008), 
- ATHLETE, a 6-legged robot designed to navigate on 

natural, possibly steep terrain (Hauser et al., 2008; 
Hauser, 2008), 

- HRP-2, a humanoid robot (Hauser et al., 2008; Hauser, 
2008). 

With Capuchin, tests were conducted on the real robot 
(Fig. 3). With ATHLETE and HRP-2, they were only 
conducted on simulation (Fig. 4-6).  

ATHLETE consists of 6 identical legs attached to a 
hexagonal chassis. Each leg has 6 actuated revolute joints. 
So, the robot’s configuration space has 42 dimensions. 
Contacts between ATHLETE and the terrain are restricted 
to wheel-shaped feet. Each contact, which is modeled as a 
point, removes 3 degrees of freedom. So, when the robot 
makes 6 contacts, its motion lies in a submanifold of 
dimensionality 42 – 18 = 24. When it makes only 3 
contacts (the minimum number of contacts that allows 
quasi-static stability), its motion lies in a submanifold of 
dimensionality 42 – 9 = 33. In our work we model HRP-2 
so that its configuration space is 36-dimensional. We allow 
the robot to contact the terrain with both its feet and hands, 
and contacts can be described by points, edges, or faces. 
Finally, Capuchin’s configuration space is 11-dimensional; 
its contacts with the terrain are restricted to the endpoints 
of it limbs and are modeled as points. 

For each robot, a subtask consists of moving to a 
configuration where the robot achieves a new contact or 
breaks an existing one. For instance, consider subtask σ in 
which ATHLETE makes 6 fixed contacts with the terrain. 
Let the goal of σ be to break a contact c. So, the robot must 
move to a configuration in Fσ where the force exerted at c 
is zero, while remaining stable. Once σ is completed, the 
robot switches to another task σ’ that may, for example, be 
to bring the foot at the broken contact to another footfall c’. 

  

  
Figure 4: ATHLETE navigating on rough terrain. 

 

 

 
Figure 5: HRP-2 navigating on complex rock terrain requiring 
hand contacts to maintain stability.  

 

 

 
Figure 3: Capuchin performing a “traverse” on vertical terrain 
with sparse features. 
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Figure 6: HRP-2 climbing a ladder with uneven rungs 
 

For all these robots, the graph G is non-directed and 
consists of all the contact state (we call then stances) that 
might be feasible, i.e., where all the contacts are within a 
disc or sphere whose diameter is approximately the limb 
span of the robot. In most cases, there are several 100,000s 
of stances in G. Two stances are connected by an edge of G 
if they differ by only one contact (hence, we allow a single 
contact to be created or broken in each transition). The 
constraints on the motion are collision avoidance 
(including self-collision avoidance), quasi-static stability 
using a Coulomb friction model at the contacts (Bretl, 
2006), torque limits in the joints, and kinematic closures to 
maintain contacts. We assume all motions to be quasi-
static. Possible contact locations on the terrain are either 
given (e.g., in the case of Capuchin), extracted from the 
terrain geometry, or sampled at random. In many 

examples, over 70% of the transition spaces in G are 
empty. 

Our experiments (Hauser, 2008; Hauser and Latombe, 
2008) confirm that TMP is impractical, except for small 
problems. I‐TMP is both reliable and reasonably fast (it still 
takes from minutes to hours to solve a planning problem). 
The heuristics used to tune the number of sampling 
operations in each feasible and transition spaces greatly 
improve running time, sometimes by several orders of 
magnitude. Certain simplifications result in significant 
speedups, but their reliability depends on the robot. For 
example, we found out that for HRP-2 it is usually 
sufficient to sample a single milestone per transition space 
without affecting the reliability of the planner. But the 
same simplification does not work for ATHLETE; the 
planner then fails consistently to solve many problems that 
I‐TMP can actually solve when the number of milestones in 
each transition space is not limited. The reason for this 
(shown by other tests) is that the feasible spaces of HRP-2 
tend to be connected, while those of ATHLETE often 
consist of multiple components. 

VI. Conclusion 
A key problem in integrating task and motion planning is 
to deal with the fact that many motion planning queries are 
infeasible. In high-dimensional configuration spaces no 
effective motion planning techniques exist today to detect 
that a query is infeasible. PRM planners can solve feasible 
queries efficiently, but their running time is variable. 
Allocating them too much time would lead the integrated 
planner to waste time on many infeasible queries. But too 
little time could lead them to fail on critical feasible 
queries. The algorithm I‐TMP and the heuristics proposed 
in this paper provide an approach that allocates 
computational time adaptively where it is likely to be the 
most useful. Experiments with several limbed robots 
navigating on rough terrain show that this framework is 
effective, at least for this type of application.  
 Several issues remain for future research. In particular, 
the running time of I‐TMP is still too long in many cases to 
achieve close-to-real-time performance without major 
simplifications that could impact completeness. More work 
should be done to learn a probabilistic model of the 
feasibility of subtasks. This model would then be used to 
better select the subtasks added to the graphs Gi at each 
cycle of I‐TMP. Decision-theoretic planning techniques 
might also improve the way computational time is 
allocated and eventually reduce total planning time 
(Hauser, 2008).  

Another possible improvement would be to design a 
motion planner that can suggest subtasks to be included in 
a task plan – e.g., displace an obstructive movable obstacle 
to clear a passage (van den Berg, 2008). In a similar vein, 
certain subtasks could be automatically inserted by the 
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motion planner based on the connectivity of the feasible 
space. For example, an object may not be grasped and 
placed at a goal location without un-grasping it at an 
intermediate location where it can be re-grasped in a way 
that makes it possible to eventually place it at the goal 
location. Detecting the need for intermediate un-grasp and 
re-grasp operations may be easier at the motion planning 
level than at the task planning level. 
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