
Solving Clustered Oversubscription Problems for Planning e-Courses ∗

Susana Fernández and Daniel Borrajo
Departamento de Informática

Universidad Carlos III de Madrid
Avda. de la Universidad, 30. Leganés (Madrid). Spain

sfarregu@inf.uc3m.es, dborrajo@ia.uc3m.es

Abstract

In a general setting, oversubscription in planning can be
posed as: given a set of goals, each one with a utility, ob-
tain a plan that achieves some (or all) the goals, maximizing
the utility, as well as minimizing the cost of achieving those
goals. In this paper, we present an application domain, au-
tomatic generation of e-learning courses design, that shows
a variation of the oversubscription problem. Here, there is
only one goal: generating a course design for a given student.
However, in order to achieve the goal, the course design can
include or not different kinds of activities, each one with a
utility and cost. Furthermore, these activities are grouped into
clusters, so that at least one of the activities in each cluster is
needed, though many more can be used. Finally, these prob-
lems also have an overall cost threshold (usually in terms of
student time). So we show several techniques for solving the
clustered-oversubscription problem and their impact on plan-
ning.

Introduction
The evolution of automated planning can be seen from three
different interrelated perspectives: planning techniques, ex-
pressiveness of planning languages, and applications. In
relation to the first one, it is one of the most active areas,
since very powerful domain-independent techniques have
been devised in the last two decades. However, we can see
that there is no such counterpart in the other two. The plan-
ning competition has been one of the major drivers of this
advancement, and the standard language, PDDL, one of its
bases. But, on the one hand, PDDL started far from the
expressiveness of previous planning languages used by spe-
cific planners, as O-Plan (Currie & Tate 1985) (in the HTN
framework), or Prodigy (Veloso et al. 1995) (in the state
space search framework). Though it has incorporated along
the way some needed features that were already present on
those planners (as handling metrics or definition of axioms),
it continues to be still a bit behind in some aspects (as the ex-
plicit definition of resources, hierarchical knowledge, con-
trol knowledge definition, or the use of arbitrary functions in

∗This work has been partially supported by the Spanish
MICINN under projects TIN2008-06701-C03-03 and TIN2005-
08945-C06-05.
Copyright c© 2009, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

the preconditions and effects) and ahead on some others (as
handling durative and continuous actions, or preferences).
On the other hand, even if PDDL is gaining in expressive-
ness, very few planners can handle the full set of features
that it defines. This is due mainly to the competition: if we
do not focus on specific aspects of the planning task, then
it is hard to see which technique is better for solving each
aspect. This can be seen, for instance, on the latest focus of
the optimal track on fixed static cost values in the actions for
the metric to be optimized. Unfortunately, most real world
applications require the use of some features of PDDL that
are not handled by most planners, as well as the use of some
representation features that are not present in PDDL. So, in
relation to the third perspective, when trying to solve differ-
ent real world applications, then one is very restricted to the
planners that can be used. An example is the need to rea-
son with state-dependent fluents that affect the computation
of the metric (they belong to the formula that computes the
metric). We could define state-dependent fluents as those
whose value could be increased or decreased by the value of
another fluent, whose value can increase or decrease at plan-
ning time. This could be partially handled by some planners
(even “old” ones), but it cannot be handled by most current
planners, and it is hard to be transformed into static-fluents.

Another relation between current planners and their abil-
ity to directly be used in applications is that most planners
are still in an advanced prototype status. So, as we will see
later, they either crash or fail on solving problems in do-
mains that do not belong to the competition. This is probably
due to small implementation errors, but this make it unfea-
sible to use them “as is” in current applications. Thus, there
is still a gap between state of the art planners and their di-
rect application. This can be easily explained given the two
different emphasis on both communities: either generating
powerful search techniques that can handle some expressive-
ness, and the need of polished implementations to be used as
“off-the-shelf” components for applications.

Despite these problems, the application of planning tech-
niques to real problems, sometimes, requires solving inter-
esting associated problems that can be useful in more gen-
eral contexts. This is the case of the work presented in
this paper. The application area is the generation of learn-
ing designs adapted to students’ profiles. And, the associ-
ated problem is a variation of the oversubscription problem

36

(OSP) that we have called clustered oversubscription. OSP
was first introduced by (Smith 2004) and the objective of
the planning process is not to find a feasible plan accom-
plishing all the goals, but to find a plan which reaches some
of them. Usually, a plan quality metric, based on the differ-
ent utilities of goals, is used in order to compare different
plans achieving different sets of goals. The contribution of
the current paper is twofold: modelling e-learning tasks as
clustered-oversubscription planning problems; and provid-
ing two generic approaches for solving the resulting prob-
lems, applicable in other contexts than e-learning applica-
tions, as well. The remainder of the paper describes the e-
learning application and how we have modelled it in PDDL.
Next sections describe the two approaches that we have de-
vised for solving the clustered-oversubscription problem by
performing an action selection pre-processing to help the
planning task: using linear programming and a search al-
gorithm, the experiments performed to test the validity of
the approach, the related work and the conclusions.

E-learning Planning Application
An e-learning task can be posed as: given a specific student,
and a course defined by a pool of diverse learning activities,
automatically generate a learning design for that student us-
ing the given learning activities. This domain has some in-
teresting characteristics: (1) each learning activity belongs
to a given cluster, and the final design should have at least
one activity of each cluster, potentially more; (2) each activ-
ity has a utility, and a time (cost) that it takes to complete
it; (3) the utility that a given learning activity will provide
a student depends on some student features, so the use of
conditional effects on actions is required; (4) as a hard con-
straint, the time to execute all learning activities in the final
plan must be bound by a threshold (the total amount a stu-
dent can dedicate to that course); (5) uncertainty should be
handled in the learning design, given that the fact of whether
the student will pass an exam or not in the middle of the
course can affect the rest of the course; (6) activities can
be easily seen as a hierarchy of tasks to be accomplished;
(7) and, as with usual planning tasks, the activities present
causal relationships among them (the student should follow
some learning activities before others). Of all these features,
we will focus in this paper on clustered oversubscription,
and we will leave out (5) and (6). In clustered oversubscrip-
tion, we perform some analysis before planning that selects a
subset of the learning activities that is worth pursuing, given
that they maximize utility (or have a high utility), and fulfill
the constraint that the sum of their cost (time) is less than
the cost limit (time threshold). We have used two differ-
ent approaches for performing this selection: by posing the
problem as a clustered-knapsack problem and then using lin-
ear programming; and heuristic search problem. Then, we
translate this subset into two different planning knowledge
as preferences or as the metric. Several planners are used to
generate the final plan.

Our work is based on previous pedagogical research
where they have tested a valid way for measuring the util-
ity each learning activity reports to the students (Baldiris
et al. 2008). So, we focus on the problem of sequenc-

ing learning activities in a course adapted to every student’s
profile by trying to maximize the total utility. Other rele-
vant work concerning the use of AI planning and schedul-
ing techniques for sequencing learning activities, according
to different student’s profiles and pedagogical theories, is
reported in (Castillo et al. 2009; Brusilovsky & Vassileva
2003). But, they did not focus on the goal of finding a feasi-
ble plan that maximizes some measure of utility by reaching
a subset of the goals. Our aim is that the proposed solution
would be general enough so it can be extrapolated to other
domains. An example of domain that have similar clustered-
oversubscription problems is the rovers domain, not exactly
the same as the one in the competition. The rovers need to
take several samples, each sample of a specific kind (clus-
ter) of rock, and there are several rocks of each kind. Also,
taking those samples takes some time, and they have a spe-
cific time threshold to perform the activities. Other exam-
ples are earth observing satellites (clusters are areas with the
same information, as big forests, mountains, or oceans) or
the planning and optimization of resources in bus transporta-
tion networks (clusters are the different lines that compose
the transportation network and the goal is optimizing their
resources and minimizing costs).

Modelling the Planning Task in PDDL
The first step for building an e-learning planning application
consists on modelling the courses. There are many theo-
ries, methodologies and tools for doing it (Jochems, Koper,
& Merrienboer 2003; Cristea & Garzotto 2004). The most
extended approach uses e-learning standards, as IMS-MD,
where the designer of the course defines each different learn-
ing activity as an XML schema1, named learning object.2
For example, in the definition of an AI course, there may be
a generic task for reading the introduction to planning. And,
there could be several learning objects to accomplish it, as
viewing a slide presentation, reading the introduction text
from the text book, searching for the concept of Automated
Planning in the Web and reading a couple of pages, or see-
ing a graph about planning. All the activities that achieve the
task can be seen as belonging to the task cluster. It is enough
for the student to follow any one of them to accomplish the
task, but more than one can be performed as well, improving
the overall utility (learning the subject). Each activity can be
more or less appropriate to each student depending on the
student profile (activity utility). So, the second modelling
step is to determine this profile, given that it will define part
of the knowledge of the planning problem. Again, there are
many theories about it as the Felder’s learning styles (Felder
1996).3 From the planning point of view, the relevant issue

1There are tools as Reload, http://www.reload.ac.uk/, that help
on creating these schemas.

2The full standard can be found in the IMS Global Learning
Consortium web page: http://www.imsglobal.org

3The learning styles model developed by Richard Felder in-
corporates four dimensions: the Perception dimension (sensi-
tive/intuitive), the Processing dimension (active/reflective), the In-
put dimensions (visual/verbal) and the Understanding dimension
(sequential/global).

37

is that each learning activity can be labelled with an util-
ity value that depends on the particular characteristics of
each student. Each activity also takes a time to fulfill it.
And, also, learning activities can have dependency relations
among them. For instance, before reading about PDDL, the
student should have some knowledge on predicate logic.

Once someone has defined a course in some e-learning
standard, we use a compiler that translates it into PDDL. The
input to the planner in the e-learning application is a set of
learning activities defined in the IMS-MD standard (domain)
and a student profile according to the Felder’s learning styles
(problem). The IMS-MD set of activities are translated into
a PDDL domain and the student profile is represented as
predicates included in the PDDL problem. One domain is
defined per course. We use one predicate for each Felder’s
learning style. For example, (sequential ?s - student ?p -
profile level type). The profile level type can take the value
strong, moderate or balanced. If the system determines that
the student is, for example, strong sensitive and strong ac-
tive we would add in the :inits of the PDDL problem the
predicates (active student1 strong) and (sensitive student1
strong).

Each learning object represents a learning activity and is
translated into a PDDL action in the following way:

• The XML label <title> is used as the action name.
• We define a predicate with the same action name, but ad-

joining the prefix task and the suffix done. It is added to
the action effects and represents the fact that the student
has performed such activity and prevents him/her from re-
peating it.

• The XML label <typicallearningtime> represents the ac-
tivity duration. We use a fluent, (total time student ?s),
that is increased in the amount of this label in the action
effects.

• The XML label <learningsourcetype>. According to
pedagogical theories, each learning source type is related
to the Felder’s learning styles (Baldiris et al. 2008). We
have used a fluent, (reward student ?s) (action’s utility),
and conditional effects to represent this relation. For ex-
ample, when the learning source is a lecture this pedagog-
ical theory says that is very good for reflective, intuitive
and verbal students. So we add the following conditional
effects to the PDDL action:

(when (reflective ?s strong)

(increase (reward_student ?s) 40))

(when (intuitive ?s strong)

(increase (reward_student ?s) 40))

(when (verbal ?s strong)

(increase (reward_student ?s) 40))

To compute the increasing values of the reward student,
we use a table defined in (Baldiris et al. 2008) where
rows represent learning source types, columns Felder’s
learning styles and intersections can take the values: very
good, good or indifferent. It has fifteen rows (lecture, nar-
rativetext,. . . ,exam) and eight columns (Active, Reflective,
Intuitive, Sensitive, Sequential, Global, Visual and Ver-
bal). We assume each activity can have a maximum re-
ward of 120, and that a very good value takes double re-

ward than a good value and an indifferent value has zero
reward. For each learning source type in a row, we sum
the number of columns with a value different from indif-
ferent, d. The reward increases for each learning style in
that row will be 120/d for very good and half of it for
good. For example, the index row in the table takes the
very good value for the Global column, good for Sequen-
tial and Verbal and indifferent for the rest of the columns
(i.e. there are three columns with a value different from
indifferent). Thus, the reward when the student is strong
global will be 120/3=40 and half of it when the student is
strong sequential or verbal. We assume all activities pro-
vide some positive reward to the student, so a minimum
of five is added to the total reward.

• The XML label <relation>. We will use two of the sev-
eral types of relations defined in IMS-MD: Requires and
IsBasedOn. 4 Requires represents a causal dependency
between two activities, so each activity in the relation is
translated as an action precondition. IsBasedOn repre-
sents that the activity can be performed by doing one of
the activities in the relation and they are translated as or
preconditions and fictitious activities (given that they will
not be used on the oversubscription computation). In fact,
a learning object with an IsBasedOn relation is considered
as a fictitious action, because the student has to perform
only one of the actions in the or condition and both the
reward and the total time remain the same.

Figures 1 and 2 show PDDL actions translated from
learning objects with relations of type Requires and Is-
BasedOn respectively. The first action describes the ac-
tivity simulates-strips-problem. It requires that the student
has already performed activity reads-classical-planning, it
takes 30 minutes, and it adds the corresponding rewards.
The learning source type is problem that is very good
for strong active, sensitive and visual students and good
for strong global students. We add precondition (not
(task strips done ?s)) to avoid including twice the
same activity in the plan. The second action represents
that a student could perform the activity simulates-strips-
problem or experiments-strips-problem to accomplish the
task task strips done.

The last learning object defined in the IMS-MD design
is named fictitious-finish-course and it con-
tains, as a Requires relation, the tasks required to ful-
fill the course. This learning object is translated into a
fictitious PDDL action with one effect, (task course done
?s), and its preconditions are the tasks required to com-
plete the course, plus the predicates (< (total time student
?s) (time threshold student ?s)), to avoid the plan to ex-
ceed the time limit, and (> (total reward student ?s) (re-
ward threshold student ?s)). Both thresholds are defined
in the problem file, (time threshold student ?s) is the to-
tal time the student can devote to the course and (re-
ward threshold student ?s) is computed from the activities
selection explained in the next section. The problem file has

4There are two more kinds of relations: IsPartOf that could be
used by HTN planners, and References for recommending previous
learning objects.

38

(:action simulates-strips-problem
:parameters (?s - student)
:precondition (and (task_reads-classical-planning_done ?s)

(not (task_simulates-strips-problem_done ?s)))
:effect (and (task_simulates-strips-problem_done ?s)

(increase (reward_student ?s) 5)
(increase (total_time_student ?s) 30)
(when (active ?s strong)

(increase (reward_student ?s) 30))
(when (sensitive ?s strong)

(increase (reward_student ?s) 30))
(when (global ?s strong)

(increase (reward_student ?s) 15))
(when (visual ?s strong)

(increase (reward_student ?s) 30))))

Figure 1: Example of PDDL action translated from a learn-
ing object with a Requires relation.

(:action OR-fictitious-strips
:parameters (?s - student)
:precondition (and (not (task_strips_done ?s))

(or (task_simulates-strips-problem_done ?s)
(task_experiments-strips-problem_done ?s)))

:effect (and (task_strips_done ?s)))

Figure 2: Example of PDDL action translated from a learn-
ing object with a IsBasedOn relation.

only the goal (task course done ?s). This representation al-
lows that any planner that supports full ADL extension (in-
cluding conditional effects) and fluents could find a solution,
but not the best solution, i.e. the sequence of actions that re-
ports the maximum reward to the student. We could use as
plan metric to minimize the total time, but then the planners
will not maximize the reward. On the other side, a metric
for maximizing the reward is unfeasible for planners based
on the enhanced relaxed-plan heuristic introduced in Metric-
FF (Hoffmann 2003), as they only work with minimization
tasks. We cannot easily transform the metric for maximiz-
ing the reward into a metric for minimizing the inverse using
state-independent fluents, due to how rewards are computed
in this domain. We used the table defined in (Baldiris et
al. 2008) that contains information on whether the learn-
ing resource type is good, very good or indifferent for each
learning style. But we cannot assert anything about the in-
verse. For instance, it is not true that if a lecture is very good
for a reflective student it is very bad for a non reflective stu-
dent. It could be that for a non reflective student the lecture
is indifferent. So, we do not know which values to assign
to those cases not in the table. Others equivalent transfor-
mation would require state-dependent fluents for computing
the metric. Thus, instead of giving the planners the task of
minimizing a function of time and inverse of reward, we first
run an activity (action) selection algorithm to select the most
promising activities, O = {ai}, and then use that informa-
tion when planning.

Activities Selection
This section describes two methods for obtaining the set
of actions that maximizes the student reward within a time
limit, by using linear programing or heuristic search. First,
we formalize the problem and then we explain each ap-
proach.

Problem Formalization
The problem is similar to the well-known knapsack prob-
lem5 in combinatorial optimization, but with the addition of
clusters. We have a set of activities, A, each with a time (du-
ration, cost) and a reward (utility), ∀a ∈ A, a =< t, r >.
The goal is to determine the set of activities to include in the
output, O = {a1, . . . , an}, ai ∈ A, so that the total time is
less than a given limit, T,

∑
ai=<ti,ri>∈O ti ≤ T , and the

total reward is maximized. Besides, activities are grouped
into a set of clusters, C = {c1, . . . , cm}, ci = {a1, . . . , aci

}
that can perform the same learning task. The solution must
contain at least one activity of each cluster, ∀ci ∈ C at least
one aj ∈ ci should be in O. We automatically extract this
maximization task from a PDDL domain and problem file.
Domain actions translated from learning objects with a Is-
BasedOn relation define the clusters. The activity reward
is computed from the problem file (to extract the student
learning-styles) and the conditional effects concerning the
fluent (reward student). And, the activity time is the in-
crease of the fluent (total time student) in the corresponding
PDDL action.

Linear Programming
The linear programming (LP) task is defined by: the set of
activities A; the set of clusters or tasks C; the time ti and
reward ri of each activity; a binary matrix ci,j representing
whether activity i belongs to task j; the time limit T ; and
one binary variable xi for each activity representing whether
activity i is in the solution set, O. The objective function
consists of maximizing

∑
i xi × ri subject to two linear in-

equality constraints:
∑

i xi × ti <= T for the time limit
and

∑
i ci,j × xi >= 1 to ensure that at least one activity

is present per cluster. This last constraint is the new one
with respect to standard knapsack problems. An important
property is that LP algorithms guarantee optimality. Another
alternative would have been modelling the action precondi-
tions as linear equality and inequality constraints. However,
this is still an open issue and it is not trivial due to the dis-
juntion relations among some preconditions. Therefore, a
complete formulation of the whole problem in LP or CSP
is difficult. Here, we opt for a hybrid approach in that LP
solves the LP component of the task, and planning solves
the causal component of the task.

Heuristic Search
The search problem can be modelled as:

• States: S = ({AC}, t, r) where ∀ac ∈ AC, ac =
{(ai, ci)} are the activities in the solution set, together
with the clusters they belong to, t is the sum of the time
of the selected activities and r the sum of their rewards.

• Initial state: S = (∅, 0, 0).

• Goal function: whether there is at least one activity per
cluster and time ≤ T , where T is the time limit.

5Given a set of items, each with a weight and a value, determine
the items to include in a collection, so that the total weight is less
than a given limit and the total value is as large as possible.

39

• Actions: there is only one action that adds a new activity
ai =< ti, ri > and its cluster to state S = (AC, t, r),
given that ti + t ≤ T (it does not pass the time limit).

We use a hill-climbing algorithm with backtracking, min-
imizing the evaluation function, similar to the one used in
A∗: f(s) = g(s) + h(s). g(s) is the cost of the last activity
added to s computed with equation 1:

g(s) = (2−Nr(r))× (0.1 + Nt(t)) (1)

where t is the time of the activity, r its reward, Nr(x) and
Nt(x) are functions to normalize the reward and the time
respectively. We do (2 − Nr(r)), since the algorithm tries
to minimize f(s), so that we avoid g(s) takes value 0. We
do (0.1 + Nt(t)) also to avoid g(s) takes value 0. h(s) is
an estimation of the remainder cost to reach the solution.
To compute h(s), we compute the clusters C ′ that are not
yet included in s, and the minimum cost of the activities
belonging to each of those clusters, ∀cj ∈ C ′, min − cj =
minai=<ti,ri>∈cj g(ti, ri). h(s) is the sum of these min −
cj . We used hill-climbing with backtracking that is complete
but not optimal for comparison (defining it as an appropriate
task for an admissible technique as A∗ is harder, given that
we are handling two metrics, and we have to establish some
end criterion based on only one of them).

Using the Selection when Planning
We have devised two approaches for using the knowledge
on the most promising activities when planning, by includ-
ing the actions in O as PDDL3 preference-goals or in the
plan metric. In the former, we add the goal (preference pi

(task ai done student1)) for each ai ∈ O (pi is the pref-
erence identifier). In the latter, we define a new predicate
(action-in-plan ?s - student ?a - plan-action) and a new flu-
ent (penalty ?s -student). Each domain action ai is updated
with the following conditional effect (being <action-name>
its name):

(when (not (action-in-plan ?s <action-name>))
(increase (penalty ?s) 1))

Thus, everytime an activity is used in the plan that does
not belong to the selected set, the penalty is increased. Then,
we add a predicate (action-in-plan student1 ai-name) in the
problem file for each ai ∈ O, and we use the metric (mini-
mize (penalty student1)). Thus, the planner will only try to
minimize the number of activities in the plan that were not
selected previously. In short, O contains the knowledge for
maximizing the student reward, but it lacks the knowledge
for sequencing the activities, and this is the role of the plan-
ner.

The action selection methods also compute the maximum
reward, MaxR, that could be obtained for the given time
limit in case there were no activities dependencies:

MaxR =
∑

ai=<ti,ri>∈O

ri (2)

On the other hand, the penalty metric represents the num-
ber of activities that appear in the plan, but were not selected

by the selection mechanism (due to the causal dependen-
cies). Therefore, we can compute a lower bound value for
the reward threshold necessary for the precondition (> (to-
tal reward student ?s) (reward threshold student ?s)) of the
last domain action with equation 3.

reward threshold student = MaxR− (120× penalty)
(3)

(120 is the highest activity reward).

Experiments
We have carried out the experiments with a domain repre-
senting a real Artificial Intelligence course. The domain has
125 actions and there are 52 tasks or clusters. Each task
includes between only one activity up to six. There are ac-
tivities for covering all the typical tasks in an AI course as
reading a subject, practising, programming, performing ex-
ams, The first experiments aim to test the validity of
linear programming and heuristic search for obtaining the
set of activities that maximizes the student reward within a
time limit. We want to compare two approaches, with and
without optimality guarantee, to test whether the non op-
timal approach could produce acceptable plans as well or
not. We have used the GLPK (GNU Linear Programming
Kit) package6 and our own search-algorithm library imple-
mented in Lisp (also available in the Web). We have tested
the linear programming and search algorithms with different
activities subsets, starting with only the activities included in
one cluster up to all the clusters. We have set the time limit
as the sum over the considered clusters of the time of the
highest-time activity in each cluster. We also used the sum
of the rewards of those activities as a lower-bound reward
for comparison. Figure 3 shows these results. LP finds op-
timal solutions while the distance between the search algo-
rithm solutions and the LP ones increases with the number of
clusters. The LP algorithm always found the solution in less
that 0.1s while the search-algorithm execution time steady
increased from 0.1 up to 8s.

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60

R
ew

ar
d

Clusters

Linear Programming
Hill Climbing

Sum of the highest time action

Figure 3: Reward when time limit is the sum of the time of
the highest-time activity in each cluster.

In the next experiments we varied the time limit by de-
creasing it in 20%, 15%, 10% and 5% and also increasing

6http://www.gnu.org/software/glpk/

40

it in the same amounts. Figure 4 shows the reward results
using all the clusters. We set time increment 0 (the compar-
ison value) as the sum of the times of the highest-time ac-
tivity in each cluster (it corresponds to 3810). We decrease
and increase it from a -20% (3048) to a 20% (4572). As
expected, the hill-climbing algorithm finds solutions worse
than the optimal solution found by LP. With respect to exe-
cution time, LP is usually faster than the search algorithm,
but there are some cases where LP takes a long time to con-
verge. We repeated the experiments with different number
of clusters obtaining similar results. Anyway, the execution
time was never higher than 18 s.

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

 2800

 3000 3200 3400 3600 3800 4000 4200 4400 4600

R
ew

ar
d

Time threshold

52 clusters

Linear Programming
Hill Climbing

Figure 4: Reward of 52 clusters when time limit varies from
-20% up to 20%.

We have used SGPlan6 (Hsu & W.Wah 2008) for incor-
porating the obtained knowledge by the LP and search al-
gorithms as PDDL3 preferences-goals. And we have used
the CBP (Fuentetaja, Borrajo, & López 2009) planner for
incorporating the obtained knowledge as the plan metric.
SGPlan6 is the only planner (from the IPC-08) that sup-
ports PDDL3 and it was able to solve our problems. The
CBP planner is based on Metric-FF, but with some en-
hancements (specific cost-based heuristic function, looka-
head search) that allow it to solve our problems using plan
metrics. Metric-FF was able to solve the problems, but only
with EHC. BFS, which was needed for using plan metrics,
always exhausted computer memory. The other planners
that competed in the IPC-08 could not solve our problems.
We believe that this might be due to the domain size and the
PDDL features included in the domain (fluents, numerical
expressions in the preconditions, preconditions with or and
not expressions and conditional effects).

Next, we compare the following configurations: i) EHC:
original Enforced Hill-climbing algorithm in Metric-FF, ii)
CBP-BFS TIME: CBP planner with Best First Search algo-
rithm and minimizing the (total time student) as plan met-
ric, iii) CBP-BFS LP: CBP planner with BFS algorithm
incorporating the knowledge obtained by the LP algorithm
and minimizing (penalty student) as plan metric, iv) CBP-
BFS HILL: the same as before but incorporating the knowl-
edge obtained by the search algorithm, v) SGPLAN6: SG-
Plan algorithm without preference goals, vi) SGPLAN6 LP:
SGPlan using as preference goals the activities obtained by
the LP algorithm, vii): SGPLAN6 HILL: SGPlan using as

preference goals the activities obtained by the search algo-
rithm. Also, CBP is able to find multiple solutions. So, we
let it run during one second in multiple solutions mode, and
it usually found two solutions. We have experimentally seen
that increasing this running time does not make it find more
solutions, but it exhausts computer memory.

As mentioned in the previous section, the pre-process
offers us two kinds of information: computing the most
promising activities and the reward threshold. But, the
reward-threshold computation needs the penalty values that
CBP-BFS LP and CBP-BFS HILL can measure us-
ing the most promising activities. So, first, we exe-
cuted CBP-BFS LP and CBP-BFS HILL with no (re-
ward threshold student) value, and different time limits,
column TL, (the ones used in the experiment showed in Fig-
ure 4) to measure the penalty. Table 1 shows the results for
both systems. Column P is the metric value penalty (num-
ber of activities that appear in the plan, but were not selected
by the selection mechanism). Column R is the cumulative
reward of the actions in the plan. And, column T is the cu-
mulative time of the actions in the plan. There is one row
for each time limit and for each solution CBP-BFS found
during one second in multiple solution mode. Apart from
the penalty, the table shows that there are some cases where
CBP-BFS HILL obtained less reward (for the same TL), al-
though the metric had a better value (lower value), and the
planner finds better solutions. On the contrary, CBP-BFS
LP always found better rewards for better metric values.

CBP-BFS LP CBP-BFS HILL
TL P R T P R T

3048 (-20%) 5 1490 2510 8 1500 2540
3048 (-20%) 2 1545 2465 2 1460 2345
3238 (-15%) 5 1490 2510 8 1500 2540
3238 (-15%) 2 1545 2465 1 1415 2305
3429 (-10%) 5 1490 2510 8 1500 2540
3429 (-10%) 2 1545 2465 2 1460 2345
3620 (-5%) 5 1490 2510 8 1500 2540
3620 (-5%) 2 1545 2465 2 1460 2345
3810 (0%) 4 1505 2540 7 1500 2540
3810 (0%) 1 1560 2495 0 1415 2305
4000 (+5%) 4 1520 2570 8 1480 2540
4000 (+5%) 1 1575 2525 2 1460 2345
4191 (+10%) 4 1520 2555 7 1480 2540
4191 (+10%) 1 1575 2525 1 1460 2345
4382 (+15%) 4 1520 2555 7 1505 2555
4382 (+15%) 1 1575 2525 1 1430 2335
4572 (+20%) 4 1520 2555 5 1505 2555
4572 (+20%) 1 1575 2525 1 1475 2375

Table 1: Reward and time using the penalty minimization as
plan metric without (reward threshold student) value.

Second, we computed the (reward threshold student) val-
ues from the activities selection and the penalty values (the
lowest value) with equations 2 and 3 and executed CBP-
BFS LP and CBP-BFS HILL using their corresponding
reward threshold. Figures 5 and 6 represent the reward
and time of the activities in the solution plan obtained by
each configuration with the different time thresholds. We

41

have included only the best (highest reward) CBP solution
for each configuration. We exclude SGPLAN6 HILL and
SGPLAN6 LP from the results, because they ignored the
time-limit constraint generating unfeasible plans. These
figures show that the planning systems without using the
pre-process information (EHC, SGPLAN6 and CBP-BFS
TIME) always found the same solution although the time
limit varied. CBP-BFS TIME obtained the plan with the
lowest time to fulfill it but with the lowest reward value, as
well. EHC and SGPLAN6 found the same solution with a
reward value notably inferior to the reward in CBP-BFS LP
and CBP-BFS HILL plans.

SGPLAN6

EHC CBP−BFS TIME

CBP−BFS HILL

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

−20 −15 −10 −5 0 5 10 15 20

R
ew

ar
d

Time increments (%)
CBP−BFS LP

Figure 5: Total reward for different time limits using a re-
ward threshold.

CBP−BFS TIME EHC

SGPLAN6 CBP−BFS HILL

 2000

 2500

 3000

 3500

 4000

 4500

−20 −15 −10 −5 0 5 10 15 20

T
im

e

Time increments (%)
CBP−BFS LP

Figure 6: Total time for different time limits using a reward
threshold.

The best plans are those with the maximum reward and
the minimum time. We are interested in increasing the to-
tal reward the student achieves, but also in decreasing the
total time s/he devotes to the course. To obtain a balance,
we cannot directly subtract reward from time, because they
have different scales. So, instead, we compute the product
of the percentage of reward increment and the percentage
of time decrement, both with respect to bounds. We set a
lower bound for the reward as the sum of the rewards of
the activities with highest time value in each cluster (1105
in this case), and the time limit is the upper bound for the
time. Then, we compute the percentage of reward increment
(4R), with respect to the above lower bound and the per-

centage of time decrement (5T), with respect to the above
upper bound. Figure 7 represents the multiplication of the
reward increment and the time decrement for the different
time limits and configurations. Again, it shows that the pre-
process notably increases the time/reward balance.

CBP−BFS TIME

CBP−BFS HILLSGPLAN6

EHC CBP−BFS LP

−100

−50

 0

 50

 100

 150

−20 −15 −10 −5 0 5 10 15 20

R
ew

ar
d

 I
n

cr
em

en
t*

T
im

e
D

ec
re

m
en

t

Time increments (%)

Figure 7: Reward increment multiplied by the time decre-
ment for different time limits using a reward threshold.

Planning time is very small (less than half a second) for
all the configurations. When EHC and CBP did not solve
a problem within this short time they exhausted computer
memory.

Finally, we wanted to test the approaches using only one
of the two kinds of information the pre-process offers us.
First, adding a (reward threshold student) value, assuming
we were able to know an approximate value for it, but with-
out computing the most promising activities. And second,
computing the most promising activities but not the reward
threshold. First, we executed EHC, CBP-BFS TIME and
SGPLAN6 with the reward threshold information obtained
in previous experiments. EHC could not solve any problem.
SGPLAN6 had always the same reward (1560) and time
(2545), worse than CBP-BFS LP and CBP-BFS HILL.
And, CBP-BFS TIME obtained the same results as CBP-
BFS LP, but there were two problems, with time limit in-
crements of 0 and 5, that it could not solve. Second, we exe-
cuted all the systems without the (reward threshold student)
information and only CBP-BFS LP was slightly better than
the original planners, METRIC-FF WITH EHC and SG-
PLAN. Therefore, only the combination of the two kinds
of information that the pre-process offers us (computing the
most promising activities and the reward threshold) reports
a significant benefit to the solution plans. And, the LP pre-
process is better than the hill-climbing one. CBP planner
with BFS algorithm, minimizing the (total time student) as
plan metric and using a reward threshold sometimes obtains
good plans. But it has the drawback that it needs to compute
that threshold. Besides, it cannot solve some cases (we do
not have yet an explanation for this phenomenon).

Related Work
There are several classes of oversubscription problems, de-
pending on the cause preventing all the goals to be accom-
plished. Our oversubscription problem is caused by having

42

limited resources (time), and plans achieving all goals would
need more resources than the available ones. It is known as
MAX-COST problems, focusing on maximizing plan util-
ity, while maintaining the cost lower than a maximum cost,
contrary to NET-BENEFIT problems, that focus on maxi-
mizing the net benefit which is the cumulative utility of the
achieved goals minus the cumulative cost of actions used in
the plan. In our case, time is the resource and performing
all the activities defined in the course would be the problem
goals. But not all goals can be achieved because of lack of
time. The plan must select only those goals that report the
maximum utility (reward) to the student without exceeding
the given time threshold.

Goals selection procedures vary; in (Smith 2004) an ori-
enteering problem (a generalization of the travelling sales-
person problem (Feillet, Dejax, & Gendreau 2005)) is con-
structed and solved, obtaining an ordered subset of goals to
plan for. A different approach is taken by (Sanchez Nigenda
& Kambhampati 2005), which using relaxed plans heuris-
tics (Hoffmann 2003) estimates the net benefit of including
a new goal into the set of currently selected goals. We also
select goals up-front, but instead of constructing an orien-
teering problem we construct a clustered-knapsack problem.
In (Smith 2004) a beam search algorithm is used to solve
the orienteering problem, while we use linear programming
and a hill-climbing search algorithm to solve the clustered-
knapsack problem.

Conclusions and Future Work
This paper presents our work on building an e-learning plan-
ning application for generating learning designs adapted to
different students’ profiles. An e-learning course is defined
by a set of different learning activities, that use learning ob-
jects. Learning activities, with their duration, student pro-
file’s dependence and the relations defined in their meta-
data, keep a strong resemblance with actions as tradition-
ally used in AI planning domains. In particular, each learn-
ing activity can be simply modelled as an action, its depen-
dency relations as preconditions, and its outcomes as ef-
fects. This way P&S techniques can be very powerful to
automatically generate sequences of learning activities fully
adapted to the students. However, current planners are good
for sequencing actions, but they are not so good for opti-
mizing. Optimizing requires to use fluents and plan met-
rics, and it notably increases planning complexity. We are
interested in finding the sequence that maximizes the stu-
dent’s net benefit. Therefore, we have modelled the problem
as a clustered-oversubscription problem performing an ac-
tion selection pre-processing to help the planning task. We
have proposed two action-selection schemes, based on linear
programing or heuristic search, that partially solves the op-
timization problem, and whose output is compiled into the
planning task. It turns out that for this task, LP provides
optimal solutions in a more than reasonable time. PDDL
provides expressive power to model the problem, and to in-
clude the optimization knowledge in two different formats.
The resulting PDDL domain is apparently simple, because
there are no delete effects, but the complexity arises from
the number of actions (125), the conditional effects, and the

plan metric. Only the SGPlan6 and CBP planners were able
to solve the problem.

In the future, we would like to test our approach in other
domains as the clustered rovers and satellites ones, as well
as, in other application areas. For example, the planning and
optimization of resources in bus transportation networks.

References
Baldiris, S.; Santos, O.; Barrera, C.; J.G., J. B.; Velez, J.;
and Fabregat, R. 2008. Integration of educational specifica-
tions and standards to support adaptive learning scenarios
in adaptaplan. Special Issue on New Trends on AI tech-
niques for Educational Technologies. International Jour-
nal of Computer Science and Applications (IJCSA).
Brusilovsky, P., and Vassileva, J. 2003. Course Sequencing
Techinques for Large-Scale Web-Based Education. Inter-
national Journal Continuing Engeenering Education and
Lifelong Learning 13(1/2):75–94.
Castillo, L.; Morales, L.; González-Ferrer, A.; Fdez-
Olivares, J.; Borrajo, D.; and Onaindı́a, E. 2009. Au-
tomatic generation of temporal planning domains for e-
learning problems. Journal of Scheduling. Accepted.
Cristea, A., and Garzotto, F. 2004. Adapt major design
dimensions for educational adaptive hypermedia. In ED-
Media ’04 conference on educational multimedia, hyper-
media & telecommunications. Association for the advance-
ment of computing in education.
Currie, K., and Tate, A. 1985. O-plan: Control in the open
planning architecture. In BCS Expert systems conference.
Feillet, D.; Dejax, P.; and Gendreau, M. 2005. Traveling
salesman problems with profits. Transportation Science
39(2):188–205.
Felder, R. M. 1996. Matters of style. ASEE Prism 6(4):18–
23.
Fuentetaja, R.; Borrajo, D.; and López, C. L. 2009. A look-
ahead B&B search for cost-based planning. In Proceedings
of CAEPIA’09.
Hoffmann, J. 2003. The Metric-FF planning system:
Translating “ignoring delete lists” to numeric state vari-
ables. JAIR 20:291–341.
Hsu, C.-W., and W.Wah, B. 2008. The sgplan planning
system in ipc-6. In Working notes of the ICAPS’08 Inter-
national Planning Competition.
Jochems, W.; Koper, R.; and Merrienboer, J. V., eds. 2003.
Integrated E-Learning: Pedagogy, Technology and Orga-
nization. Kogan Page, Limited.
Sanchez Nigenda, R., and Kambhampati, S. 2005. Plan-
ning graph heuristics for selecting objectives in over-
subscription planning problems. In Proceedings of ICAPS-
05, 192–201.
Smith, D. 2004. Choosing objectives in over-subscription
planning. In Proceedings of ICAPS-04, 393–401.
Veloso, M.; Carbonell, J.; Pérez, A.; Borrajo, D.; Fink, E.;
and Blythe, J. 1995. Integrating planning and learning:
The PRODIGY architecture. Journal of Experimental and
Theoretical AI 7:81–120.

43

