
A Unified View of Cost-Based Heuristics

Raquel Fuentetaja and Daniel Borrajo and Carlos Linares López
Departamento de Informática, Universidad Carlos III de Madrid

Avda. de la Universidad, 30. 28911 Leganés (Madrid). Spain
rfuentet@inf.uc3m.es, dborrajo@ia.uc3m.es, clinares@inf.uc3m.es

Abstract

Many cost-based planning heuristics are based on partial or
complete delete relaxation. Definitions of these heuristics
are of different nature, which makes it difficult to establish
relations and formal comparisons among them. In this pa-
per, we propose a unified definition with enough generality to
cover most of existing heuristics. Important relations among
heuristics can be derived from our study, as, for example, that
some heuristics are equivalent to others under some condi-
tions. Also, a side effect is that the generalized definition
provides a framework to derive new heuristics for cost-based
planning.

Introduction
Currently, finding high quality plans (not necessarily opti-
mal) is both a requirement for most real world domains, and
an open research direction. The development of planners
that are able to explicitly reason about the cost of the solu-
tions according to a specific metric is a key question. In fact,
in the last International Planning Competition (IPC-2008)
there was a track for cost-based planners.1

Several numerical heuristics have been defined for classi-
cal and cost-based planning. Some of them have been pro-
cedurally defined (expressing how to compute the heuristic)
and some of them have been defined declaratively (express-
ing what should be computed). Though both types of defini-
tions are correct, it can be somehow confusing not to have all
heuristics defined in the same way, since it is much more dif-
ficult to recognize the similarities and differences. We tend
to agree with Geffner (Geffner 2007) in that defining heuris-
tics declaratively, using the mathematical language, seems
to be more adequate given that such formal definitions are
usually very clear and concise. In this paper we present a
generalized declarative and mathematical definition for cost-
based heuristics, as well as for classical heuristics, given
that the cost-based planning model generalizes the classi-
cal one. The generalization covers also heuristics defined in
their original papers from a procedural point of view, using
Relaxed Planning Graphs (RPGs). We pursue the follow-
ing objectives: (1) to unify the definition of several existing
heuristics; (2) to clarify the relation between them; and (3)
to provide a framework for deriving new heuristics.

1http://ipc.informatik.uni-freiburg.de/

Generalized Definition of Heuristics
We consider a cost-based planning problem as a tuple
(P,A, I,G, C), where P is a set of propositions, A is a set
of grounded actions, I ⊆ P and G ⊆ P are the initial state
and the set of goals respectively, and C is the set of action
costs. C contains a real value, cost(a), for each action a in
A, that represents its cost. Action costs are assumed to be
state independent and non-negative. The cost of a plan α is
the sum of its action costs:

cost(α) =
∑
a∈α

cost(a)

The cost of a plan can be also expressed as a function of all
actions in the domain as:

cost(α) =
∑
a∈A

N(a)× cost(a)

where the factor N(a) ∈ N∪{0} indicates how many times
the action a appears in the plan α. The factors N(a) for
the optimal plan from a given state s are unknown a pri-
ori. Heuristics are based on obtaining an estimate N ′(a) for
these factors. For most of the heuristics based on delete-
relaxation including those based on RPGs, N ′(a) ∈ {0, 1},
given that to solve the relaxed task each action has to be
applied at most once, since its effects can not be deleted.
An exception is the additive heuristic, where N ′(a) can be
higher than 1. The idea of the generalized definition is to
propagate (from action preconditions to effects) informa-
tion general enough to compute the N ′(a) factors for the
existing heuristics. The objective is to establish a common
framework in order to discover commonalities and differ-
ences among them.

The generalized definition uses multisets. Multisets are
sets in which the same member can appear several times.
Elements of multisets are usually represented as pairs in the
form (e,m(e)), where e is a member of the multiset, and
m(e) is an integer value representing its multiplicity. If a
multiset M has a member e, we will say that e belongs to
the multiset (e ∈ M). We define the additive-union,] ,
of two multisets, M1 and M2, as a new multiset containing
all elements of M1 and M2 whose members are different,
together with a new pair for each member of both multisets,

70

whose multiplicity is the sum of multiplicities:

M1] M2={(e,m(e)) | (e,m(e)) ∈M1, e /∈M2}∪
{(e,m(e)) | (e,m(e)) ∈M2, e /∈M1}∪
{(e,m1(e) +m2(e)) | (e,m1(e)) ∈M1,

(e,m2(e)) ∈M2}
(1)

Similarly, the max-union, ∪
max

, of two multisets is defined
using the maximum of multiplicities instead of the sum:

M1 ∪
max

M2={(e,m(e)) | (e,m(e)) ∈M1, e /∈M2}∪
{(e,m(e)) | (e,m(e)) ∈M2, e /∈M1}∪
{(e,max(m1(e),m2(e))) | (e,m1(e)) ∈M1,

(e,m2(e)) ∈M2}
(2)

Factors N ′(a) are estimates of the number of times each
action a has to be used to generate propositions estimated to
be required. Thus, the relevant information to compute these
factors should include how many times each action is used
to achieve each (estimated) required proposition. For this
reason, in our generalized definition we will use multisets
whose members are action-proposition pairs (a, p) (i.e. the
elements of the multisets have the form ((a, p),m((a, p)))),
where a ∈ A is an action and p ∈ P is a proposition. With
these pairs we will denote that action a has been used to
achieve proposition p as many times as indicated by the mul-
tiplicity. Let A× P be the set of action-proposition pairs in
a planning domain. We will denote the multisets with mem-
bers in the domainA×P by MA×P . We will use two types
of functions that operate with these multisets, aggregation
(Agg) and cost (Cost) functions:

• Agg : MA×P×. . .×MA×P →MA×P : this function de-
termines how to aggregate a finite number of multisets of
action-proposition pairs. The result will be another mul-
tiset of action-proposition pairs. For example, the func-
tion Agg will be used to group the information each ac-
tion receives from its preconditions. Classical aggrega-
tion functions are the maximum and the sum, defined for
the max and the additive heuristics respectively. For these
cases the aggregation is defined over scalars instead of
over multisets.

• Cost : MA×P → R: this function determines how to
compute a cost value from a multiset of action-proposition
pairs. The result will be a real value.

The generalized declarative definition, based on propagat-
ing multisets of action-proposition pairs, is composed of the
following four equations (Equations (3), (4), (5), and (6)).
The letter π represents a multiset of action-proposition pairs.

The multiset with information enough to compute the
N ′(a) factors to estimate the cost of achieving a set of
propositions P from a given state s using an aggregation
function Agg is:

π(P ; s;Agg) =

{
∅ if P ⊆ s
π(aP ;P ; s;Agg) if P * s, |P | ≤ m
Agg({π(Pm; s;Agg}) if P * s, |P | > m

(3)
where Pm represents any subset of P of size m: Pm ⊆ P
and |Pm| = m. This definition follows the idea of the hm
heuristics (Haslum & Geffner 2000) in that the multiset for

a set of propositions P with size higher thanm, is computed
by aggregating the multisets of all the subsets of P of size
m. For sets of propositions with size lower than m, the re-
sult is the multiset obtained by forcing the use of the action
aP , π(aP ;P ; s;Agg), defined below. aP is an action that
generates at least a proposition in P without deleting any
other proposition in that set. For the rest of heuristics we
have analyzed, m = 1.

When we force the use of an action a, the result will con-
tain a pair (a, p) with multiplicity 1 for each proposition p in
P the action adds, together with the action-proposition pairs
for obtaining the preconditions of a and the other proposi-
tions in P the action a does not add, i.e. to obtain the propo-
sitions in the set obtained by regression of the atoms in P
through a, Reg(P, a) = P \ add(a)∪ pre(a). When P only
has one atom, Reg(P, a) = pre(a). As some of these pairs
can refer to the same action and proposition they should be
combined by the additive-union. Thus:

π(a;P ; s;Agg) =
{

∪
p∈add(a)∩P

{((a, p), 1)}
}

⊎
π(Reg(P, a); s;Agg)

(4)

The action aP in Equation (3) is one of the actions in
the domain that generates a proposition in P without delet-
ing any other. Let A(P) be this set of actions (A(P) =
{a ∈ A | add(a) ∩ P 6= ∅ ∧ del(a) ∩ P = ∅}). Then, the
election of aP is usually done by choosing the action whose
multiset minimizes the cost function CostaP

:

aP ∈ arg min
a∈A(P)

CostaP
(π(a;P ; s;AggaP

)) (5)

where AggaP
is the aggregation function used. When P

only has a proposition p, the action aP is usually called best
supporter of p.

Finally, the heuristic estimate of obtaining the goals G
from a state s, is computed using the cost function Costh
over π(G; s;Aggh) :

h(G, s) = Costh(π(G; s;Aggh)) (6)

The function Costh indicates how the information in
π(G; s;Aggh)) determines the factors N ′(a) used by the
heuristic. Note that the aggregation function for selecting
aP , AggaP

, can be different from the aggregation function
Aggh, used to compute h(G, s).

To instantiate the generalized definition and obtain a par-
ticular heuristic, we need to specify m (size of subsets) and
four functional parameters (the aggregation and cost func-
tions for selecting aP and the aggregation and cost function
to compute h(G, s)): (m,AggaP

, CostaP
, Aggh, Costh).

Aggregation and Cost Functions
Several aggregation and cost functions can be defined. In
this section we include the aggregation and cost functions
that should be defined to cover most of the existent heuris-
tics. In the next section we will show what functions use
each heuristic (instantiation of this generalized framework).

71

Aggregation functions
• Function Agg-union+: this function aggregates a finite

number of multisets by applying the additive-union of
multisets (defined in equation (1)) among them:

Agg-union+(π1, π2, . . . , πn) =
⊎

πi (7)

• Function Agg-union-max: this function aggregates a finite
number of multisets by applying the max-union of multi-
sets (defined in equation (2)) among them:

Agg-union-max(π1, π2, . . . , πn) =
⋃
max

πi (8)

• Function Agg-max: this function aggregates a finite num-
ber multisets π1, π2, . . . , πn by selecting the multiset that
maximizes a particular cost function, CostAgg-max:

Agg-max(π1, π2, . . . , πn) = πi (9)

where πi ∈ arg max
πj ,j∈[1,...,n]

CostAgg-max(πj)

When the function to aggregate is Agg-max it will be nec-
essary to specify also the cost function CostAgg-max.

Cost functions For defining cost functions we will use a
new function, Compact : MA×P → MA, that compacts
a multiset of action-proposition pairs into a multiset of ac-
tions. Given a multiset of action-proposition pairs π, the
multiset Compact(π) will contain an element for every dif-
ferent action in the pairs (a, p) of π. The multiplicity of the
action a in the compacted multiset will be the sum of multi-
plicities of all the pairs containing a in the source multiset.

Compact(π)={(a,m(a)) | ((a, p),m((a, p))) ∈ π,
m(a) =

∑
p
m((a, p))}

• Function Cost-single: this function computes the cost of
a multiset of action-proposition pairs, π, as the sum of
costs of each different action in the compacted multiset
Compact(π):

Cost-single(π) =
∑

(a,m(a))∈Compact(π)

cost(a) (10)

• Function Cost-multiple: this function computes the cost
of a multiset of action-proposition pairs, π, as the sum of
the cost of each action in the compacted multiset multi-
plied by its multiplicity.

Cost-multiple(π) =
∑

(a,m(a))∈Compact(π)

m(a)× cost(a)

(11)
• Function Cost-single-eff: this function computes the cost

of a multiset of action-proposition pairs as the sum of the
cost of each action a in a pair (a, p) divided by the number
of positive effects of that action (#add(a)):

Cost-single-eff(π) =
∑

((a,p),m((a,p)))∈π

cost(a)
#add(a)

(12)

Instantiations
Under several conditions we will explain below, the follow-
ing heuristics are instantiations of the generalized frame-
work:2

• The additive and max heuristics (McDermott 1996;
Bonet, Loerincs, & Geffner 1997), and their cost-based
versions in (Haslum & Geffner 2001).

• The hm family of heuristics (Haslum & Geffner 2000).

• The heuristic used by the FF planner (Hoffmann & Nebel
2001a) for STRIPS planning and its cost-based version im-
plemented in METRIC-FF (Hoffmann 2003).

• The heuristics defined for the SAPA planner (Do & Kamb-
hampati 2003) for cost-based planning in its max and ad-
ditive versions.

• The level-based heuristic in (Fuentetaja, Borrajo, &
Linares 2006).3

• The heuristic resulting of extracting a relaxed plan
from the planning graph expanded by the SIMPLAN-
NER (Sapena & Onaindı́a 2004).

• The set-additive heuristic, first defined in (Keyder &
Geffner 2007b). This heuristic propagates sets of actions
instead of multisets of actions. The set of actions for a
given proposition is the union of two sets: a set containing
the best supporter of the proposition, and the set of actions
to generate the preconditions of that best supporter from
the evaluated state. The best supporter of a proposition is
the action (over all actions that generate the proposition)
that minimizes the Cost-single function applied over the
set containing the action and the supports of the precon-
ditions.

• The ha heuristic, defined in (Keyder & Geffner 2007a).
The ha heuristic is similar to the set-additive heuristic.
The only difference is that the best supporter of each
proposition is computed following the equations of the
additive heuristic, instead of by minimizing the cost of a
set of actions.

• The hpmax heuristic, defined in (Mirkis & Domshlak
2007). This heuristic propagates vectors of costs with an
element per proposition. The cost vector for an action
contains for each proposition the maximum value for that
proposition in the cost vectors of its preconditions. The
cost vector of a proposition is the cost vector of the sup-
port action for which the sum of the elements of its cost
vector is minimal. This heuristic considers the cost of
each action divided by the number of its positive effects.

The particular instantiations are shown in Table 1. For
STRIPS planning all cost functions are computed using uni-
tary action costs. Cost functions whose name is followed by
the word unit assume always unitary action costs (even when
they are not unitary). Regarding the heuristic of the FF plan-
ner, we consider here a basic version. As it was explained

2Due to lack of space we can not describe each heuristic deeply.
We refer the reader to the corresponding reference(s).

3The level-based heuristic is referred as v3 in this paper.

72

Heuristic m AggaP
Aggh CostaP

Costh
additive 1 Agg-union+ Agg-union+ Cost-multiple Cost-multiple
max 1 Agg-max Agg-max Cost-single Cost-single
hm with Cost-single with Cost-single
hm > 1 Agg-max Agg-max Cost-single Cost-single

with Cost-single with Cost-single
FF-nse 1 Agg-max Agg-union+ Cost-single-unit Cost-single

with Cost-single
level-based-max 1 Agg-max Agg-union+ Cost-single Cost-single
basic-sapa-max with Cost-single
level-based-add
basic-sapa-add 1 Agg-union+ Agg-union+ Cost-multiple Cost-single
ha
set-additive 1 Agg-union+ Agg-union+ Cost-single Cost-single
hpmax 1 Agg-union-max Agg-union-max Cost-single-eff Cost-single-eff

Table 1: Some instantiations of the parameters of the generalized formulation.

in (Hoffmann & Nebel 2001b; 2001a), the main difference
between the FF heuristic and the additive heuristic is that
FF captures some positive interactions between (sub)goals
while the additive heuristic assumes (sub)goals to be inde-
pendent. Some of these positive interactions are captured
by the fact of computing a relaxed plan, that is represented
as a list without duplicates (i.e. as a set). Thus, when the
same action is used to achieve several (sub)goals it is only
taken into account once. However, FF also captures another
type of positive interactions. The relaxed plan extraction al-
gorithm selects for each (sub)goal g the action that achieves
the (sub)goal as early as possible in the relaxed planning
graph (the best supporter). This happens always except in
the case a previously selected action (for another (sub)goal
g′) achieves also g, and g′ occurs for the first time in the
relaxed planning graph at the same level as g, or at a level
immediately after. In such a case, the previously selected
action is also selected for g (i.e. the action selected for g
is not its best supporter, but the best supporter of g′). We
call this type of positive interactions side effects. To gener-
ate a (sub)goal with the best supporter selected to achieve
another (sub)goal can be considered a side effect of that se-
lection. FF does not detect all possible side effects due to
the restriction over the levels of (sub)goals. Furthermore,
the method can be considered somehow arbitrary, given that
different actions will be selected depending on the order in
which (sub)goals are selected, that in part depends on the
order in which objects are defined in the problem file. Other
works generalizing heuristics discussed in the related work
section also used this heuristic without side effects. In our
framework, to consider side-effects, equation (5) should be
modified. A cost-based version of the FF heuristic was im-
plemented in METRIC-FF. For the cost-based version, the
relaxed plan in the same, but the final heuristic value is com-
puted adding action costs. We call this heuristic, without
considering side effects FF-nse.

The SAPA planner can deal with action costs and also with
temporal planning problems. The planning model we de-
fine is not temporal. Therefore, we omit for this heuris-

tic all parts of the SAPA algorithm dealing with temporal
issues. We skip also other techniques described in (Do &
Kambhampati 2003) to improve the heuristic, like the inclu-
sion of static mutexes. The reason is that these techniques
can also be applied for other heuristics as well, but actu-
ally they have not been applied yet, and we pursue a general
framework. We refer to the basic cost propagation process
to compute the heuristics in its max and additive versions
described in (Bryce & Kambhampati 2007). We call these
heuristics basic-sapa-max(-add). The main difference be-
tween the algorithm for the SAPA heuristics and the algo-
rithm of METRIC-FF is that the former propagates cost values
in the planning graph. The idea is to propagate the best cost
to achieve each proposition at each level. In the planning
graph, each proposition has an associated value indicating
its cost, and each action is also associated a value indicating
the cost to support (cost to achieve its preconditions) and ex-
ecute the action. Costs of propositions and actions are not
correlated with the level in the planning graph they appear.
The planning graph expansion does not always finish when
all the goals are included in a layer, because costs can de-
crease when more layers are generated. One can choose to
finish the planning graph at the first proposition level con-
taining the goals, or to build n additional levels doing an
n-lookahead. We consider here the case of ∞-lookahead.
According to (Do & Kambhampati 2003), this case should
produce the most accurate heuristic.

The level-based heuristic builds a relaxed planning graph
in increasing levels of costs. The total cost of applying each
action (and also each level cost) is computed performing
a max propagation process over action preconditions. An-
other difference with the basic-sapa-max heuristic is that in
the level-based heuristic the process of building the relaxed
planning graph finishes at the first level the goals are present.
From the procedural point of view this heuristic differs from
the basic-sapa-max heuristic. However, from the declara-
tive point of view both heuristics compute the same value
if ties for selecting a unique action when the equations (5)
and (9) generate a set of actions are broken in the same way.

73

Both heuristics appear in the same row in Table 1 as they are
the same instantiation. The level-based heuristic doing max
propagation is referred to as level-based-max.

Finally, SIMPLANNER does not extract a heuristic value
from the relaxed planning graph it expands. Instead, it uses
the relaxed planning graph for other purposes. However,
the expansion of the planning graph is also performed in in-
creasing levels of costs and can be used to derive heuristic
estimates. In fact, it is equivalent to a level-based expansion,
but with additive propagation (instead of max propagation).
For this reason, we denote the heuristic derived from this
type of expansion as level-based-add. We found that the
heuristics basic-sapa-max, level-based-add and ha can be
generated using the same instantiation. As in the previous
case, to obtain the same heuristic estimate, ties for select-
ing a unique action when the equation (5) generates a set of
actions should be broken in the same way.

To the best of our knowledge, the only heuristics that im-
plement a partial tie breaking policy for equation (5) are
the heuristics of FF and METRIC-FF (other heuristics break
ties arbitrarily).4 This policy, called the difficulty heuristic
in (Hoffmann & Nebel 2001a), selects among all the best
supporters, the action(s) whose preconditions are easier to
achieve. Different versions of the difficulty heuristic can be
derived from the initial idea. For example, action costs can
be taken also into account to consider that easier precondi-
tions are less costly preconditions. In our generalized frame-
work we did not formalize the difficulty heuristic. On one
hand, because only two heuristics use it. On the other hand,
because there are no reported experiments isolating the dif-
ficulty heuristic and showing how significant it is to use it.
Anyway, introducing the idea of the difficulty heuristic in
the generalized definition is straightforward.

Relationships between Heuristics
Interesting conclusions can be extracted from Table 1 about
the relations among heuristics:

• Heuristics in the same row are equivalent (i.e. compute
the same value) when ties in Equation (5) and in Equation
(9) (for heuristics using Agg-max) are broken in the same
way.

• The difference between the additive heuristic, the set-
additive heuristic and the heuristics in the row of level-
based-add lies on the instantiation of the cost functions.
In fact, the only difference between the set-additive and
the heuristics level-based-add/basic-sapa-add/ha is that,
in the former, the cost function to select aP is Cost-single,
while in the latter is Cost-multiple.

• The heuristics level-based-add/basic-sapa-add/ha and
the additive heuristic always choose the same action aP to
generate each needed proposition (i.e. the best supporter
of each proposition always coincides), given that they use
the same aggregation and cost functions to select that ac-
tion. Furthermore, since the functions to compute Aggh
also coincide, the multiset for the goals will always be

4The max, additive and hm heuristics always provide the same
value independently of the way ties are broken.

the same for both heuristics. The difference lies only on
how the final heuristic value is extracted from that mul-
tiset (i.e. on the Costh function). As ∀π Cost-single(π)
≤ Cost-multiple(π), the level-based-add heuristic always
provides lower or equal values than the additive heuristic.

• The heuristic max and the heuristics level-based-
max/basic-sapa-max always choose the same supporter
action aP for each needed proposition, since they also
use the same aggregation and cost functions to select that
action. When applied over the same multisets, the re-
sult of Agg-union+ contains always the same or more ac-
tions that the result of Agg-max. Since both heuristics
use also the same Costh function, the level-based-max
heuristic always provide higher or equal values than the
max heuristic. The same happens for the heuristics max
for unitary costs and FF-nse.

• The only difference between the heuristic FF-nse and
the heuristics level-based-max/basic-sapa-max is the cost
function used to select the supporter action (aP) of each
needed proposition. In the former, the cost function is
Cost-single-unit, while in the latter is Cost-single.

• All heuristics whose Aggh function is a union (additive
or max), i.e. all but the max and hm ones, as have been
defined here, generate a multiset whose actions that can
be ordered to be a relaxed plan, since the union (additive
or max) maintains all required actions. For this, the order
should observe the causality constraints. Once we have
a relaxed plan, it is easy to derive from it the helpful ac-
tions (Hoffmann & Nebel 2001a) to give priority to most
promising successors. Helpful actions are all actions that
achieve propositions generated by actions in the relaxed
plan that are applicable in the evaluated state and required
by other actions in the relaxed plan.

Example
We show now an example of the different instantiations for
m = 1. Suppose a relaxed problem with the structure in
Figure 1. Propositions connected with each action at the left
hand side are preconditions. Propositions connected on the
right are positive effects. The value under each action is its
cost. The initial state, I, is the state to be evaluated, in which
we only have the proposition p. Goals are t and u.
π({p}; I;Agg) = ∅ for any of the defined aggregation

functions, Agg, since p belongs to I. The multisets for ac-
tions a1 (for {q} and {r}) and a2 (for {s}) are the same
for the three aggregation functions defined, given that both
actions only have the precondition p. Thus:

π(a1; {q}; I;Agg) = {((a1, q), 1)}

π(a1; {r}; I;Agg) = {((a1, r), 1)}
π(a2; {s}; I;Agg) = {((a2, s), 1)}

The multisets for q and r are given by the action a1, since
a1 is the only action that generates these propositions. For
the same reason, the multiset for the proposition s is given
by the action a2. Thus:

π({q}; I;Agg) = {((a1, q), 1)}

74

(a3;{t};I;Agg­union+)={((a3,t),1),((a1,q),1),((a1,r),1),((a2,s),1)}

(a4;{u};I;Agg­union+)={((a4,u),1),((a3,t),1),((a1,q),1),((a1,r),1),((a2,s),1)}

(a4;{u};I;Agg­max)={((a4,u),1),((a3,t),1),((a2,s),1)}

(a3;{t};I;Agg­union­max)={((a3,t),1),((a1,q),1),((a1,r),1),((a2,s),1)}

(a4;{u};I;Agg­union­max)={((a4,u),1),((a3,t),1),((a1,q),1),((a1,r),1),((a2,s),1)}

p

s

a3

a5

a6

u

20

15 10

20

60

2

(a3;{t};I;Agg­max)={((a3,t),1),((a2,s),1)}

(a2;{s};I;Agg)={((a2,s),1)}

(a1;{r};I;Agg)={((a1,r),1)}

(a5;{u};I;Agg)={((a5,u),1),((a1,q),1), ((a1,r),1)

(a6;{u};I;Agg)={((a6,u),1),((a2,s),1)}

(a1;{q};I;Agg)={((a1,q),1)}

v

(a5;{v};I;Agg)={((a5,v),1),((a1,q),1), ((a1,r),1)

qa1

r

t a4

a2

Figure 1: Example of relaxed domain to show the differences among the defined heuristics.

π({r}; I;Agg) = {((a1, r), 1)}

π({s}; I;Agg) = {((a2, s), 1)}
Next, the multisets for actions a5 (for {u}) and a6 (for
{u}) are also the same for Agg-union+, Agg-union-max and
Agg-max. a6 only has a precondition, s. a5 has two precon-
ditions that are given by the same action, a1. Thus:

π(a5; {u}; I;Agg) = {((a5, u), 1),((a1, q), 1),
((a1, r), 1)}

π(a6; {u}; I;Agg) = {((a6, u), 1),((a2, s), 1)}

The multiset for the action a3 (for {t}) depends on
the aggregation function applied. Using Agg-union+ and
Agg-union-max, the multisets of the preconditions (q, r and
s) are combined using the additive-union and the max-union
respectively, and the result coincides, so:

π(a3; {t}; I; Agg-union+/Agg-union-max) =
{((a3, t), 1), ((a1, q), 1), ((a1, r), 1), ((a2, s)1)}

However, using Agg-max (with CostAgg-max = Cost-single),
we have that multisets of preconditions are aggregated tak-
ing the multiset which maximizes the function Cost-single.
In this case, as a2 is more expensive than a1, the multiset
that maximizes that function is {((a2, s), 1)}, so

π(a3; {t}; I; Agg-max) = {((a3, t), 1), ((a2, s), 1)}

Since a3 is the only action that generates t, the multiset
for t is the multiset for a3. For a4 we have the π multisets
showed in Figure 1(right hand side, top).

Now, we have that the proposition u can be achieved us-
ing a4, a5 or a6. Apart from the function Aggh, the multiset
associated with u depends also on the cost and aggregation

functions for selecting the best supporter of each proposi-
tion: CostaP

and AggaP
. The value of the CostaP

func-
tion in each case is shown in Table 2 for the three cases
of the function Aggap

(in this table we use Agg-union to
refer to both additive and max union, since for both cases
the multiset is the same). The value marked in bold is the
minimum. The selected action is the action in the same
row as this minimum. For example, the heuristics using
Costap

= Cost-single and Aggap
= Agg-union+, select the

action a5 to achieve u, because the minimum in that case is
35, in the second row.

Table 3 shows for each analyzed heuristic: au, the best
supporter of u (au corresponds to aP in Equation 5); the
multisets π for each goal, u and t; the multiset for the set
of goals; and the final heuristic value (for simplicity rea-
sons multisets have been compacted for all heuristics but
for hpmax, that is the only one whose cost function uses
directly the action-proposition pairs multiset). For exam-
ple, the heuristic level-based-max uses the function AggaP

=
Agg-max with Cost-single to select the best supporter of u
(au). So, the selected action (see Table 2) is a4. Then,
to compute π({u}, I, Aggh) and π({t}, I, Aggh), it uses
Aggh= Agg-union+. Thus, the multiset selected for u is
the multiset of a4 with Agg-union+ (see Figure 1). For t,
the multiset is the multiset of a3 with Agg-union+. Then,
the multiset for both goals, π(G, I, Aggh) is computed ap-
plying Aggh = Agg-union+. Finally, the heuristic value
is computed using Costh = Cost-single. For cases where
there is a tie, the table shows all possibilities. In this exam-
ple, the more accurate heuristics are the ones in the row of
level-based-max since they provide the optimal cost (47) to
achieve the goals.

75

Multiset Cost-single Cost-single-unit Cost-multiple Cost-multiple-unit Cost-single-eff
π(a4; I; Agg-union/Agg-max) 47/32 4/3 62/32 5/3 47/
π(a5; I; Agg-union/Agg-max) 35/35 2/2 50/50 3/3 25/
π(a6; I; Agg-union/Agg-max) 80/80 2/2 80/80 2/2 80/

Table 2: Cost values for the multisets of the actions generating u using Agg-union (additive and max) and Agg-max.

Heuristic au π({u}, I, Aggh) π({t}, I, Aggh) π(G, I, Aggh) h(G, I)
additive a5 {(a5, 1), (a1, 2)} {(a3, 1), (a1, 2), (a2, 1)} {(a5, 1), (a1, 4), (a3, 1), (a2, 1)} 110
additive a6 {(a6, 1), (a2, 1)} {(a3, 1), (a1, 2), (a2, 1)} {(a6, 1), (a2, 2), (a3, 1), (a1, 2)} 6
(unit. costs)
max a4 {(a4, 1), (a3, 1), (a2, 1)} {(a3, 1), (a2, 1)} {(a4, 1), (a3, 1), (a2, 1)} 32
h1

max a5 {(a5, 1), (a1, 2)} {(a3, 1), (a2, 1)} {(a5, 1), (a1, 2)} 2
h1 a5 {(a5, 1), (a1, 2)} {(a3, 1), (a2, 1)} {(a3, 1), (a2, 1)} 2
(unit. costs) a6 {(a6, 1), (a2, 1)} {(a3, 1), (a2, 1)} {(a6, 1), (a2, 1)} 2

a6 {(a6, 1), (a2, 1)} {(a3, 1), (a2, 1)} {(a3, 1), (a2, 1)} 2
FF-nse a5 {(a5, 1), (a1, 2)} {(a3, 1), (a1, 2), (a2, 1)} {(a5, 1), (a1, 4), (a3, 1), (a2, 1)} 65

a6 {(a6, 1), (a2, 1)} {(a3, 1), (a1, 2), (a2, 1)} {(a6, 1), (a2, 2), (a3, 1), (a1, 2)} 105
FF-nse a5 {(a5, 1), (a1, 2)} {(a3, 1), (a1, 2), (a2, 1)} {(a5, 1), (a1, 4), (a3, 1), (a2, 1)} 4
(unit. costs) a6 {(a6, 1), (a2, 1)} {(a3, 1), (a1, 2), (a2, 1)} {(a6, 1), (a2, 2), (a3, 1), (a1, 2)} 4
level-based-max a4 {(a4, 1), (a3, 1), (a1, 2), (a2, 1))} {(a3, 1), (a1, 2), (a2, 1)} {(a4, 1), (a3, 2), (a1, 4), (a2, 2)} 47
basic-sapa-max
level-based-add a5 {(a5, 1), (a1, 2)} {(a3, 1), (a1, 2), (a2, 1)} {(a5, 1), (a1, 4), (a3, 1), (a2, 1)} 65
basic-sapa-add
ha

set-additive a5 {(a5, 1), (a1, 2)} {(a3, 1), (a1, 2), (a2, 1)} {(a5, 1), (a1, 4), (a3, 1), (a2, 1)} 65
hpmax a5 {((a5, u), 1), ((a1, q), 1)), {((a3, t), 1), ((a1, q), 1)), {((a5, u), 1), ((a1, q), 1), 55

((a1, r), 1)} ((a1, r), 1), ((a2, s), 1)} ((a1, r), 1), ((a3, t), 1),
((a2, s), 1)}

Table 3: Heuristic values for different instantiations.

Related Work
Several previous efforts have been done in order to general-
ize planning heuristics. Rintanen (Rintanen 2006) presents
a unified definition of heuristics for classical planning. The
author generalizes the max, additive and FF heuristics (ig-
noring also side effects) to operators with conditional effects
and arbitrary disjunctive preconditions. He uses proposi-
tional logic. This work differs from ours in several aspects.
We use mathematical recursive equations, following the line
of the original definitions of the set-additive, max and ad-
ditive heuristics. On the other hand, we include also cost-
based heuristics. An interesting conclusion of this work is
the relation between the FF heuristic and the max heuristic,
that we also mention in this paper. Another interesting con-
clusion is that planning graphs are not needed for defining
the FF heuristic. This is also the case for all heuristics we
relate in this paper. We have shown that all of them can be
defined using a generalized definition without using plan-
ning graphs.

Mirkis and Domshlak (Mirkis & Domshlak 2007) define a
computational generalized framework for cost-propagation
over planning graphs. Planning graphs are treated as
waodags (weighted and-or dags). The general cost propa-
gation process is defined over waodags elements (nodes and
edges). As in our work, the definition uses a mathemati-
cal model. The generalization they propose is more gen-

eral than ours, given that one can propagate elements in any
domain (scalars, vectors, sets, etc.). While this framework
can be very useful to generate new heuristics, it is less use-
ful to detect relations among the defined ones, because it
is too general. In the extreme, the same heuristic can be
computed propagating elements in very different domains.
We think it is important to have common functions applied
over elements in the same domain. Thus, in this work we
unify the domain of the elements to be propagated to mul-
tisets of action-proposition pairs. Then, we generalize the
functions to propagate such multisets. As action-proposition
pairs multisets contain enough information to derive most of
the existing heuristics, we have a unified view of them. Us-
ing this framework, heuristics can be compared by analyzing
the particular instantiations of general functions that operate
with multisets of action-proposition pairs.

Geffner and Helmert (Geffner 2007; Helmert & Geffner
2008) unify the additive and the causal graph heuris-
tics (Helmert 2004; 2006). The result is the context-
enhanced additive heuristic. This is the additive heuristic
translated to the multi-valued planning task language (MPT)
and endowed with context information. The context infor-
mation is obtained by evaluating the cost of preconditions
in different states. It would be interesting to study whether
such or similar contexts could be included in our generalized
framework.

76

Conclusions
We have introduced a general declarative definition of cost-
based heuristics based on complete or partial delete re-
laxation, that propagates action-proposition pairs through
actions (from preconditions to effects). Most of existing
heuristics are instantiations of this framework, including
those that typically have been defined using planning graphs.
Heuristics differ on the aggregation and costs functions they
use. Instantiating the generalized definition we have dis-
covered important relations among heuristics. Under the
same tie breaking policy, several heuristics are equivalent,
and others are closely related.

The presented generalization allows one to compare
heuristics from a theoretical point of view. From a compu-
tational point of view, propagating action-proposition pairs
is not the most efficient way of computing heuristics. There
are heuristics (as the max or additive ones) that only need
to propagate scalars. Finally, from a experimental point of
view, it can be important to fix the tie-breaking policy for all
heuristics to be compared. This is the only way to avoid the
results to be influenced by arbitrary behaviours.

The framework presented can also be used to generate
new heuristics, since aggregation and costs function can be
combined in different ways. Also, new functions could be
defined. We also believe that deeply studying the properties
of the aggregation and costs functions could be an interest-
ing future work to derive more relations among heuristics
values. For generating new heuristics, it would be interest-
ing to modify common techniques, for example the best sup-
porters could be selected using other criteria than minimiz-
ing a cost function.

Acknowledgements
This work has been partially supported by the Spanish
MICINN project TIN2008-06701-C03-03 and the UC3M-
CAM project CCG08-UC3M/TIC-4141.

References
Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust
and fast action selection mechanism for planning. In Proc.
of the AAAI, 714–719. MIT Press.
Bryce, D., and Kambhampati, S. 2007. How to skin a
planning graph for fun and profit: A tutorial on planning
graph based reachability heuristics. AI Magazine 28 No.
1:47–83.
Do, M. B., and Kambhampati, S. 2003. Sapa: A scalable
multi-objective heuristic metric temporal planner. JAIR
20:155–194.
Fuentetaja, R.; Borrajo, D.; and Linares, C. 2006. Im-
proving relaxed planning graph heuristics for metric opti-
mization. In Workshop on Heuristic Search, Memory Based
Heuristics and its Applications. AAAI. AAAI Press.
Geffner, H. 2007. The causal graph heuristic is the ad-
ditive heuristic plus context. In Proc. of the Workshop on
Heuristics for Domain-Independent Planning. ICAPS.

Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. In Artificial Intelligence Planning
Systems, 140–149.
Haslum, P., and Geffner, H. 2001. Heuristic planning with
time and resources. In Proc. of the 6th ECP.
Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In Proc. of the 18th ICAPS.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Proc. of the 14th ICAPS, 161–170.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Hoffmann, J., and Nebel, B. 2001a. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.
Hoffmann, J., and Nebel, B. 2001b. What makes the dif-
ference between HSP and FF? In Proc. of the Workshop on
Empirical Methods in AI. IJCAI.
Hoffmann, J. 2003. The Metric-FF planning system:
Translating “ignoring delete lists” to numeric state vari-
ables. JAIR 20:291–341.
Keyder, E., and Geffner, H. 2007a. Heuristics for planning
with action costs. In Proc. of the 12th CAEPIA. Springer.
Keyder, E., and Geffner, H. 2007b. Set-additive and TSP
heuristics for planning with action costs and soft goals.
In Workshop on Heuristics for Domain-Independent Plan-
ning. ICAPS.
McDermott, D. 1996. A heuristic estimator for means-ends
analysis in planning. In Proc. of the 3rd AIPS, 142–149.
AAAI Press.
Mirkis, V., and Domshlak, C. 2007. Cost-sharing approxi-
mations for h+. In Proc. of the 17th ICAPS, 240–247.
Rintanen, J. 2006. Unified definition of heuristics for clas-
sical planning. In Proc. of the 17th ECAI, 600–604. IOS
Press.
Sapena, O., and Onaindı́a, E. 2004. Handling numeric cri-
teria in relaxed planning graphs. In Advances in Artificial
Intelligence. IBERAMIA, LNAI 3315, 114–123. Springer
Verlag.

77

