
Evaluating Multi-Objective Evolutionary Scheduling Strategies for the
James Webb Space Telescope

Mark E. Giuliano
Space Telescope Science Institute

3700 San Martin Drive, Baltimore MD 21218
giuliano @stsci.edu

Mark D. Johnston
Jet Propulsion Laboratory/California Inst. Of Technology

4800 Oak Grove Drive, Pasadena CA 91109
mark.d.johnston @jpl.nasa.gov

Abstract
Effective scheduling of the James Webb Space Telescope
(JWST) requires careful management of the trade-offs
among multiple scheduling criteria. Minimizing
unscheduled time, angular momentum build-up, and the
number of observations that miss their last opportunity to
schedule are important objectives that are in competition
with each other. Previous studies evaluated alternative
multi-objective algorithms for scheduling JWST, including
algorithms for breaking down the search into separately
assigning and optimizing schedule times and spacecraft
roll. This study builds on these results by enriching the
JWST scheduling model to include a high fidelity
maneuver model between observations, along with realistic
science restrictions on how spacecraft roll can be assigned
to observations. Additional multi-objective search
strategies are evaluated using a parallelized multi-objective
algorithm that can exploit available computing resources to
reduce overall runtime. We have also incorporated
constraints into the problem formulation, to drive the
candidate solution set to better sample the Pareto frontier
in regions of greater interest. The results not only
demonstrate techniques useful for scheduling JWST but
also show how multi-objective algorithm features such as
parallelism, constraints, and the choice of population size
impacts the quality of the schedules generated. Each of the
algorithms explored produces a Pareto frontier as output.
 As a result there is no canonical way of comparing which
algorithm performs better. This paper presents tools and
techniques for comparing multi-objective algorithms and
presents the analogy that this evaluation is essentially a
recursive application of multi-objective optimization.

 Introduction
The James Webb Space Telescope (JWST) will be the
premier astronomical facility of the next decade, replacing
two of the current Great Observatories, Hubble Space
Telescope (HST) and Spitzer Space Telescope (SST) as a
uniquely capable space-based observatory with highly
ambitious scientific objectives. Scheduled for launch in
2013, JWST will have a 6.5m primary mirror diameter

 Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(compared to 0.85m for SST, and 2.4m for HST), and
will primarily observe in the infrared (like SST, and in
contrast to HST's primarily optical and UV sensitivity).
JWST will study an enormous range of scientific
questions, ranging from the early universe to planets
within and outside the solar system.
 Scheduling a mission such as JWST requires the
balancing of many factors. Clearly, such an expensive and
unique facility must be utilized as efficiently as possible,
and minimizing any wasted time is a primary objective.
At the same time, the lifetime of the observatory is
limited by consumables such as propellant for reducing
momentum buildup in the spacecraft's reaction wheels.
Thus, optimization of the JWST schedule is determined
by multiple simultaneous objectives, for which there is no
well-defined trade-off mechanism that would permit
definition of a single combined objective. Multi-objective
techniques that keep the objectives separate permit
explicit visibility and management of the multiple
tradeoffs that are necessary to generate a balanced overall
schedule for JWST.
 For JWST, two of the primary objectives are
minimizing schedule gaps, and minimizing the number of
late observations, i.e. that miss their last scheduling
opportunity. The more unusual objective is that of
reducing angular momentum buildup in the spacecraft
reaction wheels, caused by a complex interaction of
pointing direction, roll angle, and solar radiation pressure
on the tennis court-sized sunshade. Angular momentum
buildup must be compensated by firing the spacecraft
thrusters, which consumes propellant and thus is
potentially a limiting factor on mission lifetime. The
angular momentum resource constraint has several
important features:

- it is intrinsically 3-dimensional
- resource consumption is vector additive, so that

scheduling an observation at a particular time
can either increase or decrease the overall
accumulation in a nonlinear manner

- angular momentum represents both a hard
constraint as an overall limit, as well as a
preference to minimize buildup to maximally
conserve propellant

These features are different from the types of resources
covered in the planning and scheduling literature (Laborie
2003; Policella et al. 2004) where activities consume and
release a constant capacity. In particular, the non-linearity

44

of the domain prevents us from employing techniques
commonly used to handle resource constraints.
 Previous studies on JWST scheduling (Rager and
Giuliano 2006, Giuliano et al. 2007) demonstrated
effective heuristics for scheduling JWST within a
simplified spacecraft model. (Giuliano and Johnston,
2008) enriched the scheduling problem by adding the
ability to control momentum usage through assigning a
spacecraft roll for observations as well as assigning
schedule times. Alternative search algorithms were
empirically evaluated exploring how the search for
schedule times and spacecraft roll could best be
performed. The best algorithm decomposed the search
into a two step processes. In the first step, observations
are assigned times that minimize gaps and missed
observations. In the second step, observations are
assigned spacecraft rolls that minimize momentum build
up.
 In this paper we further enrich the scheduling model for
JWST by adding:

- A slew model that calculates the overhead to
move between observations based on the targets
being observed and the selected roll of
observations;

- A model of observations that need to be executed
at the same telescope roll due to astronomical
science considerations.

These new domain features impact the best scheduling
decomposition in (Giuliano and Johnston, 2008). The
decomposition first determines a schedule and then
independently adjusts the roll of observations to minimize
momentum buildup. However, the new slew model
considers roll as a factor in determining the required
separation between pairs of observations. This paper
describes modifications to the previous algorithms to
account for slews and shows that the same decomposition
still results in the best schedules.
 In addition to enriching the JWST problem domain this
paper explores factors that influence the behavior of
multi-objective algorithms. We examine the use of
constraints in multi-objective algorithms to guide the
search towards required solutions. Also, the paper
explores how the shape of the multi-objective search
impacts the results. Multi-Objective algorithms have
parameters for the population size of each generation and
the number of generations evaluated. The paper examines
whether it is better to have a deep but narrow search (i.e.
high number of generations but a small population size)
or a shallow but wide search (i.e. a large population size
but a small number of generations). Finally, the multi-
objective problem solver was augmented to support
parallel execution. This approach allows almost perfect
speed-up up to the population size. We examine how this
speed-up can be used if the primary execution concern is
the algorithm runtime and not the combined processing
time of all execution threads.
 Each of the algorithms explored in this paper produce a
set of optimal solutions, called the Pareto frontier, where

no solution in the set is strictly dominated by another
solution in the set. Although there has been much
research in this area (See Zitzler 2003 for a summary)
there is no canonical way of comparing Pareto frontiers to
determine if one algorithm works better than another.
We utilize multiple techniques to evaluate our algorithms
and argue that selecting a multi-objective algorithm out of
multiple possible algorithms is analogous to the selection
of a single schedule out of multiple schedules on a Pareto
frontier. In both cases if there is a dominating solution
then the choice is clear. If there is no dominating solution
then we can at best provide numeric metrics, and
visualization tools.

JWST Mission Operations
JWST will provide time to general observers through a
time allocation board. Approved observers will prepare
their programs using an automated tool. Programs will be
submitted to the JWST Science Operations Center (SOC)
and will be scheduled by SOC staff using a two phase
scheduling process similar to the process used for the
Hubble Space Telescope (Giuliano 1998). In the first
phase, a long range plan assigns observations to
overlapping least commitment plan windows that are
nominally 60 days long. Plan windows are a subset of an
observation’s schedulable windows and represent a best
effort commitment to schedule within the window. In the
second phase, successive short-term schedules are created
for 22 day upload periods. The short-term scheduler uses
plan windows to drive the creation of efficient telescope
schedules. This two phase process allows a separation of
concerns in the scheduling process: Plan windows
globally balance resources, are stable with respect to
schedule changes, and provide observers with a time
window so they can plan data reduction activities. Short-
term schedules provide efficient fine grained schedules to
the telescope, handle slews between observations, and
provide schedules robust to execution failure.

JWST Scheduling Constraints
A scheduling system for JWST has to satisfy several
types of constraints on observations. First, an observation
has to satisfy all requirements defined by the user. These
include the ability to specify time windows for
observations, to link observations via precedence or
grouping relationships with offsets, and to link
observations via roll constraints.
 Secondly, an astronomical target can be observed by
JWST only at certain times of the year determined by the
location of JWST relative to the sun and the target. We
call such time intervals visibility windows. The celestial
position of the target being observed defines the visibility
windows. Ecliptic poles are visible throughout the year,
while a target on the ecliptic equator (i.e. on the same

45

plane as the Earth’s orbit) has two visibility windows of
about 49 days each.
 Thirdly, schedules must satisfy limits on momentum
accumulation. The current assumption is that stored
angular momentum will be dumped every 22 days during
regularly scheduled station-keeping activities. Momentum
buildup during a 22-day period over a 24 Newton Meter
Squared (NMS) limit will require an extra momentum
dump. As momentum dumps require burning scarce fuel,
extra dumps will shorten the lifespan of the telescope. It is
also preferable to minimize the amount of momentum
dumped during the regularly scheduled dumps.
Momentum accumulation can be controlled by adjusting
the spacecraft roll angle. At any pointing within the field
of regard, JWST can roll ±5° from the normal angle
without violating spacecraft constraints. Rolling the
telescope for an observation impacts the angle that the
solar pressure asserts on the sunshield, thus affecting the
momentum buildup for the observation.

Schedule qualities
The JWST schedule qualities we desire are the following:
1. Minimize schedule gaps. The JWST contract
mandates 97.5% scheduling efficiency. The input set
(described below) of 1.2 years worth of observations
provides 20% oversubscription to fill gaps in a one year
schedule. We expect this level of oversubscription in
operations and expect that operations will be able to
utilize special gap filling observations.
2. Minimize momentum accumulation. The current
operational plan is to dump momentum every 22 days
during station keeping maintenance. The goal for the
scheduler is to have no or very few 22-day periods that
require additional momentum dumps. In addition to the
24 NMS momentum limit, it is preferable to lower the
amount of momentum dumped during scheduled station
keeping maintenance as that reduces the amount of non-
renewable fuel to be used.
3. Minimize dropped observations. The JWST
scheduling process first assigns plan windows to
observations during long range planning. Plan windows
are a subset of an observation’s visibility window and are
created to balance global resources while informing the
astronomer when to plan data reduction activities.
Missing a plan window can disrupt resource balancing,
break the handling of linked observations and disrupt the
plans of the astronomer end user.

Input Observation Set
The JWST project has created a Science Operations
Design Reference Mission (SODRM), which is a set of
observations that closely match the expected mission
duration, target distribution, instrument configuration, and
constraint selection. It contains the specifications for both
astronomical observations as well as calibration
observations. The entire SODRM amounts to
approximately 1.64 years of observations, including time

for slews and other support activities. To allow us to
compare with the previous studies we use the same subset
of the SODRM, totaling 1.2 years worth of observations,
as input to this study. It consists of 2907 observations,
including 1822 observations that are linked to at least one
other observation. Observation duration varies from 70
minutes to 12 days with a median of 2.08 hours.
 The SODRM was updated to include sets of
observations that must be executed at the same spacecraft
roll in order to achieve the desired science outcomes.
These are sets of observations from a single program,
called same-orient sets, that observe the same target
using different wavelengths. Previous versions of the
SODRM included these observations but did not link
them into same orient sets. The new SODRM adds the
scheduling restriction that the observations must be
assigned the same roll.

Evolutionary Algorithms
A multi-objective optimization problem to minimize M
objectives subject to K constraints can be stated as
follows:
 minimize:

!

f i (x){ }, i = 1KM

 subject to:

!

g j (x){ }
T

" 0, j = 1KK

Here

!

x represents a vector in decision space of dimension
D. A solution is called Pareto optimal when no
improvement can be made to one objective that does not
make worse at least one other objective. The set of Pareto
optimal solutions is called the Pareto frontier. What we
seek as a solution to the multi-objective optimization
problem is a good approximation to the Pareto frontier.
Two important characteristics of a good solution
technique are convergence to the Pareto frontier, and
diversity so as to sample the frontier as fully as possible.
 We have adopted an evolutionary algorithm approach
(Deb 2001, Abraham, Jain, and Goldberg 2005) to JWST
scheduling. Among techniques developed to solve multi-
objective optimization problems, evolutionary algorithms
have become popular for a variety of reasons. They have
been shown effective on a wide range of problems and are
capable of dealing with objectives that are not
mathematically well behaved (e.g. discontinuous, non-
differentiable). By maintaining a population of solutions
they are capable of representing the entire Pareto frontier
at any stage.
 For this study we have utilized one particular variant
called Generalized Differential Evolution 3, or GDE3
(Kukkonen and Lampinen 2005) which has been
previously used in multi-objective scheduling in a space
network application (Johnston 2006, 2008). This
technique is based on Differential Evolution, a single
objective evolutionary algorithm for real-valued decision
spaces (Price, Storn, and Lampinen 2005). GDE3 makes
use of concepts pioneered in the algorithm NSGA II (Deb
et al. 2002), including:

46

• non-dominated sorting of the population into ranks,
such that members of rank n dominate members of all
ranks >n, where rank 1 members constitute the non-
dominated set, i.e. the current approximation to the
Pareto frontier

• crowding distance is used as a secondary
discriminator on members of the same rank: members
in crowded regions of the population are scored
lower, so the surviving members after selection have
greater diversity. This helps prevent premature
convergence of the population to a small portion of
the Pareto frontier

• population members are compared with a domination
or constraint-domination relation — the latter allows
for domination comparisons even when constraints
are violated

The purpose of the crowding distance calculation is to
encourage a spread of solutions that sample the Pareto
frontier with as much uniformity as possible. However,
one side effect of this is that unacceptable candidates may
be preferentially included in the population primarily
because they have extreme values in some objectives, and
thus remain in an uncrowded region. To alleviate this
problem, we have made use of constraints gj to define
acceptability limits on the objectives, thus focusing the
evolutionary algorithm on a portion of the Pareto frontier
that includes more potentially viable candidates.
 With constraints included, the constraint-domination
relation is used to compare the parent and trial vectors.
This modifies the comparison as follows:

1. If both parent and trial have no constraint
violations, then they are evaluated with the
domination relation in objective space.

2. If one of the parent or trial vector has no
constraint violations, then that one is selected.

3. If both parent and trial have constraint violations,
then they are evaluated with the domination
relation in constraint violation space.

Note that one effect of this comparison technique is that
candidates with constraint violations are compared
without regard for objective values, i.e. finding feasible
solutions is regarded as primary, and if none can be
found, the population will settle to a Pareto frontier in
constraint violation space.

System Architecture
The system architecture for the experiments integrates
existing components (see Figure 2). The Java-based
GDE3 component is the multi-objective evolutionary
algorithm driver (Johnston 2006). The Lisp based SPIKE
system has a model of the JWST scheduling domain. The
evolver component sends SPIKE decision vectors that are
used to create schedules and to return objective function
values. The systems communicate via socket connections.
 SPIKE (Johnston and Miller, 1994) is a planning and
scheduling tool kit that was created for use on the Hubble
Space Telescope. SPIKE has several built-in scheduling

strategies and provides templates for creating new
strategies. The system supports iterative repair search
algorithms. The scheduler first makes an initial guess that
assigns a start time to all selected observation, possibly
assigning observations to conflicting times. In the repair
stage, SPIKE tries to reduce the number of conflicts by
re-assigning the start time of conflicted observations. At
the end of the repair stage, SPIKE removes the
assignments for observations with existing conflicts to
produce a conflict-free schedule. A simple set of gap
filling routines were designed for the experiments below.
 One of the innovations introduced in the architecture is
the capability to parallelize schedule evaluations, in order
to take advantage of available computing resources to
speed the elapsed runtime of the algorithm. This is
indicated in Fig. 1, where the GDE3 driver can invoke
multiple instances of SPIKE on different hosts to perform
schedule evaluations, which is the dominating component
of the overall runtime.

Evaluating Multi-Objective Algorithms

In this paper we evaluate how variants of evolutionary
algorithms perform when scheduling JWST. For a given
problem each algorithm outputs a Pareto surface. This led
us to investigate how Pareto surfaces can be compared in
order to determine which run of an algorithm is best.
(Zitzler 2003) contrasts unary Pareto surface evaluation
functions that measure the quality of a single Pareto
surface with binary evaluation functions that compare the
quality of two Pareto surfaces. He shows that no unary
function or combination of unary functions can tell
whether or not a Pareto surface P1 is strictly better than a
Pareto surface P2. In contrast binary evaluation functions
can be designed to tell if one surface is better than
another. For example, using the comparison operator
from (Giuliano and Johnston 2008) first construct the
combined Pareto frontier of the two surfaces
Combined(P1,P2). If Intersect(P1,Combined(P1,P2)) ==
P1 and Intersect(P2,Combined(P1,P2)) == null then
surface P1 dominates surface P2.
 If there is no strict domination between surfaces then
we cannot determine if one surface is better than another.
The purpose of a multi-objective algorithm is to produce a

Figure 1: System Architecture

47

surface of Pareto optimal solutions so that a user can
explore the space and ultimately select one of the
solutions for execution. If there is no strict domination
between a pair of surfaces then the combined surface will
contain elements from both sets and the end user may
prefer an element from either set. Without additional
knowledge no formulation can distinguish between pairs
of non-dominating surfaces. In this way the selection of a
multi-objective algorithm is like the selection of a
solution out of a Pareto optimal frontier. Since there are
multiple objectives there is no formal way to make the
selection if there is no dominating solution.
 Despite these pessimistic truths analysts who code and
set parameters for multi-objective algorithms need tools
for distinguishing between algorithms beyond the notion
of strict dominance. In this paper we explore some novel
formulations that measure the quality of a Pareto surface
and show how the formulations do and do not match the
intuitions obtained from plots of schedule values.
Suppose we want to evaluate N Pareto surfaces P1,, Pn.
Binary evaluation functions allow the determination of
domination between surfaces but are cumbersome
because they require examining a metric value for each
ordered pair of surfaces. In contrast, unary metrics are
easy to understand as they give an absolute value per
surface but do not provide the ability to determine
domination relationships. Using the notion of a combined
Pareto surface we construct metrics that make binary
metrics appear as unary metrics and that make unary
metrics relative to a baseline ideal solution set. The idea
is to construct the combined Pareto surface of the N
solutions P1, .. Pn. This combined surface represents the
ideal best obtainable solutions given the algorithms being
compared. Unary metrics can then be compared to the
corresponding metric of the combined surface. Likewise,
binary evaluation functions for an individual Pi can be run
against the combined surface giving a single value
indicating how the surface compares against the best
possible.
 We utilize the following unary metrics. For each of the
three criteria we report the average value of all solutions
for the criteria and the minimum obtainable value for the
criteria. In addition we report the average of the average
values. The motivation for using averages is that we

prefer solutions that minimize the overall criteria scores.
We use minimum values as this shows the best obtainable
solution for the criteria. Each of these unary metrics is
then compared with the corresponding value in the
combined surface. In this paper two binary evaluation
functions are modified to give a unary value based on the
combined surface. One is based on the E-indicator
(Zitzler 2003) which gives the factor by which one Pareto
surface is worse than another with respect to all
objectives. In other words the value is the minimum
factor e such that for any solution in P2 there exists a
solution in P1 that is not worse by a factor of e in all
objectives. The second binary indicator is based on the
naïve comparison operator in (Giuliano and Johnston,
2008). This comparison is called the P-indicator and is
the fraction of P1 that occurs in the combined surface. In
general smaller E(P1,P2) means that P1 is preferable to P2
and larger P(P1,P2) values mean that P1 is preferable.
Both of these binary metrics can be used to determine if
one surface dominates another.

Experimental Setup
 A series of experiments are presented which evaluate
different approaches for JWST scheduling and explore
how multi-objective algorithm features such as the use of
constraints, population size, and the number of
generations impact the solutions. The results will be
presented using graphs and the evaluation techniques
given in the previous section. The initial experiments
make use of the “all at once” search strategy, which
optimizes both observation timing and spacecraft roll
angle in a single step. Although this approach did not fare
well in previous studies, it is included in this study, since
schedule and roll determination are more tightly coupled
in the enriched scheduling model. We also utilize the
“delayed roll” approach from previous studies which first
generates a Pareto frontier considering scheduled times
only (with a nominal time delay to account for roll
changes), followed by a separate optimization step which
adjusts roll only. We expect this approach to fare better
when schedule and roll assignments can be decoupled.

Figures 2 & 3. Compare alternative search approaches by plotting the Pareto optimal surface generated for a 22-day
schedule for each pair of metrics. The hollow data points are those in the Combined Pareto Optimal surface.
 48

There is a significant difference in computational cost for
schedule time evaluations as compared to roll evaluations:
the former take on the order of 20 seconds per schedule,
while roll evaluations alone take only a fraction of a
second. This difference led us to devise two different
approaches to parallelizing the algorithm. The main loop
of a multi-objective algorithm can be coded as:
 For (gen = 1; gen <= Search Depth; gen++)
 For (i = 1; I <= N; i++)
 Create and evaluate a candidate vectors
 Evolve the population based on the new evaluations
The inner loop of this algorithm performs the time
consuming schedule evaluations and is parallelized in
both the all at once and delayed roll search approaches by
distributing the evaluations evenly to available
processors. Since all evaluations must be done before
evolving the next generation this allows parallelism up to
the population size N. In the delayed-roll approach after
first solving the 2-objective scheduling problem the
system distributes the roll search for each of the N
members of the resulting population to the available
processors. For a roll search the candidate evaluation cost
is too small to parallelize the inner loop. In both cases,
the parallelism is effective in reducing runtime, up to the
point that the number of processors is larger than the
population size N.
 All of the experiments create a schedule for a 22-day
station-keeping bin using a set of observations selected
from a simulated long range planning process. Unless
otherwise noted the experiments were sized to run in an
approximately 5 hour window using 10 processors. This
duration was selected such that an analyst could set-up,
run, and analyze results during an 8 hour work day

Experimental Results
An initial set of experiments ran 3 different combinations
of population size versus number of generations using an
all at once search. The combinations ranged from a
narrow but deep search with a population size of 20 and
500 generations to a broad but shallow search with a
population size of 80 and 125 generations. All of the
approaches evaluate 10,000 candidate solutions. After
completion of the experiments we found that many of the
solutions were not acceptable in that individual criteria
were too high to ever be selected for execution. We then
defined conditions for an acceptable solution as follows:
Gaps <= 3.5, Momentum <= 24, Dropped <= 5.5.
Considering these acceptability conditions we found that
only a small fraction of the solutions generated were
acceptable. For the 20-500 run no solutions are
acceptable and for others the best is 40% acceptability.
The experiments were re-executed this time using the
acceptability criteria as constraints in the multi-objective
algorithm. Metrics evaluating Pareto surfaces are given
in Table 1 for all of the experiments described in the
paper. The table is divided into sections based on
experiments. We report the raw unary metrics to the left
of the /, the unary metrics compared to the same metric

from the combined Pareto surface to the right of the /, and
the binary metrics normalized to the combined Pareto
surface. The results for the runs with constraints are
shown in the All at Once section of Table 1. The results
show that a broad but shallow search is preferred over a
narrow but deep search. Although the data is not shown,
the same result applies to the all at once search without
constraints. All of the metrics improve as the population
size increases except to the e-indicator. The next section
of Table 1 contrasts the all at once search with and
without constraints. As can be seen the search with
constraints performed uniformly better than the search
without constraints. With constraints all of the solutions
were acceptable and all metrics favor the run with
constraints. Constraints focus the search making all
solutions acceptable and reducing metric values.
Delayed Roll Search A series of experiments were then
run to determine the impact of constraints, the impact of
depth versus breadth on the search tree, and whether or
not the delayed roll search approach would perform better
than the all at once search. Since the updated scheduling
model includes slews between observations, that are in
part based upon the roll, the JWST schedule evaluation
engine was augmented to assume a worst case roll
between observations that are not forced to be at the same
roll due to same-orient constraints. The delayed roll
search was run with three different parameter settings that
can be described by four numbers N-D-M-P indicating
respectively the base population size N, the schedule
search depth D, the roll search population size M (always
set to 20), and the roll search depth P. For example 20-
300-20-200 indicates using a population size of 20 to
perform a 300 generation schedule assignment search
resulting in a population of 20 schedule solutions. After
the schedule search completes the system performs a 200
generation roll search with population size 20 for each of
the 20 schedule solutions. This search generates 20x300
= 6000 schedule candidates and 20 X 20 X 200 = 80,000
roll candidates. The three experiments executed all
generate 6000 schedule candidates and 80,000 roll
candidates and can be described as: 20-300-20-200, 40-
150-20-100, and 80-75-20-50.
 The results for these runs are displayed in the Delayed
Roll Search section of Table 1 and are shown pictorially
in Figure 2. First we note that in this search the narrow
but deep search produces the best results. This can be
seen in the table in terms of the metric trends and
pictorially in Figure 2 where the two lower population
size searches dominate in just about all the metrics. Again
the exception to the metrics is the e-indicator. The value
of the e-indicator favors the high population size 80-75 -
20-50 search. The e-indicator is based on a worst case
factor and is determined by a single point on the
combined surface (it is the point in the bottom right
corner of the leftmost panel in Figure 2). Removing this
point makes the e-indicator even among the surfaces.
Although this indicator may be useful in determining
domination it does not agree with intuitions on the

49

qualities of one surface versus another. We compare the
two best all at once searches with the two best delayed
roll searches in the next section of Table 1. The delayed
roll search has lower averages throughout and performs
better on all of the metrics. The quality of the all at once
search is especially bad with respect to momentum.
Except for one point all of the points contributed to the
Combined Pareto surface from the all at once searches are
worse with respect to momentum than the points
contributed by the delayed roll search. If we just consider
a two criteria search without momentum, we see that the
all at once search is competitive. Figure 3 plots schedule
gaps versus dropped observations showing that the all at
once search contributes to a large portion of the combined
Pareto surface. What is surprising is that the delayed roll
search performed so well with respect to gaps. In these
experiments the schedule and roll search steps are
decomposed by ensuring that there is always enough time
to allow for the largest roll slew. This might be expected
to create gaps as the actual roll slew can be smaller than
the maximum of 6 degrees. The results can be explained
as follows. Slew distance is a combination of the roll
distance and the target slew distance, The roll component
is zero for same orient sets. In general a schedule that
reduces gaps will have observations from a same orient
set contiguous in the schedule as all of the observations
have the same target. This reduces gap time independent
of roll considerations. Observations in different same
orient sets generally have different targets and therefore
will have a non zero target slew component. The target
slew will generally be larger than six degrees and will
dominate the total slew time.
 Impact of Parallelism The final experiment measures
the impact that parallel execution can have on the quality
of the solutions generated. The experiments so far have
measured the cost of an experimental run in terms of the
total number of schedule and roll evaluations. With this
model a search with a population size of 20 and a depth of
200 costs the same as a search with a population size of
80 and a depth of 50. Another cost to consider is the
runtime of the search. With parallelism we get almost
perfect speedup up to the population size. By increasing

the population size and keeping a constant search depth
we can keep the runtime the same but get more schedule
evaluations. We ran an experiment measuring this impact
for the delayed roll search. As a baseline we ran a search
with a population size of 20 and a depth of 200 with a 20
X 100 roll search. We then ran two additional searches
using population sizes of 40 and 80. The data for the
runs are presented in the Impact of Parallelism Section
of Table 1 and visually in Figure 4. The table data shows
that the runs with the increased population sizes improve
the gaps and momentum criteria. Looking at figure 5
additional structure can be seen in the results. The middle
pane shows that the schedule gaps for the two larger
generation searches diverge from the frontier for the
lower population size search. Although the 80-200 search
falls on the same line as the 40-200 search it is better
sampled at the extreme minimum. These observations
show the importance of using both numeric metrics and
graphical data to evaluate algorithm performance.

Conclusions
Our investigations show that, for the JWST scheduling
problem, the delayed roll search still remains the best
overall approach, in spite of our higher fidelity spacecraft
maneuvering model that makes the problem less
decomposable than before. The other conclusions to be
drawn from the experiments reported here include:
• the use of constraints to "focus" the Pareto frontier to

a region containing a higher density of less extreme
solutions is an effective technique that could be
applied to other problems

• for the delayed roll search, increasing the population
size for a fixed number of generations gives better
results in the same elapsed time

On the other hand, there is, in general, no clear advantage
either to larger populations sizes or to running more
generations, for a fixed overall investment in
computational resources. Further research will be required
to clarify the advantages of one tactic over the other.

Figure 4. Compares alternative search approaches by plotting the Pareto optimal surface generated for a 22-day schedule for each
pair of metrics. The hollow data points are those in the Combined Pareto Optimal surface.

50

Table 1: Gives metric evaluation values for five different experiments. The metrics are described in the text above

We have noted that the selection of a "best" multi-
objective algorithm can itself be viewed as a multi-
objective optimization problem, and that comparing
different algorithms in terms of the Pareto frontiers that
they generate is in general quite difficult. In the fortunate
but rare case that one approach dominates the others, then
the conclusions are straightforward. However, in the more
common case that there are different regimes where
different approaches do better, we have investigated
several metrics for assessing their relative performance.
While these metrics can provide useful insight into
algorithm performance, we have found that it is
frequently the case that a graphical view of the population
in objective space reveals patterns and trends that are not
captured by the current metrics. These graphical views
may be of more help to end users than most of the metrics
we have explored.
 Future work includes additional investigations of the
population size versus number of generations tradeoff,
and of visualization techniques that will prove essential
for more than 3 objectives. One additional objective we
are considering is schedule robustness which can be used
to manage the risk of schedule disruptions.

Acknowledgements
The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration, and at the Space
Telescope Science Institute under the NASA Applied
Information Systems Research Program grant number
NNX07AV67G.

References
Abraham, A., L. Jain and R. Goldberg (2005). Evolutionary
Multiobjective Optimization. Berlin, Springer.
Deb, K., Multi-Objective Optimization Using Evolutionary
Algorithms. (2001), New York: John Wiley & Sons.Deb, K., A.
Pratap, S. Agrawal and T. Meyarivan (2002). “A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA-II.” IEEE
Transactions on Evolutionary Computation 6(2): 182-197.

Giuliano, M. 1998. Achieving Stable Observing Schedules in an
Unstable World. In Astronomical Data Analysis Software and
Systems VII. 271-274.
Giuliano, M., Rager, R., Ferdous, N. (2007) Towards a Heuristic
for Scheduling the James Webb Space Telescope. In ICAPS.
Providence, Rhode Island. 160-167.
Johnston, M. and Miller, G. 1994. Spike: Intelligent Scheduling
of Hubble Space Telescope Observations. In Zweben M. and
Fox M. eds. Intelligent Scheduling, 391-422. Morgan-
Kaufmann.
Giuliano, M,, and Johnston M. D., (2008). “Multi-Objective
Evolutionary Algorithms for Scheduling the
James Webb Space Telescope”, In ICAPS, Sydney Australia.
107-115.
Johnston, M. D. (2006). “Multi-Objective Scheduling for
NASA's Deep Space Network Array.” In IWPSS-06. Baltimore,
MD, Space Telescope Science Institute.
Johnston, M. D. (2008). “An Evolutionary Algorithm Approach
to Multi-Objective Scheduling of Space Network
Communications.” International Journal of Intelligent
Automation and Soft Computing: in press.
Kukkonen, S. and J. Lampinen (2005). “GDE3: The Third
Evolution Step of Generalized Differential Evolution.” The 2005
Congress on Evolutionary Computation.
Laborie, P. 2003. Algorithms for Propagating Resource
Constraints in AI Planning & Scheduling: Existing Approaches
and New Results. Artif. Intell. 143(2):151-188.
Policella, N., Oddi, A., Smith S.F., and Cesta, A. Generating
Robust Partial Order Schedules. In Proc of CP 2004,Lecture
Notes on Computer Science (LNCS) Vol. 3258, pp. 496-511, M.
Wallace (Ed.), Springer, 2004.
Price, K., R. Storn and J. Lampinen (2005). Differential
Evolution: A Practical Approach to Global Optimization.
Berlin, Springer.
Rager, R. and Giuliano, M. 2006. Evaluating Scheduling
Strategies for JWST Momentum Management. In Proceedings
of the 5th International Workshop on Planning and Scheduling
for Space, 235-243.
E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and
V. Grunert da Fonseca. “Performance Assessment of
Multiobjective Optimizers: An Analysis and Review. “IEEE
Transactions on Evolutionary Computation, 7(2):117–132.

51

