
Viewing Landmarks as Temporally Extended Goals

Letao Wang Jorge A. Baier Sheila A. McIlraith
Department of Computer Science,

University of Toronto,
Canada

Abstract

Landmarks are facts that must hold true at some point in all
solutions to a planning problem. The exploitation of land-
marks and associated ordering constraints has been shown to
be very effective in computing high-quality plans, quickly.
Indeed the success of LAMA, winner of the 2008 Interna-
tional Planning Competition sequential satisficing track, can
be attributed in some measure to its ability to generate reliable
landmark and ordering information and to exploit them via a
pseudo-heuristic. In this paper we view landmarks and their
associated orderings as temporally extended goals (TEGs)
and adapt an existing heuristic for TEGs to provide guidance
to a planner in two ways: by estimating distance to achiev-
ing landmarks and goals while respecting orderings, and by
identifying dead-ends in the search tree that can be pruned
by the planner. We integrate our heuristic as an extension
to LAMA. Experiments show that our planner outperforms
LAMA in several domains, while exploring significantly less
of the search space in over 50% of the experiments run.

Introduction
Domain-independent heuristics are central to the perfor-
mance of state-of-the-art satisficing planners. Some of the
most notable heuristics introduced in the last 10 years in-
clude the relaxed plan graph (RPG) heuristic (Hoffmann
and Nebel 2001), the additive heuristic (Bonet and Geffner
2001), and the causal graph heuristic (Helmert 2006). These
heuristics can provide useful guidance to a forward state-
space planner by estimating, sometimes very accurately, the
distance from a given state to a goal state.

Another technique that has been successful in enhancing
plan generation is the computation of landmarks and order-
ings. Landmarks (Hoffmann, Porteous, and Sebastia 2004)
are subgoals that need to be achieved in all plans, while or-
derings are temporal relationships that hold between land-
marks. As such, they both provide valuable information that
can be exploited by a planner.

Previous methods of incorporating landmarks and order-
ings into heuristic search planners do not exploit them fully.
To find a plan, Hoffmann, Porteous, and Sebastia’s approach
(2004) calls the FF planner to find plan segments between
landmarks, progressively building toward the goal. A ma-
jor disadvantage of this approach is that individual plan seg-
ments are short-sighted. They do not consider what needs

to be achieved in the future, which often leads to subopti-
mal plans. On the other hand, the LAMA planner uses a
landmark counting pseudo-heuristic (Richter, Helmert, and
Westphal 2008) in parallel with the standard FF heuristic
that is computed for the problem’s goals. This pseudo-
heuristic does not estimate the distance from a state to the
satisfaction of all landmarks, but rather counts the number of
landmarks that remain to be achieved from that state. While
this approach has proven to be effective, it implicitly as-
sumes all landmarks are equally easy to achieve, and thus
relies heavily on regularities in the problem’s structure.

In this paper, we introduce a novel approach to exploiting
landmarks and orderings by transforming them into tempo-
rally extended goals (TEGs), combining them with the origi-
nal goal into a single property to be achieved, and exploiting
FF’s RPG heuristic. Our heuristic is not short-sighted since
it always considers the task in its entirety, and makes no as-
sumptions about the distribution of landmarks. It has the
potential to provide a more accurate estimate of the distance
from a state to successful satisfaction of the goal. Indeed, ex-
periments show that our planner outperforms LAMA in sev-
eral domains, while exploring significantly less of the search
space in over 50% of the experiments run.

We begin with a review of the necessary background and
related work. This is followed by a detailed description of
our heuristic and its implementation. Finally, we present ex-
perimental results together with an analysis and discussion.

Background
In this section, we review a number of concepts that are em-
ployed in our work. We assume readers are familiar with the
RPG heuristic in FF, which forms the basis for the heuristic
employed in this paper. Details of the RPG heuristic can be
found in Hoffmann and Nebel’s paper (2001).

Landmarks and orderings
Landmarks by definition are facts that must hold true at
some point in all solutions of a given planning task. Porteous
and Sebastia (2000) first studied the properties and enumer-
ation of landmarks, and many subsequent papers by these
and other authors further elaborated and formalized the con-
cept. In Porteous and Sebastia’s work, landmarks and or-
derings are generated using a regression-based method on
the relaxed planning graph. However, soundness cannot be

49



guaranteed for ordering constraints found with this method
due to its relaxation.

Five types of orderings, which describe temporal relation-
ships between pairs of facts, are introduced by Hoffmann,
Porteous, and Sebastia (2004). Three of these types are
mandatory in the sense that they dictate one fact must oc-
cur before another in any valid solution plan. Although the
definitions allow for arbitrary facts to be ordered, only or-
derings between landmarks are relevant to this paper. The
formal definitions for the orderings follow.

Definition 1 A fact p is added at time i where i > 0 iff p is
true at time i but false at time i− 1. A fact p is first added at
time i where i > 0 iff p is added at time i, but is not added
at any time j such that 0 < j < i.

Definition 2 There is a natural ordering between facts A
and B, written A → B, iff B is not initially true, and in
every solution plan, B is true at time j implies A is true at
some time i < j.

Definition 3 There is a greedy-necessary ordering between
facts A and B, written A →gn B, iff B is not initially true,
and in every solution plan, B is first added at time i implies
A is true at time i− 1.

Definition 4 There is a necessary ordering between facts
A and B, written A →n B iff B is not initially true, and in
every solution plan and for every i > 0, B is added at time
i implies A is true at time i− 1.

Richter, Helmert, and Westphal (2008) proposed an im-
proved method to generate landmarks and orderings. The
main contributions of this method include the incorporation
of disjunctive landmarks and the extraction of landmarks by
analysis of domain transition graphs. All mandatory order-
ings generated using this method are sound. Other attempts
in the planning literature to generate landmarks and order-
ings include Zhu and Givan (2003), but will not be discussed
further as they are not as relevant to our work.

Exploiting landmarks in heuristic search
As a way to exploit landmarks in planning, Hoffmann, Por-
teous, and Sebastia (2004) proposed the LMlocal procedure
which searches iteratively toward the next nearest achievable
landmark as specified by their orderings. By decomposing a
planning problem into smaller tasks through the use of land-
marks as intermediary goals, they were able to solve larger
instances compared to a base planner that did not exploit
landmarks. However, due to the greedy nature of the search
and the presence of unsound orderings, this procedure can
sometimes fail to find any solution plan, and often produces
plans that are much longer than other competent planners.

Richter, Helmert, and Westphal (2008) proposed a count-
ing algorithm that estimates the number of landmarks re-
maining to be achieved as a novel pseudo-heuristic. This
pseudo-heursitic returns the sum of the number of landmarks
that have not been accepted, plus the number of landmarks
that are required again. A landmark L is accepted iff it was
true at some previous state s′, and all landmarks ordered be-
fore L were accepted in s′. A landmark L is required again

iff it is accepted in the current state s but is not true in s, and
some greedy-necessary successor of L is not accepted in s.

The landmark counting pseudo-heuristic is incorporated
into LAMA, a heuristic search planner developed on the
Fast Downward framework (Helmert 2006). It uses a com-
bination of FF’s RPG heuristic and helpful actions, in addi-
tion to the landmark counting pseudo-heuristic and preferred
operators. Search is done on a best-first basis, with itera-
tions of weighted A* to improve plan quality after the first
plan is found. LAMA has demonstrated significantly better
performance over comparable state-of-the-art planners, win-
ning the sequential satisficing track of the sixth international
planning competition (IPC 2008).

Unlike other planners that typically express planning
tasks in the STRIPS or ADL formalisms, LAMA uses a
SAS+ representation. One particular difference between
SAS+ and the other formalisms is the fact that state vari-
ables in SAS+ (analogous to grounded predicates in STRIPS
or ADL) are not restricted to a binary domain. Propositions
in the SAS+ formalism have the form x = v, where x is a
state variable, and v is a value in x’s domain. Exactly one
proposition is true for each variable at any time, i.e. variables
always have a unique value assignment in any state.

Temporally extended goals and FSA
Temporally extended goals describe properties that must be
achieved along a sequence of states visited during the ex-
ecution of a plan, in contrast to classical goals which only
specify properties of a final state and ignore the path taken
to reach it. Statements such as “deliver all priority pack-
ages before delivering regular mail”, “always have paper in
the printer”, and “never go swimming right after eating” are
examples of TEGs in real life.

In the planning community, TEGs are typically expressed
in linear temporal logic (LTL) (e.g. TLPlan, Bacchus and
Kabanza 1998). LTL is a boolean logic with the addition of
temporal operators. The formula ♦p (eventually p) denotes
the proposition that p is true at some state, while �p (al-
ways p) denotes p is true in all states. Formula ©p (next p)
expresses p is true in the next state. Finally, pU q (p until q)
asserts p is true in all states prior to the achievement of q.

There is a known relationship between LTL and finite-
state automata which has been exploited in planners for
tasks involving temporally extended goals. For example,
Baier and McIlraith (2006) proposed a method for trans-
forming LTL formulae into nondeterministic parametrized
FSA. Such FSA accept a sequence of states σ iff σ satisfies
the corresponding LTL formula. Furthermore, they show
that these FSA can be modeled within the planning problem,
allowing, in particular, the accepting condition of the FSA to
be represented as a condition on regular planning predicates.
With this method, they reduce the satisfaction of a TEG to
the achievement of a simple final-state goal. The translation
allows advances in classical heuristic-search planning to be
leveraged for planning with TEGs.

FSA Formulation of Orderings
The main idea behind our approach is to treat landmarks and
their orderings as TEGs. Starting with the set of mandatory

50



0 13 2

A B

B

A B

A B

A B

B

B

B

Figure 1: FSA template for natural ordering

landmarks and orderings obtained from LAMA, we use a
preprocessing procedure to eliminate ones that are redundant
to our heuristic. One category of redundant orderings has the
formA→ B, whereA is of the form x = v,B is of the form
x = v, and x is a binary variable. Other orderings that are
redundant for our heuristic, but are not yet handled by our
implementation, include ones that are implied by transitivity
(A → C when A → B and B → C are known), and those
that are sound even in the relaxed planning task (for exam-
ple, A → B where A is a precondition of all operators that
achieve B). Non-mandatory types of orderings, namely rea-
sonable and obedient-reasonable, are also disregarded since
their soundness cannot be guaranteed.

Each ordering that we consider is treated as a TEG, from
which we generate one corresponding finite-state automa-
ton. Since the structure of each automaton depends solely on
the type of its associated ordering, templates obtained using
Baier and McIlraith’s translation method (2006) are used for
their generation. These templates were further simplified so
that each automaton is in exactly one state at any time, like
a deterministic FSA. The simplification is advantageous in
the SAS+ formalism of LAMA since a single state variable
is now sufficient to represent the state of each automaton.
Memory overhead is thus decreased significantly compared
to the alternative of creating a new predicate for each state
of each unsimplified automaton.

Proposition 1 If there is a natural ordering between land-
marks A and B, then the sequence of states visited by any
valid plan satisfies the LTL formula:

♦B → ¬B U(A ∧ ¬B). (1)

The FSA template for a natural ordering is given in Fig. 1.
Arrows that are not attached to any source node determine
the initial state of the automaton. Transitions without labels
are unconditional by default. In this template, nodes 0, 1,
and 2 respectively represent states where neither A nor B
has been achieved, only A has been achieved, and both A
andB have been achieved. State 3 is the sink state indicating
the ordering has been violated.

In addition to satisfying the ordering constraint itself, the
automaton also ensures both landmarks A and B are even-
tually achieved by marking state 2 as an accepting state.

Proposition 2 The TEG encoded in Fig. 1 is the conjunction
of Eq. 1 and ♦A ∧ ♦B.

Proposition 3 If there is a greedy-necessary ordering be-
tween landmarks A and B, then the sequence of states vis-
ited by any valid plan satisfies the LTL formula:

¬B UB → ¬B U(A ∧ ¬B ∧©B). (2)

0 13 2

A B

B

A B

A B

A B

B

B

B

A B

Figure 2: FSA template for greedy-necessary ordering

0

1

3
2

A B

A B

B

A B

A B

B

B
A B

A B
B

A B

A B

Figure 3: FSA template for necessary ordering

The template for a greedy-necessary ordering is given in
Fig. 2. It contains all the nodes and transitions of automata
for natural orderings, since every greedy-necessary ordering
is also a natural ordering, i.e. natural orderings are more gen-
eral. In addition, an added transition arc from state 1 to state
0 handles the case where A is added and deleted before B is
first achieved.

Proposition 4 The TEG encoded in Fig. 2 is the conjunction
of Eq. 2 and ♦A ∧ ♦B.

Proposition 5 If there is a necessary ordering between
landmarks A and B, then the sequence of states visited by
any valid plan satisfies the LTL formula:

�(¬B ∧©B → A). (3)

The template of a necessary ordering is given in Fig. 3.
It contains all nodes and transitions of an automaton for a
greedy-necessary ordering, as well as two additional tran-
sitions from state 2. These new transitions allow the au-
tomaton to reset to previous states in order to monitor the
interaction between A and B for all time.

Proposition 6 The TEG encoded in Fig. 3 is the conjunction
of Eq. 3 and ♦A ∧ ♦B.

Heuristic Search with Landmark FSA
There are two ways to use the FSA described above to help
guide heuristic search. First, the relaxed plan graph in the
FF heuristic can be augmented to include the structure of the
automata. Second, the search tree can be pruned to eliminate
actions that violate ordering constraints.

Augmented relaxed plan graph
Finite-state automata for landmark orderings are introduced
into the expansion of the relaxed plan graph using a method
similar to that of Baier, Bacchus, and McIlraith (2009) for

51



temporally extended constraints. Specifically, the following
three modifications are made to the relaxed planning task.

First, for each automaton x, new predicates of the form
fsa_x_state and fsa_x_accepted are added to the
list of state variables. The former represents the current state
of the automaton, having a domain of all possible automaton
states, namely {0, 1, 2, 3}. The latter is a binary variable that
indicates whether the automaton has visited the accepting
state, namely state 2.

Second, the initial state of each automaton is added to the
list of initial propositions of the RPG. For each automaton
x, propositions of the form fsa_x_accepted = w are
also added, where w is 1 if the automaton has visited its
accepting state, and 0 otherwise. Propositions of the form
fsa_x_accepted = 1 for every automaton x are added
to the list of goal propositions.

Finally, a new fsa_update operator with zero cost and
no preconditions is created. This operator specifies transi-
tions of all automata by a list of conditional effects. A tran-
sition of automaton x from state y to state z with condition
p is encoded as an effect of the form

(when (and (p) (fsa_x_state = y))
(fsa_x_state = z))

The operator also specifies the accepting condition of
each automaton x by an effect of the form

(when (fsa_x_state = 2)
(fsa_x_accepted = 1))

An augmented relaxed plan graph is built from this set
of propositions and operators. Just as all FSA state vari-
ables should be updated once after the application of each
operator, we enforce one application of the fsa_update
operator for every layer of the RPG by evaluating domain
operators and axioms in alternation with the update opera-
tor. Each layer of the augmented RPG is first expanded with
domain operators and axioms as the FF heuristic normally
does, then the fsa_update operator is evaluated on the
result to further expand the graph.

Intuitively, relaxed plans that do not consider landmarks
and orderings may be unrealistic ones that violate many or-
derings and cause heuristic estimates to become inaccurate.
The augmentations above attempt to address this issue by
encouraging the RPG to achieve landmarks and obey order-
ings during its computation.

Search tree expansion and pruning
Our planner preserves the architecture of LAMA, which for
a single heuristic, expands nodes on a best-first basis. Sim-
ilar to the relaxed planning task described in the previous
section, each node in the search tree also contains a col-
lection of state variables of the form fsa_x_state and
fsa_x_accepted. The initial state begins with all FSA
variables initialized according to the status of their associ-
ated landmarks. Whenever a new node is created, an appli-
cation of the fsa_update operator assigns new values to
all FSA state variables based on their previous value, tran-
sition arcs of the automata, and current values of state vari-
ables and derived predicates.

By definition, any sequence of actions that violates an or-
dering of landmarks cannot be part of a valid plan. In the
FSA representation, a violation of an ordering constraint is
marked by an automaton entering state 3. Thus during ex-
pansion of the search space, any node that is found to exhibit
such a violation can be discarded without further consider-
ation. This pruning technique is not currently applicable to
the set of ordered landmarks found by LAMA due to the
fact that all orderings extracted by LAMA are necessarily
obeyed by any action sequence. Nevertheless, this pruning
technique can be valuable for more novel orderings and for
other forms of control knowledge.

Experiments and Results
We implemented a new planner based on LAMA that in-
corporates our heuristic. Our planner uses a combination
of the augmented RPG heuristic described above and the
landmark counting pseudo-heuristic found in LAMA. As
with LAMA, preferred operators for the landmark counting
pseudo-heuristic are also enabled in our planner. The same
multi-heuristic search strategy as LAMA is used, selecting
nodes to be expanded from two separate open lists, one for
each heuristic. The ability to prune the search tree by de-
tecting violations of orderings was omitted since it does not
have any effect with the landmarks and orderings currently
being exploited.

The performance of our planner was compared against
LAMA on deterministic, sequential, nontemporal, and non-
numeric domains from the last three International Plan-
ning Competitions. When multiple suitable formulations are
given for the same domain, the one whose PDDL require-
ments are most advanced was chosen. All experiments were
conducted on a single core of AMD Opteron 2220 proces-
sor running at 2.8 GHz, with time and memory limited to 20
minutes and 4 GB respectively for each task. Comparisons
are made for two intervals of the iterative search process: the
first search iteration alone where a solution plan is first pro-
duced, and the entire process including all search iterations
until the planner terminates.

Table 1 shows a summary of results with domains divided
into three sections. The top section lists domains where our
planner performed significantly better than LAMA, while
the bottom section lists the domains in which the opposite
occurs. A planner is considered to perform significantly bet-
ter if it solves at least as many problems, and finds plans
of equal or shorter length while exploring no more nodes
than its competitor. Domains in which the comparison is
inconclusive due to a tradeoff between number of problems
solved, plan quality, and nodes expanded, are placed in the
middle section of the table.

Although there are a number of domains in which LAMA
solved more instances than our planner, we were able to out-
perform LAMA in terms of number of problems solved in 4
domains as well, most notably in the Optical Telegraph do-
main. The results also give a strong indication that search
with our planner tends to be more informed and leads more
directly to a solution. For tasks in 7 out of 21 domains, our
planner only needed to explore, on average, fewer than half

52



First iteration Until termination
Domain (Problems) PS %IPL %INE %IST %IPL %INE
Optical telegraph (IPC4, 48) 48/3 0.0 (0/0) 99.8 (3/0) 99.8 (3/0) 0.0 (0/0) 99.8 (3/0)
Pipesworld-notankage (IPC4, 50) 20/20 0.2 (7/9) 32.2 (11/7) 24.4 (9/7) 1.6 (1/0) -2.0 (7/12)
Rovers (IPC5, 40) 40/40 1.9 (20/8) 77.9 (38/1) 71.4 (30/0) 0.6 (15/13) 1.1 (20/19)
Scanalyzer (IPC6, 30) 29/28 12.2 (22/2) 78.4 (27/1) 69.4 (21/2) 6.6 (17/2) 86.0 (23/5)
Storage (IPC5, 30) 19/19 5.2 (5/1) 35.6 (9/3) 48.8 (9/4) 0.8 (3/0) 11.4 (10/4)
Transport (IPC6, 30) 30/30 3.3 (16/11) 57.3 (26/2) 30.7 (19/5) 4.0 (15/10) 39.8 (14/15)
Trucks (IPC5, 30) 12/12 -0.9 (4/5) 20.6 (5/6) 4.7 (4/6) 0.7 (2/0) 27.0 (6/5)
Airport (IPC4, 50) 31/36 4.5 (13/1) -7.3 (16/14) -83.3 (326) 1.2 (6/1) 34.7 (19/11)
Elevators (IPC6, 30) 30/25 -4.7 (12/13) 58.1 (21/4) 12.4 (14/7) -4.1 (7/15) -60.4 (9/16)
Openstacks (IPC5, 30) 28/29 0.0 (0/0) 0.0 (0/0) -71.5 (0/25) 0.0 (0/0) 10.6 (7/0)
Parcprinter (IPC6, 30) 9/17 3.0 (2/0) 12.9 (4/3) -86.7 (0/9) 0.0 (0/0) 27.5 (5/2)
Satellite (IPC4, 36) 33/32 -6.0 (2/19) 37.3 (24/7) 15.2 (15/9) -3.0 (6/16) -19.2 (18/12)
TPP (IPC5, 30) 30/30 -25.5 (0/26) 67.0 (24/2) 39.2 (21/1) -24.7 (0/24) 63.3 (17/9)
Cyber security (IPC6, 30) 30/30 0.1 (2/0) -10.5 (13/17) -68.2 (0/29) -7.5 (2/1) -31.7 (14/16)
Openstacks (IPC6, 30) 30/30 0.0 (0/0) -0.0 (0/1) -58.1 (2/26) -1.3 (0/6) 18.6 (22/4)
Pathways (IPC5, 30) 28/29 -3.3 (5/14) 70.2 (24/3) 49.8 (20/2) -2.0 (4/15) -68.8 (8/19)
Pegsol (IPC6, 30) 29/30 1.5 (11/8) -59.8 (8/21) -57.3 (7/18) -0.2 (0/1) -26.7 (8/21)
Pipesworld (IPC5, 50) 26/26 -12.6 (7/12) -65.9 (8/16) -83.3 (3/19) -8.7 (4/8) -34.2 (11/13)
PSR-large (IPC4, 50) 30/31 -10.3 (5/19) -28.0 (9/20) -34.9 (6/22) -2.6 (1/6) -61.3 (6/23)
Sokoban (IPC6, 30) 22/24 -6.2 (6/10) 17.1 (11/11) -38.2 (4/18) -0.9 (0/2) 4.1 (11/11)
Woodworking (IPC6, 30) 30/30 1.5 (17/9) -40.8 (13/15) -60.0 (4/22) -1.5 (11/13) -48.4 (10/19)
All domains 584/551 -2.2 (156/167) 30.2 (294/154) -19.4 (194/257) -2.5 (94/133) 2.1 (248/236)

Table 1: Comparative performance of our planner relative to LAMA. PS is the number of problems solved, where an entry
of the form “x/y” means our planner solved x instances whereas LAMA solved y instances. %IPL is the average percentage
of improvement (decrease) in plan length achieved by our planner over LAMA. %INE is the average improvement in number
of nodes expanded during search. %IST is the average improvement in search time. In the last five columns, an entry of the
form “x (y/z)” means our planner achieved better results in y instances and worse results in z instances (and identical results in
the remaining ones), with x% being the average difference. Numbers reported in the last five columns include only instances
solved by both planners. All average percentage differences are derived from the geometric mean of ratios.

the number of nodes LAMA required to find a solution. The
converse is only true for 2 domains.

In general, the percentage decrease in search time remains
lower than the percentage decrease in number of nodes ex-
panded. This behaviour is explained by the overhead in-
curred by our heuristic in expanding the augmented RPG
with an increased number of propositions and operator ef-
fects. As a consequence of this overhead, savings in search
effort sometimes do not pay off in terms of number of prob-
lems solved. In some cases, the overhead seems to fully ex-
plain why fewer instances were solved by our planner, as a
more informative heuristic did not translate into more solved
instances (e.g. Parcprinter). Overhead may also explain why
our planner has better results in terms of plan quality for
the first iteration than for the full iterative search (e.g. Cy-
ber security). As our planner spends more time evaluating
its heuristic for each node, the LAMA planner can explore
many more nodes in the given 20 minutes.

Improvements in plan length and nodes expanded appear
positively correlated with only a few exceptions, which sug-
gests the difference between the two planners truly lies in
the informativeness of their heuristics, rather than a simple
tradeoff between plan quality and search effort. A planner
using a more informed heuristic should be able to find better
quality plans while searching fewer nodes, and in this re-

spect our planner shows increased informedness in 7 out of
21 domains on the first iteration, and in 9 domains after full
iterative search despite its overhead. In comparison, LAMA
only exhibited similar advantages in 3 domains on the first
iteration and 8 domains after full iterative search.

The ability of each planner to solve tasks within limited
node expansions can be seen in Fig. 4. Since planners use
the vast majority of their memory to store nodes expanded
in the search tree, the graph also reflects the ability of each
planner to solve tasks given limited memory resources. A
clear decrease can be seen in the number of nodes that our
planner needs to expand in order to solve the set of test prob-
lems. For example, our planner solved the easiest 300 in-
stances using only a maximum of 270 nodes per instance,
whereas LAMA needed nearly 630 nodes to do the same.
Alternatively, if the memory limit was sufficient to only
store 1000 nodes in the search tree, then our planner would
have been able to solve 385 problems whereas LAMA would
only have been able to solve 333. Once again, this justifies
the claim that our planner using the augmented heuristic is
more informed and is capable of finding a solution without
having to explore nearly as much of the search space.

To gain a better understanding of the reasons behind im-
provements in performance seen above, our heuristic was
measured individually against the RPG heuristic and the

53



0

100

200

300

400

500

600

1 100 10000 1000000

N
u

m
b

e
r 

o
f 

p
ro

b
le

m
s 

so
lv

e
d

Number of nodes expanded

LAMA

Ours

Figure 4: Number of problems each planner can solve as a
function of limit on number of nodes expanded. Only in-
stances solved by both planners are included.

landmark counting pseudo-heuristic using a single-heuristic,
simple best-first search configuration as the base planner. In
order to be consistent with experiments above, implemen-
tations of the latter two heuristics were taken directly from
LAMA. Table 2 shows a summary of results.

Computation time appears to be the biggest drawback of
our heuristic when it is used alone in this simplistic search
scheme. Even though our heuristic had the benefit of search-
ing fewer nodes in a number of domains, other heuristics of-
ten found their solutions more than 50% faster. This demon-
strates the magnitude of time overhead in our heuristic. It is
the primary reason that our heuristic could not solve as many
problems as the RPG heuristic. On the other hand, results for
multi-heuristic planners shown above suggest that the over-
head can be mitigated by cooperating with the fast landmark
counting heuristic. Further optimizations of our implemen-
tation can also lead to improvements in search time. It is also
worth mentioning that state-of-the-art planners rarely use
single heuristics in plain best-first search as done here. The
perceived loss in number of problems solved here does not
necessarily translate into an equal loss when our heuristic is
integrated into a state-of-the-art planning algorithm such as
that of LAMA.

Since our heuristic incorporates the guidance of both FF’s
RPG and ordered landmarks, it is reasonable to expect it to
be better informed than either one of those alone. Indeed,
against the FF heuristic, our heuristic was able to find solu-
tions while exploring fewer nodes in 8 domains, while the
opposite is true for only 2. The improvement is even more
dramatic against the landmark counting pseudo-heuristic,
where the number of nodes expanded is reduced by more
than 50% in over half of the domains. The quality of solution
plans was also affected, with mixed results, but differences
are much smaller.

It may seem strange that our multi-heuristic planner
achieved different results from LAMA even though on a
best-search basis, our heuristic was no different from the

RPG heuristic in many domains in terms of solution plan
length and number of nodes searched. To explain this be-
haviour, note that the actual search tree and heuristic values
do not need to be identical for the two heuristics when the
number of nodes expanded is equal. These differences that
are not visible in the aggregated results presented can lead to
varying behaviours when a different search strategy is used.

In summary, the main observations that can be made here
are as follows. Our heuristic alone can provide somewhat
improved guidance to a simple best-first search planner, but
its evaluation can be very time-consuming. On the other
hand, the landmark counting pseudo-heuristic is very fast
to evaluate, but when used alone it rarely provides enough
guidance to produce good plans. However, when the two are
employed together under a multi-heuristic planner frame-
work such as the one for LAMA, the two heuristics can in
fact complement each other, allowing the overall planner to
exploit strengths of each while mitigating their weaknesses.

Discussion and Future Work
In this paper, we proposed a method for exploiting land-
marks and orderings by transforming them into TEGs, com-
bining them with the original problem goal, and exploiting
FF’s RPG heuristic on the resulting planning problem. To
this end, we encode the TEGs as finite-state automata and
incorporate the automata into the computation of the RPG
heuristic. The automata not only characterize progress to-
wards satisfaction of TEGs, but they can also identify dead
ends for a planner to prune. The resulting heuristic was
implemented in a planner based on LAMA and compared
against LAMA on tasks from recent International Planning
Competitions.

Experimental results show that the two planners display
comparable general performance but with performance dif-
fering on individual domains. The two planners solved a
comparable number of problems, with a few exceptions. In
the Optical Telegraph domain from IPC4, our planner solved
45 more problems, whereas in the Parcprinter domain from
IPC4, LAMA solved 8 more problems. Plan lengths were
also comparable. Each planner produced first solutions with
superior length in approximately 30% of solved instances.
Plan lengths were identical in the remaining 40%. The main
advantage of using our heuristic in the planner proved to be
its informativeness. In the first iteration of planning, our
planner expanded fewer nodes in almost 2/3 of the cases.
The result, a 30% average reduction in nodes searched, sug-
gests that our planner was initially far more informed. Mea-
sured to termination, the two planners’ different search tech-
niques seemed to excel on different domains, each expand-
ing significantly fewer nodes in about 1/2 of the cases.

Despite some computational overhead and a tradeoff in
plan length in certain domains, our approach appears very
promising. Based on observations made from experimen-
tal results, our current planner can already provide signifi-
cant advantages in applications where memory resources are
limited. With some future work focusing on optimizing the
computation of our heuristic, including the preprocessing
step where all orderings that are redundant for our heuristic

54



RPG+FSA vs. RPG RPG+FSA vs. landmark counting
Domain (Problems) PS %IPL %INE %IST PS %IPL %INE %IST
Airport (IPC4, 50) 23/28 0.0 (0/0) 0.0 (1/0) -88.6 (0/23) 23/16 -0.6 (3/3) 66.2 (10/3) -76.2 (2/10)
Optical telegraph (IPC4, 48) 3/3 0.0 (0/0) 0.0 (0/0) -2.9 (1/1) 3/4 0.0 (0/0) 16.6 (1/2) -45.0 (1/2)
Parcprinter (IPC6, 30) 8/10 0.0 (0/0) 8.6 (2/0) -84.6 (0/8) 8/7 4.2 (2/0) 90.4 (4/1) -99.7 (0/7)
Openstacks (IPC5, 30) 26/28 0.0 (0/0) 0.0 (0/0) -82.1 (0/26) 26/30 -2.2 (0/20) 62.8 (26/0) -87.7 (0/25)
Satellite (IPC4, 36) 19/22 -7.4 (1/8) -16.3 (5/5) -35.0 (6/9) 19/9 10.5 (4/3) 90.9 (8/0) 89.3 (6/1)
Elevators (IPC6, 30) 12/13 -3.7 (3/8) 28.2 (5/7) -19.7 (5/7) 12/4 -40.3 (0/4) 34.0 (2/2) -64.8 (1/3)
Pipesworld (IPC5, 50) 13/15 1.7 (2/1) 2.1 (2/1) -30.2 (2/9) 13/19 -0.7 (5/4) 1.3 (2/10) -95.4 (1/12)
Transport (IPC6, 30) 10/12 -7.0 (3/5) 55.9 (7/1) -35.1 (4/6) 10/26 -9.7 (2/5) 21.5 (7/3) -87.5 (0/9)
PSR-large (IPC4, 50) 13/13 0.0 (0/0) 0.0 (0/0) -13.2 (5/6) 13/31 31.4 (12/1) -69.8 (5/8) -66.3 (4/7)
Openstacks (IPC6, 30) 30/30 0.0 (0/0) 0.0 (0/0) -74.0 (0/25) 30/30 -9.5 (0/30) -81.9 (0/30) -96.4 (0/25)
Sokoban (IPC6, 30) 23/24 -1.2 (1/2) 2.3 (4/4) -53.4 (1/20) 23/9 -11.1 (0/7) 89.1 (8/1) 48.4 (8/1)
Cyber security (IPC6, 30) 18/18 0.0 (0/0) 0.0 (0/0) -18.4 (0/18) 18/3 0.0 (0/0) 89.3 (2/1) 49.0 (1/2)
Scanalyzer (IPC6, 30) 19/19 0.0 (0/0) 0.0 (0/0) -27.1 (5/12) 19/29 3.1 (6/8) -67.4 (2/17) -97.4 (0/19)
Rovers (IPC5, 40) 22/23 0.0 (0/0) 0.0 (0/0) -29.1 (1/15) 22/17 1.3 (8/5) 87.5 (16/0) 85.0 (11/0)
Woodworking (IPC6, 30) 14/14 0.0 (0/0) 0.0 (0/0) -52.4 (0/12) 14/5 3.2 (1/2) 84.5 (1/3) 70.0 (1/1)
Storage (IPC5, 30) 18/18 0.9 (1/0) 2.9 (2/0) -4.5 (3/10) 18/17 11.4 (8/1) 34.5 (9/5) -17.8 (5/5)
TPP (IPC5, 30) 17/19 0.0 (0/0) 0.0 (0/0) -19.3 (0/11) 17/16 17.8 (12/0) 60.0 (11/1) 29.2 (7/5)
Pipesworld-notank (IPC4, 50) 19/19 -1.7 (1/3) 2.6 (4/1) -13.9 (3/12) 19/19 2.9 (8/4) 34.1 (12/4) -59.4 (5/8)
Pegsol (IPC6, 30) 30/30 -0.3 (0/1) -0.4 (0/1) -57.0 (3/22) 30/29 5.4 (10/6) 9.8 (17/12) -15.5 (9/12)
Trucks (IPC5, 30) 12/13 0.0 (0/0) 0.0 (0/0) -39.7 (0/8) 12/6 5.1 (5/0) 96.7 (6/0) 96.0 (6/0)
Pathways (IPC5, 30) 10/10 0.0 (0/0) 0.0 (0/0) 23.0 (5/3) 10/4 0.0 (0/0) 96.9 (4/0) 98.3 (4/0)
All domains 359/381 -0.8(12/28) 3.1(32/20) -50.6(44/263) 359/330 2.5(86/103) 38.7(153/103) -64.5(72/154)

Table 2: Comparative performance of three individual heuristics in best-first search. “RPG+FSA” represents our new heuristic,
while “RPG” and “landmark counting” represent the two heuristics taken from LAMA. PS is the number of problems solved
by each respective heuristic. %IPL is the average percentage of improvement (decrease) in plan length achieved by a heuristic
over its competitor. %INE is the average improvement in number of nodes expanded during search. %IST is the average
improvement in search time. In all columns that report percentage improvement, an entry of the form “x (y/z)” means our
heuristic achieved better results in y instances and worse results in z instances (and identical results in the remaining ones),
with x% being the average difference. Other than the PS columns, all numbers reported include only instances solved by both
heuristics. All average percentage differences are derived from the geometric mean of ratios.

are removed, the overall performance of our heuristic can be
improved even further.

We have also looked for possible relationships between
the number of landmarks and orderings found for a given
task and the degree of improvement obtained by our heuris-
tic. However, the results are not consistent across domains
and tasks, and little correlation seems to exist at a global
level. Some tasks boasting thousands of landmarks can lead
our planner to produce much worse results, whereas just a
few landmarks for other tasks may lead to drastic improve-
ments. This suggests that not all landmarks and orderings
contribute equally to our heuristic. As part of future work,
the ability to determine the helpfulness of landmarks and
orderings may play an integral role in improving our heuris-
tic’s performance and in reducing overhead.

The conversion of orderings into FSA is another area wor-
thy of further investigation. TEGs generated by our method
may be represented more compactly, for example, by merg-
ing orderings with transitive relations into a single automa-
ton. This should be feasible since the same method of encod-
ing TEGs into FSA applies equally well to more complex,
possibly nested, LTL formulae. Merging orderings into a
single automaton also opens the door for alternative heuris-
tics that compute the distance to goal based on the structure

of the automaton itself, without the need to relax the original
planning task.

Finally, our approach may be extended beyond land-
marks. While landmarks and associated orderings reflect
properties of all plans, there exist other properties that are
perhaps only found in a subset of high-quality plans. As part
of future work, we would like to devise a method to detect
and exploit these soft landmarks and orderings, possibly by
treating them as hard landmarks or by treating them a tem-
porally extended preferences following, for example, Baier,
Bacchus, and McIlraith (2009).

Acknowledgements
The authors gratefully acknowledge funding from the Nat-
ural Sciences and Engineering Research Council of Canada
(NSERC) and from the Ontario Ministry of Innovation Early
Researcher Award (ERA). We would also like to thank the
anonymous referees for useful feedback on an earlier draft
of this paper.

References
Bacchus, F., and Kabanza, F. 1998. Planning for tempo-
rally extended goals. Annals of Mathematics and Artificial
Intelligence 22(1-2):5–27.

55



Baier, J. A., and McIlraith, S. A. 2006. Planning with first-
order temporally extended goals using heuristic search. In
Proc. 21st National Conference on Artificial Intelligence
(AAAI), 788–795.
Baier, J. A.; Bacchus, F.; and McIlraith, S. A. 2009. A
heuristic search approach to planning with temporally ex-
tended preferences. Artificial Intelligence 173(5-6):593–
618.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. Journal of Artificial Intelligence
Research 22:215–278.
Porteous, J., and Sebastia, L. 2000. Extracting and ordering
landmarks for planning. In Proc. of the UK Planning and
Scheduling SIG Workshop.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Proc. 23rd AAAI Conference on Artifi-
cial Intelligence (AAAI), 975–982.
Zhu, L., and Givan, R. 2003. Landmark extraction via
planning graph propagation. In ICAPS Doctoral Consor-
tium.

56




