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Abstract 
Relaxed plans, in the ignoring action’s delete list relaxation 
mode, have been used as a good approximation of the goal-
distances of search states. Recently, many researchers tried 
to improve relaxed plan based (RPB) heuristics by taking 
information from action’s delete lists and got promising 
results. However, it is still a crucial point to keep the 
improved heuristics with low computational cost while 
discovering more information. We propose to improve RPB 
heuristics by gathering information from a simulated 
execution of relaxed plans. Based on the simulation, we 
combine the number of unsatisfied action’s preconditions 
and top level goals as a penalty to a RPB heuristic. The 
penalty is sensitive to both the order and negative effects of 
actions in a relaxed plan and requests low overhead in 
computation in most cases in our experiment. Preliminary 
results show that our methods improve the FF’s heuristic 
over several domains. 

 Introduction  
Deriving heuristic functions from relaxed problems has got 
big success in domain independent satisficing planning 
(Bonet and Geffner 2001; Hoffmann and Nebel 2001; 
Helmert 2004). “Ignoring delete lists” is a popular way of 
making such relaxations. Based on the relaxation, the RPB 
heuristic in FF (hFF) (Hoffmann and Nebel 2001) and the 
set-additive heuristic (Keyder and Geffner 2007) still show 
relative power to the recently proposed Causal Graph 
based heuristic hCG (Helmert 2004) and the context-
enhanced additive heuristic hcea (Helmert and Geffner 2008) 
that take account of actions’ delete effects to some extent. 
Particularly, hFF is capable of capturing positive 
interactions among sub-goals, which can not be easily 
reasoned in the intrinsic additive heuristics, such as hCG 
and hcea. Hence, there is a lot of recent work towards 
improving RPB heuristics by taking into account the delete 
effects of actions in several ways, e.g., the learning based 
approach by Yoon et al. (2007); the TSP heuristic (Keyder 
and Geffner 2007) and the Occlusion Penalties (Baier 
2007). 

 In this paper, we propose a simple and general way to 
consider negative interactions among sub-goals based on 
information from a relaxed plan. We simulate the 
execution of a relaxed plan while accounting for actions’ 
delete effects, and combine the number of unsatisfied 
actions’ preconditions and top-level goals as a simulated 
execution penalty (SEP) of the relaxed plan. The SEP and 
the original heuristic value together provide a new 
estimation of the goal distance of a state. Note that our idea 
can be applied to any kind of relaxed plans to take account 
of actions’ delete effects, such as those generated by 
classical planning heuristic functions hFF or the set-additive 
and the conformant planning heuristic function of 
Conformant-FF (Brafman and Hoffmann 2008). The 
underlying components include how to define the 
semantics of actions’ application on (approximate) states 
and how to synthesize the penalty. In this paper we 
propose semantics for the simulation of classical relaxed 
plans (in section 3). As there are several ways to synthesize 
the penalty: qualitatively with thinking optimistically or 
quantitatively with thinking pessimistically, we’ll provide 
empirical results on both. In addition, we’ll show that our 
approach is sensitive to the order of actions in a relaxed 
plan and hence different from the approach in (Baier 2007). 
The simulation of relaxed plans could serve as a criterion 
for knowing how close a relaxed plan is to a real plan in 
terms of the actions and the order of actions. 
 We apply our approach on hFF, and get two heuristic 
functions called hPEO-FF and hPEP-FF. Experimental results 
on benchmarks domains show that hPEP-FF gains remarked 
improvement on hFF on several domains. 

The paper is organized as follows. The next section 
introduces backgrounds of planning. In section three we 
motivate our approach by an example, and then define the 
semantics for executing classical relaxed plans and the 
aggregation of penalties. Following that, we give the 
experimental results of our approach on several benchmark 
domains. We make some discussions and conclude at the 
end. 
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Background 
A planning task is T = (F, O, I, G), where F is the set of 
atoms involved, O is the set of actions, I ⊆ F is the initial 
state, and G ⊆ F is the goal conditions. We follow the 
representation of actions in (Hoffmann and Nebel 2001). 
An action o ∈ O is of the form (pre(o), add(o), del(o)), 
where pre(o), add(o) and del(o) are subsets of F and 
denote preconditions, add list and delete list of o 
respectively. A state s is a subset of F. An action o is 
applicable in s if pre(o) ⊆ s. Here, we assume each action 
with cost 1. The planning problem on T is to find a 
sequence of actions that maps the initial state I into a goal 
state sG that satisfies sG ⊆ G. 
 The delete-relaxation of T = (F, O, I, G) is T′ = (F, O′, I, 
G) where A′ = {(pre(o), add(o), ∅)| (pre(o), add(o), del(o)) 
∈ A}. The cost of T is estimated by the length of a plan of 
T′, which is computed by the relaxed GraphPlan in hFF 
(Hoffmann and Nebel 2001) or by mathematical equations 
in the set-additive heuristic (Kedyer and Geffner 2007). 
 The RPB heuristics can capture the so-called positive 
interactions among goals: if there is an action o that adds 
two facts p and q and is applicable in a state s, then the cost 
of reaching p and q from s is estimated by the RPB 
heuristics as 1. In contrast, the additive heuristics may 
count o twice in the above example, which is not 
reasonable. However, as delete-lists of actions are ignored, 
RPB heuristics cannot reason about negative interactions 
among sub-goals. Take a simple example. There is an 
action o′ that adds a goal fact p and deletes a goal fact q. If 
q was reached and o′ is used to achieve p then q is 
destroyed and should be re-achieved with an additional 
cost. RPB heuristics will ignore the additional cost and 
hence misguide a search algorithm in some cases as 
discussed in (Helmert 2004). In the following section, 
we’ll use the delete effects of actions in relaxed plans to 
take account of such additional cost, which can also 
uncover problem structures to some extent. 
 
 
 
 
 
 

 
Figure 1: Blocksworld Example. 

Enhancing RPB heuristics with penalties 
We firstly illustrate our idea by the example in Fig. 1. In 
the planner FF, a relaxed plan for the state s is : 
<{unstack(A,B)},{unstack(B,C)},{pickup(C)},{stack(C,A)
}>. Thus, the heuristic value for s is 4, which under-
estimates the real optimal goal-distance that is 8. To 
improve the estimate, we’d like to know how much 
additional cost should be paid to extend the relaxed plan be 
a real plan. We could estimate the cost by a run of the 
relaxed plan with recording the number of unfulfilled 

preconditions (flaws) of actions in the relaxed plan. Table 1 
lists the actions in order in the relaxed plan and also the 
global goals. Let’s make a run of the relaxed plan and see 
what happens. The preconditions of the first action 
unstack(A,B) are all fulfilled in the state s. After executing 
unstack(A,B) with both its add list and delete list on s, we 
get an approximate state s’ where the fact handempty is 
deleted. For the second action unstack(B,C), its 
precondition handempty is not fulfilled in s’. To fix the 
flaw, we need a sequence of actions that can apply after 
unstack(A,B) and adds handempty (in this case, 
putdown(A) can do the job). With the fix, we may execute 
unstack(B,C) on s’ with adding the add list and deleting the 
delete list of unstack(B,C). Following this way, we may 
found: the third action pickup(C) has handempty 
unfulfilled; the forth action stack(C,A) has clear(A) 
unfulfilled and finally the global goal on(A,B) is not 
fulfilled. Totally, we need 3 additional actions to fix the 
flaws in actions’ preconditions and 1 action for the goal 
on(A,B). With these information, we propose to update the 
heuristic value of s be 4+(3+1)=8. We call the cost 3+1 as 
a penalty for the RPB heuristic.  
 We should note that getting the optimal estimation in the 
above example is a coincidence anyway. However, the 
simulated run of the relaxed plan in Table 1 really 
uncovers some negative effects of actions. Especially, our 
approach considers the availability of the hand, which is 
ignored in the relaxed problem. 

Table 1: Actions in a relaxed plan. 

Simulated Execution of Relaxed-Plans 
Given a planning task T = <F, O, s, G> and a relaxed plan 
for s of the form π = <a0, …, an-1>. The simulated 
execution of π is a sequence of state <s0, s1, …, sn>, where 
s0 = s, si = si-1 + pre(ai-1) + add(ai-1) – del(ai-1) for i = 1..n. 
Note that the simulated execution is different from real 
execution of ai-1 on si-1: si = si-1 + add(ai-1) – del(ai-1), to 
reflect the existences of fixes. We assume that there are 
always some sequence of actions add the unfulfilled 
preconditions of ai-1 in si-1: pre(ai-1) - si-1. 
 We assume a relaxed plan is a sequence of actions. The 
order of actions in the relaxed plan is set by the underlying 
algorithms constructing the relaxed plan. We’ll explain this 
on hFF later. Also note that, we may need an exponential 
number of actions to achieve one unfulfilled precondition 
of an action. So, we make further simplifications in the 
following section to aggregate penalties.  

Aggregate Penalties 
From the definition of the simulated execution, if ai is not 
applicable on the state si-1, we assume there are some 

unstack(A,B) unstack(B,C) pickup(C) stack(C,A) Global 
goals 

pre: 
clear(A) 
on(A,B) 
handempty 

pre: 
clear(B) 
on(B,C) 
handempty 

pre: 
clear(C) 
handempty 

pre: 
holding(C)
clear(A) 
 

pre: 
on(A,B) 
on(C,A) 

C 

B 

A C 

B 

A 

Initial State Goal 
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additional actions that can reach facts in pre(ai-1) – si-1. If 
there are more than one unfulfilled preconditions, we 
propose two ways to estimate the number of actions that 
are needed. If thinking optimistically, we could use one 
action to achieve all the unfulfilled preconditions. If 
thinking pessimistically, we could use one action to 
achieve one such precondition only. According to these 
two options, we define the penalties of relaxed plans in the 
following two ways. 
 For convenience, we add a dummy action into T = <F, 
O, s, G> to represent goals: aG with preconditions G, an 
add list {g} and an empty delete list. The penalty of a 
relaxed plan π = <a0, …, an-1> for T is: 

0..
( , ) ( , )i ii n

P s ER s aπ
=

= ∑     (1) 
where si is generated in the simulated execution of π and an 
= aG, and 

0 ( )
( , )

1
i i

i i

if pre a s
ER s a

else
⊆⎧

= ⎨
⎩

   (2) 

or  
ER(si,ai) = |pre(ai) - si|     (3). 

If be optimistic, we use equations (1) and (2); otherwise we 
use equations (1) and (3). However, thinking optimistically 
may seem not realistic in domains where a set of facts can 
not be reached at the same time by any action. Our future 
work would consider to use a sequence of actions to fix a 
flaw when aggregating penalties. 

Penalty-enhanced RPB heuristics 
Given a RPB heuristic function h, for a state s and a 
relaxed plan π defined by h for s, we define the penalty-
enhanced version of h as: 

hPE(s) = h(s) + P(s, π)              (4). 
The penalty-enhanced RPB heuristic uses both the solution 
length of a relaxed plan and the cost of fixing the flaws in 
our “simulated execution of the plan”. Hence, it has the 
potential to be more informative. P(s, π) can be calculated 
in time O(n|F|), where n is the number of actions in the 
relaxed plan and F is the set of atoms in the planning task. 
 Our approach can be applied to any kind of RPB 
heuristic that defines a relaxed plan while making 
estimations of states. And, it will be interesting to see what 
will happen when our approach applied to several RPB 
heuristics, as the penalty P(s,π) depends on the order of 
actions in a relaxed plan. In the next section, we provide 
results on the well-known heuristic hFF. 

Experimental Evaluation 
We applied our approach on FF, and tested nine 
benchmark domains. We implemented the two versions of 
our approach with the code of FF-2.3 1 : the optimistic 
version hPEO-FF(s) = hFF(s) + P(s,π) with P(s,π) defined by 
equations (1) and (2); the pessimistic version: hPEP-FF(s) = 
hFF(s) + P(s,π) with P(s,π) defined by equations (1) and (3). 
                                                 
1 http://members.deri.at/~joergh/ff.html 

The search algorithms are Enforced Hill-Climbing (EHC) 
and Greedy Best-First (GBF), where we try EHC first and 
can GBF after EHC fails. The nine tested domains are: 
Assembly, Blocks (with 4 operators), Schedule, FreeCell, 
Depot, Rovers, Airport, Pips-notankage, and Trucks. All 
the instances in every domain are from the test suites of 
recent IPCs (1-5). The test was done on a computer 
running Linux with a 3.2GHz Intel Xeon CPU. The time 
limit is 300s and the memory limit is 512M. We report 
here the results of hFF, hPEO-FF and hPEP-FF, in terms of the 
failing rate, average node-expansions and average search-
time over commonly solved instances. 
 The relaxed plans computed by FF following some 
strategies, such as “noop-first” and “actions with least 
difficulty first” (Hoffmann & Nebel 2001). These 
heuristics are proved to be useful. However, they are 
greedy to put actions at their earliest applicable time points 
in the relaxed problem. For example, given three locations 
A, B, C where A is connected to B and C, but B and C are 
not connected. If we want to traverse B and C from A to 
finish some logistic task, it is not reasonable to execute 
move(A,B) and move(A,C) both at the first time point. If 
we can order these actions in a more reasonable way 
(Keyder and Geffner 2007), then other actions, such as 
“loading packages”, may be ordered accordingly in some 
way. This is one of our future working directions. 
 Before reporting the detailed data, we give a brief 
summary on the result. In the results, hPEO-FF and hPEP-FF 
show different performance on nearly a half of the testing 
domains. From the overall results, we see that hPEP-FF is 
much better than hPEO-FF. Compared to hFF, hPEP-FF and 
hPEO-FF have a slight increase in failing rate, but show 
remarked improvements in efficiency on 6 and 5 domains 
respectively. 
 
 Number of unsolved Instances 
Domains hFF hPEO-FF hPEP-FF 
Assembly (24) 0 0 0 
Blocks (35) 4 3 0 
Schedule (150) 17 19 26 
FreeCell (20) 0 2 2 
Depot (22) 2 3 3 
Rovers (40) 4 0 0 
Airport (34) 5 6 2 
Pipes-no (34) 4 8 6 
Trucks (30) 19 19 19 
Total (389) 55 60 58 

Table 2: Number of unsolved instances by domain. 
 

 Table 2 shows the failing rate of the tested heuristics. 
From the table, we can see that hPEO-FF and hPEO-FF hFF fails 
a little more than hFF. hPEO-FF is better than hFF on Blocks 
and Rovers. hPEP-FF is better than hFF on Blocks, Rovers 
and Airport. The three heuristic have difficulty in solving 
instances from the harder domains: Schedule (in IPC-2), 
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Pips-notankage (in IPC-4) and Trucks (in IPC-5) within the 
given resource limits. We note that, in the Blocks and 
Rovers, hFF fails on some large instances, which are all 
solved by hPEP-FF. In other domains, the three heuristics 
often fails on large instances due to the limits on the 
resource.  Our new heuristics also fails on some instances 
of moderate size that are solved by hFF.  
  
 Average Node-expansions 
Domains hFF hPEO-FF hPEO-FF/hFF hPEP-FF hPEP-FF/hFF

Assembly 204.25 188.83 0.92 188.54 0.92 
Blocks 11209.70 705.94 0.06 225.90 0.02 
Schedule 238.07 93.70 0.39 95.93 0.40 
FreeCell 812.24 2621.59 3.23 651.24 0.80 
Depot 12281.90 3293.56 0.27 3997.72 0.33 
Rovers 3440.81 681.03 0.20 498.44 0.14 
Airport 39464.80 5933.89 0.15 2748.81 0.07 
Pipes-no 6696.09 10669.40 1.59 7974.64 1.19 
Trucks 94835.70 219094.00 2.31 166678.00 1.76 

Table 3: Average Node-expansions on commonly solved 
instances by domain. 

 
 Average Search-time (s) 
Domains hFF hPEO-FF hFF/hPEO-FF hPEP-FF hFF/hPEP-FF

Assembly 0.19 0.15 1.27 0.15 1.27 
Blocks 0.45 0.03 15.00 0.01 45.00 
Schedule 0.28 0.09 3.11 0.09 3.11 
FreeCell 1.40 6.15 0.23 0.86 1.63 
Depot 4.58 2.65 1.73 2.54 1.80 
Rovers 9.76 1.61 6.06 1.02 9.57 
Airport 10.59 1.81 5.85 1.08 9.81 
Pipes-no 2.49 4.65 0.54 4.03 0.62 
Trucks 8.74 54.08 0.16 31.65 0.28 

Table 4: Average Search-time on commonly solved 
instances by domain. 

 
 Table 3 shows the performance in terms of average 
node-expansions on “commonly solved instances” (those 
instances that are solved by the three heuristics). hPEO-FF 
shows big improvement on hFF in Blocks, Schedule, Depot, 
Rovers, and Airport and a slight improvement on 
Assembly. Further, hPEP-FF has the same advantage and 
does better than hFF on FreeCell. Compared to hFF, the save 
in average node-expansions of our penalty-enhanced 
versions is more than 50% in Blocks, Schedule, Depot, 
Rovers, and Airport. In FreeCell, Pips-notankage and 
Trucks, hPEO-FF and hPEP-FF are worse than hFF, which may 
indicate that the penalty computed by our approach is 
crude in domains with complicated problem structures. 
 Table 4 lists the average search-time of the tested 
heuristics. The table shows that the save in node-
expansions makes hPEO-FF and hPEP-FF gain much 
improvement in search-time. In Blocks, Rovers, and 

Airport, hPEP-FF speeds up the search algorithm 
considerably, compared with hFF. From table 3 and 4, we 
can conclude that the computation of penalties requires 
very low overhead in many cases.  

Conclusions 
We proposed a method to improve the RPB heuristics. The 
basic idea is based on that relaxed plans are usually useful 
guidance for constructing real plans. With actions’ delete 
effects, we define the simulated execution of relaxed plans, 
and then aggregate penalties from the number of 
unfulfilled actions’ preconditions and goals. The penalty 
serves as an estimate of the cost of extending a relaxed 
plan to a real plan. Preliminary results show that our 
approach improves the heuristic function of FF a lot on 
several domains, but also has difficulty to scale up in some 
domains with complicate problem structures. 
 The future work would be improving our approach by 
accounting some domain information in aggregating 
penalties and test our approach with the pure Greedy Best-
First search algorithm to see the improvement in terms of 
accuracy. We’ll also apply our approach to other RPB 
heuristics, such as the set-additive heuristic by Keyder and 
Geffner (2007) and the heuristic based on relaxed plan 
with low conflicts (Baier 2009). 
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