
Recovering Plans from the Web

Andrea Addis1a, Giuliano Armano1b and Daniel Borrajo2c

1Department of Electrical and Electronic Engineering, University of Cagliari, Italy
2Department of Computer Science, University Carlos III of Madrid, Spain

aaddis@diee.unica.it, barmano@diee.unica.it, cdborrajo@ia.uc3m.es

Abstract

Planning requires the careful and error-prone process of
defining a domain model. This is usually performed by
planning experts who should know about both the do-
main in hand, and the planning techniques (including
sometimes the inners of these techniques or the tools
that implement them). In order planning to be widely
used this process should be performed by non-planning
experts. On the other hand, in many domains there are
plenty of electronic documents (including the Web) that
describe processes or plans in a semi-structured way.
These descriptions mix natural language and certain
templates for that specific domain. One such examples
is the www.WikiHow.com web site that includes plans
in many domains, all plans described through a set of
common templates. In this work, we present a suite of
tools that automatically extract knowledge from those
unstructured descriptions of plans to be used for diverse
planning applications.

Introduction
We are assisting to a continuous growth in the availability of
electronically stored information. In particular, the Web of-
fers a massive amount of data coming from different and het-
erogeneous sources. Most of it is in an unstructured format
as natural language (blogs, newspapers) or semi-structured
mixing some structure with natural language descriptions
and predefined ontologies as in Wikipedia1, eBay2, Ama-
zon3, or IMDb4. In Wikipedia, a style template has to be
filled in for each category belonging to a hierarchical struc-
ture of topics. In commercial sites as eBay, the online auc-
tion and shopping website, Amazon, an American-based
multinational electronic commerce company website, a pre-
defined list of mandatory attributes within its category is
provided for each article. Also a more specialized knowl-
edge base, IMDb, the Internet Movie Database, provides a
list of standard attributes such as authors, director, or cast for

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://www.Wikipedia.org
2http://www.eBay.com
3http://www.Amazon.com
4http://www.IMDb.com

each stored movie. In the spirit of Wikipedia, WikiHow5 is
a wiki-based web site with an extensive database of how-to
guides. They are provided in a standard format (template)
consisting of a summary, followed by needed tools (if any),
steps to complete the activity, along with tips, warnings, re-
quired items, links to related how-to articles, and a section
for sources and citations.

Currently, the most overshadowing and noteworthy web
information sources are being developed according to
the collaborative web paradigm, also known as Web
2.0 (O’Reilly 2005). It represents a paradigm shift in the
way users approach the web. Users (also called prosumers)
are no longer passive consumers of published content, but
become involved, implicitly and explicitly, as they coop-
erate by providing their own content in an architecture of
participation (Burdman 1999). Nowadays, thanks to ad-
vanced publishing tools the semi-structured knowledge base
is more common, but not yet dominant. Therefore, is be-
coming a primary issue to support applications that require
structured knowledge to be able to reason (as in the form of
ontologies), in handling with this enormous and widespread
amount of web information. To this aim, many automated
systems have been developed that are able to retrieve infor-
mation from the Internet (Addis, Armano, and Vargiu 2008a;
Camacho et al. 2005), to select and organize the con-
tent deemed relevant for users (Addis, Armano, and Vargiu
2008b; Birukov, Blanzieri, and Giorgini 2005). Furthermore
there has been some work on ontology learning (Zhou 2007;
Manzano-Macho, Gmez-Prez, and Borrajo 2008) pointing
out how it is possible to solve the problem concerning the
lack of structure of which the web often suffers. Thus, the
structured format of the extracted knowledge is usually in
the form of hierarchies of concepts (see for example the
DMOZ project6) and this can help on developing many dif-
ferent kinds of web-based applications, such as mainly spe-
cialized or general purpose search engines, and web direc-
tories. Other applications need information in the form of
individual actions more than structured hierarchies of con-
cepts, or in the form of plans.

On the other hand, making planning a widely used tech-
nology requires its usage by non-planning experts. As

5http://www.WikiHow.com
6http://www.dmoz.org

1



discussed in the abstract, this is something far from be-
ing a reality currently. So, there is a need for techniques
and tools that either allow an interaction with domain ex-
perts in their usual language, or automatically (or semi-
automatically) acquire knowledge from current sources of
plans and actions described in semi-structured or unstruc-
tured formats. In the first case, there has been some work on
knowledge acquisition tools for planning as GIPO (Simp-
son, Kitchin, and McCluskey 2007), techniques for do-
main models acquisition (Gil 1991; Wang and Veloso 1994;
Yang 2005), or tools that integrate planning and machine
learning techniques (Fernndez et al. 2007). In the sec-
ond case, there has been very little work on building plans
from human generated plans or actions models described
in semi-structured or unstructured formats, as filling natural
language descriptions on templates. Another field that could
also benefit from this automatic (or semi-automatic) acqui-
sition of plans is the goals/activities/plan recognition (Tapia,
Intille, and Larson 2004), where most of its work assumes
the existence of plan libraries that are manually coded. Ex-
amples are in the health environment (Sánchez, Tentori, and
Favela 2008), helping aging persons to perform their daily
activities (Pollack et al. 2003), or to assist a user on per-
forming bureaucratic or tourism related actions (Castillo et
al. 2008).

In this paper, we want to describe some work to bridge
the gap between the lack of tools to automatically build plans
and action models from semi-structured information, and the
existence of this kind of knowledge in the Web, as is the case
of WikiHow. This is similar to what is currently done in the
Semantic Web, Information Retrieval or Ontology Learning
fields. We have built a set of tools in a modular structured
architecture, which automatically browses some specific cat-
egory from the ones represented in WikiHow, analyzes indi-
vidual plans in those web pages, and generates structured
representations of the plans described in natural language in
those pages. We believe this is an important step towards a
massive usage of planning technology by users in that they
can share plans as they are doing now through WikiHow in
natural language, and then automatic tools build planning
technology on top of those plans. This applies also to other
domains as workflow applications, where most big organiza-
tions have written processes, or hospitals, where many stan-
dard procedures are described also in semi-structured for-
mats. Also, we will encourage research in this topic by sug-
gesting potential relevant tools to be built on top of our re-
search for improving the construction of planning and plan
recognition tools. The remainder of the paper is organized as
follows: first the proposed architecture is depicted, and the
constituting subsystems are separately analyzed. The exper-
iments and their results are presented and evaluated. Finally,
we draw some conclusions and outline future research.

From Unstructured Plans to Action and Plan
Models

In this section we describe the Plan Acquisition Architec-
ture (PAA) that performs the acquisition of plans and actions
from semi-structured information. Then, we will describe

the information source that we have used in this paper for
showing how it works.

The PAA
Figure 1 highlights how the different subsystems, each
wrapping different technologies, retrieve and transform the
semi-structured information provided by web articles into a
structured output. The output contains labeled and recogniz-
able objects (e.g. work tools, ingredients), actions (e.g. cut,
peel, fry) and plans (e.g. sequences of instantiated actions),
so that they may be reused for planning purposes.

Crawler

Page Processor

Plans
library

plans

actions

Plan Acquisition

web pages

Actions
library

WEBWEB
Initial State:Initial State:
thingsyoulneed(cups)
[…]
tool(flour,2, cups)
tool(salt, 1, teaspoon)
[…]
Goal:Goal:
Tortilla
ActionsActions:
combine(flour, salt)
cut(shortening)
add(water)
[…]

Figure 1: PAA at a glance.

The Crawler subsystem is devoted to crawl and store
pages and category sections of a web site. The Page Proces-
sor subsystem is currently the core of PAA. It is aimed at an-
alyzing web pages, storing only the relevant semi-structured
content into an action library after performing an initial pre-
processing. In particular (i) the goal, (ii) the initial state (in
terms of required tools), (iii) the actions, (iv) tips (to be ex-
ploited as heuristic hints), (v) warnings (to be exploited as
plan build constraints), and (vi) articles related to the se-
lected page/plan are stored for each input. The Plan Acqui-
sition subsystem processes this information to extract plans.
The tools belonging to each subsystem, depicted in Figure 2
will be separately analyzed.

WikiHow: a Knowledge Source for Extracting
Plans
WikiHow is a collaborative writing project aimed at building
the world’s largest and highest quality how-to manual. Wik-
iHow currently contains more than 56,000 articles written,
edited, and maintained primarily by volunteers. Each arti-
cle contains the necessary tools and describes the sequence
of actions required to reach the goal the page is concerned
with. As an example, let us take a look at the page Make
Your Own Tortillas,7 reported in Figure 3, to better under-
stand how the Page Processor subsystem parses its different
sections. The relevant ground items that can be contained
in each WikiHow web page are actions, tools, and related

7http://www.wikihow.com/Make-Your-Own-Tortillas

2



Page ProcessorPage Processor

ArticleSearch

CrawlerCrawler CategoryCrawler

BatchExtractor

ArticleProcessor

Plan AcquisitionPlan Acquisition
ArticlePostProcessor

DataMiner

Figure 2: Subsystems of PAA and corresponding tools.

web pages (relatedwps), represented as A, T, and WP re-
spectively. The Page Processor is the subsystem entrusted
with processing the different sections of the page, their name
being identified by a < div id = NAME > HTML tag (e.g.
< div id = ”ingredients” >). Each section must be associ-
ated with a type, being one of the following:

• actions: a sequence of actions, representing the necessary
steps to reach the goal. Examples of actions are combine
flour and salt, cut in shortening;
• tools: a set of tools needed to reach the goal with dif-

ferent semantics depending on the selected category, e.g.
ingredients for the cuisine category and mechanical tools
for the building stuff category. They represent the initial
state. Examples of tools are: 2 cups of flour, or 1 spoon of
salt;

• relatedwps: other web pages related with the described
task. Examples of related pages are how to make Tor-
tilla de Patatas, how to make Flour Tortillas, how to make
Tacos. This is usually not used within planning, but they
open new possibilities for planning purposes, such as sug-
gesting potentially relevant plans.

Since the Steps, Tips and Warnings sections, that are
of type actions, the ThingsYoullNeed section of type tools,
and the RelatedWikiHow section of type relatedwps are sug-
gested by the WikiHow template layout, they occur in al-
most every page. They are parsed by default by the Page
Processor, whereas further sections (e.g. Ingredients of type
tools usually added by the person that compiles a recipe)
have to be explicitly declared.

The Crawler
The Crawler subsystem includes tools devised to find an arti-
cle using natural language and to find all the articles belong-
ing to a specific category. Given the set of natural language
queries, and the HowTo categories, the crawler can perform
the following functions:

• ArticleSearch: given a user input stated as a natural lan-
guage query, it finds all relevant articles, sorted by rele-
vancy rank. Furthermore, it selects the highest ranking

Figure 3: WikiHow sample web page

page and processes it. As an example, if the user enters
the query Make Tortilla, the pages:

1. http://www.wikihow.com/Make-Your-Own-Tortillas
2. http://www.wikihow.com/Make-Tortilla-de-Patatas
3. http://www.wikihow.com/Make-Tortilla-Pizzas
4. http://www.wikihow.com/Make-Tortilla-Snacks
5. [...]

are suggested as relevant, and the first one (e.g. Make
Your Own Tortillas) is automatically parsed by the Arti-
cleProcessor (described later on)

• CategoryCrawler: permits to find all the arti-
cles belonging to a specific category. For in-
stance, if the user enters the category recipes,
http://www.wikihow.com/Category:Recipes, the crawler
will find the current 3144 receipts belonging to its 167
sub-categories.

• BatchExtractor: applies the page processing to all the
pages belonging to a category. It stores results in a file
representing the category or in a database. Currently it
can handle every JDBC-compliant database.

The Page Processor
The Page Processor subsystem includes tools for processing
a web page, to facilitate the recognition of sections, together
with the type of their content. Currently the Page Processor
includes only the ArticleProcessor tool. The ArticleProces-
sor implements a function that, given as input a web page
returns a tuple < a, t, r > where a, t, and r, are a sequence

3



of actions, a set of tools, and related web pages, respectively.
Each tuple can be seen as an augmented plan with informa-
tion on its actions, a, initial state, t and related plans r. This
processing phase tries to remove all noisy information while
avoiding to lose the relevant one required for further pro-
cessing. The ArticleProcessor embeds an HTML parser de-
voted to cope with several errors, such as the ones related to
the <div> closure tag, incoherences with the id attribute
declarations, changes on the main structure of the page, or
bad formatted HTML code.

This subsystem incorporates the current standard tools for
processing natural language, such as stemming procedures,
which remove inflectional and derivational suffixes to con-
flate word variants into the same stem or root, or stopword-
ing procedures which remove words with a low information
content (e.g. propositions, articles, common adverbs) from
the text. The semantic analysis is performed by using Word-
Net,8 a lexical database considered the most important re-
source available to researchers in computational linguistics,
text analysis, and related areas. Its design is inspired by cur-
rent psycholinguistic and computational theories of human
lexical memory (Fellbaum 1998).

The raw content of a sentence is also preserved to per-
mit further tools to re-parse it. As for the sections of type
actions, the action itself of each sentence is recognized by
identifying the verb or the corresponding compound. Fur-
thermore, a set of parameters related to the action are stored
and separated from the redundant part of the sentence. More
specifically, both actions, tools and relatedwps can have re-
lated parameters. Next, we define the most relevant parame-
ters of each type of information.

The parameters related to actions are:

• action: the main action, represented by a verb or a com-
pound

• components: the components of the action

• components-st: the stopwording+stemming of the com-
ponents field

• plus: sentences related to the action considered redundant

• plus-st: the stopwording+stemming of the plus field

• raw: the raw content of the sentence

As an example of actions parsing, given two of the input
sentences in the Tortillas Web page “Combine flour, salt, and
baking powder in a large medium large bowl.” and “Cut in
shortening until lumps are gone.”, the output of the parser
would be:

ACTION:combine; COMPONENTS:flour; PLUS:salt,
amp baking powder in a large medium large bowl;
COMPONENTS-ST:flour; PLUS-ST:bowl larg bake pow-
der amp medium salt; RAW:combine flour, salt, amp baking
powder in a large medium large bowl. and ACTION:cut;
COMPONENTS:in shortening; PLUS:until lumps are gone;
COMPONENTS-ST:shorten; PLUS-ST:lump gone until;
RAW:: cut in shortening until lumps are gone.

8http://Wordnet.Princeton.edu/

As for the elements of type tools, the information con-
cerning Quantity, Unit of measure (e.g. units, grams, cen-
timeters, cups, spoons) and name of the ingredients is stored.
So their parameters are:

• quantity: the quantity/measure of the tool

• type: the unit of measure of the tool

• tool: the name of the tool

• tool-st: the stopwording+stemming of the tool field

As an example, given the sentence “< b > 2 < /b >
cups of flour”, taken from the ingredients section of the How
To Make Your Tortillas web page, the parser would gen-
erate: QUANTITY:2; TYPE:cups; TOOL:of flour; TOOL-
ST:flour; RAW:: < b > 2 < /b > cups of flour.

In the case of the relatedwps, only the name and the HTTP
URL are stored. They serve as indexes in our plan data base
for accessing other plans.

As an example of related web pages for the article Make
Your Own Tortillas, it would generate the following two re-
lations:

• URL:http://www.wikihow.com/Make-Your-Own-
Tortillas; NAME:Make Your Own Tortillas;

• URL:http://www.wikihow.com/Make-Tortilla-de-Patatas;
NAME:Make Tortilla de Patatas;

The Plan Acquisition
The plan acquisition subsystem includes tools that allow to
create plans from web pages; in particular a post-processor
that integrates semantic tools (i.e. the ArticlePostProcessor)
and a suite of statistical tools (i.e. the DataMiner).

The ArticlePostProcessor
Given a web page, the ArticleProcessor builds its corre-
sponding plan. For each action and tool, the ArticlePostPro-
cessor uses the information retrieved by the ArticleProces-
sor, encompassing in particular the semantical annotation,
in order to define the end result in the form of an augmented
plan. The plan representation contains information about

• The goal represented by the name of the web page

• The initial state in the form of needed tools represented
as a tuple <name of the section, quantity/measure, unit of
measure, name of the tool>

• The actions to reach the goal represented as a tuple
<name of the section, ordinal number of the action, ac-
tion name, action tools (if any)>

As an example, the following is an extracted plan for the
web page How To Make Your Own Tortillas:

• Goal: make tortilla

• Initial state:

– tool(ingredients,2,cup,flour):
– tool(ingredients,1,tsp,salt):
– tool(ingredients,1,cup,water):
– [...]

4



• Plan:

– action(steps,1,combine,{flour,salt});
– action(steps,2,cut,{shorten});
– action(steps,3,make,{indentation});
– action(steps,4,add,{water});
– action(steps,5,work,{mixture});
– [...]

The DataMiner
The DataMiner is a tool containing data mining and statisti-
cal algorithms. Statistics extracted by this tool are useful to
understand which component or action is most likely to be
used or applied in a specific context, in order to build new
plans, or which are the most common subsequences of ac-
tions. Experiments have been performed exploiting actions,
goal, tools frequency tables, and goal→ action, goal→ tool
correlation tables. If we express the correlation between X
and Y as C(X, Y ) = F , where F is the value of the fre-
quency of how many times the object X appears in the con-
text Y , an example of correlation between goal components
and actions performed in the context of the receipts category
is:

• C(cake, pour) = 19.12934%

• C(sandwich, put) = 19.01585%

• C(cream, add) = 17.94737%

• C(cake, bake) = 14.81189%

This highlights that, for instance, it’s likely (with proba-
bility above 19%) to perform the action put when the goal
is to make a sandwich. It will be also useful to analyze par-
ticular subsequences of plans in specific contexts (e.g. what
are the most likely actions to be performed on an onion in
receipts needing oil?).

Experiments
PAA has been developed in Java using the version 1.6.0.11
of the Sun Java Development Kit. NetBeans 6.5.19 has been
used as IDE. For the experimental phase, a GUI and a Glass-
fish WebService integrating the architecture have been de-
ployed.

We have applied PAA to three WikiHow categories:

• Receipts: http://www.wikihow.com/Category:Recipes

– 3144 receipts parsed/acquired plans
– 167 sub-categories found
– 24185 different individual actions

• Sports: http://www.wikihow.com/Category:Team-Sports

– 979 team sports parsed/acquired plans
– 22 sub-categories found
– 6576 different individual actions

• Travel destinations: http://[...]/Category:Destinations

– 230 travel destinations parsed/acquired plans

9http://www.Netbeans.org

– 16 sub-categories found
– 2017 different individual actions

The error on unrecognized actions (meaning that the cur-
rent version of PAA could not be able to semantically parse
some sentences and recognize their structure) is about 2%.
Let us point out in advance that it is difficult to assess PAA,
mainly due to the fact that correct representations in terms
of plans are not currently available. Hence, with regard to
the acquired plans, we did some ad-hoc analysis by manu-
ally inspecting some output plans. The analysis shows that
the system performed rather well on plan extraction, con-
sidering the complexity of the semantical analysis tasks and
the need to handle many outliers. In fact, parsing an HTML
page, even if automatically generated from a php engine,
is not trivial due to code injection during the compiling of
the predefined structure, and to the addition of different sec-
tions depending on the context (e.g. ingredients in receipts,
or work tools in machinery). Besides, sentences are struc-
tured in different ways and filled with different kinds of con-
tents more than “simple” steps. For instance, some people
add a lot of non descriptive text (e.g. from a step for the
“Make Vodka” how-to: Column stills produce purer alco-
hol because they essentially redistill the alcohol in a single
pass). Others add playful goals with facetious suggestions
(e.g. from the “Microwave a Peep” how-to: Don’t hurt your-
self with the fork. You will be a slave to the Peeps if you eat
it at all). Moreover, somebody slangs or adds actions not re-
lated to the goal (e.g. Stir and enjoy!). The preprocessor has
to handle all this, other than trying to manage compound
forms, exploiting redundant descriptions of the action into
the sentence and attempting to discover tools not explicitly
cited.

Clearly, it is impossible to perform perfectly well. How-
ever, we reached our goal to have a good tradeoff between
information retrieved from a web page and information loss
during the filtering process. Also, we obtained a reasonably
good tradeoff between semantical comprehension and intro-
duction of errors. Thus, even if the integrated technologies
that compose our tools are subject to future improvements,
they already gave us a base on which to work and play on
collected information in the next future.

Conclusions and Future Work
In this paper, we described a work aimed at bridging the gap
between the need of tools for automatically building plans
and action models from semi-structured information and the
existence of this kind of knowledge in the Web (e.g. Wiki-
How). We believe this work can encourage further research
in this topic that can greatly help the massive application of
planning to many real-world human related tasks. Experi-
mental results show that the tools performed well on extract-
ing plans, thus establishing a preliminary base on which to
work.

As for future work, the analysis of common subsequences
on multiple plans in the same domain will be performed.
We will base this analysis on previous work on planning
as macro-operators (Fikes, Hart, and Nilsson 1972), n-gram
analysis of natural language tools (Dunning 1994), or asso-

5



ciation rules learning (Kavsek, Lavrac, and Jovanoski 2003).
This can be further used for performing case-based planning
by recovering subsequences that include same specific ob-
ject. For instance, subsequences of recipes that use a par-
ticular ingredient or tool in general. Also, it could be used
by tools that help on inputing recipes on the WikiHow by
suggesting previous plans subsequences for the ingredients.
Furthermore, we plan to include a Planner subsystem that
contains tools necessary to exploit the collected knowledge
base (e.g. the plans library) to build new plans. Other uses
of this library will be aimed at performing plan recogni-
tion from data coming from sensors and at matching such
data against the plans recovered from the web, or at acquir-
ing complete action models with preconditions and effects
from the input plans (Yang, Wu, and Jiang 2007). We will
also exploit different knowledge bases as eHow10 an on-
line knowledge resource offering step-by-step instructions
on how to do just about everything. eHow content is cre-
ated by both professional experts and amateur members and
covers a wide variety of topics organized into a hierarchy
of categories; or HowToDoThings11 another hierarchically
organized knowledge base of how-to manuals, in order to
make our architecture even more general and independent
from the particular web site.

References
Addis, A.; Armano, G.; and Vargiu, E. 2008a. WIKI.MAS:
A multiagent information retrieval system for classifying
Wikipedia contents. Communications of SIWN 3(June
2008):83–87.
Addis, A.; Armano, G.; and Vargiu, E. 2008b. From a
generic multiagent architecture to multiagent information
retrieval systems. In AT2AI-6, Sixth International Work-
shop, From Agent Theory to Agent Implementation, 3–9.
Birukov, A.; Blanzieri, E.; and Giorgini, P. 2005. Implicit:
an agent-based recommendation system for web search. In
AAMAS ’05: Proceedings of the fourth international joint
conference on Autonomous agents and multiagent systems,
618–624. New York, NY, USA: ACM Press.
Burdman, J. 1999. Collaborative Web Development:
Strategies and Best Practices for Web Teams. Addison-
Wesley Longman Ltd.
Camacho, D.; Aler, R.; Borrajo, D.; and Molina, J. 2005. A
multi-agent architecture for intelligent gathering systems.
AI Communications, The European Journal on Artificial
Intelligence 18(1):1–19.
Castillo, L.; Armengol, E.; Onaindı́a, E.; Sebastiá, L.;
González-Boticario, J.; Rodriguez, A.; Fernández, S.;
Arias, J. D.; and Borrajo, D. 2008. SAMAP: An user-
oriented adaptive system for planning tourist visits. Expert
Systems with Applications 34(34):1318–1332.
Dunning, T. 1994. Statistical identification of language.
Technical report.

10http://www.eHow.com/
11http://www.howtodothings.com/

Fellbaum, C. 1998. WordNet An Electronic Lexical
Database. Cambridge, MA ; London: The MIT Press.
Fernndez, S.; Borrajo, D.; Fuentetaja, R.; Arias, J. D.;
and Veloso, M. 2007. PLTOOL. A KE tool for plan-
ning and learning. Knowledge Engineering Review Journal
22(2):153–184.
Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972. Learning
and executing generalized robot plans. Artificial Intelli-
gence 3:251–288.
Gil, Y. 1991. A domain-independent framework for ef-
fective experimentation in planning. In Proceedings of the
Eighth International Workshop (ML91), 13–17.
Kavsek, B.; Lavrac, N.; and Jovanoski, V. 2003. Lecture
Notes in Computer Science, volume 2810. Springer Verlag.
chapter APRIORI-SD: Adapting Association Rule Learn-
ing to Subgroup Discovery, 230–241.
Manzano-Macho, D.; Gmez-Prez, A.; and Borrajo, D.
2008. Unsupervised and domain independent ontology
learning. combining heterogeneous sources of evidence. In
Proceedings of the Sixth International Conference on Lan-
guage Resources and Evaluation (LREC’08).
O’Reilly, T. 2005. What is Web 2.0, Design Patterns and
Business Models for the Next Generation of Software. O’
Reilly.
Pollack, M.; Brown, L.; Colbry, D.; McCarthy, C.; Orosz,
C.; Peintner, B.; Ramakrishnan, S.; and Tsamardinos, I.
2003. Autominder: An intelligent cognitive orthotic sys-
tem for people with memory impairment. Robotics and
Autonomous Systems 44:273–282.
Sánchez, D.; Tentori, M.; and Favela, J. 2008. Activity
recognition for the smart hospital. IEEE Intelligent Systems
23(2):50–57.
Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. L.
2007. Planning domain definition using gipo. Knowl. Eng.
Rev. 22(2):117–134.
Tapia, E. M.; Intille, S. S.; and Larson, K. 2004. Pervasive
Computing. Springer Berlin / Heidelberg. chapter Activ-
ity Recognition in the Home Using Simple and Ubiquitous
Sensors, 158–175.
Wang, X., and Veloso, M. M. 1994. Learning planning
knowledge by observation and practice. In Proceedings of
the ARPA Planning Workshop, 285–294.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action
models from plan examples using weighted max-sat. Arti-
ficial Intelligence 171(2-3):107–143.
Yang, H. C. 2005. A general framework for automati-
cally creating games for learning. In Proceedings of the
fifth IEEE International Conference on Advanced Learn-
ing Technologies (ICALT’05), 28–29.
Zhou, L. 2007. Ontology learning: state of the art and open
issues. Inf. Technol. and Management 8(3):241–252.

6




