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Abstract

Business processes control the flow of activities within and
between enterprises. Business Process Management is con-
cerned, amongst other things, with the maintenance of these
processes. In particular, it becomes ever more important to be
able to quickly create modified processes for changed market
conditions. We show that AI Planning can help with this,
by automatically composing process skeletons. We formalize
this as a particular form of planning with non-deterministic
actions. Since there is no fixed “domain” – business processes
may talk about almost anything – a major problem in apply-
ing the method is a practical way of obtaining the planning
model. We show that, at SAP, one of the leading providers
of enterprise software, one can obtain the models for free, by
leveraging existing semi-formal models of software behav-
ior. We finally show that, by arranging some known plan-
ning techniques in a suitable way, one can obtain tooling that
solves practical examples in a matter of seconds, and that is
hence suitable for use in a real-time BPM process modeling
environment. Our prototype of such an environment is part of
a research extension to the SAP NetWeaver platform.

Introduction
Business processes control the flow of activities within and
between enterprises. Business Process Management (BPM)
is concerned, amongst other things, with the maintenance
of these processes. To minimize time-to-market in an ever
more dynamic business environment, it is essential to be able
to quickly create new processes. Doing so involves selecting
and arranging suitable IT services from huge infrastructures
such as those provided by SAP, which is a very difficult task.
In the spirit of many recent lines of work on Web Service
Composition (WSC), e.g. (Narayanan and McIlraith 2002;
Pistore, Traverso, and Bertoli 2005; Hoffmann, Bertoli, and
Pistore 2007; Hoffmann et al. 2008), we propose to anno-
tate each IT service with a “semantic” description of its rel-
evant properties, and to leverage these descriptions for help-
ing with process creation, by Planning techniques.

This approach in itself is not particularly novel; even the
application of Planning in the BPM context has been fore-
seen long ago already (Biundo et al. 2003). The exciting
bit is that, at SAP, there is a near-perfect answer to the ques-
tion that was left un-answered in pretty much every previous
work we are aware of: How to get the model?

Coming up with the semantic annotations is one of the
central issues in the Semantic Web area, and has also
been recognized as a challenge for Planning (Kambhampati
2007). Blissfully ignoring this, two of the authors had been
developing, since a while, PDDL-style planning languages
and techniques for WSC.1 Working towards the application
of this technology within SAP, we were in for a surprise:

At SAP, over time, various semi-formal models of software
behavior have been developed, both for documentation and
for computer usage. Believe it or not, one of these models

looks more or less like a PDDL domain description!

The “SAP PDDL” model is called Status and Action Man-
agement (SAM). It is an object-centered model, describing
how the status of business objects may change depending on
which “actions” – IT-level services affecting the objects –
are executed. Based on SAM, it is easy to generate planning
domains and tasks suitable for the automatic generation of
processes that are characterized by their effect on the status
of a given set of business objects. Such process generation
underlies the task SAP customers are facing, in the BPM
scenario described above.

We give a brief background on BPM and our general sce-
nario in the next section. We then explain SAM, and discuss
in detail a running example that we will use throughout the
paper. Thereafter, we introduce a planning formalism suit-
able for capturing SAM, and we explain how we arranged a
number of known planning techniques to obtain satisfactory
empirical performance. We conclude with a discussion of
the current status of our prototype, of open issues, and of the
relevance of our findings to the Planning community.

Background
We briefly outline what Business Process Management is,
and how AI Planning can help with it.

Business Process Management
Weske (2007) gives the following commonly used definition
of what a business process is:

1The focus of this work was on dealing with restricted classes
of ontology axioms, c.f. (Hoffmann, Bertoli, and Pistore 2007;
Hoffmann et al. 2008).
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Figure 1: A screenshot of our BPM modelling environment prototype.

“A business process consists of a set of activities that are
performed in coordination in an organizational and

technical environment. These activities jointly realize a
business goal.”

In other words, business process models serve as an ab-
straction of the way enterprises do business. Technically,
processes are control-flows often formalized as (particular
kinds of) Petri nets, notated in human-readable syntax such
as UML activity diagrams. Business process management
(BPM) is a field of research, as well as an industry, aim-
ing at understanding processes, configuring and implement-
ing them in information technology (IT) systems, monitor-
ing and analysing their execution, and re-designing them.
A central activity in BPM is the modelling of business pro-
cesses. This is done by humans, in suitable BPM modelling
environments. Figure 1 shows a screen shot of the proto-
type we develop at SAP Research. The modelled process,
a simple handling of customer quotes, is shown as a kind
of flow diagram, in the wide-spread BPMN notation (OMG
2008).2 Edges represent control flow, and rectangular boxes
represent activities. Other boxes represent routing nodes;
we tackle two kinds, namely XOR for alternative execution
(marked by “x” as shown in the figure), as well as AND for
parallel execution (marked by “+”, not shown in the figure).

Today’s business environment is increasingly dynamic.
On the one hand, the requirements on business processes
(such as legal and financial regulations) are subject to fre-
quent and regional updates. On the other hand, market con-
ditions change frequently and so must the business plans. It
is hence of crucial importance to be able to adapt business
processes, and to create new business processes, as quickly
as possible. A major bottleneck here lies in the translation of
high-level process models into implemented processes that
can be run on the IT infrastructure. This step is very time-

2BPMN includes notations for hiararchical definition of pro-
cesses, and for temporal constructs. Neither of these is supported
by SAM, i.e., the SAP model we build on.

consuming since it requires intensive comunication between
business experts (who model the processes) and IT experts
(who implement them). If the IT infrastructure is from an
external provider, then experts for that infrastructure (such
as SAP consultants) usually need to be involved as well.
This incurs significant costs for human labor, and poten-
tially even higher indirect costs due to increased time-to-
market. The basic idea of our application is to use AI Plan-
ning for composing processes automatically (to a certain ex-
tent), helping the business expert to come up with processes
that are close to the IT infrastructure, and hence reducing the
effort and costs associated with implementation.

Planning in BPM
Service-Oriented Architectures are becoming increasingly
popular for providing flexible IT infrastructures; in partic-
ular this holds true for the recent developments at SAP. One
potential benefit of this flexibility is the ability to imple-
ment desired business processes more quickly, using Web
services to implement the individual activities in the pro-
cesses. Reaping this benefit is severely hindered by the com-
plexity of the IT landscape. A way out that has become
rather popular is to “semantically” describe each Web ser-
vice, i.e., to describe its relevant properties in some declar-
ative language (e.g. preconditions and postconditions), and
to leverage these descriptions (e.g. by Planning techniques)
for automation; see e.g. (Narayanan and McIlraith 2002;
Pistore, Traverso, and Bertoli 2005; Hoffmann, Bertoli, and
Pistore 2007; Hoffmann et al. 2008; Weber, Markovic, and
Drumm 2008).

In our work, we focus on services described by pre/post
conditions formulated as in PDDL-style languages. Obvi-
ously, planning based on such information cannot fully re-
place the human IT expert – the description of a service in
terms of pre/post conditions will often be imprecise (not ex-
actly represent all technical aspects of the service), and so
the plan will not be guaranteed to work at IT-level. What
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Action name precondition postcondition
Check CQ Completeness CQ.archivation:notArchived(x) CQ.completeness:complete(x) OR

CQ.completeness:notComplete(x)
Check CQ Consistency CQ.archivation:notArchived(x) CQ.consistency:consistent(x) OR

CQ.consistency:notConsistent(x)
Check CQ Approval Status CQ.archivation:notArchived(x) AND CQ.approval:Necessary(x) OR

CQ.completeness:complete(x) AND CQ.approval:notNecessary(x)
CQ.consistency:consistent(x)

CQ Approval CQ.archivation:notArchived(x) AND CQ.approval:granted(x)
CQ.approval:Necessary(x)

Submit CQ CQ.archivation:notArchived(x) AND CQ.submission:submitted(x)
(CQ.approval:notNecessary(x) OR
CQ.approval:granted(x))

Mark CQ as Accepted CQ.archivation:notArchived(x) CQ.acceptance:accepted(x)
AND CQ.submission:submitted

Create Sales Order from CQ CQ.archivation:notArchived(x) AND CQ.followUp:documentCreated(x) (*)
CQ.acceptance:accepted(x)

Archive CQ CQ.archivation:notArchived(x) CQ.archivation:Archived(x)

Figure 2: The SAM model underlying our running example, modelling the behavior of “customer quotes” CQ. The postcondi-
tion marked (*) is associated also with a second kind of business object, “sales order”, an instance of which will be created as
a side effect of the action.

the planning can help with is choosing the correct combina-
tion of services, plus putting them together in a way that is
likely to be suitable. Given that the main pain-point is the
size of the IT landscape, this can potentially be quite useful,
provided the following two requirements are met:

1. Response times are (almost) instantaneous. The plan-
ning will be in on-line interaction with the human process
modeller, i.e., the modeller will wait for the planning re-
sult. This limits response time to human patience.

2. The modelling overhead is low. The benefit of the plan-
ning needs to be weighted against the overhead of design-
ing the planning model.

Both points are important, but the second point is – some-
what in contrast to the traditional focus in AI Planning re-
search – potentially the more important one.3 The model of
the “domain”, i.e., of the services infrastructure, is subject
to frequent change. The model of individual planning tasks,
i.e., initial state and goals, must be created on-line by the
user. This must be possible in a matter of seconds, and with-
out in-depth knowledge of the IT infrastructure. The great
news we share herein is that, at SAP, both can be tackled
based on a pre-existing model of software behavior.

Where to get the model?
As outlined in the introduction, we build on a model called
Status and Action Management (SAM). SAM documents the
behavior of actions – IT services – affecting the status of
business objects. “Status” here is represented in terms of a
value assignment to a set of “status variables”. SAM defines
for each action a precondition and a postcondition, stating
the required status of the relevant business objects, and how
that status changes when executing the action, respectively.
The original purpose of this model is, simply put, to provide

3See (Kambhampati 2007) for related observations in the con-
text of the Semantic Web.

a declarative way of detecting applicable actions. SAP ap-
plications check the current status against the SAM model,
and provide to the user only those actions whose precondi-
tions are satisfied. This guards against implementation bugs
in the applications, since it is easier to maintain the action
requirements on the level of SAM, than on the level of the
actual program code. Indeed, execution of actions on objects
not satisfying the requirements (e.g., processing a customer
quote that is incomplete) may have all sorts of subtle and
harmful side effects. This is one of the major problems in
maintenance of SAP applications. Further, SAM serves for
decoupling the implementation from updates to the avail-
able actions: instead of re-implementing the application, it
suffices to adapt the SAM model.

While SAM’s original purpose is quite different from
planning, the similarity to PDDL is striking. As we
show herein, this can be exploited for helping with pro-
cess creation. SAP customers frequently need to implement
new/adapted processes, making use of the many IT services
the SAP systems already provide. The services are described
in SAM; these descriptions are not visible to the customers –
because they contain confidential information about SAP in-
frastructures – but they can be used for generating processes,
using AI Planning. It then suffices for the customer to ex-
press the desired process in terms of business objects and
their state changes – a language he/she is likely to speak.
That said, the process will be a skeleton only: the control
flow may need adaptations due to particular customer poli-
cies; and customers may wish to integrate additional ser-
vices implemented in their own IT infrastructure.

For illustration, Figure 2 gives the SAM model for “cus-
tomer quotes” CQ, our running example.4 The intended
meaning of (disjunctive) preconditions is exactly as in plan-
ning. The same goes for non-disjunctive effects.

4At SAP, SAM models are represented graphically; we use an
equivalent table write-up. For privacy, the shown object and model
are not part of SAM as used at SAP. The SAM models are similar.

54



Disjunctive effects are more complicated. What SAM
models here is that the action modifies the status variables,
and that several outcomes are possible; which outcome actu-
ally happened will be visible to the SAP application at exe-
cution time. What SAM does not model is that the outcome
depends on the properties of the relevant object prior to the
action application. For example, the outcome of “Check CQ
Completeness” is fully determined by the contents of the ob-
ject CQ. These contents – which may be vast, with 100s or
even 1000s of data fields for a single object – are abstracted
in SAM, making the action non-deterministic from its per-
spective. Further, the processes do not have control over
the objects. At any point in time outside events may af-
fect their content. Hence repeated consecutive application
of, e.g., the “Check CQ Completeness” action does not al-
ways yield the same outcome – it may be that CQ has been
modified in the meantime. Overall this means that, at the
planning level, SAM disjunctive effects correspond to non-
deterministic actions, different instances of which are inde-
pendent, and whose outcome is observed at execution time.

We will detail the translation of SAM models into plan-
ning actions in the next section, after introducing our for-
malism. The initial state is trivial to generate since SAM
explicitly provides an initial value for each status variable.
Note here that, while the content of objects may change ex-
ternally, this is not the case for the status variables – they are
only changed by explicit application of SAM actions.

Regarding the goal and the definition of plans, matters
are more complicated again. The reader will have noticed
that the SAM model of Figure 2 does not allow “strong
plans” that always lead to success: checking complete-
ness or consistency can always result in a negative out-
come that forbids successful processing. To address this,
one can define more complicated goals, or a weaker no-
tion of plans. The former is impractical because the goals
must be specified by the user. Specification of complex
goals requires familiarity with SAM/with the underlying
SAP system, which contradicts our value proposition. We
hence settle for a weak notion of plans, allowing dead end
states as final nodes in the solution tree. At the process
level, this means that no explicit failure handling is pro-
vided. To avoid endless repetition of non-deterministic ac-
tions (e.g., checking and re-checking completeness), we
simply impose an upper bound (currently, 1). All this will
be detailed in the next section. What our approach ac-
complishes is that, for the user, specifying the goal is ex-
ceedingly simple. All that is required is to give the de-
sired attribute values: CQ.followUp:documentCreated(x)
and CQ.archivation:Archived(x) in the case of Figure 2. In
our prototype, this is done in simple drop-down menus.

Planning Formalism
According to what has been discussed in the previous sec-
tion, we use the following planning formalism to capture
SAM. Planning tasks are tuples (X, dA, ndA, I, G). X is
a set of variables; each x ∈ X is associated with a finite
domain dom(x). dA and ndA are sets of deterministic and
non-deterministic actions, respectively. Each a ∈ dA∪ndA
takes the form (prea, eff a) with prea, eff a being partial

variable assignments; eff a is interpreted differently depend-
ing on whether a ∈ dA or a ∈ ndA (details below). I is a
variable assignment representing the initial state, and G is a
partial variable assignment representing the goal. A propo-
sition is is a pair (x, v) where x ∈ X and v ∈ dom(x). We
identify (partial) variable assignments with sets of proposi-
tions in the obvious way.

A state s is a variable assignment. An action a is appli-
cable in s iff prea ⊆ s. If f is a partial variable assignment,
then s ⊕ f is the variable assignment that coincides with
f where f is defined, and that coincides with s elsewhere.
Using these notions, we can define what a plan is. Assume
that s is a state and that ndAav ⊆ ndA is a subset of the
non-deterministic actions of the task. We now define un-
der what conditions a tree T of actions solves (s, ndAav) in
(X, dA, ndA, I, G). The set ndAav here is needed for im-
posing that non-deterministic actions may occur only once
(c.f. the discussion in the previous section). Formally, T
solves (s, ndAav) in (X, dA, ndA, I, G) iff either:

1. T is empty and G ⊆ s; or

2. the root of T is a ∈ dA, a is applicable in s, the tree
node a has exactly one son, and the tree rooted at that son
solves (s⊕ eff a, ndAav); or

3. the root of T is a ∈ ndAav , a is applicable in s, the tree
node a has one son labelled with p for every p ∈ eff a,
a has no other sons, and each (s ⊕ {p}, ndAav \ {a}) is
either (i) unsolvable or (ii) solved by the sub-tree of T
rooted at the respective son, where (ii) is the case for at
least one of the sons.

A plan for (X, dA, ndA, I, G) is a tree that solves (I, ndA).
Item 1 of this definition is clear. Item 2 states the usual

meaning of deterministic actions. Item 3 essentially says
that, for every possible outcome of the non-deterministic
action, we must either find a plan or prove unsolvability.
At least one son must be solvable. The syntax of non-
deterministic actions is restrictive, allowing just one propo-
sition per alternative outcome. This suffices to model SAM;
our implementation does not make this restriction. The for-
malism has three remarkable features:

• Non-deterministic effects vs. observations. These two
are joined, because SAM does not distinguish them. The
object stati are always fully known. The outcome of non-
deterministic actions is directly observed at exection time.

• Failed nodes. We allow solution trees containing unsolv-
able leaf nodes, as long as below every node there is at
least one solved leaf. This amounts to implicit treatment
of failure, and keeps the goals sufficiently simple.5

5From a more general perspective, allowing failed nodes ap-
pears to make sense because, in practical planning problems of
the BPM and Web services areas, it is often the case that actions
may fail without the possibility of recovery (just think “insufficient
credit card balance”); see (Mediratta and Srivastava 2006) for a re-
lated investigation. This notwithstanding, it is unclear to us at the
time of writing to what extent and under which conditions failed
nodes are adequate in BPM. If explicit failure handling is required,
then in all likelihood they aren’t (unless a failure can be handled
simply by marking it up as being one).
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• Upper bound on repeating non-deterministic actions.
We allow each non-deterministic action only once. This
serves to avoid repetitions, which are unlikely to be useful
for the process skeleton we wish to create.6 Importantly,
having an upper bound is also instrumental for the defi-
nition of plans to make sense. In allowing sons of non-
deterministic actions to be “unsolvable”, the definition of
solvability recurses on itself. While such recursion oc-
curs also at other points in the definition, at those points
termination is guaranteed because the tree T considered
is reduced by at least one node. For “unsolvable” sons
of non-deterministic actions, the upper bound guarantees
termination. In each recursion step, the set of available
non-deterministic actions is diminished by one.7 Hence
the recursion will eventually terminate in a planning task
with only deterministic actions. Without a bound, the re-
cursion step may result in the same planning task over
again, allowing the construction of examples which, ac-
cording to the above definition, are solvable iff they are
unsolvable.
It remains to explain how SAM models are translated into

our formalism. We explain this simply by translating the
running example. We create one variable for each attribute.
Precisely we set X := {Arch, Compl , Cons, Appr , Subm,
Acc, FoUp, InitCQ , InitSO}. All but the last two of these
are the obvious abbrevations of the attributes mentioned in
Figure 2 (e.g. Arch stands for archivation). Init variables
are introduced into every SAM-translation, for every kind of
object appearing in it, to model creation of objects (which
is implicit in SAM).8 The domain of each of Arch, Compl ,
Cons, Subm, Acc, FoUp, InitCQ , InitSO is {yes, no};
this serves to abbreviate the various names used for the re-
spective attribute values in Figure 2. The domain of Appr is
{nec, notNec, grant}.

In what follows, for brevity we use propositional nota-
tion for yes/no valued attributes, e.g., writing ¬FoUp in-
stead of (FoUp, no). From the SAM model, we get the ini-
tial values I = { ¬Arch, ¬Compl , ¬Cons, (Appr , nec),
¬Subm, ¬Acc, ¬FoUp, ¬InitCQ , ¬InitSO}. The user
selects the goals in a drop-down menu, resulting in G =
{FoUp, Arch}. The set dA constructed from the SAM
model consists of:
• Create CQ: (∅, {InitCQ})
• CQ Approval:

({InitCQ , ¬Arch, (Appr , nec)}, {(Appr , grant)})
• Submit CQ:

({InitCQ , ¬Arch, (Appr , notNec)}, {Subm})
• Submit CQ:

6One might argue whether the bound 1 is too strict. As best
we can tell from our experience with SAM, it is not. Recall that
the reasons behind the outcomes are abstracted away anyhow, so
applying other actions in between can never help, from the per-
spective of the planner.

7More generally, at least one upper bound decreases by one.
8In our implementation, we actually allow online creation of

(potentially infinitely many) new objects (Hoffmann et al. 2008).
We omit this here for the sake of simplicity.

({InitCQ , ¬Arch, (Appr , grant)}, {Subm})
• Mark CQ as Accepted:

({InitCQ , ¬Arch , Subm}, {Acc})
• Create Sales Order from CQ:

({InitCQ , ¬Arch, Acc}, {FoUp, InitSO})
• Archive CQ: ({InitCQ , ¬Arch}, {Arch})
The only non-trivial aspect of this translation regards the
Submit CQ action, which has been split into two actions
bearing the same name. The action as per SAM has the
disjunctive precondition “CQ.archivation:notArchived(x)
AND (CQ.approval:notNecessary(x) OR CQ.approval:
granted(x))”. This is transformed into DNF and split into
two actions, one for each disjunct in the DNF. The set ndA
consists of:

• Check CQ Completeness:
({InitCQ , ¬Arch}, {Compl , ¬Compl})
• Check CQ Consistency:

({InitCQ , ¬Arch}, {Cons, ¬Cons})
• Check CQ Approval Status: ({InitCQ , ¬Arch, Compl ,

Cons}, {(Appr , nec), (Appr , notNec)})
This should be self-explanatory. Figure 3 shows a plan.

Check CQ Completeness

Check CQ Consistency

Check CQ Approval Status

Submit CQ CQ Approval

Y

Y N

N

Create CQ

Mark CQ as Accepted

Create SO from CQ

Archive CQ

Submit CQ

Mark CQ as Accepted

Create SO from CQ

Archive CQ

notNec Nec

Figure 3: A plan for the running example.

Algorithms and Empirical Performance
As was mentioned, we can obtain an effective solver for
practical examples by suitably arranging (and slightly adapt-
ing) some known planning techniques. We explain those in
what follows, and where applicable point out the effect they
have on performance. We first consider the search proce-
dure. We then explain, in this order, our heuristic function,
a relevance pruning mechanism, and a plan post-processor
transforming plans into the workflows to be delivered back
to the user.
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Search Procedure
We use a variant of AO* forward search. The search space is
an AND-OR tree whose nodes are, alternatingly, states (OR
nodes) and actions (AND nodes). The OR children of a state
correspond to the applicable actions. The AND children of
actions correspond to the alternative outcomes. For deter-
ministic actions, there is a single child so the AND node
trivializes. The only change we make to AO* is that, on top
of the usual “node solved” markers, we also propagate “node
failed” markers. An OR node is marked as failed if either its
heuristic value (see next section) is infinite, or if all its chil-
dren are marked failed; the node is marked as solved if ei-
ther its heuristic value is 0, or if one of its children is marked
solved. An AND node is marked as failed if all its children
are marked failed; the node is marked as solved if all of its
children are marked either failed or solved, and at least one
child is marked solved. Obviously, this corresponds exactly
to the definition of plan given in the previous section. Note
that the only difference between “AND” and “OR” nodes in
this framework is that OR nodes are solved as soon as one of
their sons is, while for AND nodes we have to prove failure
of (or solve) all the other sons.

Heuristic Function
We devise a simple variant of the FF heuristic function
(Hoffmann and Nebel 2001). For the non-deterministic ac-
tions, we adopt the simplistic approach of acting as if we
could choose the outcome. We compile each a ∈ ndAav

– the non-deterministic actions that are still available at the
respective point in the tree – into the set of deterministic ac-
tions {(prea, {p}) | p ∈ eff a}. While this yields rather
simplistic goal distance estimates, we found that it works
well in our context. As in FF, we use the relaxed plans not
only to obtain the goal distance estimates, but also to restrict
the action choice to those that are “helpful”.

One important aspect of the heuristic function is that, just
as usual, it may stop without reaching the goals in the re-
laxed planning graph, which obviously proves the evaluated
state to be unsolvable – there is not even a single sequence of
action outcomes that leads to success. The heuristic function
returns∞ in this case, which is of paramount importance for
our algorithm to be able to mark anything as “failed”: states
evaluated with∞ are the only source of such markers in our
implementation, where we do not check for duplicates.9

The reader will have noticed that the heuristic function is
very optimistic, testing only a fairly strong sufficient crite-
rion for unsolvability. However, fortunately (and probably
not unexpectedly after reading up to this point), in our set-
ting this sufficient criterion seems entirely appropriate. We
have not yet found a single case of an unsolvable state that
was not identified by the heuristic function. Obviously, the
heart of this is that the cause for failure always is some non-
deterministic action a with unwanted outcome, resulting in
a variable value contradicting the preconditions of actions
that necessarily lie on any path to the goal. Note the slightly

9The latter is just due to historical reasons, since the code was
developed for a more general planning framework in which dupli-
cate checking is non-trivial.

more subtle point that, since we act as if we could select
non-deterministic outcomes as we like, we could use the
culprit non-deterministic action a inside the heuristic to es-
tablish the outcome we want. However, we allow each non-
deterministic action only once, so a won’t be available to the
heuristic function.10 For illustration, consider the “no” out-
comes of “Check CQ Completeness” and “Check CQ Con-
sistency” in Figure 3. Clearly, for the corresponding states
the relaxed planning graph will not reach the goals because
we no longer have these actions available, and the manda-
tory action “Check CQ Approval Status” never becomes ap-
plicable. Speaking in the terms of the application: if the
Customer Quote is incomplete or inconsistent, then we can-
not check its approval status.

We ran a few tests to confirm that the heuristic func-
tion yields an empirical advantage over blind search. More
precisely, we tested against a variant of our planner with
a heuristic function that returns ∞ if the relaxed planning
graph does not reach the goals, and that returns 1 otherwise
(all actions are explored, i.e., helpful actions are turned off).
This is because any sensible SAM planning example that we
can think of involves failed nodes, and the heuristic function
is the only source of such nodes in our implementation. As
one would expect, the blind version is much slower. Run-
ning the two methods on a (real) SAM planning task similar
to our running example, if we include in the input only the
services/actions that will appear in the solution, then with
heuristic we take 0.25 seconds but without we take 1.75 sec-
onds. Adding additional actions – of which SAM specifies
2700 – into the input, the picture becomes quickly more
drastic. With only the 20 actions associated with the rele-
vant business objects, the times are 0.28 vs. 5.73. Adding
just 50 more actions, the planner takes more than an hour
without heuristic, vs. 2.89 seconds with it.

Relevance Pruning
The FF-style heuristic function is not sufficient to obtain
satisfactory performance: the planner input in practice will
contain all 2700 SAM actions, and with that runtime is pro-
hibitive (detailed results follow below). A natural question
to ask is: are the 2700 actions all relevant to the task at hand?
Expectedly, the answer to this one is “no”, at least in the
cases we tried. Typically, a planning task in SAM requires
changing the status of a small number of business objects.
The full SAM model reflects a very large number of (types
of) business objects, and most of those are not relevant to
the task. Now, it is well known, and happens also in our
context, that the FF heuristic, in particular helpful actions
pruning, largely precludes such irrelevant actions from af-
fecting the search space. However, the 2700 actions, and the
associated variables dealing with the status of the respective
business objects, do result in a huge blow-up of the relaxed
planning graphs, and hence dramatically decrease the run-
time efficiency of the heuristic itself.

The obvious answer to the above is to perform an approx-
imate relevance analysis before planning starts. In our cur-

10With more general bounds, a will no longer be available once
the bound is exhausted.
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rent implementation, we use the following trivial procedure:
(1) start with the set G of predicate names containing all
goal predicates; (2) take G′ to be G plus the set of all pred-
icates that appear in the preconditions of actions whose ef-
fects mention predicates in G; (3) if G = G′ then stop, else
set G := G′ and goto (2). Clearly, actions that do not affect
predicates in the final set G can be removed safely.
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 0  300  600  900  1200  1500  1800  2100  2400  2700

Without pruning
With pruning

Figure 4: Empirical effect of relevance pruning.

In practice, this simple pruning technique is vastly effec-
tive. Figure 4 shows empirical data for the same SAM task
discussed above, scaling the number of additional actions:
the x-axis shows the number of actions in the input that will
not be part of the solution. The pruning technique filters
out all but about a dozen irrelevant actions – simply because
they are associated with irrelevant business objects. Hence
we get almost constant runtime, in stark contrast to the plan-
ner not using the pruning.11

There are two important remarks to be made at this point,
with good and bad news. The good news is that the exam-
ple for which we show data here is not a small toy problem.
The example is of a typical size for SAM. So we can reason-
ably expect similar performance across the entire applica-
tion. The bad news is that, to a considerable degree, the dras-
tic performance of the pruning is due to current shortcom-
ings of SAM. There exist many interactions between dif-
ferent types of business objects, at IT implementation level,
that are not reflected in the current SAM model because they
are not relevant to SAM’s original purpose. However, the in-
teractions might very well be relevant for composing higher
quality processes. We are currently investigating this. Of
course, it is not foreseeable how our planner will perform on
an enriched SAM model including the interactions.

Post-Processing Plans
A final challenge is to turn plans into workflows, i.e., to post-
process the plan, bringing it into the form expected by the
business process modeller. To do so, we perform a sequence

11The extent of the blow-up without pruning appears excessive,
and is probably at least in part due to our current implementation,
and due to the creation of new objects on the fly. We are currently
looking into improving this.

of steps involving failed nodes, XOR constructs, and paral-
lelism. We end up with the process depicted in Figure 5.
When following the subsequent explanations, it will be in-
structive to compare this to Figure 3.

Create CQ

Check CQ
Consistency

Check CQ
Completeness

Check CQ 
Approval 
Status

CQ Approval

Submit CQ

Mark CQ as 
Accepted

Create Sales 
Order from CQ

Archive CQ

Approval:
Necessary

Approval: 
not

Necessary

Figure 5: Final process composed for the running example.
First, since there is no explicit failure handling, we re-

move each failed node together with the edge leading to
it. In our running example, Figure 3, this concerns the “N”
branches of “Check CQ Completeness” and of “Check CQ
Consistency”. Next, we need to re-unite XOR branches us-
ing XOR joins – ideally in a way that avoids redundancies in
the process – and we need to distinguish between checking
a property and directing the control flow. The latter is easy.
We consider, in turn, each node that has more than 1 son.12

We replace each such node with an activity node that bears
the same name, followed by an XOR split. In the exam-
ple, this concerns “Check CQ Approval Status”. To re-unite
XOR branches, we now traverse the plan tree in depth-first
order. At each node n2 encountered, we test whether the
sub-tree T rooted at n2 is identical to a sub-tree, rooted at
a node n1, that we encountered previously (that test is per-
formed efectively via a hashing function). If so, we create a
new XOR join node n′; we re-direct the incoming edges of
n1 and n2 to point to n′ instead; and we connect one copy
of T to the outgoing edge of n′. We then continue the depth-
first traversal behind n′. In the example, the first nodes n1

and n2 we find are the two copies of “Submit CQ”.
Upon completion of the above algorithm, we insert a start

node as the new root of the plan. If there is more than one
leaf node, then we join all these leaves via a new XOR join.
We thereafter insert an end node as the new (only) leaf of
the plan. Note that, here and in the above, the XOR joins

12Note that this no longer includes non-deterministic actions all
but one of whose outcomes directly lead to failure, like “Check CQ
Completeness” and “Check CQ Consistency” in our example.
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inserted always result in a workflow that is sound according
to the usual criteria (Aalst 1997), essentially because there
is no parallelism that the XOR joins could interfere with.

A BPM modeller also expects that, where possible, work-
flows perform activities in parallel – an essential property
to ensure effective execution. This intention corresponds
well to those behind the various kinds of parallelism in-
vestigated in planning. Still the correspondence isn’t exact
in the details. We wish to cater for sequences of actions
running in parallel. On the one hand, this is more general
than Graphplan-style planning with sets of mutually non-
interfering actions. On the other hand, it is less general than
temporal planning since it does not distinguish action dura-
tions and does not allow consideration of arbitrary start/end
time points. Partial-order planning is most closely related
in that it considers the relative order of actions. Methods
for post-processing total-order plans into partial-order plans
have been investigated in depth already, see e.g. (Bäckström
1998). For our particular purpose, we have designed a sim-
ple method based on finding non-interacting sub-sequences
of actions in between the XOR splits and joins that were in-
troduced previously. The method is not yet implemented,
but obviously will take negligible runtime cost. We omit its
description for lack of space.

Discussion
As mentioned, our techniques are implemented within the
BPM modelling environment shown in Figure 1. Along
with several other research prototypes, they form a research
extension (called Galaxy) to the SAP NetWeaver platform.
This concerns in particular the NetWeaver CE Process Com-
poser, NetWeaver’s BPM modelling environment.

Galaxy is currently in the initial steps towards pilot cus-
tomer evaluation. It must be said that it is still a long way
towards actual commercialisation. The potential pilot cus-
tomer has not made a firm commitment yet, and there are
technical and political difficulties inside SAP: Galaxy, re-
spectively the implementation of the transactions modelled
in SAM, reside in (largely) separate parts of the SAP soft-
ware architecture. Besides, it is of course as yet unclear what
the outcome of a customer evaluation will be. Hence the
most important open question is: Do our techniques bring
real added value for SAP customers? Apart from the prelim-
inary status of our prototype, answers to this question will
be difficult to quantify. For privacy reasons, they may be im-
possible to come by. Our impression based on demos at SAP
is that, at least for quick experimentation and kick-starting
the process design, the technique will be quite handy.

On the algorithmic side, the story thus far appears to be
closed, with existing planning techniques being fully satis-
factory. However, as mentioned, the current SAM model
falls short of reflecting several dependencies within business
objects – for some status variables, the value is a function of
other variables’ values – as well as across business objects
– some transitions can only be taken synchronously with
transitions of other objects. These shortcomings are cur-
rently being addressed in a research activity lead by SAP Re-
search Brisbane, with the purpose of more informed model
checking based on SAM models. We expect to be able

to build on these extensions for improved planning. Nat-
urally, especially regarding the cross-object dependencies,
additional/modified planning techniques may be required for
satisfactory performance of such planning.

Directions for future research also encompass plan qual-
ity criteria, i.e., allowing the user a trade-off between differ-
ent plans that are valid for the same task, as well as using
the technique not for composing plans from scratch but in-
stead for filling in “place-holders” in partially specified pro-
cesses. Neither of these should be difficult to realize, based
on known results from planning. But their suitable configu-
ration for customer use is tricky and requires more concrete
insights into the abilities and needs of such customers.

We believe that our work is good news for the Web Ser-
vice Composition area. It is reassuring that pre/post condi-
tion based description of services is not just an artefact of AI
researchers eager for new playgrounds – the same paradigm
was developed independently at SAP, with no AI influence
whatsoever. More ambitiously, here might be an application
where this form of WSC brings real business value. If so,
this would be good news for AI Planning as a whole.
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