
A Constraint-Based Approach for Plan Management in Intelligent Environments

Federico Pecora and Marcello Cirillo
Center for Applied Autonomous Sensor Systems
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Abstract

In this paper we address the problem of realizing
a service-providing reasoning infrastructure for pro-
active human assistance in intelligent environments. We
propose SAM, an architecture which leverages tempo-
ral knowledge represented as relations in Allen’s in-
terval algebra and constraint-based temporal planning
techniques. SAM seamlessly combines two key ca-
pabilities for contextualized service provision, namely
human activity recognition and planning for controlling
pervasive actuation devices.

Introduction
The problem we tackle in this paper is that of realizing a
service-providing reasoning infrastructure for proactive hu-
man assistance in intelligent environments. Two key capa-
bilities that are often desirable in a service-providing intel-
ligent environment are (1) the ability to recognize activities
performed by the human user, and (2) the ability to plan and
execute the behavior of pervasive service-providing devices
according to the indications of activity recognition.

Activity recognition has received much attention in the
literature and the term has been employed to indicate a va-
riety of capabilities. In this paper we take activity recogni-
tion to mean the ability of the intelligent system to deduce
temporally contextualized knowledge regarding the state of
the user on the basis of a set of heterogeneous sensor read-
ings. Equipped with such a capability, an intelligent environ-
ment could be capable of proactively planning for and exe-
cuting services that provide contextualized assistance. This
requires a way to model the temporal and causal dependen-
cies that exist between these tasks and the state of the human
user. For instance, if a smart home could recognize that the
human user is cooking, it could instruct a cleaning robot to
avoid navigating to the the dining room until the subsequent
dining activity is over.

This paper presents SAM, an Activity Management ar-
chitecture1 for service providing intelligent environments
which achieves the two key capabilities mentioned above.
SAM is built on top of the Multi-component Planning and
Scheduling framework (OMPS) (Fratini, Pecora, and Cesta

1SAM stands for “SAM the Activity Manager”.

2008). Specifically, in conjunction with an intelligent en-
vironment equipped with pervasive sensors and actuators,
SAM provides the means to monitor the daily activities of a
human being and to proactively assist the human through the
environment’s actuators. The architecture realizes an on-line
abductive reasoning process on patterns of sensor observa-
tions provided by the intelligent environment, and is capable
of synthesizing action plans for the environment’s actuators
in reaction to recognized human activities. As a direct re-
sult of the underlying framework, SAM retains three impor-
tant properties: (1) the component-based domain descrip-
tion language provides a common formalism for expressing
the activity recognition and proactive controller functionali-
ties of the domain; (2) the constraint-based nature of the ar-
chitecture allows to perform concurrent activity recognition,
planning and execution; (3) the component-based nature of
the framework allows to implement modular interfaces to
the intelligent environment, thus supporting the incremental
integration of new sensory/actuation elements.

Related Work
Current approaches to the problem of recognizing human
activities can be roughly categorized as data-driven or
knowledge-driven. In data-driven approaches, models of hu-
man behavior are learned from large volumes of data over
time. Notable examples of this approach employ Hidden
Markov Models (HMMs) for learning sequences of sensor
observations with given transition probabilities, e.g., (Wu
et al. 2007). Knowledge-driven approaches follow a com-
plementary approach in which patterns of observations are
modeled from first principles rather than learned. Such ap-
proaches typically employ an abductive processes, whereby
sensor data is explained by hypothesizing the occurrence
of specific human activities. Examples include reasoning
approaches in which rich temporal representations are em-
ployed to model the conditions under which patterns of hu-
man activities occur (Jakkula, Cook, and Crandall 2007).

Data- and Knowledge-driven approaches have comple-
mentary strengths: the former provide an effective way to
recognize elementary activities from large amounts of con-
tinuous data; conversely, knowledge-driven approaches are
useful when the criteria for recognizing human activities are
given by crisp rules that are clearly identifiable. In SAM,
we follow the latter approach.
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Also relevant to our work are various uses of schedule
execution monitoring techniques for domestic activity mon-
itoring presented in the literature, e.g., (Cesta et al. 2007;
Pollack et al. 2003). An important difference with the above
works lies in the fact that they employ pre-compiled (albeit
highly flexible) schedules as models for human behavior. In
the present work, we employ a planning process to actually
instantiate such candidate schedules on-line.

SAM leverages the capability of OMPS to plan for state
variables, a feature typical of several continuous planning
approaches (Knight et al. 2001). In addition, SAM lever-
ages the ability of OMPS to employ custom variable types.
This has allowed us to build the sensing and actuation ca-
pabilities directly into new variable types which extend the
state variable. In SAM, variables are not only used to rep-
resent elements of the domain, but also to implement active
processes which operate concurrently with the continuous
planning process, providing it with real world data obtained
form the intelligent environment.

Lastly, SAM is related to the situation recognition ap-
proach described in (Dousson, Gaborit, and Ghallab 1993),
which also employs temporal reasoning techniques to per-
form on-line recognition of temporal patterns of sensory
events. Like SAM, the requirements for recognition are
modeled as temporal relations in Allen’s interval algebra,
and both recognition and actuation are modeled within the
same formalism. However, in SAM these two types of rea-
soning are integrated at the reasoning level in addition to
being described by the same formalism. Also, while the for-
mer approach is limited to “triggering” events as a result of
recognized situations, SAM allows to trigger the generation
of a contingent plan whose elements are flexibly constrained
to sensory events or recognized activities as they evolve in
time.

Domain Representation
SAM is implemented within the OMPS temporal reasoning
framework (Fratini, Pecora, and Cesta 2008). OMPS is a
constraint-based planning and scheduling software API for
developing temporal planning and scheduling applications,
and has been used to develop a variety of decision support
tools, ranging from highly-specialized space mission plan-
ning software to classical planning frameworks.

SAM leverages the domain description language pro-
vided by OMPS to model the dependencies that exist be-
tween sensor readings, the state of the human user, and tasks
to be performed in the environment. In this section we de-
scribe how domains expressed in this formalism can be used
to represent both requirements on sensor readings and on
actuation devices. The following section will describe the
actual implementation of SAM, i.e., how such domain de-
scriptions are employed to infer the state of the user and to
contextually synthesize action plans for actuators in the in-
telligent environment.

OMPS’s domain description language is grounded on the
notion of component. A component is an element of a do-
main theory which represents a logical or physical entity.
Components model parts of the real world that are relevant
for a specific decisional process, such as complex physical

systems or their parts. Components can be used to represent,
for example, a robot which can navigate the environment
and grasp objects, or an autonomous refrigerator which can
autonomously open and close its door.

An automated reasoning functionality developed in
OMPS consists in a procedure for taking decisions on com-
ponents. Decisions describe an assertion on the possible
evolutions in time of a component. For instance, a deci-
sion on the fridge component described above could be to
open its door no earlier than time instant 30 and no later
than time instant 40. More precisely, a decision is an asser-
tion on the value of a component in a given flexible time
interval, i.e., a pair 〈v, [Is, Ie]〉, where the nature of the
value v depends on the specific component and Is, Ie rep-
resent, respectively, an interval of admissibility of the start
and end times of the decision. In the fridge example, assum-
ing the door takes five seconds to open, the flexible interval
is [Is = [30, 40], Ie = [34, 44]].

OMPS provides a number of built-in component types,
among which consumable and re-usable multi-capacity re-
sources, and state variables. The built-in state variable type
of component instead models elements whose state in time
is represented by a symbol. OMPS supports disjunctive
values for state variables, e.g., a decision on a state vari-
able that models a mobile robot could be 〈navigate ∨
grasp, [Is, Ie]〉, representing that the robot should be in the
process of either navigating or grasping an object during the
flexible interval [Is, Ie]. For the purposes of this work, we
focus on state variable type components and two custom
components that have been developed in SAM to accom-
modate the needs of the physically instantiated nature of our
application domain.

The core intuition behind OMPS is the fact that decisions
on certain components may entail the need to assert deci-
sions on other components. For instance, the decision to
dock the robot to the fridge may require that the fridge door
has already been opened. Such dependencies among compo-
nent decisions are captured in a domain theory through what
are called synchronizations. A synchronization is a set of
requirements expressed in the form of temporal constraints.
Such constraints in OMPS are bounded variants of the rela-
tions in the restricted Allen’s Interval Algebra (Allen 1984;
Vilain, Kautz, and van Beek 1989). Specifically, temporal
constraints in OMPS enrich Allen’s relations with bounds
through which it is possible to fine-tune the relative tem-
poral placement of constrained decisions. For instance, the
constraint A DURING [3, 5][0,∞) B states that A should be
temporally contained in B, that the start time of A must oc-
cur between 3 and 5 units of time after the beginning of B,
and that the end time of A should occur some time before
the end of B.

Figure 1(a) shows an example of how temporal con-
straints can be used to model requirements among actua-
tors in an intelligent environment. The three synchroniza-
tions involve two components: a robotic table and an in-
telligent fridge (represented, respectively, by state variables
MovingTable and Fridge). The MovingTable can dock and
undock the Fridge, and navigate to the human user to deliver
a drink. The Fridge component can open and close its door,
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MovingTable : DockFridge
MET-BY Fridge : open

MovingTable : UndockFridge
BEFORE [0,∞) Fridge : close

MovingTable : DeliverDrink
AFTER [0,∞) Fridge : PlaceDrink

(a) (b)

open PlaceDrink close

DockFridge UndockFridge DeliverDrink

time

MovingTable

Fridge

(c)

Human : Cooking
EQUALS Stove : ON
DURING Location : KITCHEN

Human : Eating
AFTER Human : Cooking
DURING Location : KITCHENTABLE

(d) (e) time

Stove

Location

Human

KITCHENTABLE

OFF ON

KITCHEN

Cooking Eating

OFF

(f)

Figure 1: Top row: three synchronizations in a possible domestic robot planning domain (a), the corresponding real components available in
our intelligent environment (b), and a possible timeline for the two components (c). Bottom row: two synchronizations in a possible domestic
activity recognition domain (d), the corresponding situations as enacted by a test subject in a test environment (e), and a possible timeline for
the three components (f).

as well as grasp a drink inside it and place it on a docked
table. The above three synchronizations model three simple
requirements of this domain, namely: (1) since the Fridge’s
door cannot open if it is obstructed by the MovingTable (see
figure 1(b)), and we would like the door to be kept open only
when necessary, docking the fridge must occur directly af-
ter the fridge door is opened (MET-BY constraint); (2) for
the same reasons, the fridge door should close only after the
MovingTable has completed the undocking procedure (BE-
FORE constraint); and (3) delivering a drink to the human
is possible only after the drink has been placed on the table
(AFTER constraint).

While temporal constraints express requirements on the
temporal intervals of decisions, value constraints express re-
quirements on the value of decisions. OMPS provides the
VALUE-EQUALS constraint to model that two decisions
should have equal value. For instance, asserting d1 VALUE-
EQUALS d2 where the two decisions’ values are, respec-
tively, v1 = A ∨ B and v2 = B ∨ C, will constrain the
value of both decisions to be B (the intersection of possi-
ble values). As for temporal constraints, OMPS provides
built-in propagation for value constraints.

Decisions and temporal constraints asserted on compo-
nents are maintained in a decision network (DN), that is
at all times kept consistent through temporal propagation.
This ensures that the temporal intervals underlying the de-
cisions are kept consistent with respect to the temporal con-
straints, while decisions are anchored flexibly in time. In
other words, adding a temporal constraint to the DN will ei-
ther result in the calculation of updated bounds for the inter-
vals Is, Ie for all decisions, or in a propagation failure, indi-
cating that the added constraint or decision is not admissible.
Temporal constraint propagation is a polynomial time oper-
ation, as it is based on a Simple Temporal Network (Dechter,
Meiri, and Pearl 1991).

For each component in the domain, OMPS provides built-
in methods to extract the timeline of the component. A time-
line represents the behavior of a component in time as it is
determined by the decisions and constraints imposed on this
component in the DN. Figure 1(c) shows a possible timeline
for the two components Fridge and MovingTable of the pre-
vious example. Notice that, in general, it is possible to ex-
tract many timelines for a component, as constraints bound
decision start and end times flexibly. In the remainder of this
paper we will always employ the earliest start time timeline,
i.e., the timeline obtained by choosing the lower bound for
all decisions’ temporal intervals Is, Ie.

In the previous example temporal constraints are used
to model the requirements that exist between two “actua-
tor components” (modeled as state variables) in carrying out
the task of retrieving a drink from the fridge. In addition to
actuators, however, state variables can be used to represent
sensors in an intelligent environment, their values thus rep-
resenting sensor readings rather than commands to be ex-
ecuted. Consequently, while temporal constraints among
the values of actuator components represent temporal de-
pendencies among commands to be executed that should be
upheld in proactive service enactment, temporal constraints
among “sensor components” represent temporal dependen-
cies among sensor readings that are the result of specific
human activities. For instance, the synchronizations in fig-
ure 1(d) describe possible conditions under which the human
activities of Cooking and Eating can be inferred (where
omitted, temporal bounds are assumed to be [0,∞)). The
synchronizations involve three components, namely a state
variable representing the human inhabitant of the intelligent
environment, a state variable representing a stove state sen-
sor, and another state variable representing the location of
the human as it is determined by a person localization sen-
sor in the environment. The synchronizations model how
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the relative occurrence of specific values of these compo-
nents in time can be used as evidence of the human cooking
or eating: the former is deduced as a result of the user be-
ing located in the KITCHEN (DURING constraint) and is
temporally equal to the sensed activity of the Stove sensor;
similarly, the requirement for asserting the Eating activity
consists in the human being having already performed the
Cooking activity (AFTER constraint) and his being seated
at the KITCHENTABLE.

A unique feature of SAM is that the same formalism can
be employed to express requirements both for enactment and
for activity recognition. This is enabled by two specializa-
tions of the state variable component type, namely sensor
components and actuator components. As we will see, a sin-
gle inference algorithm based on temporal constraint reason-
ing provides a means to concurrently deduce context from
sensor components and to plan for actuator components.

Recognizing Activities and Executing
Proactive Services in SAM

SAM employs three types of components: state variables,
sensors and actuators. State variables are employed to
model one or more aspects of the user’s activities of daily
living. For instance, in the examples that follow we will use
a state variable whose values are {Cooking, Eating,
InBed, WatchingTV, Out} to model the human
user’s domestic activities. Sensors and actuators are spe-
cialized variants of the built-in state variable type which im-
plement an interface between the real-world sensing and ac-
tuation modules and the DN. Sensor components interpret
data obtained from the physical sensors deployed in the in-
telligent environment and represent this information as deci-
sions and constraints in the DN. Actuators are components
that trigger the execution on a real actuator of a planned de-
cision. Actuators also have a sensing capability which al-
lows to update the DN with relations that model the temporal
bounds of execution of the executed operations.

In SAM, the DN acts as a “blackboard” where decisions
and constraints re-construct the reality observed by sensor
components as well as the current hypothesis on what the
human being is doing. This hypothesis is deduced by a con-
tinuous re-planning process which attempts to infer new pos-
sible states of the human being and any necessary actuator
plans.

SAM is implemented as a multitude of concurrent pro-
cesses (described in detail in the following sections), each
operating continuously on the DN:

Sensing processes: each sensor is a process that adds de-
cisions and constraints to represent the real-world observa-
tions provided by the intelligent environment.

Inference process: the current DN is manipulated by the
continuous inference process, which adds decisions and con-
straints that model the current activity performed by the user
and any proactive support operations to be executed by the
actuators.

Actuator processes: actuators ensure that decisions in the
DN that represent operations to be executed are dispatched

as commands to the real actuators and that termination of
actuation operations are reflected in the DN as they are ob-
served in reality.
These processes add decisions and constraints to the DN in
real-time, and access to the DN is scheduled by an overall
process scheduler. Each process modifies the DN, thus trig-
gering constraint propagation.

Continuous Inference Process
SAM’s continuous inference process relies on the fact that
the DN represents at all times the current situation in the real
world, possesses two key capabilities: (1) to assess whether
the DN contains evidence of sensed values in a given time
interval; and (2) to assess whether the DN contains the re-
quirements described in a particular synchronization. Both
capabilities can be viewed as ways to support candidate de-
cisions. Supporting a decision means performing one of the
two following steps:

Unification. A decision is supported by unification if it is
possible to impose a temporal EQUALS constraint and a
VALUE-EQUALS constraint between it and another deci-
sion which is already supported. If the result of imposing
these two constraints is successful, then this is an indication
that indeed there is an interval of time in which the value
of the decision to support has been sensed in the real en-
vironment. SAM can therefore “query” the DN to assess
whether a value v has been sensed in a certain interval of
time [Is, Ie] by attempting to support through unification a
decision 〈v, [Is, Ie]〉.

Expansion. Expanding a synchronization entails that new
(unsupported) decisions and constraints are added to the DN
as prescribed by the requirements of the synchronization.
Support for these new decisions is sought by recursively
expanding other synchronizations or unifying the new deci-
sions with others already present in the DN. Overall, expan-
sion is how SAM assesses whether the current situation of
sensor readings in the DN can support a particular hypothe-
sis: it adds an unsupported decision representing the current
hypothesis (e.g., that the human being is cooking), and tries
to support it through the domain theory and existing sensed
values in the DN.
The continuous re-planning process implemented in SAM
is shown in procedure Replan. The procedure leverages
unification and expansion to continuously attempt to sup-
port decisions which represent hypotheses on the state of a
number of monitored components. These components are
all those components for which we wish SAM to deduce
their current state. In our specific application domain, all
these components are state variables which model some as-
pect of the human user’s state. For each monitored compo-
nent, the procedure adds to the DN a decision whose value
is a disjunction of all its possible values (lines 2–3). For
instance, if the component in question is the state variable
Human described previously, then the new decision to be
added will be dHuman

hyp = 〈(Cooking∨Eating∨InBed∨
WatchingTV ∨Out), [[0,∞), [0,∞)]〉. This decision is
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marked as un-supported (line 4), i.e., it constitutes a hypoth-
esis on the current activity in which the human user is en-
gage in. The procedure then constrains this decision to oc-
cur after any other decisions on the same component (lines
5–6). This is done in order to avoid that the new decision is
trivially supported by unification with a decision supported
in a previous call to the Replan procedure. Finally, the
procedure triggers a decision supporting algorithm which at-
tempts to support the newly added decisions by recursively
expanding synchronizations and unifying the resulting re-
quirements (line 7). In the process of supporting new deci-
sions, their values will be constrained (by VALUE-EQUALS
constraints) to take on a specific value. For instance, if the
domain theory contains a synchronization stating that the
requirements for Eating on component Human are a cer-
tain set of values on some sensor components, then the un-
supported decision is marked as supported, the unary con-
straint dHuman

hyp VALUE-EQUALS Eating is imposed, and
new (un-supported) decisions on the sensor components are
added to the DN.

Procedure Replan(DN)
foreach c ∈ MonitoredComponents do1

v←
W

vi∈possibleValues(c) vi2
DN← DN ∪ dc

hyp = 〈v, [Is, Ie]〉3
mark dc

hyp as not supported4
foreach d on component c do5

DN← DN ∪ dc
hyp AFTER [0,∞) d6

SupportDecisions(DN)7

If the decision supporting algorithm terminates success-
fully, the DN contains the new decisions that have been
added by the re-planning procedure, plus all those de-
cisions and constraints that implement support for these
decisions. The value of each newly supported decision
on monitored components has been constrained to be that
required by the synchronization that was used by the
SupportDecisions procedure. Since these decisions
are linked by temporal constraints to decisions on sensor
components, their placement in time will follow the evolu-
tion of the DN’s decisions on sensor components as time
progresses.

If SupportDecisions fails, the resulting DN is iden-
tical to before the re-planning procedure was started, there-
fore reflecting the fact that no new information was deduced.

Note that the continuous SupportDecisions proce-
dure is greedy, in that the first successfully applicable syn-
chronization is selected in support of current sensor read-
ings.

Sensing Processes
In order to realize the interface between OMPS and real-
world sensors in the intelligent environment, a new com-
ponent, the sensor, was developed in SAM. A sensor is
modeled in the domain for each physical sensor in the
intelligent environment. Each sensor component is pro-
vided with an interface to the physical sensor, as well as
the capability to periodically update the DN with decisions

and constraints that model the state of the physical sensor.
The process for updating the DN is described in procedure
UpdateSensorValues. Specifically, each sensor com-

Procedure UpdateSensorValues(DN,tnow)

d← 〈v, [[ls, us], [le, ue]]〉 ∈ DN s.t. ue =∞1
vs ← ReadSensor()2
if d = null ∧ vs 6= null then3

DN← DN ∪ d′ = 〈vs, [[0,∞), [0,∞)]〉4
DN← DN ∪ d′ RELEASE [tnow, tnow]5
DN← DN ∪ d′ DEADLINE [tnow + 1,∞]6

else if d 6= null ∧ vs = null then7
DN← DN ∪ d DEADLINE [tnow, tnow]8

else if d 6= null ∧ vs 6= null then9
if vs = v then10

DN← DN ∪ d DEADLINE [tnow + 1,∞]11

else12
DN← DN ∪ d DEADLINE [tnow, tnow]13
DN← DN ∪ d′ = 〈vs, [[0,∞), [0,∞)]〉14
DN← DN ∪ d′ RELEASE [tnow, tnow]15
DN← DN ∪ d′ DEADLINE [tnow + 1,∞]16

ponent’s sensing procedure obtains from the DN the deci-
sion that represents the value of the sensor at the previous
iteration (line 1). This decision, if it exists, is the decision
whose end time has an infinite upper bound (ue). No such
decision exists if at the previous iteration the sensor read-
ings were undetermined (d is null, i.e., there is no informa-
tion on the current sensor value in the DN). The procedure
then obtains the current sensor reading from its interface to
the physical sensor (line 2). Notice that this could also be
undetermined (null in the procedure), as a sensor may not
provide a reading at all. At this point, three situations may
occur.

New sensor reading. If the DN does not contain an un-
bounded decision and the physical sensor returns a value,
then a decision is added to the DN representing this (new)
sensor reading. The start time of this decision is anchored
to the current time tnow by means of a RELEASE constraint
and made to have an unbounded end time (lines 3–6). If
the DN contains an unbounded decision that differs from
the sensor reading, then the procedure models this fact in
the DN as above, and in addition “stops” the previous deci-
sion by imposing a DEADLINE constraint, i.e., anchoring
the decision’s end time to tnow (lines 9, 12–16).

Continued sensor reading. If the DN contains an un-
bounded decision and the physical sensor returns the same
value as that of this decision, then the procedure ensures that
the increased duration of this decision is reflected in the DN.
It does so by updating the lower bound of the decision’s end
time to beyond the current time by means of a new DEAD-
LINE constraint (lines 9–11). Notice that this ensures that
at the next iteration the DN will contain an unbounded deci-
sion.

Interrupted sensor reading. If the DN contains an un-
bounded decision and the physical sensor returns no read-
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ing (vs is null), then the procedure simply interrupts the un-
bounded decision by bounding its end time to the current
time with a DEADLINE constraint (lines 7–8).

Actuation Processes
The inference procedure implemented in SAM continuously
assesses the applicability of given synchronizations in the
current DN by asserting and attempting to support new de-
cisions on monitored components, such as the Human state
variable presented earlier. This same mechanism allows to
obtain contextualized plan synthesis capabilities through the
addition of synchronizations that model how actions carried
out by actuators should be temporally related to recognized
activities. For instance, in addition to requiring that Cook-
ing should be supported by requirements such as “being in
the kitchen” and “using the stove”, a requirement involv-
ing an actuator component can be added, such as “turn on
the ventilation over the stove”. More in general, for each
actuation-capable device in the intelligent environment, an
actuator component is modeled in the domain. This compo-
nent’s values represent the possible commands that can be
performed by the device. In the domain, these values are
added as requirements to the synchronizations of monitored
components. As sensor components interface the real world
to represent sensor readings in the DN, actuator components
interface the real world to trigger commands to real actua-
tors when decisions involving them appear in the DN.

However, it should be noticed that robotic devices are
only partially controllable, in that we do not have strict guar-
antees on when and for how long given commands will be
executed. For this reason, actuator components also possess
a sensory capability that is employed to feed information on
the status of command execution back into the DN. As sen-
sor components, actuator components write this information
directly into the DN, thus allowing the re-planning process
to take into account the current state of execution of the ac-
tions.

Procedure UpdateExecutionState(DN,tnow)

D ← {〈v, [[ls, us], [le, ue]]〉 ∈ DN : ls ≤ tnow, ue =∞}1
foreach d ∈ D do2

if IsExecuting(v) then3
DN← DN ∪ d DEADLINE [tnow + 1,∞]4

else if ls = le then5
StartExecuting(v)6
DN← DN ∪ d RELEASE [tnow, tnow]7

else DN← DN ∪ d DEADLINE [tnow, tnow]8

Actuators execute concurrently with the re-planning and
sensing operations described above. The operations per-
formed by actuators are shown in procedure UpdateEx-
ecutionState. Each actuator component first identifies
all decisions that have an unbounded end time and whose
earliest start time falls before or at the current time (line 1).
The fact that these decisions are unbounded indicates that
they have been planned for execution and their execution
has not yet terminated. The fact that their start time lies be-
fore or at the current time indicates that they are scheduled

to start or have already begun. For each of these decisions,
the physical actuator is queried to ascertain whether the cor-
responding command is being executed. If so, then the de-
cision is constrained to end at least one time unit beyond the
current time (lines 3–4). If the command is not currently in
execution, the procedure checks whether the command still
needs to be issued to the physical actuator. This is the case
if the earliest start and end times of the decision coincide
(because the decision’s end time was never updated at pre-
vious iterations). The procedure dispatches the command to
the actuator and anchors the start time of the decision to the
current time (lines 5–7). Conversely, if the decision’s start
and end times do not coincide, then the decision is assumed
to be ended, and the procedure imposes the current time as
its earliest and latest end time (line 8).

Case Studies in the PEIS-Home
We illustrate the use of sensor components in SAM with
four runs performed in the PEIS-Home, a prototypical intel-
ligent environment deployed at the at Örebro University (see
aass.oru.se/˜peis). The environment provides ubiq-
uitous sensing and actuation devices, including the robotic
table and intelligent fridge described in earlier examples.

In the first run our aim is to assess the sleep quality of a
person by tracking how many times and for how long the
user turns on his night light when he lies in bed. For this
purpose, we employ three physical sensors: a pressure sen-
sor, placed beneath the bed, a luminosity sensor placed close
to the night light, and a person tracker based on stereo vi-
sion. We then define a domain with three sensor compo-
nents and the two synchronizations shown in figure 2. Note

1) Human : InBed
DURING Location : NOPOS
EQUALS Bed : ON

2) HumanAbstract : Awake
DURING Human : InBed
EQUALS NightLight : ON

Figure 2: Synchronizations defined in our domain for the Human
and HumanAbstract components to assess quality of sleep.

that the human user is modeled by means of two distinct
components, Human and HumanAbstract. This allows us to
reason at different levels of abstraction on the user: while
the decisions taken on component Human are always a di-
rect consequence of sensor readings, synchronizations on
values of HumanAbstract describe knowledge that can be
inferred from sensor data as well as previously recognized
Human and HumanAbstract activities. The first synchro-
nization models two requirements for recognizing that the
user has gone to bed: first, the user should not be observ-
able by the tracking system, since the bedroom is a private
area of the apartment and, therefore, outside the field of view
of the cameras; second, the pressure sensor beneath the bed
should be activated. The resulting InBed decision has a du-
ration EQUAL to the one of the positive reading of the bed
sensor. The second synchronization grasps the situation in
which, although lying in bed, the user is not sleeping. The
decision Awake on the component HumanAbstract depends
therefore on the decision InBed of the Human and on the
sensor readings of NightLight.
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This simple domain was employed to test SAM in our
intelligent home environment with a human subject. The
overall duration of the experiment was 500 seconds, with
the concurrent inference and sensing processes operating at
a rate of about 1 Hz. Figure 5 (a) is a snapshot of the five
components’ timelines at the end of the run (from top to bot-
tom, the three sensors and the two monitored components).

1) HumanAbstract : Lunch 2) HumanAbstract : Nap
STARTED-BY Human : Cooking AFTER HumanAbstract : Lunch
FINISHED-BY Human : Eating EQUALS Human : WatchingTV
DURING Time : afternoon

3) Human : Cooking 4) Human : WatchingTV
DURING Location : KITCHEN EQUALS Location : COUCH
EQUALS Stove : ON

5) Human : Eating
DURING Location : KITCHENTABLE
EQUALS KTRfid : DISH

Figure 3: Synchronizations modeling afternoon activities of the
human user.

The outcome of a more complex example is shown in fig-
ure 5 (b). In this case the scenario contains four instantiated
sensors. Our goal is to determine the afternoon activities
of the user living in the apartment, detecting activities like
Cooking, Eating and the more abstract Lunch. To realize
this example, we define five new synchronizations (figure 3),
three for the Human component and two for the HumanAb-
stract component. Synchronization (3) identifies the human
activity Cooking: the user should be in the kitchen and its
duration is EQUAL to the activation of the Stove. Synchro-
nization (5) models the Eating activity, using both the Loca-
tion sensor and an RFID reader placed beneath the kitchen
table (component KTRfid). A number of objects have been
tagged to be recognized by the reader, among which dishes
whose presence on the table is required to assert the decision
Eating. The last synchronization for the Human component
(4) correlates the presence of the user on the couch with the
activity of WatchingTV.

Synchronizations (1) and (2) work at a higher level of ab-
straction. The decisions asserted on HumanAbstract are in-
ferred from sensor readings (Time), from the Human com-
ponent and from the HumanAbstract component itself. This
way we can identify complex activities such as Lunch,
which encompasses both Cooking and the subsequent Eat-
ing, and we can capture the fact that after lunch the user,
sitting in front of the TV, will most probably fall asleep.

Also this example was executed in the PEIS-Home. It
is worth mentioning that the decision corresponding to the
Lunch activity on the HumanAbstract component was iden-
tified only when both Cooking and Eating were asserted on
the Human component. Also it can be noted that Nap is
identified as the current HumanAbstract activity only after
the lunch is over and that on the first occurrence of Watch-
ingTV, Nap was not asserted because it lacked support form
the Lunch activity.

As an example of how the domain can include actuation
as synchronization requirements on monitored components,
let us consider the following run of SAM in a setup which

includes the robotic table and autonomous fridge devices de-
scribed earlier.

1) Human : WatchingTV 2) MovingTable : DockFridge
EQUALS Location : COUCH MET-BY Fridge : OpenDoor
START MovingTable : DeliverDrink

3) MovingTable : DeliverDrink 4) MovingTable : UndockFridge
AFTER Fridge : PlaceDrink BEFORE Fridge : CloseDoor

5) Fridge : PlaceDrink 6) OpenDoor : OpenDoor
MET-BY MovingTable : DockFridge MET-BY Fridge : GraspDrink
MEETS MovingTable : UndockFridge

Figure 4: Synchronizations defining temporal relations between
human activities and proactive services.

As shown in figure 4, we use abductive reasoning to in-
fer when the user is watching TV. In this case, however,
we modify the synchronization (4) presented figure 3 to in-
clude the actuators in the loop. The new synchronization
(figure 4, (1)), not only recognizes the WatchingTV activ-
ity, but also asserts the decision DeliverDrink on the Mov-
ingTable component. This decision can be supported only if
it comes AFTER another decision, namely PlaceDrink on
component Fridge (synchronization (3)). When SAM’s re-
planning procedure attempts to support WatchingTV, syn-
chronization (5) is called into play, stating that PlaceDrink
should occur right after (MET-BY) the MovingTable has
docked the Fridge and right before the undocking maneuver
(MEETS). The remaining three synchronizations — (2), (4)
and (6) — are attempted to complete the chain of support,
that is, the Fridge should first grasp the drink with its robotic
arm, then open the door before the MovingTable is allowed
to dock to it, and finally it should close the door right after
the MovingTable has left the docking position.

This chain of synchronizations leads to the presence in
the DN of a plan to retrieve a drink from the fridge and de-
liver it to the human who is watching TV. Notice that when
the planned decisions on the actuator components are first
added to the DN, their duration is minimal. Through the ac-
tuators’ UpdateExecutionState procedure, these du-
rations are updated at every re-planning period until the de-
vices that are executing the tasks signal that execution has
completed. Also, thanks to the continuous propagation of
the constraints underlying the plan, decisions are appropri-
ately delayed until their earliest start time coincides with the
current time. A complete run of this scenario was performed
in our intelligent environment and a snapshot of the final
timelines is shown in figure 5 (c).

Conclusions and Future Work
In this paper we have presented SAM, an architecture for
concurrent activity recognition, planning and execution. The
architecture builds on the OMPS temporal reasoning frame-
work, and leverages its component-based approach to realize
a decisional framework that operates in a closed loop with
physical sensing and actuation components in an intelligent
environment. We have demonstrated the feasibility of the
approach with a number of experimental runs in a real envi-
ronment with a human test subject.
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(a)

(b)

(c)

Figure 5: Timelines resulting from the runs performed in our intelligent home using the sleep monitoring (a), afternoon activities (b) and
proactive service (c) domains.

One of SAM’s current limitations is its relatively sim-
ple depth-first search strategy. A more sophisticated re-
planning strategy would allow to take into account domains
in which more than one synchronization is applicable to
support a hypothesis, thus leading to different timelines for
the same component. These synchronizations could model,
for instance, alternative “explanations” for patterns of sen-
sor readings, or alternative plans that realize different forms
of support. Alternative synchronizations on the same val-
ues could also enable the synthesis of contingency plans
for dealing with actuator execution failures. However, this
would inevitably affect the performance of the re-planning
procedure, which we have purposefully kept simple in order
to maintain re-planning time within the limit of acceptable
sampling rates. A first step in the direction of obtaining a
performant re-planning procedure is presented in (Ullberg,
Loutfi, and Pecora 2009), which details the performance as
well as completeness and correctness proofs of SAM’s ac-
tivity recognition functionality.
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