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Abstract

The paper describes an application of the A* algorithm for
flight path planning for airplanes with defined motion dy-
namics operating in a continuous three-dimensional space
constrained by existing physical obstacles. The presented
A* algorithm modification provides significant acceleration
(reduction of the state space) of the path planning process.
The described algorithm is able to find a path through small
gaps between obstacles using a pre-defined searching preci-
sion. The paper documents a set of path planning benchmarks
where the solution quality and internal algorithm properties
are compared against the A* algorithm for flight trajectory
path planning.

Introduction
The paper addresses the area of flight trajectory path plan-
ning – domain where airplanes operate in a dynamic contin-
uous three-dimensional space and avoid given obstacles and
restricted areas. For airplanes, motion dynamics is defined
by means of constraints on the driving manoeuvres and re-
strictions on smoothness of the trajectory1. As its result the
path planning algorithm should provide a spacial arrange-
ment of the trajectory and velocity control for each part of
the trajectory. The paper addresses only the spatial part2 of
the path planning. The formalization of the spatial path plan-
ning is provided in Section [Problem Formalization]. Ex-
tended problems like incremental planning are not consid-
ered by this paper. The dynamic environment means that
obstacles’ and restricted areas’ definitions are altered almost
after each particular search.

The field of the path planning problem has been stud-
ied by the research community for many decades. The
problem is still topical as all intelligent autonomous vehi-
cles have to include path planning into their deliberation
mechanisms. There exist very efficient (fast) algorithms
based on randomness, e.g. the random-walk planner (Carpin
and Pillonetto 2005b), the rapidly exploring random tree
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1The smoothness means that the path is continuous as well as
its first derivation.

2The spatial part of the path planning provides the result as a
sequence of positions and directions which define only their mutual
ordering but do not include the velocity vectors.

(RRT) (La Valle and Kuffner 2001) and the randomized po-
tential field (Carpin and Pillonetto 2005a) algorithms. Al-
though there are many extensions of these path-finding con-
cepts, their search processes are still based on random sam-
pling and it cannot be said that paths generated by them are
optimal with respect to a pre-specified criterion. In many
cases, the path require additional smoothing to remove un-
necessary random curvature from the path trajectory.

There exist algorithms providing an optimal solution for
the given domains with pre-built structures for the given
environment definition, e.g. the vector field (Lindemann
and La Valle 2005), the potential field (Conner, Rizzi, and
Choset 2003), the 3D field D* (Carsten, Ferguson, and
Stentz 2006) and the hierarchical path-finding A* (Botea,
Müller, and Schaeffer 2004) algorithms. The search process
of these algorithms is pretty fast but they require very expen-
sive (especially for large-scale environments) re-building of
their pre-built structures after each change in the environ-
ment. For the addressed domain it means that structures
need to be re-built almost before each search run.

Using the A* algorithm (Hart, Nilsson, and Raphael
1968), there is a trade-off between the search speed (effi-
ciency) and the search precision defined by the pre-specified
sampling density of the continuous space (ability to find path
through small gaps). There exists an extension of the A* al-
gorithm, the incrementally refined A* (Cormen et al. 2001),
which iteratively repeats the search process with increased
sampling density. Once the path is found, it cannot be guar-
anteed that there does not exist a better (shorter) trajectory
going through smaller gaps. On the other hand, to check that
the path does not exist it first needs to iteratively fail several
times.

In the paper, the modification of the A* algorithm called
Accelerated A* (AA*) algorithm applied to flight trajectory
planning is presented. The AA* algorithm generates sam-
ples by airplane elementary motion actions using elements’
adaptive parametrization to reduce the number of states. The
size of the sampling varies based on the identified distance
to the nearest obstacle – if the current state is far from any
obstacle the sampling is sparser, see Figure 1. This ap-
proach requires a definition of the minimal sampling size –
the search precision – to avoid an infinite step reduction to-
wards zero. The AA* algorithm finds a path for a airplalne
whose body is bounded by a sphere. The path shown in Fig-
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Figure 1: The example of an adaptive sampling in the two-
dimensional setup.

ure 1 corresponds to the sphere center.

Problem Formalization
This section provides formalization of the flight path plan-
ning in a three-dimensional continuous space for the air-
plane having constrained dynamics. The airplane is always
able to change its horizontal direction only by moving along
a horizontal circle with a radius greater than the minimum
horizontal turn radius rh. The change of vertical orientation
of the airplane is also restricted by moving along a verti-
cally oriented circle with a radius greater than the minimum
vertical turn radius rv . The maximum airplane pitch an-
gle (max deviation from the horizontal orientation, positive
or negative) is denoted as Θmax. The Θmax constrains the
allowable parts of the vertical circle for the airplane. Be-
side these two direction vector changing manoeuvres, the
airplane direction can be changed along a spiral which is
used for changing vertical position in a confined area. The
airplane can apply only the entire loop of the spiral.

Airplane path planning is transformed to motion planning
for its reference point called pivot. The problem of gener-
ating internal control actions, so that pivot moves along the
defined path, is not in the scope of the paper. The physical
shape of the airplane is bounded by a sphere with a radius
rbound. The bounding sphere center is identical to the air-
plane pivot position x. The orientation of the airplane is
uniquely identified by the direction vector v. The set of all
possible direction vectors is3

VΘmax
= {v ∈ R3 :|| v ||= 1, | arctan

vz
|| (vx, vy) ||

|≤ Θmax}.

(1)
The airplane operates in a continuous three-dimensional
space R3 where its operation is further restricted by the

3The || v || denotes the Euclidean length of the vector v =
〈vx, vy, vz〉. The (vx, vy) is the horizontal part of the vector v.

existing obstacles and operation area boundaries, both to-
gether denoted asO ⊂ R3. Thus the free space is defined as
X = R3 \ O. The ε-free space Xε ⊆ X is defined as

Xε = {x ∈ X : ∀o ∈ O, || x− o ||≥ ε}, (2)

in each ε-free position, the distance to the nearest obstacles
is at least ε. Thus, the airplane with its shape bounded by a
sphere with a radius rbound has the airplane operating space
Xrbound

. The configuration c is defined as the tuple 〈x, v〉,
where x is the airplane pivot position and v is the direction
vector. The configuration is valid for the airplane if and
only if x ∈ Xrbound

and v ∈ VΘmax
. The start configuration

for the path planning is denoted as cS and the goal configu-
ration as cG.

The path of the airplane is represented as a finite or-
dered sequence of n elements corresponding to airplane ac-
tions Φ = 〈e0, . . . e(n−1)〉 where ei ∈ E . The set E has
four construction elements E = {eS , eHT , eV T , eSPIRAL}:
straight eS , horizontal turn eHT , vertical turn eV T and spi-
ral eSPIRAL element. The E reflects the airplane motion
constraints defined at the beginning of this section. Each
element is defined by the number of parameters fully de-
scribing its shape position and orientation. For the eS(c0, l),
there is an start configuration c0 and the length l. The
eHT (c0, r, α, o) and eV T (c0, r, α, o) are defined as an arc
of a circle with the radius r, beginning at an start configura-
tion c0. The arc angle α and the orientation o define whether
the horizontal turn is left or right, resp. up or down for the
vertical turn. The eHT can be applied only to the c0 with a
zero pitch angle. The eSPIRAL(c0, r, n, o) is described by
the start configuration c0, horizontal radius r of the spiral,
the number of spiral loops n ∈ N+ and the spiral orientation
o (left or right). The climbing angle is given by the c0 direc-
tion pitch angle. The eSPIRAL provides the same direction
vector of the final configuration as its start configuration due
the natural number of spiral loops. The spiral element is
used when the Θmax is too restricted and the airplane needs
to change its vertical position within a limited free space.

There is defined the function p(e, t) which returns the
configuration given by an element e at the position t ∈ 〈0, 1〉
within the element. The p(e, 0) returns the start configu-
ration defined by that element and p(e, 1) returns the final
configuration of that element. The function l(e) returns the
Euclidean length of the given element e. The function u(e)
defines if the element e is valid

u(e) =
{

1 if ∀t ∈ 〈0, 1〉, p(e, t) is valid
0 otherwise . (3)

The path Φ is valid if and only if for all ei ∈ Φ, u(ei) = 1
and

∀i = 1, . . . n− 1 : p(ei, 0) = p(ei−1, 1) .

The valid path is always smooth because all ei and their con-
nections are smooth as well.
Definition 1 The path planning for given start cS and goal
cG configurations is a process searching for the valid path
Φ. The search optimization criterion is the length of the path
– it searches for a path which is as short as possible. If the
path is not found, the planning process returns Φ = ∅.
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The algorithm should use only the turn elements with their
minimum radii rh and rv because it is shown in (Dubins
1957) that the shortest path between any two configurations
is constructed using these turn elements.

AA* Algorithm
This section provides a detailed description of A* modifi-
cations for the flight path planning problem as specified in
Definition 1. The described modification is called Accel-
erated A* (AA*) path planning. First, the AA* algorithm
concept is introduced and then the algorithm is described in
detail.

AA* Path Planning Concept
The AA* algorithm extends the A* algorithm to be usable in
large-scale environments without forgetting about the search
precision. The AA* algorithm removes the trade-off be-
tween the speed and the precision by introducing the adap-
tive sampling. During the expansion, child states are gen-
erated by applying vehicle elementary motion actions using
elements’ adaptive parametrization. The set of elementary
motion actions is defined by the model of the non-holonomic
airplane movement dynamics. The adaptive parametrization
varies so that the algorithm makes larger steps when the
current state is far from obstacles and restricted areas and
smaller steps when it is closer.

There is a defined search precision lmin specifying the
minimal sampling grid step which is used in the areas closest
to obstacles. The search precision is defined so that the AA*
algorithm does not skip any existing gap between obsta-
cles larger than this precision. The adaptive parametrization
sampling uses only variants which correspond to sampling
sizes equal to the precision to the power of two. Specifically,
the AA* algorithm uses the highest possible parametrization
which ensures that the distance to the closest obstacle is not
smaller than the distance corresponding to two respective
sampling steps.

The adaptive sampling in the AA* algorithm requires
a different definition of identity tests when working with
OPEN and CLOSED lists. The original equality imple-
mentation is replaced by a similarity check. Two states are
similar if their Euclidean distance and their direction vector
variation is less than a threshold derived from the respec-
tive sampling parametrization. Otherwise, the adaptive sam-
pling of a non-holonomic airplane trajectory causes an in-
finite state generation in the continuous space. To remove
effects of varying sampling, each path candidate generated
during the search is smoothed.

The search uses the heuristics which is computed as the
length of the shortest valid path from the current state to
the goal configuration without restriction on airplane oper-
ation space Xrbound

. This construction of heuristics avoids
the expansion of the states which are very close to the goal
configuration but the path to goal is much longer than the
distance to the goal. Each state has an attribute marking if
such shortest path from this state to the goal is going outside
the airplane operating space Xrbound

or not. When the best
candidate is picked from the OPEN list and the attribute

indicates that the shortest path to the goal is valid, the al-
gorithm ends the search because it found the path planning
solution – the path from the start state to the current one plus
this shortest path to the goal.

AA* Description
The pseudocode of the AA* algorithm is provided in Al-
gorithm 1. Initially, validity of the given start cS and goal
cG configurations is checked (lines 1 and 2). If any of
them is not valid, the algorithm fails. Next, the start state
is constructed (line 3). The state of the algorithm is de-
fined as a tuple 〈c, ξ, t, s, g, h, pred〉. The c = 〈x, v〉 is
the configuration of the state (position and direction). The
ξ = 〈l, αh, αv〉 is the sampling parametrization returned
by the function GetSamplingParams (see Section ).
The t ∈ {START, STRAIGHT, HTURN, V TURN,
SPIRAL, CONNECTION} is the identification of the
element used to transit from the previous state configuration
to the current one. The t is given by the function TypeOf
in the algorithm. The CONNECTION is used for the
complex element constructed by the Connect function, see
Section . The s ∈ {true, false} is the attribute presenting
the validity of the shortest connection to the goal state. The
g is the overall length of the path from the start configuration
to the current one. The h holds the heuristics – length of the
shortest path to the goal regardless of obstacles. The pred
is the reference to the preceding state which is used for path
reconstruction.

At lines 4 and 5, the OPEN and CLOSED lists are
initialized. The OPEN list contains candidate states and
CLOSED list contains the already expanded configura-
tions. The OPEN list is initialized with the start state. The
OPEN list is implemented as a priority queue in combi-
nation with a modified hash set (Cormen et al. 2001). The
modification of the classical hash set supports fast check-
ing of the state similarity test (defined in Section ) using the
given state sampling parametrization ξ. The main search
loop (lines 6–26) repeats until OPEN list is empty. If
OPEN list is empty, the search fails (line 27).

During the search, the algorithm removes the best can-
didate (a state with the minimum value of g + h) from
the OPEN list, function RemoveTheBest, and inserts
its configuration to the CLOSED list, function Insert
into (lines 7 and 8). At line 9, the algorithm checks
whether the shortest connection to the goal provides a valid
path by reading s part from the state. If it is valid (lines 10–
13), the path represented by the previous states and con-
nection to the goal is the final solution of the search. The
function SmoothPath does the path smoothing, see Sec-
tion . The path reconstruction at line 12 does the reverse
backtracking via pred reference in the state and prepares the
final search result Φ using the t attribute from the state.

At lines 15–25, the algorithm iterates over all proposed
expansion elements from the function Expand, see Sec-
tion . Initially, it reads the element’s final configuration cnew
and identifies its sampling parametrization ξnew (lines 16
and 17). Then, it skips the rest of the cycle if a similar
configuration has been already visited (lines 18 and 19) or
the proposed element is not valid (line 20). The function
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Input: cS , cG
Output: Φ

if not IsValid(cS) or not IsValid(cG) then{1}
return ∅;{2}

sI ← 〈cS ,GetSamplingParams(cS),{3}
START, false, 0, 0,−〉;
OPEN ← {sI};{4}
CLOSED ← ∅;{5}
while OPEN 6= ∅ do{6}

cur← RemoveTheBest(OPEN);{7}
Insert ccur into CLOSED;{8}
if scur then{9}

cur ← 〈cG,−,CONNECTION, true,{10}
gcur + hcur, 0, cur〉;
cur ← SmoothPath(cur);{11}
Φ← ReconstructPath(cur);{12}
return Φ;{13}

end{14}
foreach ei ∈ Expand(cur) do{15}

cnew ← p(ei, 1);{16}
ξnew ← GetSamplingParams(cnew);{17}
if Contains(cnew, CLOSED, ξnew) then{18}

continue;{19}
if not IsValid(ei) then continue;{20}

eend ← Connect(cnew, cG);{21}
new ← 〈cnew, ξnew,{22}

TypeOf(ei),IsValid(eend),
gcur + l(ei), l(eend), cur〉;
new← SmoothPath(new);{23}
InsertOrReplaceIfBetter(new, OPEN,{24}
ξnew);

end{25}

end{26}
return ∅;{27}

Algorithm 1: The AA* algorithm pseudocode

Contains includes a similarity check using the given sam-
pling parametrization ξnew. The function IsValid checks
the validity of the element. The IsValid returns true if
and only if u(e) = 1, see Equation 3. Internally, the function
IsValid is implemented as a geometrical interpolation of
the element which is further checked against the represen-
tation of Xrbound

and VΘmax , providing an efficient test of
point and line validity. The detailed description of their rep-
resentation is not within the scope of this paper.

At lines 21–24, the new state is prepared and the path
to new state is smoothed. The heuristics for the new state
is computed as the shortest length to the goal using the
Connect function, see Section . Finally, the newly ex-
panded state is inserted intoOPEN list if it does not contain
any similar state yet. Alternatively, the existing similar state
in the OPEN list is replaced if the sum of values of g and h
for new state is lower than the sum of the existing one (the
function InsertOrReplaceIfBetter at line 24).

Get Sampling Parameters Function
For the input configuration c, the function
GetSamplingParams prepares the sampling
parametrization tuple ξ = 〈l, αh, αv〉 : l is the sam-
pling length for the eS , αh is the horizontal turn sampling
angle and αv is the vertical turn sampling angle. Initially,
the sampling level a is determined using the desired search
algorithm precision lmin (see Section )

a = max(n ∈ N0 : xc ∈ Xε(n)),
where ε(n) = 2(n+1)lmin + rbound .

(4)

The l is then computed as l = 2almin. This construction
of l provides state density gradually increasing towards ob-
stacles which guarantees that the search is able to find any
existing gap larger than lmin in the airplane operating space
Xrbound

.
The αh and αv are chosen so that the Euclidean distance

of their start and final arc points is l and is limited to π
2 for

αh and Θmax for αv . Turn radii are always set to their min-
imums during the search (see Section ), so that

αh =

{
π
2 if l ≥ rh

√
2

arccos ( 2r2h−l
2

2r2h
) otherwise

,

αv =

{
Θmax if l ≥ rv

√
2(1− cos Θmax)

arccos ( 2r2v−l
2

2r2v
) otherwise

.

(5)

Connect Function
The function Connect constructs a complex element eC
composed as a sequence of basic geometrical elements ei ∈
E connecting the two given configurations c1 and c2 by the
shortest path. The provided eC fulfills the same constraints
as the path Φ except for the obstacle intersection criterion
given by Equation 3. The construction of the shortest path
uses only the airplane motion constraints rh, rv and Θmax.
The intersection criterion is not included in the path compo-
sition as it is used for counting the best admissible heuris-
tics for the search algorithm. However, the functions p(e, t),
l(e), TypeOf and IsValid are extended to work properly
with the complex element eC .

c 1 c 2

eHT

eHT

e S

l

Figure 2: The shortest path example between two configu-
rations c1 and c2.

79



A two-dimensional example of one such connection is in
Figure 2. The eC in the example is composed of three basic
elements: right horizontal turn, straight and left horizontal
turn. The shortest path sequence is always constructed us-
ing the turn and spiral elements with the radius set to the
minimum available for the airplane (Souères and Boisson-
nat 1998). The problem of finding the shortest connection is
transformed to the problem of sequence composition identi-
fication and the computation of elements parameters.

The two-dimensional problem is referred to as Dubins
curves. In (Souères and Boissonnat 1998), it is shown how
the sequence can be identified. The function Connect is an
extension of Dubins curves to a three-dimensional domain
using also vertical turn and spiral elements still providing
the shortest connection.

Smooth Path Function
The SmoothPath function tries to remove unnecessary
middle states in the path from the start configuration to the
current state. This tries to make the path shorter than its
original version.

Input: inState
Output: outState

Γ← ExtractPrevStates(inState);{28}
foreach s ∈ Γ do{29}

eC ← Connect(cs, cinState) ;{30}

if l(eC) = (ginState − gs) then{31}
return inState;{32}

if IsValid(es) then{33}
outState← 〈cinState, ξinState,{34}

CONNECTION, gs + l(eC), hinState, s〉;
return outState;{35}

end{36}

end{37}
return inState;{38}

Algorithm 2: The function SmoothPath

The function SmoothPath, see Algorithm 2, tries to find
the shortest valid replacement for the current path by apply-
ing the Connect function to as many parts of the path as
possible4. At line 1, the list Γ is filled with states from the
start search state to the previous state of the inState. Next,
the function tries to replace the path from s to the input state
inState with the shortest connection given by the function
Connect (lines 29–37). If the length of the shortest con-
nection is the same as the existing segment length, the path
cannot be made shorter (also any subsequent part cannot be
made shorter) and the function returns the unchanged path.
At lines 33–36, the function checks whether the shorter con-
nection eC is valid. If there is no intersection with any obsta-
cle, the function replaces the rest of the path with this short-
est connection and the function returns the updated path with
a newly prepared outState.

4Only the path parts to the current state are replaced because
this function is already called to every previous state in the path
(Algorithm 1, line 23).

Expand Function
The pseudocode of the function Expand is stated in Algo-
rithm 3. The function returns a set of elements E extending
the given state. First, it extracts the sampling parametriza-
tion component from the state and computes pitch angle Θ
(lines 38 and 39). The Θ represents the angle of the state
direction vector from the horizontal plane. It is positive if
the direction vector heads upwards from the horizontal plane
and negative if downwards. At line 40, the set E is initial-
ized with the straight element from the state configuration
with its length taken from the current sampling parametriza-
tion.

Input: state
Output: E
len, αh, αv ← ξstate;{39}

Θ← PitchAngle(cstate);{40}

E ← {eS(cstate, len)};{41}
if Θ = 0 then{42}
E ← E

⋃
{eHT (cstate, rh, αh, LEFT )};{43}

E ← E
⋃
{eHT (cstate, rh, αh, RIGHT )};{44}

else{45}
E ← E

⋃
{eSPIRAL(cstate, rh, 1, LEFT )};{46}

E ← E
⋃
{eSPIRAL(cstate, rh, 1, RIGHT )};{47}

if Θ > 0 then{48}
E ← E

⋃
{eV T (cstate, rv,Θ, DOWN)};{49}

else{50}
E ← E

⋃
{eV T (cstate, rv,−Θ, UP )};{51}

end{52}

end{53}

E ← E
⋃
{eV T (cstate, rv,min(αv,Θmax −Θ), UP )};{54}

E ←{55}

E
⋃
{eV T (cstate, rv,min(αv,Θmax + Θ), DOWN)};

return E ;{56}

Algorithm 3: The function Expand

Horizontal turn elements eHT with right and left direction
are added only if the airplane is not climbing or descending
(lines 42–45). This restriction comes from the problem defi-
nition (Section ). Otherwise, spiral elements eSPIRAL with
both orientations are added (lines 43 and 44). At lines 48–
52, the Expand appends an element which re-aligns the air-
plane direction with the horizontal plane. This correction is
necessary as the application of eV T with appropriate sam-
pling parametrization can cause that the horizontal direction
is not reached in many following states. Finally, vertical turn
elements bounded to the airplane maximum pitch Θmax are
added (lines 54 and 55). The Expand uses the turn ele-
ments with minimum turns allowed for the airplane rh and
rv because it is shown in (Dubins 1957) that the shortest
path between any two configurations can use only these turn
elements.

Experiments
Properties of the AA* concept were evaluated on a set of two
and three-dimensional setups, Figure 3. The A* algorithm
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with a fixed sampling size and a distance-to-target heuristics
was chosen as a comparator. The fixed sampling size in the
A* algorithm is equal to the search precision lmin of AA* as
it has to be able to find a path through the same smallest gap
between any two obstacles. In all experiments, the path cost
is constructed by the length of the path5 and the admissible
heuristics is computed as the length of the shortest connec-
tion of the current state configuration and the goal including
their vectors respecting the airplane motion constraints. The
size of testing environments was selected at the maximum
which is computable by the A* algorithm within one hour
on the standard 2.5 GHz desktop computer with 8 GB of
memory.

c
S

(a)

c
G

c
S

c
G

c
S

c
G

c
Gc

S

c
S

c
S

c
G

c
G

(b)

(c) (d)

(e) (f)

Figure 3: Experiment setups: (a) wall, (b) half circle, (c) sin-
gle gap, (d) double gap, (e) maze and (f) half sphere.

The parameters of the airplane are the same in all setups:
(i) bounding sphere radius rbound of the airplane body is 10;
(ii) minimum horizontal rh and vertical rv turn radii are 10;
and (iii) maximum pitch angle Θ is π

6 . Several testing two
and three-dimensional setups have been selected (see Fig-
ure 3): wall, half circle, single and double gaps, maze and
half sphere. The start configuration is denoted as cS and the
goal as cG. Three-dimensional versions of the algorithms
are reduced to two-dimensional versions by using only ele-
ments eS and eHT in the Expand function.

In the wall, half circle, single gap, double gap, and half
sphere setups the distance between cS and cG is 500, in the
maze setup it is 900, the length of the maze square side
is 1000 and the width of each tunnel is almost 100. First
two configurations, wall and half circle, have obstacles po-
sitioned so that they are causing deviation from paths which

5The path length is computed as Euclidean length in R3.

are strongly preferred by the used heuristics – the shortest
path from the current configuration to the goal. The next two
setups, single and double gap, demonstrate the ability of the
algorithm to find a small hole in the obstacle to find a path
to the outside point or through the next gap to another one.
The gap size in these two setups is 23 which means that the
gap width available to the path search algorithm is no more
than 3 because of the airplane bounding sphere rbound = 10.
The detail of the path through the gap with the visualization
of the airplane dimension is shown in Figure 4 – expanded
paths cannot go closer than the bounding radius to the ob-
stacle.

The maze configuration verifies the acceleration capabil-
ities of the AA* algorithm in the case where the selected
heuristics is completely inefficient. To verify the benefits of
AA* also in the three-dimensional domain, the half sphere
scenario has been included. The start path point cS is in-
serted in the sphere to let the algorithm identify that it has
to go slightly backward first to find the correct path. Only
this one three-dimensional setup is documented in the ex-
periments because more complicated setups are not feasible
for the A* algorithm without large increase of sampling size.
However, the example of the path search by AA* for com-
plex three-dimensional scene is provided in Figure 5.

Table 1 summarizes the measured properties of both A*
and AA* algorithms in all these six setups. The time neces-
sary for finding the path from start to goal configuration is
expressed as a ratio to the duration of the A* algorithm in
the same configuration and on the same computer. The table
displays (i) the length of the final path provided by both ap-
proaches, (ii) the number of states processed from the open
list, (iii) the number of all expanded states, (iv) the number
of expanded states which are applicable (the path to them
does not intersect with any obstacle and it lies in the vehicle
operating space as well) and (v) the number of smoothing
operations applied to the path are documented in the table.

The search precision lmin for the first five setups is set
to 1.25 which guarantees that the algorithm should be able
to find a path through the small gaps in the gap setups, see
the detail in Figure 4. In the three-dimensional setup, the
search precision is set to 10 which is the smallest sampling
for which the A* algorithm finds the path due to the memory
limits of the used computer.

In the first four setups, the AA* algorithm significantly
reduces the number of expanded states and thus reduces the
number of generated states more than fifty times in the dou-
ble gap setup and up to more than two hundred times in
the wall configuration. On the other hand, the quality of the
path is no worse than a half percent in comparison to the best
one which can be found for the given search precision. The
number of elements in the path is almost the same for both
algorithms. The speed-up effect is more significant than the
reduction of states. In the first four configurations, the AA*
algorithm is faster more than one hundred and seventy times
and up to more than one thousand and four hundred times in
the wall setup. This is caused by the fact that the OPEN
andCLOSED lists operation for finding of the similar state
is much more efficient if the hash table structures work with
less members – e.g. in the double gap setup there are almost
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Experiment Setup

Setup Algorithm Search
precision

SD PL ES GS US AS

Wall A* 1,25 1 731,20 (3) 335 128 763 631 756 042 483 619
AA* 1,25 0,000 69 733,87 (4) 1 282 3 217 2 590 1 660

Half circle A* 1,25 1 879,14 (3) 360 999 819 579 807 576 483 994
AA* 1,25 0,001 95 879,30 (3) 3 767 10 136 7 023 4 779

Single gap A* 1,25 1 879,14 (3) 359 878 816 645 804 712 481 795
AA* 1,25 0,002 48 879,30 (3) 3 581 9 607 6 561 4 387

Double gap A* 1,25 1 1 117,54 (3) 801 752 1 849 055 1 805 778 1 016 483
AA* 1,25 0,005 911 1 118,09 (3) 12 876 34 733 23 291 14 073

Maze A* 1,25 1 8 557,30 (19) 1 737 858 4 080 222 3 813 707 1 046 204
AA* 1,25 0,039 85 8 591,56 (20) 111 525 292 931 192 574 42 258

Half sphere A* 10 1 880,33 (3) 340 922 1 260 113 1 212 951 474 603
AA* 10 0,182 51 880,90 (3) 75 440 292 209 248 339 98 062

Table 1: Experiments results: SD - search time duration in ratio to A* run; PL - path length, in brackets is the number of
elements in the path; ES - number of expanded states; GS - number of generated states; US - number of usable states (reachable
without any intersection) after expansion; AS - number of applied smoothing operations to the paths.

Figure 4: The detail of the searched paths around the first
gap in the double bug scenario. The highlighted path rep-
resents the final path with rbound = 10. The free space
between the obstacle and the final path in the gap is given
by the search precision lmin = 1.5.

two million usable states for the A* algorithm. Moreover,
the higher number of states causes several times higher load
on the IsValid test as each element can be approximated
by many lines.

In the maze setup (Figure 3 e), the AA* concept efficiency
has been proved although the heuristics does not help during
the search progress in the five tunnels going down – away
from the goal configuration. In this configuration, the AA*
algorithm found the solution twenty five times faster than
A* and reduced the number of usable states from almost
four million to two hundred thousand only. In the three-
dimensional setup, the AA* algorithm accelerates the search

only five times which is caused by the fact that the sampling
size is too large relatively to the size of the scenario. So the
hierarchical adaptive sampling parametrization cannot pro-
vide greater reduction in the AA* algorithm. But it was im-
possible to measure the configuration for smaller basic sam-
pling size because the number of states for the A* algorithm
grows very quickly in the three-dimensional case.

Another positive effect of the states reduction in the AA*
algorithm is the reduction of the memory requirements.
These memory savings allow the AA* algorithm to find the
path also in the configuration where it is impossible with the
A* algorithm. One such example is shown in Figure 5.

Conclusion
The modification of the A* algorithm for flight path plan-
ning, called Accelerated A* (AA*), has been introduced in
the paper. The AA* algorithm utilizes the concept of the
dynamic adaptive sampling used during a single run of the
search. The benefits of this approach has been documented
in several path planning benchmarks for the nonzero-sized
airplane with defined dynamics, where the AA* algorithm
proved its capability to significantly reduce the number of
visited states in the search. The AA* algorithm provides the
acceleration (up to more than 1400 times) of the path plan-
ning not only for the positive cases (where the path is found),
but in the same way for the negative cases (path doesn’t ex-
ist) as the adaptive sampling reduces the number of gener-
ated states in the same setup.

Such state reduction implies the reduction of the required
memory during the search which makes AA* suitable also
for the complex configuration space in the huge continuous
space, see Figure 5. On the other hand, the quality of the
path is almost the same as for the A* algorithm using the
same search precision. For the given sampling precision,
the AA* algorithm is still able to find the path through the
small gaps between obstacles and the feasibility of the path
planning is not affected by the acceleration.
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The extension of the AA* algorithm is used as a tra-
jectory planner for the experimental simulation platform
AGENTFLY. The AGENTFLY supports simulation of mul-
tiple UAVs based on the free flight concept with replanning
and collision avoidance abilities. The AA* is extended by
a temporal planner used to fulfil time and speed restrictions
for the trajectory. The temporal phase of the planning as-
signs acceleration and deceleration to straight elements. If
the trajectory needs to be changed, a backward call of the
AA* is performed.

D
A

B

C

Figure 5: Complex three-dimensional path planing with
many obstacles in three planning segments: A→B, B→C
and C→D.

The described AA* algorithm utilizes the single-tree
method. Another speed-up of the search process can be
brought by its extension to the bidirectional search (Pohl
1971). In such an extension, the algorithm will search
in both directions concurrently from the start configuration
to the goal and vice versa. The bidirectional search has
been successfully applied to the RRT search (Kuffner and
La Valle 2005). Its application to the AA* algorithm is more
complicated because of the non-trivial mapping from the
forward tree to the backward tree. The algorithm searches in
the continuous space and the searched states from two dif-
ferent start configurations are completely different because
the states are generated by the elementary moves with an
adaptive size.
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