
A Hybrid Assembly Task Planning System:
Where Motion Planning Helps Symbolic Planning
Find Good Solutions For Real-World Applications

Frederik W. Heger and Sanjiv Singh
The Robotics Institute

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

Abstract
Assembly has a natural step-by-step structure that
makes it a good candidate for symbolic planning ap-
proaches. At the same time, for robots to successfully
perform assembly tasks in challenging environments,
they require motion planning capabilities to efficiently
navigate. We present a hybrid approach to assem-
bly planning where a symbolic planner constrains the
search for a good assembly plan to valid sequences that
satisfy all structural constraints while a motion planner
helps with the evaluation of actions in the context of the
real-world scenario. The result is a planning system that
guarantees nominal feasibility of any plan it generates.
In addition, as things will inevitably go wrong during
execution, our framework is able to seamlessly repair
and re-plan assembly sequences as necessary. The plan-
ner has been successfully applied to robotic assembly
scenarios both in simulation and with real robots.

Introduction
People’s first reaction to the term “robotic assembly” is usu-
ally a mental picture of an industrial assembly line where
stationary robots perform repetitive tasks at high speeds and
with high precision. That is not the kind of “assembly” our
work is about. Instead, we consider mobile manipulators
retrieving components from a storage location, transporting
them through their environment and assembling them into
a large structure. We are developing a framework for plan-
ning assembly tasks that, given a desired goal structure, au-
tomatically decomposes the task and commands robots to
execute them. Our system seamlessly reacts to execution-
time failures – which inevitably will occur – by repairing
and re-planning the task as necessary.

Assembly has a natural step-by-step structure where a se-
quence of actions transforms an initial (disassembled) state
into a desired final (assembled) state. For assembly tasks
performed by real robots and in non-trivial environments,
symbolic plan solutions at the level of intermediate structure
configurations are insufficient to generate desirable plans.
To overcome this limitation, the planner requires a way to
reason about physical feasibility of assembly steps it con-
siders. Motion planning techniques are uniquely suited to
provide such information, but they require the large assem-
bly problem to be broken down into smaller sub-problems
to be able to find solutions.

Figure 1: A nearly completed lattice of 21 components.
Structural (internal components before external compo-
nents) and environmental (the workspace is tight – can the
robots get to where they need to be to perform their tasks?)
constraints need to be considered by the planner.

This paper describes a hybrid planning system that com-
bines a graph-based symbolic representation of an assembly
problem with continuous (motion planning) reasoning about
physical feasibility during planning. We consider assembly
problems of lattices of beams and nodes (see Fig. 1) that
have to be assembled by mobile manipulation robots in con-
strained environments. Given a structure to be built in an en-
vironment, the planner automatically generates an assembly
sequence that can be directly executed by the robots. The
planner ensures that a nominally feasible plan for the en-
tire assembly exists before any robot starts executing tasks.
If execution-time failures occur – as they likely will even

18



for perfect plans – plan repairs and re-plans require minimal
“physical backtracking” by the robots in the environment.

Vision and Motivation
We envision an assembly planning system where the user
or operator only has to supply a desired goal structure to
be assembled and a place where the final assembly is to be
located within the environment, and an automatic planner
takes care of the rest. In cases where full autonomy is not
desirable, an operator could be informed of key steps along
the assembly task and help make decisions, or he could be
involved more actively by assisting the robots (on request or
proactively) to resolve and avoid problems.

Such a system will be of great interest to NASA in the
context of establishing planetary outposts or habitats where
human presence (especially during early phases of construc-
tion) is prohibitively expensive, not to mention dangerous
for the workers. If robots can be sent ahead to prepare the
necessary infrastructure with little supervision or help from
remote humans, astronauts can focus on aspects of the mis-
sion they are better suited for, such as science experiments.

As a more down-to-earth example, imagine moving into
and furnishing an apartment with your favorite assemble-
yourself furniture – or rather, have robots assemble all
the furniture according to your floor plan of where the
bed/desk/shelf/... should go for you while you are exploring
your new neighborhood.

State of the Art
Assembly is a challenging and difficult task (even for hu-
mans) with such complicating factors as tight tolerances,
heavy and/or large parts to manipulate and more. By def-
inition, robots will have to operate close to other objects,
and they have to be able to sense, navigate, manipulate all
at the same time as they are constructing a growing obsta-
cle in their already constrained workspace. Intertwined with
the necessity to reason about motion through the environ-
ment, there is inherent structure to an assembly where in-
ternal components must be installed before the outer layer
is complete. To our knowledge, there is currently no sys-
tem that is able to automatically generate assembly plans for
mobile manipulators assembling large structures in realistic
environments. While various parts of the overall problem
have been addressed by previous work, a comprehensive so-
lution has not yet been developed.

We have worked on robotic assembly scenarios for sev-
eral years. This paper extends our previous work (Heger
2008) with a more efficient implementation to handle struc-
tures of up to 21 components (instead of 8 previously), a
task executive that takes generated plans and directly turns
them into task trees for robots to execute, and plan repair and
re-planning capabilities throughout all levels of the planning
hierarchy to allow the system to effectively react to and re-
solve execution-time exceptions. The planner is tied to the
simulated or real-robot scenario using a task sequencing ex-
ecutive that also provides capabilities for sliding autonomy
interaction with a user. This work is motivated by earlier
experiments with real robots (Sellner et al. 2006) where a

rather simple assembly plan was scripted by hand – a task
that is not feasible for larger and larger structures.

Contributions
The work presented in this paper makes the following key
contributions toward the goal of a more general and useful
assembly planning system:

1. An expressive representation of assemblies that decom-
poses the problem into sub-problems that can be attacked
using existing planning methods.

2. A method to automatically generate plans for mobile ma-
nipulators to assemble a desired structure.

3. Seamless repair and re-planning of assembly sequences in
response to execution-time failures and exceptions.

Related Work
Prior work relevant to assembly planning falls into two main
categories: approaches that treat assembly as a sequencing
problem on an abstract symbolic level, and ones that con-
sider fine-grained motions of the robots involved. We see
both as integral aspects of a larger problem that cannot be
solved well with either one method alone.

Symbolic Planning Symbolic methods abstract problems
into simple operators with preconditions and effects. A
sequence of operators that transform given initial condi-
tions into desired final configurations describes a plan for
the scenario (Fahlman 1973; Younes and Simmons 2003).
Such approaches efficiently exploit the step-by-step nature
of many problems by abstracting away difficult to compute
constraints into simple heuristics. This abstraction, however,
limits the reasoning about the real world to queries that have
to be answered by an outside process (e.g., an oracle). Infea-
sibility of a plan often cannot be detected until the robots –
during execution – come to a dead end because a workspace
constraint was unknown during planning. Plan verification
systems can help reduce such problems by verifying a sym-
bolic plan step by step either after it is completed or while it
is being planned (Kaufman et al. 1996).

Motion Planning Other applicable work focuses on the
motion planning aspects of the problem (Bozma and
Koditschek 2001; Karagöz, Bozma, and Koditschek 2004;
Lengyel et al. 1990), but plans produced by those ap-
proaches do not always satisfy critical structural constraints
imposed by the structure to be assembled. Koditschek et al.’s
navigation functions, for example, assumes that all states be-
tween the initial and final configurations are valid (including
partially assembled components), which is not the case in
assembly scenarios. There is no guarantee that extrema in
the navigation functions where assembly roles change co-
incide with valid assembly states where such a change is
allowed. Klavins describes self-assembly using graph gram-
mars to encode local interactions agents may engage in. The
resulting global process results in an organization behavior
that brings individual self-moving parts into an assembled
configuration (Klavins 2006).

19



Since assembly scenarios have a distinct underlying step-
by-step structure, pure motion planning approaches do not
produce the results we are looking for. Stilman et al.’s
navigation among movable obstacles (Stilman and Kuffner
2004) plans first in an abstract graph of configuration space
segments and then uses motion planning techniques to eval-
uate paths suggested by graph edges. Manipulation plan-
ning is faced with similar challenges to assembly plan-
ning at a finer level of detail (e.g., dextrous motions to
grasp and re-grasp components (Nielsen and Kavraki 2000;
Gravot, Alami, and Siméon 2002)). An assembly plan sets
up manipulation planning problems for each step in the plan.
Assembly Planning Due to its step-by-step nature, tra-
ditional assembly planning is a prime setting for symbolic
planning approaches. Homem de Mello developed a rep-
resentation for describing mechanical assembly sequences
based on AND/OR graphs (Homem de Mello and Sanderson
1988; Homem de Mello 1989) similar to our representation.
Using this graph structure, he presented a complete and cor-
rect algorithm for generating assembly sequences of a de-
sired configuration by planning the disassembly of the goal
structure (Homem de Mello and Sanderson 1991). Exist-
ing approaches are limited to highly structured environments
(e.g., work cells, (Homem de Mello and Sanderson 1988;
Kaufman et al. 1996)) and are usually concerned with as-
sembly feasibility and serviceability of parts in assemblies.
The focus is on optimal plans to maximize efficiency of the
assembly/production process. Once a plan has been found,
it will be executed thousands of times without variation.

This paper extends our previous work on graph-based as-
sembly representations (Heger 2008) in several ways. Under
the hood, we have improved the implementation of our rep-
resentation to be able to handle larger structures (21 compo-
nents, up from 8), and we have implemented exception han-
dling capabilities throughout the framework that allow plan
repair and re-planning as necessary in response to execution-
time failures. To visualize the planner’s output and exercise
the system, we developed a simulation environment driven
by a task executive that directly converts generated plans
into task trees for (real or simulated) robots.
Robotic Assembly In addition to our own work in multi-
robot assembly (Sellner et al. 2006) we are aware of one
other group where real robots cooperate to assemble a (sim-
ple) structure (Stroupe et al. 2005). Both efforts thus far
focus on the execution part of the problem and operate ac-
cording to a simple script written by hand that is followed
by the robots. The planning system we describe here will
replace manual scripting of assembly actions with automatic
tasking of assembly robots based on a high-level goal spec-
ification of the structure to be assembled.

Approach and Implementation
Our assembly planning framework consists of four main
components (see Fig. 2): the assembly planner itself that
generates the assembly sequence, an executive responsible
for parameterizing robot behaviors, real or simulated robots
to execute those behaviors and exception handling mecha-
nism to recover from execution-time failures.

Assembly Planner 
(generates assembly graph and 

finds good sequence) 

Sequence‐Level Execu6ve 
(instan8ates task tree and passes sub‐

task trees on to agents) 

Task‐Level Execu6ve 
(parameterizes behaviors 
according to sub‐task trees) 

environment with obstacles 

Robot Behaviors 
(command robots according 

 to parameteriza8on) 

commands 

state 

operator 

Ex
ec
u6

ve
 

Pl
an

ne
r 

Be
ha

vi
or
s 

desired structure 

 
params 

 task  
tree 

assembly 
sequence 

con6ngency 

step repair 

re‐plan 

Figure 2: High-level overview of the entire system. This
paper covers the parts enclosed by a solid line. The plan-
ner generates an assembly sequence based on high-level
input form the operator. The executive decomposes the
task tree into sub-tasks and parameterizes robot behaviors.
Execution-time exceptions trigger recovery actions through-
out the hierarchy.

Assembly Planner
The assembly planner is the workhorse of the system. Given
a desired goal structure, an environment, available robots
and a final pose for the assembly, its goal is to produce
a sequence of assembly steps (i.e., AssembleComponent 1
→ AssembleComponent 2→ ... → AssembleComponent N)
that are nominally feasible (assuming some characteristic in-
formation about the robots involved and no significant devi-
ations from the plan during execution). Obviously, nominal
feasibility is no guarantee for success, but it is usually a good
start, and fewer plan repairs are necessary.

The underlying representation of the assembly planning
problem (Heger 2008) is a directed graph with unique as-
sembly states (intermediate configurations of the structure
as it is being assembled) at its vertices and the plans neces-
sary to add a new component to the growing partial structure
on its edges. Edges are weighted by the goodness of their
associated plans (see below), and vertices are scored on the
structural properties of the partial assembly they represent.
Assembly plans are traces through this graph from an initial
configuration (usually the completely disassembled state) to
a final configuration (usually the fully assembled state). The
chosen graph edges contain all the parameters necessary to
enable the executive to create the corresponding task tree.
The planner searches the assembly graph using A* to find
the assembly sequence to publish to the executive.

Assembly Graph The basic version of the assembly graph
contains vertices for each structure state between completely
disassembled and fully assembled and edges with the appro-
priate component being added to transition from one state
to the next (Fig. 3 (left), see (Heger 2008) for more detail).
The graph is constructed goal-to-start by beginning with the
fully assembled structure at vertex 0 and then considering

20



basic graph extended graph 

… 

… 

… 

… 

… 

… 

… 

… 

… … 

Figure 3: (left) Basic graph representation of a simple assembly problem (a one-square subset of the assembly shown in Fig. 1).
Vertices mark structure configurations, edges indicate assembly steps to transition from one configuration to another (by adding
a new component to the structure). (right) Graph expansion to include robot state in addition to structure state.

all valid components for removal (since we are planning for
physically feasible assembly, only components external to
the structure are considered – internal components are con-
sidered not reachable by robots approaching the structure
from the outside). The graph generation implicitly assumes
that removing a component from a structure state is simply
the reverse of installing it in the previous state. This is a
common assumption in assembly planning, and all assem-
bly steps considered in this paper meet this requirement.

There is one significant limitation to the usefulness of
this representation. With each structure state represented as
a single vertex, it cannot capture the fact that the robot(s)
performing the assembly may be positioned at different lo-
cations around the structure depending on how they trans-
port/handle a component. The robot’s task plan to assem-
ble a component depends on which component was installed
prior to the current one, and where the robot was located
during that installation. Thus, in order to instantiate an as-
sembly plan, the planner first needs to select a trace through
the assembly graph to ground all necessary motions. This
selection can only consider qualities of the intermediate as-
sembly configurations (e.g., stability, approachability, etc.),
but no measure of quality associated with the motion nec-
essary during the sub-task (since the specific motion goals
are not known until the sequence is established). Using a
plan verification step to test potential candidate sequences,
the planner attempts to generate the required motion param-
eters. As it encounters a step that cannot be parameterized
(e.g., the environment does not allow for the required mo-
tion of the robot(s)), the corresponding assembly graph edge
is marked impassable and the graph search is repeated.

At the cost of additional vertices and edges (the number
of vertices increases 4-7x, the number of edges increases 8-
10x, and the number of traces through the graph increases
by three orders of magnitude for our sample structures), the
extended assembly graph addresses the issue of single graph
nodes in the base graph representing multiple and potentially
incompatible states of the assembly and robots. Instead of
vertices that mark only different structure configurations,
this larger graph also considers the state of the manipulating
robots relative to the structure (Fig. 3 (right)). Initially gen-
erating the extended graph is significantly slower than the

base graph, but it enables us to meaningfully score assembly
operations using motion planning considerations. Edges in
the extended assembly graph can have a weight associated
with them that indicates not only whether or not an assem-
bly location is valid (which is all the base graph could guar-
antee), it also can make a statement about how good (e.g.,
in terms of distances driven by the assembling robot, tight
areas to be maneuvered through, etc.) it is. While it takes
more time up-front to construct the larger graph, the greater
expressive power of this representation allows the planner to
find better plans for larger structures. In addition, the assem-
bly graph is static for a given structure (the graph structure
does not change, only the weights of vertices and edges dur-
ing the search step depends on the specific environment) and
can be pre-computed and stored.

Graph Search and Plan Generation With the assembly
problem represented in graph structure, finding an assembly
plan becomes a graph search problem. Any trace through
the graph from the vertex marking the fully disassembled
structure to the vertex marking the completed assembly is
a candidate plan that satisfies all assembly requirements at
a symbolic level (i.e., all states are valid along the way, in-
ternal components are dealt with while they are reachable,
etc.). The goal is to find a sequence that is also feasible (and
desirable) for actual robots to execute.

When using the basic assembly graph, this symbolic fea-
sibility is all that can be extracted from the graph, and the
actual plan generation is an iterative process of trying to in-
stantiate a candidate plan step by step using a motion planner
(with a candidate sequence, the robot’s positions are known
based on incoming and outgoing edges at each vertex, this is
information that was unavailable until the graph search was
complete) and a re-search of the graph if the motion plan-
ner cannot find a valid instantiation of a particular edge (in
that case, the corresponding edge is marked with impassable
cost, and the graph search is repeated for another candidate
plan). Note that this action does not consider alternate ap-
proach positions for the same robot/component pair, as such
a change would invalidate the remainder of the assembly se-
quence under consideration. Using instead the extended as-
sembly graph, such alternatives are encoded in more detail
in the graph itself and considered during the graph search.

21



In addition, motion costs can be taken into account when
searching the extended graph. The graph search directly re-
turns a plan that is guaranteed to be at least nominally feasi-
ble without requiring iterative plan verification. Our system
is not particularly tuned for efficiency. In the current imple-
mentation, approximately 70% of all edges are considered
during the graph search, and each edge takes approximately
0.11-0.16 seconds to evaluate.

Task Executive
The executive is responsible for tasking robots to perform
tasks that yield the desired structure assembly based on the
plan generated. The higher level of the executive coordinates
and monitors the overall assembly sequence (sequence-level
executive), while the lower level (task-level executive) tasks
all robots involved in particular assembly steps (Fig. 2).

Task Template For a given class of problems (assemblies
of structures, in our case), the executive contains a task tem-
plate that describes all possible task instantiations the plan-
ner can produce. The template establishes the link between
the planner’s output and the robots that will execute the plan
by parameterizing and instantiating a generic task tree to
represent the specific assembly plan.

Fig. 4 shows the task template for structure assembly
tasks. At the highest level of abstraction, any assembly we
consider is a series of AssembleComponent tasks, one for
each component that is part of the structure. It is the plan-
ner’s responsibility to generate a sequence that respects or-
dering constraints for certain structures (i.e., internal com-
ponents before external components, etc.). At the next level
of detail, each AssembleComponent task decomposes into
four subtasks. The component needs to be retrieved from
its storage location (RetrieveComponent), the partial struc-
ture may need to be braced and repositioned (BraceStructure
and RepositionStructure, respectively), and, finally, the new
component needs to be added to the growing structure (In-
stallComponent). At the lowest level, three behavior tasks
accomplish each step. The robot will have to travel through

Assemble 
Structure 

Assemble 
Component 

Brace 
Structure 

Reposi5on 
Structure 

Retrieve 
Component 

… 

Install 
Component 

Assemble 
Component 

Assemble 
Component 

Align  Manipulate Goto 

A  M G  A  M G  A  M G 

spawn 
serial 

Figure 4: The structure assembly task template. This tem-
plate is instantiated as a task tree for a specific structure as-
sembly based on planner output.

the environment to the site where the task is to be carried out
(Goto, G), it has to align itself once it gets there (Align, A) to
ensure that all initial conditions for the actual task are met,
and then the actual manipulation task can take place (Ma-
nipulate, M). Based on the planner’s output, this template is
instantiated for a specific task with parameters such as the
component involved in each step, motion plans to guide the
robot through the environment, connections to establish dur-
ing manipulation, etc.

Behaviors As described above, all assemblies can be car-
ried out using a concatenation of three (correctly parame-
terized by the planner according to the template) repeating
behaviors: Goto, Align and Manipulate.

Goto’s parameters are a series of waypoints the robot
should follow to travel through the environment to its next
task position. Alternatively, a motion corridor could be pro-
vided, within which the robot should travel to its task loca-
tion. We assume the robots are equipped with the necessary
sensors and capabilities for basic navigation.

Align is parameterized by the components involved in the
subsequent installation, which define the set of visual mark-
ers that need to be visible to be tracked. The goal of this
step is to remove any drift due to poor odometry during the
previous waypoint following and to ensure the robot is in a
proper position for the upcoming installation task.

Manipulate specifies the relative position of the new com-
ponent relative to the already present structure and the con-
nections to be established to complete the installation.

While we call the third behavior Manipulate, a sensing
operation could easily be expressed in the same framework,
where the range of motion of a manipulator is replaced by
the field of view and range of a sensor. Additionally, if sub-
tasks require coordination between multiple robots, appro-
priate parameters are added to the behavior tasks. Finally,
note that the lowest-level tasks are still fairly abstract and
require certain capabilities of the robots’ behavioral con-
trollers to be executed – the goal of the planner is to provide
all parameters required by the behavioral controller so that
no manual input or tuning is necessary beyond the imple-
mentation of the parameterizable behaviors.
Robots Our current implementation only considers a sin-
gle mobile manipulator that performs the assembly and an
above-the-workspace crane for structure repositioning (a
subset of the robots we have available in our test bed, see
Fig. 1). In the future, we intend to extend the approach to
allow for cooperative strategies where an external sensing
agent assists the manipulator with additional sensor infor-
mation (as shown in Fig. 1), and to consider manipulation of
single (large) components by two cooperating manipulators.
Exception Handling The executive is also in charge of re-
sponding to execution-time failures (such as robots stopping
to avoid an impending collision, required markers not or no
longer being in the field of view, and errors occurring during
manipulation tasks). Parent tasks are responsible for han-
dling exceptions thrown by their child tasks and to interact
with the planner to obtain new parameters or new plans. The
exception handling mechanisms built into all levels of the

22



executive trigger requests to repair individual assembly steps
or re-plan entire assembly sequences as described below.

Plan Repair and Re-Planning
The generated assembly plan generated is guaranteed to be
nominally feasible – within the assumptions made by the
planner about robot shapes and sizes, as well as the robot’s
ability to move. Specifically, our implementation uses a
motion planner that assumes holonomic robot motion. As
the real robot (a skid-steer ATRV-2) attempts to follow the
planned motions, or as other run-time exceptions occur (e.g.,
targets out of the field of view of the camera, some error dur-
ing manipulation tasks, etc.), the system will have to be able
to handle exceptions and react to them appropriately.

We consider three distinct levels of failure recovery (see
Fig. 2). At the lowest level, as a first recovery attempt,
each behavior should have simple contingency responses for
things that are known to go wrong from time to time. Often
“try again” is a valid recovery strategy. For such contin-
gency recovery actions, the assembly planner never gets in-
volved. However, after a number of contingency attempts
fail, more work is required to continue on with the task.

Each failed assembly operation is associated with an edge
in the assembly graph. As a first attempt of recovery at the
level of the assembly planner, we consider the failed graph
edge and attempt to repair this particular step (Fig. 5 (left)).
Enforcing the same final condition as in the original plan
and taking into account any new information available due to
the failure, the planner checks to see if there are alternative
parameterizations of the failed task that allow it to repair the
plan and then continue on as originally planned. Depending
on how far along the assembly step the error occurred, the
planner may have different (or none at all) options available
to repair a step. If a repair is possible, the affected assembly
step is reparameterized and execution continues (until more
errors require further repairs).

If no repair is possible (either because the task had al-
ready progressed too far to allow for alternative parameteri-
zations while still enforcing the required final condition, or
because there is no other way to perform this particular step
at the current point in the overall sequence), the exception
jumps up to a higher level in the executive, and the planner
is queried for a new sequence from the current state of the
assembly to the desired goal state. In this case, the offending
graph edge is marked impassable, and a new graph search is

. . .

. . .. . .

. . .

Motion Planner
re-parameterize task

exception

new parameters

✗

✓ . . .

. . .. . .

. . .

Assembly Planner
update task cost

exception

new sequence

✗

Figure 5: Plan repair (left) and re-planning (right) in re-
sponse to execution-time failures.

run from the source state of the failed edge to the original
target state (Fig. 5 (right)). Note however, that the failed
assembly step left the robot somewhere along its task, pos-
sibly carrying a component that it is trying to install. Thus,
the re-planned sequence needs to be prepended with some
setup tasks that return the robots to a clean state from where
to continue on with the new plan. In our case, carried com-
ponents are returned to their storage location and the braced
structure is released.

The Planner at Work
In this section, we describe a number of scenarios for which
we have used the assembly planning framework we de-
scribed to generate plans for simulated assembly scenar-
ios. We use a simulator/visualizer based on OpenRAVE
(http://openrave.programmingvision.com/) to examine the
output of the planner and to exercise the system’s repair
and re-planning capabilities. The executive that interacts
with the planner and tasks the robots is implemented using
the Task Description Language (TDL, (Simmons and Apfel-
baum 1998)) and is the same for the simulated robot case as
it will be once we move to planning for real robots.

Figure 6: Three simulated assembly scenarios.

Scenario 1: Single Square
As the base case to demonstrate the planner’s capabilities,
we chose a scenario we had worked with previously with
real robots assembling a square of four nodes and four
beams (Fig. 6 (upper left)) according to a hand-written script
(Heger et al. 2005; Sellner et al. 2006).

For this scenario, the base graph representation contains
58 vertices and 112 edges, and there are 512 potential can-
didate traces through the graph. Expanding the graph to
include robot positions around the structure, the assembly
graph grows to 246 vertices, 924 edges and 1.3·105 candi-
date assembly sequences.

23



Clearly it would be impossible for an operator to truly
evaluate that many sequences and choose the best one to en-
code in a static script. Fortunately that was not necessary, as
the structure was simple enough and we had enough domain
knowledge and experience with the robots to select a good
sequence. Never the less, our assembly planner successfully
generated assembly plans with different initial conditions in
under 80 seconds. For comparison, the real robots take 30
minutes and more to assemble the square.

With the desired structures becoming larger, the size of
the assembly graphs and with it the number of potential
plans grows rapidly. As the structures become larger and
more complicated, finding good plans out of the vast num-
ber of potential ones becomes increasingly difficult even for
skilled operators, and an automated system like the planner
described in this paper becomes highly desirable.

Scenario 2: Two Squares
Increasing the complexity of the goal structure slightly by
adding a second square (Fig. 6 (upper right)), we also intro-
duce an internal component that was not previously present.
Here the planner has to discover that the center beam be-
tween the two squares needs to be installed before the outer
components all are in place.

Still quite a simple structure, the two-square scenario re-
quires a graph representation of 408 (2,117) vertices and
1,187 (10,388) edges for the base (extended) graph represen-
tations, respectively, with 1.2·106 (3.5·109) potential can-
didate traces through the graphs. The growing number of
edges is of concern here, since that is where the planner has
to do its work when evaluating assembly steps (i.e., run a
motion planner to evaluate feasibility and goodness). While
the graphs are not exceptionally large (at least for the struc-
tures considered here), the graph search can potentially take
quite some time to complete the evaluation. In our experi-
ments, the graph search required an average of 998 seconds
to evaluate 7224 graph edges. We argue that in the end,
spending the time up-front during planning to make sure no
robot moves until the plan is at least nominally feasible is
worth the effort as otherwise very expensive physical back-
tracking is unavoidable.

Scenario 3: Four-Square Lattice
Continuing the expansion of the structure, we arrive at a
four-square lattice (Fig. 6 (bottom)). That is the largest
structure we can build with the hardware we have available
in our test bed, and we are working toward being able to
show this assembly using real robots. It is also the largest
structure the current implementation of the assembly plan-
ner can handle to represent. With this planner and in simu-
lation, we plan to extend the size of the planable structure to
100 components and beyond in the future.

This 21-component structure assembly is represented by
graphs of 9,397 (65,566) vertices and 44,646 (460,511)
edges for the base (extended) graph, with 1.1·1013

(6.5·1017) potential ways to assemble the structure. This
progression in graph sizes for still fairly simple structures
clearly indicates that just continuing in this manner does not
scale sufficiently to be able to plan for structures of 100+

components. In order to solve this problem, we are cur-
rently investigating approaches that avoid constructing the
entire assembly graph explicitly but rather only construct as
much graph as is needed to find a solution.

Real-Robot Scenario
We have also used the task parameterization through mo-
tion planning capabilities of our system for a space-themed
assembly project as part of an STTR effort with Metrica
Inc. For that project’s scenario, two robots have to sepa-
rately retrieve two modules from the environment and place
them into a larger container. They then have to coopera-
tively move this container through the environment to some
desired final location (Fig. 7).

Figure 7: Modules have to be transported by robots and
placed into a large container. The container then has to be
moved cooperatively by the robots to a designated final lo-
cation in the environment.

While the high-level plan in this case is given (NASA is
patient enough and the problem is small enough to do it by
hand), the instantiation of the specific motions through the
environment to execute the plan are left to the planning sys-
tem. In future generations of this work, one could imag-
ine a system that, in the case of an execution-time failure,
could pre-evaluate potential recovery strategies, score them
for goodness and present alternatives to a remote operator to
choose from in a sliding autonomy interaction scheme.

Discussion
Our work on the assembly planner to date has been focused
on enabling it to plan for realistic structures like the ones we
can build in our test bed and to provide recovery capabilities
for execution-time failures that we must anticipate with any
real-robot system. Given that the robots’ speed of operation
during assembly is fairly slow, optimizing for efficiency has
been a lower priority than increasing system robustness.

While we are currently using quite simple motion plan-
ning strategies, our observations of the system in operation
suggest that a lot of the time these approaches are sufficient.
In the cases where they are not, robots are able to recognize
that they are in an off-nominal state, safely stop and throw
an exception requesting help (from an autonomous planner
or a human operator). Autonomous recovery seems to be
the place to introduce more sophisticated motion planning
techniques. There they could leverage their greater capabili-
ties without requiring additional computation throughout the
system that may not be necessary for the robots to succeed.

A concern during re-planning is that robots have to “phys-
ically backtrack” to restore the system to a clean state in the

24



assembly graph before continuing toward their goal. These
are in fact the situations where our system can benefit the
most from assistance from an operator. While even sophisti-
cated motion planners might have trouble in tight spaces or
similarly challenging situations, a human seeing the bigger
picture can often easily get the robots back on track.

Summary
We have presented a graph-based planner for assembly prob-
lems that combines symbolic graph-search over valid inter-
mediate structure configurations with motion planning tech-
niques to evaluate nominal feasibility of the considered ac-
tions. The result is an assembly plan that contains all pa-
rameters necessary to instantiate a generic task template into
a task tree that can be executed directly by mobile assem-
bly robots without additional operator intervention. Further-
more, as execution-time exceptions occur, the executive con-
trolling the robots interacts with the planner to repair and re-
plan the assembly sequence as necessary and appropriate.

This work advances the field of planning toward more
useful robot operation that involve physical interaction with
the real world. While traditional symbolic planners do not
have a concept of physical feasibility and interaction with
the environment, strictly motion-planning solutions for as-
sembly tasks require a way to specify intermediate goals
(simply specifying the initial, disassembled state and the de-
sired, fully assembled state yields an intractable problem for
all but the simplest structures). Our hybrid approach accom-
plishes just that. The graph structure supplies intermediate
goals for a motion planner, and the motion planner, in re-
turn, provides meaningful information about the feasibility
and goodness of actions in the workspace.

While we have made some progress toward a system as
described in our vision at the beginning, many issues still re-
main. We are actively working toward scaling our approach
to larger structures (on the order of 100 components) by us-
ing an incremental graph search strategy where the assem-
bly graph is constructed only as required during the graph
search. We are also focusing our attention on robust plan
repair and re-planning capabilities, as those will be essen-
tial when planning for real-robot systems (we plan to inte-
grate this work with the robots and assembly tasks shown in
Fig. 1). Finally, cooperative strategies with multiple robots
will have to be considered to advance beyond the single-
robot-that-does-everything solution we present in this paper.

References
Bozma, H. I., and Koditschek, D. E. 2001. Assembly as a
Noncooperative Game of its Pieces: Analysis of 1D Sphere
Assemblies. Robotica 19:93–108.
Fahlman, S. E. 1973. A Planning System for Robot Con-
struction Task. Technical Report AITR-283, MIT Artificial
Intelligence Laboratory.
Gravot, F.; Alami, R.; and Siméon, T. 2002. Playing with
Several Roadmaps to Solve Manipulation Problems. In
Proceedings of the International Conference on Intelligent
Robots and Systems (IROS).
Heger, F. W.; Hiatt, L. M.; Sellner, B.; Simmons, R.; and
Singh, S. 2005. Results in Sliding Autonomy for Multi-

Robot Spatial Assembly. In Proceedings of the Interna-
tional Symposium on Artificial Intelligence, Robotics and
Automation in Space (iSAIRAS).
Heger, F. W. 2008. Generating Robust Assembly Plans in
Constrained Environments. In Proceedings of the Interna-
tional Conference on Robotics and Automation (ICRA).
Homem de Mello, L. S., and Sanderson, A. C. 1988. Au-
tommatic Generation of Mechanical Assembly Sequences.
Technical Report CMU-RI-TR-88-19, Carnegie Mellon
University, The Robotics Institute, Pittsburgh, PA.
Homem de Mello, L. S., and Sanderson, A. C. 1991.
A Correct and Complete Algorithm for the Generation of
Mechanical Assembly Sequences. IEEE Transactions on
Robotics and Automation 7(2):228–240.
Homem de Mello, L. S. 1989. Task Sequence Planning for
Robotic Assembly. Ph.D. Dissertation, Carnegie Mellon
University, Pittsburgh, PA.
Karagöz, C. S.; Bozma, H. I.; and Koditschek, D. E. 2004.
Feedback-Based Event-Driven Parts Moving. IEEE Trans-
actions on Robotics 20(6):1012–1018.
Kaufman, S. G.; Wilson, R. H.; Jones, R. E.; Calton, T. L.;
and Ames, A. L. 1996. The Archimedes 2 Mechanical
Assembly Planning System. In Proceedings of the Inter-
national Conference on Robotics and Automation (ICRA),
volume 4, 3361–3368.
Klavins, E. 2006. Self-Assembly From the Point of View
of its Pieces. In Proceedings of the American Control Con-
ference (ACC).
Lengyel, J.; Reichert, M.; Donald, B. R.; and Greenberg,
D. P. 1990. Real-Time Robot Motion Planning Using Ras-
terizing Computer Graphics Hardware. Computer Graph-
ics 24(4):327–335.
Nielsen, C. L., and Kavraki, L. E. 2000. A Two Level
Fuzzy PRM for Manipulation Planning. In Proceedings
of the International Conference on Intelligent Robots and
Systems (IROS).
Sellner, B.; Heger, F. W.; Hiatt, L. M.; Simmons, R.; and
Singh, S. 2006. Coordinated Multi-Agent Teams and Slid-
ing Autonomy for Large-Scale Assembly. Proceedings of
the IEEE 94(7).
Simmons, R., and Apfelbaum, D. 1998. A Task Descrip-
tion Language for Robot Control. In Proceedings of the In-
ternational Conference on Intelligent Robots and Systems
(IROS).
Stilman, M., and Kuffner, J. J. 2004. Navigation Among
Movable Obstacles: Real-Time Reasoning in Complex En-
vironments. In Proceedings of the International Confer-
ence on Humanoid Robotics (Humanoids).
Stroupe, A.; Huntsberger, T.; Okon, A.; and Aghazarian, H.
2005. Precision Manipulation With Cooperative Robots. In
Parker, L.; Schneider, F.; and Schultz, A., eds., Multi-Robot
Systems: From Swarms to Intelligent Automata. Springer.
Younes, H. L. S., and Simmons, R. 2003. VHPOP: Ver-
satile Heuristic Partial Order Planner. Journal of Artificial
Intelligence Research 20:405–430.

25




