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Abstract 
Effective scheduling of the James Webb Space Telescope 
(JWST) requires careful management of the trade-offs 
among multiple scheduling criteria. Minimizing 
unscheduled time, angular momentum build-up, and the 
number of observations that miss their last opportunity to 
schedule are important objectives that are in competition 
with each other. Previous studies evaluated alternative 
multi-objective algorithms for scheduling JWST, including 
algorithms for breaking down the search into separately 
assigning and optimizing schedule times and spacecraft 
roll.  This study builds on these results by enriching the 
JWST scheduling model to include a high fidelity 
maneuver model between observations, along with realistic 
science restrictions on how spacecraft roll can be assigned 
to observations. Additional multi-objective search 
strategies are evaluated using a parallelized multi-objective 
algorithm that can exploit available computing resources to 
reduce overall runtime.  We have also incorporated 
constraints into the problem formulation, to drive the 
candidate solution set to better sample the Pareto frontier 
in regions of greater interest. The results not only 
demonstrate techniques useful for scheduling JWST but 
also show how multi-objective algorithm features such as 
parallelism, constraints, and the choice of population size 
impacts the quality of the schedules generated. Each of the 
algorithms explored produces a Pareto frontier as output. 
 As a result there is no canonical way of comparing which 
algorithm performs better.  This paper presents tools and 
techniques for comparing multi-objective algorithms and 
presents the analogy that this evaluation is essentially a 
recursive application of multi-objective optimization.  

 Introduction  
The James Webb Space Telescope (JWST) will be the 
premier astronomical facility of the next decade, replacing 
two of the current Great Observatories, Hubble Space 
Telescope (HST) and Spitzer Space Telescope (SST) as a 
uniquely capable space-based observatory with highly 
ambitious scientific objectives. Scheduled for launch in 
2013, JWST will have a 6.5m primary mirror diameter 
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(compared to 0.85m for SST, and 2.4m for HST ), and 
will primarily observe in the infrared (like SST, and in 
contrast to HST's primarily optical and UV sensitivity). 
JWST will study an enormous range of scientific 
questions, ranging from the early universe to planets 
within and outside the solar system. 
 Scheduling a mission such as JWST requires the 
balancing of many factors. Clearly, such an expensive and 
unique facility must be utilized as efficiently as possible, 
and minimizing any wasted time is a primary objective. 
At the same time, the lifetime of the observatory is 
limited by consumables such as propellant for reducing 
momentum buildup in the spacecraft's reaction wheels. 
Thus, optimization of the JWST schedule is determined 
by multiple simultaneous objectives, for which there is no 
well-defined trade-off mechanism that would permit 
definition of a single combined objective. Multi-objective 
techniques that keep the objectives separate permit 
explicit visibility and management of the multiple 
tradeoffs that are necessary to generate a balanced overall 
schedule for JWST. 
 For JWST, two of the primary objectives are 
minimizing schedule gaps, and minimizing the number of 
late observations, i.e. that miss their last scheduling 
opportunity. The more unusual objective is that of 
reducing angular momentum buildup in the spacecraft 
reaction wheels, caused by a complex interaction of 
pointing direction, roll angle, and solar radiation pressure 
on the tennis court-sized sunshade. Angular momentum 
buildup must be compensated by firing the spacecraft 
thrusters, which consumes propellant and thus is 
potentially a limiting factor on mission lifetime. The 
angular momentum resource constraint has several 
important features: 

- it is intrinsically 3-dimensional 
- resource consumption is vector additive, so that 

scheduling an observation at a particular time 
can either increase or decrease the overall 
accumulation in a nonlinear manner 

- angular momentum represents both a hard 
constraint as an overall limit, as well as a 
preference to minimize buildup to maximally 
conserve propellant 

These features are different from the types of resources 
covered in the planning and scheduling literature (Laborie 
2003; Policella et al. 2004) where activities consume and 
release a constant capacity. In particular, the non-linearity 
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of the domain prevents us from employing techniques 
commonly used to handle resource constraints.  
 Previous studies on JWST scheduling (Rager and 
Giuliano 2006, Giuliano et al. 2007) demonstrated 
effective heuristics for scheduling JWST within a 
simplified spacecraft model. (Giuliano and Johnston, 
2008) enriched the scheduling problem by adding the 
ability to control momentum usage through assigning a 
spacecraft roll for observations as well as assigning 
schedule times.  Alternative search algorithms were 
empirically evaluated exploring how the search for 
schedule times and spacecraft roll could best be 
performed. The best algorithm decomposed the search 
into a two step processes.  In the first step, observations 
are assigned times that minimize gaps and missed 
observations.  In the second step, observations are 
assigned spacecraft rolls that minimize momentum build 
up.  
 In this paper we further enrich the scheduling model for 
JWST by adding: 

- A slew model that calculates the overhead to 
move between observations based on the targets 
being observed and the selected roll of 
observations; 

- A model of observations that need to be executed 
at the same telescope roll due to astronomical 
science considerations. 

These new domain features impact the best scheduling 
decomposition in (Giuliano and Johnston, 2008).  The 
decomposition first determines a schedule and then 
independently adjusts the roll of observations to minimize 
momentum buildup. However, the new slew model 
considers roll as a factor in determining the required 
separation between pairs of observations.  This paper 
describes modifications to the previous algorithms to 
account for slews and shows that the same decomposition 
still results in the best schedules.  
 In addition to enriching the JWST problem domain this 
paper explores factors that influence the behavior of 
multi-objective algorithms. We examine the use of 
constraints in multi-objective algorithms to guide the 
search towards required solutions.  Also, the paper 
explores how the shape of the multi-objective search 
impacts the results.  Multi-Objective algorithms have 
parameters for the population size of each generation and 
the number of generations evaluated.  The paper examines 
whether it is better to have a deep but narrow search (i.e. 
high number of generations but a small population size) 
or a shallow but wide search (i.e. a large population size 
but a small number of generations). Finally, the multi-
objective problem solver was augmented to support 
parallel execution.  This approach allows almost perfect 
speed-up up to the population size.   We examine how this 
speed-up can be used if the primary execution concern is 
the algorithm runtime and not the combined processing 
time of all execution threads.  
 Each of the algorithms explored in this paper produce a 
set of optimal solutions, called the Pareto frontier, where 

no solution in the set is strictly dominated by another 
solution in the set.  Although there has been much 
research in this area (See Zitzler  2003 for a summary) 
there is no canonical way of comparing Pareto frontiers to 
determine if one algorithm works better than another.   
We utilize multiple techniques to evaluate our algorithms 
and argue that selecting a multi-objective algorithm out of 
multiple possible algorithms is analogous to the selection 
of a single schedule out of multiple schedules on a Pareto 
frontier.  In both cases if there is a dominating solution 
then the choice is clear.  If there is no dominating solution 
then we can at best provide numeric metrics, and 
visualization tools. 

JWST Mission Operations 
JWST will provide time to general observers through a 
time allocation board. Approved observers will prepare 
their programs using an automated tool. Programs will be 
submitted to the JWST Science Operations Center (SOC) 
and will be scheduled by SOC staff using a two phase 
scheduling process similar to the process used for the 
Hubble Space Telescope (Giuliano 1998). In the first 
phase, a long range plan assigns observations to 
overlapping least commitment plan windows that are 
nominally 60 days long. Plan windows are a subset of an 
observation’s schedulable windows and represent a best 
effort commitment to schedule within the window. In the 
second phase, successive short-term schedules are created 
for 22 day upload periods. The short-term scheduler uses 
plan windows to drive the creation of efficient telescope 
schedules. This two phase process allows a separation of 
concerns in the scheduling process: Plan windows 
globally balance resources, are stable with respect to 
schedule changes, and provide observers with a time 
window so they can plan data reduction activities. Short-
term schedules provide efficient fine grained schedules to 
the telescope, handle slews between observations, and 
provide schedules robust to execution failure. 

JWST Scheduling Constraints 
A scheduling system for JWST has to satisfy several 
types of constraints on observations. First, an observation 
has to satisfy all requirements defined by the user. These 
include the ability to specify time windows for 
observations, to link observations via precedence or 
grouping relationships with offsets, and to link 
observations via roll constraints.  
 Secondly, an astronomical target can be observed by 
JWST only at certain times of the year determined by the 
location of JWST relative to the sun and the target. We 
call such time intervals visibility windows. The celestial 
position of the target being observed defines the visibility 
windows. Ecliptic poles are visible throughout the year, 
while a target on the ecliptic equator (i.e. on the same 
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plane as the Earth’s orbit) has two visibility windows of 
about 49 days each.  
 Thirdly, schedules must satisfy limits on momentum 
accumulation. The current assumption is that stored 
angular momentum will be dumped every 22 days during 
regularly scheduled station-keeping activities. Momentum 
buildup during a 22-day period over a 24 Newton Meter 
Squared (NMS) limit will require an extra momentum 
dump. As momentum dumps require burning scarce fuel, 
extra dumps will shorten the lifespan of the telescope. It is 
also preferable to minimize the amount of momentum 
dumped during the regularly scheduled dumps. 
Momentum accumulation can be controlled by adjusting 
the spacecraft roll angle. At any pointing within the field 
of regard, JWST can roll ±5° from the normal angle 
without violating spacecraft constraints. Rolling the 
telescope for an observation impacts the angle that the 
solar pressure asserts on the sunshield, thus affecting the 
momentum buildup for the observation.  

Schedule qualities 
The JWST schedule qualities we desire are the following: 
1. Minimize schedule gaps. The JWST contract 
mandates 97.5% scheduling efficiency. The input set 
(described below) of 1.2 years worth of observations 
provides 20% oversubscription to fill gaps in a one year 
schedule. We expect this level of oversubscription in 
operations and expect that operations will be able to 
utilize special gap filling observations.  
2. Minimize momentum accumulation. The current 
operational plan is to dump momentum every 22 days 
during station keeping maintenance. The goal for the 
scheduler is to have no or very few 22-day periods that 
require additional momentum dumps. In addition to the 
24 NMS momentum limit, it is preferable to lower the 
amount of momentum dumped during scheduled station 
keeping maintenance as that reduces the amount of non-
renewable fuel to be used. 
3. Minimize dropped observations. The JWST 
scheduling process first assigns plan windows to 
observations during long range planning. Plan windows 
are a subset of an observation’s visibility window and are 
created to balance global resources while informing the 
astronomer when to plan data reduction activities. 
Missing a plan window can disrupt resource balancing, 
break the handling of linked observations and disrupt the 
plans of the astronomer end user.  

Input Observation Set 
The JWST project has created a Science Operations 
Design Reference Mission (SODRM), which is a set of 
observations that closely match the expected mission 
duration, target distribution, instrument configuration, and 
constraint selection. It contains the specifications for both 
astronomical observations as well as calibration 
observations. The entire SODRM amounts to 
approximately 1.64 years of observations, including time 

for slews and other support activities. To allow us to 
compare with the previous studies we use the same subset 
of the SODRM, totaling 1.2 years worth of observations, 
as input to this study. It consists of 2907 observations, 
including 1822 observations that are linked to at least one 
other observation. Observation duration varies from 70 
minutes to 12 days with a median of 2.08 hours.  
 The SODRM was updated to include sets of 
observations that must be executed at the same spacecraft 
roll in order to achieve the desired science outcomes.  
These are sets of observations from a single program, 
called same-orient sets,  that observe the same target 
using different wavelengths.   Previous versions of the 
SODRM included these observations but did not link 
them into same orient sets.  The new SODRM adds the 
scheduling restriction that the observations must be 
assigned the same roll.   

Evolutionary Algorithms  
A multi-objective optimization problem to minimize M 
objectives subject to K constraints can be stated as 
follows: 
 minimize: 

  

! 

f i (x){ },  i = 1KM  

 subject to: 
  

! 

g j (x){ }
T

" 0,   j = 1KK  

Here 

! 

x  represents a vector in decision space of dimension 
D. A solution is called Pareto optimal when no 
improvement can be made to one objective that does not 
make worse at least one other objective. The set of Pareto 
optimal solutions is called the Pareto frontier. What we 
seek as a solution to the multi-objective optimization 
problem is a good approximation to the Pareto frontier. 
Two important characteristics of a good solution 
technique are convergence to the Pareto frontier, and 
diversity so as to sample the frontier as fully as possible. 
 We have adopted an evolutionary algorithm approach 
(Deb 2001, Abraham, Jain, and Goldberg 2005) to JWST 
scheduling. Among techniques developed to solve multi-
objective optimization problems, evolutionary algorithms 
have become popular for a variety of reasons. They have 
been shown effective on a wide range of problems and are 
capable of dealing with objectives that are not 
mathematically well behaved (e.g. discontinuous, non-
differentiable). By maintaining a population of solutions 
they are capable of representing the entire Pareto frontier 
at any stage.  
 For this study we have utilized one particular variant 
called Generalized Differential Evolution 3, or GDE3 
(Kukkonen and Lampinen 2005) which has been 
previously used in multi-objective scheduling in a space 
network application (Johnston 2006, 2008). This 
technique is based on Differential Evolution, a single 
objective evolutionary algorithm for real-valued decision 
spaces (Price, Storn, and Lampinen 2005). GDE3 makes 
use of concepts pioneered in the algorithm NSGA II (Deb 
et al. 2002), including:  
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• non-dominated sorting of the population into ranks, 
such that members of rank n dominate members of all 
ranks >n, where rank 1 members constitute the non-
dominated set, i.e. the current approximation to the 
Pareto frontier 

• crowding distance is used as a secondary 
discriminator on members of the same rank: members 
in crowded regions of the population are scored 
lower, so the surviving members after selection have 
greater diversity. This helps prevent premature 
convergence of the population to a small portion of 
the Pareto frontier 

• population members are compared with a domination 
or constraint-domination relation — the latter allows 
for domination comparisons even when constraints 
are violated 

The purpose of the crowding distance calculation is to 
encourage a spread of solutions that sample the Pareto 
frontier with as much uniformity as possible. However, 
one side effect of this is that unacceptable candidates may 
be preferentially included in the population primarily 
because they have extreme values in some objectives, and 
thus remain in an uncrowded region. To alleviate this 
problem, we have made use of constraints gj to define 
acceptability limits on the objectives, thus focusing the 
evolutionary algorithm on a portion of the Pareto frontier 
that includes more potentially viable candidates.  
 With constraints included, the constraint-domination 
relation is used to compare the parent and trial vectors. 
This modifies the comparison as follows: 

1. If both parent and trial have no constraint 
violations, then they are evaluated with the 
domination relation in objective space. 

2. If one of the parent or trial vector has no 
constraint violations, then that one is selected. 

3. If both parent and trial have constraint violations, 
then they are evaluated with the domination 
relation in constraint violation space. 

Note that one effect of this comparison technique is that 
candidates with constraint violations are compared 
without regard for objective values, i.e. finding feasible 
solutions is regarded as primary, and if none can be 
found, the population will settle to a Pareto frontier in 
constraint violation space. 

System Architecture 
The system architecture for the experiments integrates 
existing components (see Figure 2). The Java-based 
GDE3 component is the multi-objective evolutionary 
algorithm driver (Johnston 2006). The Lisp based SPIKE 
system has a model of the JWST scheduling domain. The 
evolver component sends SPIKE decision vectors that are 
used to create schedules and to return objective function 
values. The systems communicate via socket connections. 
 SPIKE (Johnston and Miller, 1994) is a planning and 
scheduling tool kit that was created for use on the Hubble 
Space Telescope. SPIKE has several built-in scheduling 

strategies and provides templates for creating new 
strategies. The system supports iterative repair search 
algorithms. The scheduler first makes an initial guess that 
assigns a start time to all selected observation, possibly 
assigning observations to conflicting times. In the repair 
stage, SPIKE tries to reduce the number of conflicts by 
re-assigning the start time of conflicted observations. At 
the end of the repair stage, SPIKE removes the 
assignments for observations with existing conflicts to 
produce a conflict-free schedule. A simple set of gap 
filling routines were designed for the experiments below. 
 One of the innovations introduced in the architecture is 
the capability to parallelize schedule evaluations, in order 
to take advantage of available computing resources to 
speed the elapsed runtime of the algorithm. This is 
indicated in Fig. 1, where the GDE3 driver can invoke 
multiple instances of SPIKE on different hosts to perform 
schedule evaluations, which is the dominating component 
of the overall runtime.   
 

 
 
Evaluating Multi-Objective Algorithms 
 
In this paper we evaluate how variants of evolutionary 
algorithms perform when scheduling JWST.  For a given 
problem each algorithm outputs a Pareto surface. This led 
us to investigate how Pareto surfaces can be compared in 
order to determine which run of an algorithm is best.  
(Zitzler 2003)  contrasts unary Pareto surface evaluation 
functions that measure the quality of a single Pareto 
surface with binary evaluation functions that compare the 
quality of two Pareto surfaces. He shows that no unary 
function or combination of unary functions can tell 
whether or not a Pareto surface P1 is strictly better than a 
Pareto surface P2. In contrast binary evaluation functions 
can be designed to tell if one surface is better than 
another.   For example,  using the comparison operator 
from (Giuliano and Johnston 2008) first construct the 
combined Pareto frontier of the two surfaces 
Combined(P1,P2).  If Intersect(P1,Combined(P1,P2)) == 
P1 and Intersect(P2,Combined(P1,P2)) == null then 
surface P1 dominates surface P2.   
 If there is no strict domination between surfaces then 
we cannot determine if one surface is better than another. 
The purpose of a multi-objective algorithm is to produce a 

Figure 1: System Architecture 
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surface of Pareto optimal solutions so that a user can 
explore the space and ultimately select one of the 
solutions for execution.   If there is no strict domination 
between a pair of surfaces then the combined surface will 
contain elements from both sets and the end user may 
prefer an element from either set.  Without additional 
knowledge no formulation can distinguish between pairs 
of non-dominating surfaces.  In this way the selection of a 
multi-objective algorithm is like the selection of a 
solution out of a Pareto optimal frontier. Since there are 
multiple objectives there is no formal way to make the 
selection if there is no dominating solution.  
 Despite these pessimistic truths analysts who code and 
set parameters for multi-objective algorithms need tools 
for distinguishing between algorithms beyond the notion 
of strict dominance.   In this paper we explore some novel 
formulations that measure the quality of a Pareto surface 
and show how the formulations do and do not match the 
intuitions obtained from plots of schedule values.  
Suppose we want to evaluate N Pareto surfaces P1,, Pn.  
Binary evaluation functions allow the determination of 
domination between surfaces but are cumbersome 
because they require examining a metric value for each 
ordered pair of surfaces.   In contrast, unary metrics are 
easy to understand as they give an absolute value per 
surface but do not provide the ability to determine 
domination relationships.  Using the notion of a combined 
Pareto surface we construct metrics that make binary 
metrics appear as unary metrics and that make unary 
metrics relative to a baseline ideal solution set.   The idea 
is to construct the combined Pareto surface of the N 
solutions P1, .. Pn.   This combined surface represents the 
ideal best obtainable solutions given the algorithms being 
compared.   Unary metrics can then be compared to the 
corresponding metric of the combined surface. Likewise, 
binary evaluation functions for an individual Pi can be run 
against the combined surface giving a single value 
indicating how the surface compares against the best 
possible.  
 We utilize the following unary metrics. For each of the 
three criteria we report the average value of all solutions 
for the criteria and the minimum obtainable value for the 
criteria. In addition we report the average of the average 
values. The motivation for using averages is that we 

prefer solutions that minimize the overall criteria scores. 
We use minimum values as this shows the best obtainable 
solution for the criteria.  Each of these unary metrics is 
then compared with the corresponding value in the 
combined surface. In this paper two binary evaluation 
functions are modified to give a unary value based on the 
combined surface.  One is based on the E-indicator 
(Zitzler 2003) which gives the factor by which one Pareto 
surface is worse than another with respect to all 
objectives.   In other words the value is the minimum 
factor e such that for any solution in P2 there exists a 
solution in P1 that is not worse by a factor of e in all 
objectives.  The second binary indicator is based on the 
naïve comparison operator in (Giuliano and Johnston, 
2008).  This comparison is called the P-indicator and is 
the fraction of P1 that occurs in the combined surface. In 
general smaller E(P1,P2) means that P1 is preferable to P2 
and larger P(P1,P2) values mean that P1 is preferable.  
Both of these binary metrics can be used to determine if 
one surface dominates another. 

Experimental Setup 
 A series of experiments are presented which evaluate 
different approaches for JWST scheduling and explore 
how multi-objective algorithm features such as the use of 
constraints, population size, and the number of 
generations impact the solutions.  The results will be 
presented using graphs and the evaluation techniques 
given in the previous section. The initial experiments 
make use of the “all at once” search strategy, which 
optimizes both observation timing and spacecraft roll 
angle in a single step. Although this approach did not fare 
well in previous studies, it is included in this study, since 
schedule and roll determination are more tightly coupled 
in the enriched scheduling model.  We also utilize the 
“delayed roll” approach from previous studies which first 
generates a Pareto frontier considering scheduled times 
only (with a nominal time delay to account for roll 
changes), followed by a separate optimization step which 
adjusts roll only. We expect this approach to fare better 
when schedule and roll assignments can be decoupled.  
  

 

 

 

 

 
  
 

Figures 2 & 3.  Compare alternative search approaches by plotting the Pareto optimal surface generated for a 22-day 
schedule for each pair of metrics. The hollow data points are those in the Combined Pareto Optimal surface. 
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There is a significant difference in computational cost for 
schedule time evaluations as compared to roll evaluations: 
the former take on the order of 20 seconds per schedule, 
while roll evaluations alone take only a fraction of a 
second. This difference led us to devise two different 
approaches to parallelizing the algorithm.  The main loop 
of a multi-objective algorithm can be coded as: 
 For (gen = 1; gen <= Search Depth; gen++) 
  For (i = 1;  I <= N;   i++) 
       Create and evaluate a candidate vectors 
  Evolve the population based on the new evaluations 
The inner loop of this algorithm performs the time 
consuming schedule evaluations and is parallelized in 
both the all at once and delayed roll search approaches by 
distributing the evaluations evenly to available 
processors.   Since all evaluations must be done before 
evolving the next generation this allows parallelism up to 
the population size N.  In the delayed-roll approach after 
first solving the 2-objective scheduling problem the 
system distributes the roll search for each of the N 
members of the resulting population to the available 
processors.  For a roll search the candidate evaluation cost 
is too small to parallelize the inner loop.  In both cases, 
the parallelism is effective in reducing runtime, up to the 
point that the number of processors is larger than the 
population size N. 
 All of the experiments create a schedule for a 22-day 
station-keeping bin using a set of observations selected 
from a simulated long range planning process. Unless 
otherwise noted the experiments were sized to run in an 
approximately 5 hour window using 10 processors. This  
duration was selected such that an analyst could  set-up, 
run, and analyze results during an 8 hour work day 

Experimental Results 
An initial set of experiments ran 3 different combinations 
of population size versus number of generations using an 
all at once search.  The combinations ranged from a 
narrow but deep search with a population size of 20 and  
500 generations to a broad but shallow search with a 
population size of 80 and 125 generations. All of the 
approaches evaluate 10,000 candidate solutions. After 
completion of the experiments we found that many of the 
solutions were not acceptable in that individual criteria 
were too high to ever be selected for execution. We then 
defined conditions for an acceptable solution as follows:  
Gaps <= 3.5,  Momentum <= 24,  Dropped <= 5.5.   
Considering these acceptability conditions we found that 
only a small fraction of the solutions generated were 
acceptable.  For the 20-500 run no solutions are 
acceptable and for others the best is 40% acceptability. 
The experiments were re-executed this time using the 
acceptability criteria as constraints in the multi-objective 
algorithm.  Metrics evaluating Pareto surfaces are given 
in Table 1 for all of the experiments described in the 
paper. The table is divided into sections based on 
experiments. We report the raw unary metrics to the left 
of the /, the unary metrics compared to the same metric 

from the combined Pareto surface to the right of the /, and 
the binary metrics normalized to the combined Pareto 
surface. The results for the runs with constraints are 
shown in the All at Once section of Table 1. The results 
show that a broad but shallow search is preferred over a 
narrow but deep search. Although the data is not shown, 
the same result applies to the all at once search without 
constraints. All of the metrics improve as the population 
size increases except to the e-indicator. The next section 
of Table  1 contrasts the all at once search with and 
without constraints.  As can be seen the search with 
constraints performed uniformly better than the search 
without constraints. With constraints all of the solutions 
were acceptable and all metrics favor the run with 
constraints.  Constraints focus the search making all 
solutions acceptable and reducing metric values. 
Delayed Roll Search  A series of experiments were then  
run to determine the impact of constraints, the impact of 
depth versus breadth on the search tree, and whether or 
not the delayed roll search approach would perform better 
than the all at once search.  Since the updated scheduling 
model includes slews between observations, that are in 
part based upon the roll, the JWST schedule evaluation 
engine was augmented to assume a worst case roll 
between observations that are not forced to be at the same 
roll due to same-orient constraints.   The delayed roll 
search was run with three different parameter settings that 
can be described by four numbers N-D-M-P indicating 
respectively the base population size N, the schedule 
search depth D,  the roll search population size M (always 
set to 20), and the roll search depth P.  For example 20-
300-20-200 indicates using a population size of 20 to 
perform a 300 generation schedule assignment search 
resulting in a population of 20 schedule solutions.  After 
the schedule search completes the system performs a 200 
generation roll search with population size 20 for each of 
the 20 schedule solutions.  This search generates 20x300 
= 6000 schedule candidates and 20 X 20 X 200 = 80,000 
roll candidates.  The three experiments executed all 
generate 6000 schedule candidates and 80,000 roll 
candidates and can be described as: 20-300-20-200, 40-
150-20-100, and 80-75-20-50.   
 The results for these runs are displayed in the Delayed 
Roll Search section of Table 1 and are shown pictorially 
in Figure 2.   First we note that in this search the narrow 
but deep search produces the best results. This can be 
seen in the table in terms of the metric trends and 
pictorially in Figure 2 where the two lower population 
size searches dominate in just about all the metrics. Again 
the exception to the metrics is the e-indicator.   The value 
of the e-indicator favors the high population size 80-75 -
20-50 search.  The e-indicator is based on a worst case 
factor and is determined by a single point on the 
combined surface (it is the point in the bottom right 
corner of the leftmost panel in Figure 2). Removing this 
point makes the e-indicator even among the surfaces.  
Although this indicator may be useful in determining 
domination it does not agree with intuitions on the 
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qualities of one surface versus another.  We compare the 
two best all at once searches with the two best delayed 
roll searches in the next section of Table 1.   The delayed 
roll search has lower averages throughout and performs 
better on all of the metrics.   The quality of the all at once 
search is especially bad with respect to momentum. 
Except for one point all of the points contributed to the 
Combined Pareto surface from the all at once searches are 
worse with respect to momentum than the points 
contributed by the delayed roll search. If we just consider 
a two criteria search without momentum, we see that the 
all at once search is competitive.  Figure 3 plots schedule 
gaps versus dropped observations showing that the all at 
once search contributes to a large portion of the combined 
Pareto surface. What is surprising is that the delayed roll 
search performed so well with respect to gaps. In these 
experiments the schedule and roll search steps are 
decomposed by ensuring that there is always enough time 
to allow for the largest roll slew.  This might be expected 
to create gaps as the actual roll slew can be smaller than 
the maximum of 6 degrees.   The results can be explained 
as follows. Slew distance is a combination of the roll 
distance and the target slew distance, The roll component 
is zero for same orient sets.  In general a schedule that 
reduces gaps will have observations from a same orient 
set contiguous in the schedule as all of the observations 
have the same target.   This reduces gap time independent 
of roll considerations.   Observations in different same 
orient sets generally have different targets and therefore 
will have a non zero target slew component.  The target 
slew will generally be larger than six degrees and will 
dominate the total slew time.   
 Impact of Parallelism   The final experiment measures 
the impact that parallel execution can have on the quality 
of the solutions generated.  The experiments so far have 
measured the cost of an experimental run in terms of the 
total number of schedule and roll evaluations. With this 
model a search with a population size of 20 and a depth of 
200 costs the same as a search with a population size of 
80 and a depth of 50.  Another cost to consider is the 
runtime of the search.  With parallelism we get almost 
perfect speedup up to the population size. By increasing 

the population size and keeping a constant search depth 
we can keep the runtime the same but get more schedule 
evaluations.  We ran an experiment measuring this impact 
for the delayed roll search.  As a baseline we ran a search 
with a population size of 20 and a depth of 200 with a 20 
X 100 roll search.   We then ran two additional searches 
using population sizes of 40 and 80.   The data for the 
runs are presented in the Impact of Parallelism Section 
of  Table 1 and visually in Figure 4.  The table data shows 
that the runs with the increased population sizes improve 
the gaps and momentum criteria. Looking at figure 5 
additional structure can be seen in the results.  The middle 
pane shows that the schedule gaps for the two larger 
generation searches diverge from the frontier for the 
lower population size search.  Although the 80-200 search 
falls on the same line as the 40-200 search it is better 
sampled at the extreme minimum.  These observations 
show the importance of using both numeric metrics and 
graphical data to evaluate algorithm performance. 

Conclusions 
Our investigations show that, for the JWST scheduling 
problem, the delayed roll search still remains the best 
overall approach, in spite of our higher fidelity spacecraft 
maneuvering model that makes the problem less 
decomposable than before. The other conclusions to be 
drawn from the experiments reported here include: 
• the use of constraints to "focus" the Pareto frontier to 

a region containing a higher density of less extreme 
solutions is an effective technique that could be 
applied to other problems 

• for the delayed roll search, increasing the population 
size for a fixed number of generations gives better 
results in the same elapsed time 

On the other hand, there is, in general, no clear advantage 
either to larger populations sizes or to running more 
generations, for a fixed overall investment in 
computational resources. Further research will be required 
to clarify the advantages of one tactic over the other. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.   Compares alternative search approaches by plotting the Pareto optimal surface generated for a 22-day schedule for each 
pair of metrics. The hollow data points are those in the Combined Pareto Optimal surface. 
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Table 1:  Gives metric evaluation values for five different experiments.  The metrics are described in the text above 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We have noted that the selection of a "best" multi-
objective algorithm can itself be viewed as a multi-
objective optimization problem, and that comparing 
different algorithms in terms of the Pareto frontiers that 
they generate is in general quite difficult. In the fortunate 
but rare case that one approach dominates the others, then 
the conclusions are straightforward. However, in the more 
common case that there are different regimes where 
different approaches do better, we have investigated 
several metrics for assessing their relative performance. 
While these metrics can provide useful insight into 
algorithm performance, we have found that it is 
frequently the case that a graphical view of the population 
in objective space reveals patterns and trends that are not 
captured by the current metrics. These graphical views 
may be of more help to end users than most of the metrics 
we have explored.  
 Future work includes additional investigations of the 
population size versus number of generations tradeoff, 
and of visualization techniques that will prove essential 
for more than 3 objectives. One additional objective we 
are considering is schedule robustness which can be used 
to manage the risk of schedule disruptions.  
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