
Scheduling in the Real World: Lessons Learnt∗

Roman van der Krogt and James Little and Helmut Simonis
Cork Constraint Computation Centre

Department of Computer Science, University College Cork, Cork, Ireland
{roman | j.little | h.simonis}@4c.ucc.ie

Abstract

Developing scheduling systems for industry, whether these
are prototype systems to explore whether a certain technique
can be applied in a certain new area, or production systems
that will support the day-to-day running of a factory, is quite
different from developing research systems aimed at the vast
library of benchmark problems. In particular, we have found
that real-world problems do not come with a clear set of re-
quirements such as the benchmark ones and seldom match an
existing research problem due to additional constraints on the
solution posed by the particular production environment.
This paper will present some lessons (issues and recommen-
dations) we learnt from our interaction with industry in de-
veloping scheduling systems, hopefully providing some in-
sight into the peculiarities of real-world scheduling for peo-
ple about to apply scheduling (or planning, or any other AI or
OR technique) in practice.

Introduction
Scheduling has been an active area of research for several
decades. Much of that work has been directly applied in
practice, or has at least helped in developing real-world ap-
plications, see e.g. (Bellone, Chamard, and Fischler 1995;
LePape 1995; Bixby, Burda, and Miller 2006). The success
of scheduling applications developed by companies such as
Ilog, Cosytec and IBM is further proof of this. However,
many people in academia have had no interaction with in-
dustry yet. A large number of them will eventually, and it
is for the benefit of those people that, in this paper, we want
to share some of our experiences in developing scheduling
applications for industry.1

There are many reasons why one may seek interaction
with industry. First of all, industry interaction allows one
to validate a piece of research in practice. Something that
works well in a lab environment may or may not work in
practice, and the ultimate test is one involving real-world
data. Industry interaction may also open up new research
agendas: there are a lot of interesting open problems out

∗The authors gratefully acknowledge support from the Sci-
ence Foundation Ireland under Grant numbers 05/IN/I886 and
08/RFP/CMS1711 and from Enterprise Ireland under Grant num-
ber CFTD/06/209.
Copyright c© 2009, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

there that may inspire new lines of research. Finally, certain
funding bodies are more likely to fund project proposals that
have industry involvement as this shows that the problem be-
ing attacked has relevance. Thus, engaging with industry has
all sorts of benefits.

Developing scheduling systems for industry is, however,
quite different from developing a purely research-driven sys-
tem. One of the first major obstacles is the fact that whereas
the research community has a well established meaning
for what a “scheduling problem” constitutes, this meaning
is often far from what the schedulers in a factory mean
when they talk about their “scheduling problem.” Whereas
the researchers are speaking about sequencing issues, the
schedulers are conferring about day-to-day challenges. This
is perhaps best illustrated by the field studies of (McKay,
Safayeni, and Buzacott 1995; Wiers 1997). In these stud-
ies, schedulers were found not take the current situation for
granted; instead, they endeavoured to influence the amount
and allocation of short-term capacity, the immediate ship-
ping patterns, and the technical characteristics of machines
(such as a machine’s tooling and fixtures). The scheduler
employed a large number of heuristics to anticipate possi-
ble problems and take precautionary measures. Hence, the
scheduler’s task and role turned out to be a problem antici-
pator and solver instead of a simple sequencer or dispatcher.

A direct result of this difficulty is that real-world schedul-
ing problems seldom match the problems studied in the re-

1Helmut Simonis has been working on constraint programming
for over 20 years, much of which was spent on applying the tech-
nology in practice. Helmut was member of the CHIP project at
ECRC in Munich, co-founder and technical director for COSYTEC
in Orsay, and a principal research fellow at Imperial College Lon-
don, as well as working for start-up companies Parc Technologies
and CrossCore before joining the Cork Constraint Computation
Centre (4C).
James Little is 4C’s external liason officer. His role is to identify
research opportunities with industry, support grant applications,
manage the resulting projects, and to ensure that IP is identified,
protected and exploited. Before joining 4C, James has worked with
Ilog and was technical director at AI International and was involved
in several EU projects at Burnel University.
Finally, Roman van der Krogt has worked on applied scheduling
projects with Bausch & Lomb, Alcatel-Lucent, Intel and a number
of SMEs over the past four years, all while at 4C.

92

search community. Usually, there are all sorts of “artificial”
constraints that a factory wants to meet because of com-
mitments to clients, the particular production environment
or regulations. Moreover, where the benchmark problems
are well defined with precise optimisation criteria, the real-
world problems are fuzzy, requiring extensive discussions
between the user and the researcher to tease out the exact
problem, and have multiple optimisation criteria, which are
often contradictory, and with only very subjective weights
for the different performance indicators. We believe that a
Constraint Programming (CP) approach is particularly well
suited to handle such issues, as new constraints can be added
without affecting the existing ones. All of the systems that
we mention in this paper have been built on CP technology.

In this paper, we present some of the lessons that we
have learnt over the years. They will be a mix of pitfalls
to avoid, and recommendations for things that do work out
well. Some of these will be fairly obvious, others might not
be. We will illustrate the points we make by describing sit-
uations that we encountered in practice. Since the emphasis
of this paper is on the lessons, rather than the individual sys-
tems or projects we drew the lessons from, we will not de-
scribe those systems in detail, but we do include references
to other papers that fully describe the systems.

Scheduling6=Scheduling, or Nobody Runs a
Job Shop

The scheduling research is driven by a set of standard prob-
lems. These problems include single machine scheduling,
and scheduling with parallel machines, as well as the dif-
ferent “x shop” problems such as job shop and open shop.
Over the years, a number of common variants have been es-
tablished: pre-emptive scheduling; scheduling with release
times and/or deadlines; and scheduling with sequence de-
pendent setup times, to name a few. Overviews of these stan-
dard problems and their variants can be found in the books
by Pinedo (2002) and Leung (2004).

Unfortunately, industrial problems seldom fully match the
research problems. Usually, there are all sorts of practical
constraints that a factory wants to meet for reasons that are
almost irrelevant to the scheduling community (preferences
due to perceived reliability of workers could be one, for ex-
ample). This fact was already acknowledged in one of the
first books on scheduling:

The solution is to extract a problem that ignores the
possibility of such changes and considers only the ques-
tions of sequence. Such a problem is unrealistic in the
sense that it does not exactly represent any individual
real situation, but rather gains in generality, since it ap-
proximates many situations. The results obtained from
the study of this abstract idealised model do not rep-
resent a solution to any real sequencing problem; they
represent information that should be available along
with judgement and data on other aspects of the real
problem. — Conway, Maxwell, and Miller (1967)

After more than 40 years, the situation remains much the
same. This means that when one undertakes a scheduling
project in the real world, most of the available research has

no immediate value. Even if the particular environment is
similar to one of the standard settings (say, a job shop), the
tiny differences will likely violate the strict assumptions that
the latest-and-greatest job shop algorithm makes. Thus, one
is usually forced to come up with new algorithms or heuris-
tics to solve the problem efficiently.

One particular example in this category is in the manu-
facturing of contact lenses (van der Krogt and Little 2006).
This is a two-step process, where each order (the production
of a batch of lenses of a particular type) consists of an ac-
tivity to produce the moulds for the lenses, followed by the
casting of the actual lenses using the moulds. This could be
conceived as a job shop problem. However, as the moulds
have to stabilise first and then degrade over time, there is a
specific time window that has to be observed between the
first and the second activities. The standard job shop algo-
rithms can give no guarantees of this nature, and so we had
to come up with a specialised search algorithm, inspired by
the existing ones.

Companies Don’t Know What They Want to
Optimise

Another big difference between theory and practice is the
fact that in theory there is a well defined optimisation cri-
terion, which is usually a single aspect of the problem such
as makespan. In the real world, however, there is no such
thing. Usually, the users want to optimise a variety of as-
pects, i.e. a multi-criterion optimisation problem, and often
some of the criteria will be contradictory (e.g. a wish to min-
imise makespan and the number of machines used). Thus,
we require a way to weigh the different aspects against each
other: is the improvement in makespan large enough to war-
rant the use of an additional machine? Unfortunately, the
user will not be able to tell you how to score the different
criteria. Also, the criteria that are identified by the customer
might not be the actual criteria. It may be too complicated
for a scheduler to optimise a certain performance indicator
P directly. However, they may know from experience that
optimising for another aspect Q leads to a reasonable perfor-
mance on the primary indicator. When describing the pro-
cess, they may then tell you that Q is an important factor,
forgetting that the reason for that is actually P , which for an
automated system may be equally hard to optimise.

What has helped us in some of our projects, is to show the
user a number of small schedules and ask which one they
prefer. For example, in one of our projects (van der Krogt et
al. 2007), the user wanted to a tool to support the scheduling
of teams producing mobile network equipment. For a variety
of reasons, including efficiency and quality control, the fac-
tory wanted to move from manufacturing using a traditional
production line to a “cellular manufacturing” setup. In cel-
lular manufacturing (Irani 1999), separate teams produce the
different products or product groups that a factory outputs.
The schedule tool would have to decide how many cells to
run on a given day, and which product group or groups each
of the cells would handle. Ideally, each cell would be able
to focus on a single or just a few product ranges for a given
shift, in order to achieve the maximum benefit.

93

(a) Schedule A (b) Schedule B (c) Schedule C

Figure 1: Different schedules for different optimisation criteria

Clearly, there exists a trade-off between running multi-
ple types of products through the same cell, and scheduling
additional teams in order to lower the number of different
product groups on each cell. For example, consider the three
schedules in Figure 1 for the production of products from
three different product groups, in different quantities (as ex-
pressed by the length of each block). These schedules rep-
resent different choices that can be made with respect to this
trade-off. In schedule A, we use three cells, each produc-
ing the products from a single group. Notice how this is an
unbalanced schedule, in that some cells finish before others.
A much more level schedule may be obtained by moving
some of the products between the cells (schedule B). How-
ever, now we have one cell that has to handle two product
groups during this schedule. We may even obtain the same
makespan as in schedule A, but using one fewer cell, if we
accept that both cells now handle two products, as depicted
in schedule C. In this case, the company decided that dur-
ing the first few months after the transition to the new setup,
they wanted schedules of type A to allow all teams to get
used to the new situation, but move to schedules of type C
once people were accustomed to the new situation.

Another issue that one may encounter is the following.
Very often, different people in the organisation have very
different objectives they want optimised. Depending on who
is running the project, one group may grab the definition of
the objective and force their point of view, or better, people
realise that they have different objectives and use the tool to
come up with a common understanding of what is possible
and by which they can reach a compromise position. This
also means that improving a single cost function by a few
percent is basically meaningless in practice, so that much of
the OR benchmarking is not justified in the “real world.”

A good illustration of this issue is given by the ATLAS
system (Simonis 2001), where the scheduling tool became
an important part of the daily production meeting. It allowed
people to present different scenarios and obtain an overall
compromise. A tool to manage multiple planning scenar-
ios (as opposed to the unique, actual production schedule)
is thus very useful, as is a tool to show differences between
two solutions (using a differential Gantt chart). In order for
the different groups to accept a solution, the different KPI
measurements for each schedule should also be presented.

In other cases it is much harder to get the stakeholders to
cooperate to find a solution, e.g. if they are on different sides

of the gap between supply and demand. We encountered an
example of this when investigating a new materials manage-
ment system for a hospital, aimed at minimising the number
of deliveries to hospital wards, while guaranteeing agreed
upon service levels (Little and Coughlan 2008). This project
was initiated by the materials management group, who were
forced to take a critical look at their operations when their
main depot moved off-site. However, to be accepted by
the wards throughout the hospital, the views of the differ-
ent stakeholders had to be incorporated into the model: The
materials management group are looking to provide service
level agreements as cost-effectively as possible. The med-
ical staff are looking for as high a service level as possible
across all their products and the confidence of not running
out. Finally, the department managers require visibility of
the cost for the stock being held and distribution. Since the
project was initiated by the materials management group, it
was hard to convince the other stakeholders that their ob-
jectives were taken into account as well in the model. In
general, it can be quite hard not to get involved in issues be-
tween different departments, especially if the funding situa-
tion seems to favour one group, or when there is suspicion
about the project and a particular group has not has prior
buy-in.

Prototypes Are Worth Their Weight in Gold
When undertaking a research project at 4C, one of the initial
steps we take is to produce a prototype model that captures
the basic problem. The main reason for this is knowledge
acquisition. One the one hand, this forces us to formally
write down what we have understood to be the problem,
exposing aspects that we need to get more information on.
By describing to the user how the problem is modelled, dis-
cussing which aspects are taken into account and which are
left out, it can be confirmed that the problem is fully under-
stood. Moreover, it allows the user to confirm that they have
explained all details of a problem. It is quite common for
the user to point out errors with the schedules produced by
an early prototype, that are the result of them simply for-
getting to mention a particular constraint. Also, it is often
very enlightening to compare the schedules produced by the
tool with the schedules that were used before. As discussed
in more detail in the section below titled “A scheduling tool
is no silver bullet”, the current schedules may not be satis-
fying all constraints. Hence, they may give a good indica-
tion as to which constraints are hard, and which are actually

94

Figure 2: Changing the number of tools and its effect on
throughput and buffer waiting times. The throughput is
capped at the number of operations included in the data set.
(Axes are without scale at request of the company.)

(strong) preferences. Besides knowledge acquisition, proto-
types also serve as a demonstration of what the outcome of
a project could be, provoking discussions on what the user
might want the final tool to be.

For example, in the contact lense problem that we de-
scribed earlier, the initial problem statement was focused
around reducing the amount of buffer stock that has to be
kept between the two processes. However, in discussing the
issues we identified in the initial model, it turned out that
they were interested in a much broader range of potential
changes to the factory: additional machines, changing their
rates of production, as well as the effect of changes in their
demands. By incorporating these variables into the model,
it made the final product much more useful to them.

This rapid exploration of what-if scenarios is an addi-
tional important benefit that automated systems have over
manual scheduling. Demonstrating this ability to the user
makes them more aware of the possibilities of a tool. The
manual scheduler does not have the time available to look
into such what-ifs, as (s)he is busy running the factory. Once
a model is made, however, it is quite simple to change some
parameters, such as the introduction of additional work or
machines. For example, when we did a prototype model
of implant scheduling at Intel (van der Krogt 2007), we
showed the user the graph of Figure 2. It shows (for a partic-
ular data set) the effect on buffer waiting times and through-
put (i.e. the number of completed operations) of adding ad-
ditional tools, or removing some. This type of information,
obtained through multiple what-ifs, showed for the first time
new important patterns to the production manager.

Pictures Are Worth a Thousand Spreadsheet
Cells

From our experience, people very often shy away from
graphical tools, only in order to reduce the development
cost. Although there may indeed be a considerable cost in-
volved in incorporating an interactive user interface, we be-

lieve that the benefits of such an interface far outweigh the
costs. In our opinion, an interactive Gantt chart is highly
valuable for the user in evaluating a schedule, or explor-
ing alternatives. To allow this, some form capability is
needed to freeze/unfreeze, either globally or per machine,
and to fix schedule parts that must not be changed, or should
be rescheduled. The interaction helps the user understand
the produced schedules better, and allows adjustments to be
made to the schedules if necessary. It also improves the con-
fidence the user has in the tool.

As a particular example, during the development of the
MOSES feed mill application (Simonis 2007), some visu-
alisation was introduced to help understand the solver be-
haviour. This feature was not in the original specification,
but its presence improved the quality of interaction during
the development. When the end-user saw it running one day,
they really liked the tool, as it helped them understand how a
schedule is produced, and seeing how the strategy builds the
schedule task by task. It was later included in the production
version at the strong request of the company.

A good interface may bring more benefits to the company
than simply a deep understanding of the scheduling system’s
behaviour. When the customer uses the tool to schedule ser-
vices for a third person, a good interface can be used to sell
their services. We carried out a project with a company that
supplies solutions to the timber harvesting industry (Nugent
et al. 2008). This company develops advanced simulation
software that lets forest owners and buyers get more accu-
rate measurements of the type of logs that a certain forest can
provide. By having such detailed information for a number
of forests, and the demand by sawmills in the region, we de-
veloped a prototype system that matches supply and demand
in the most efficient manner. Figure 3 shows a visual front
end based on Google Maps technology that we developed to
present the solutions. The company used this front-end ac-
tively in demonstrating to potential customers what benefits
the ability to accurately scan the forests could bring.

Finally, the structure of the factory, (machines, conveyors,
bins, storage) may or may not change rapidly depending on
the industry type and the overall level of capital expenditure.
In any case, a simple graphical tool to “draw” the factory is
much preferable to a purely database driven description of
the environment. A simple tool may suffice for this pur-
pose. As an example, consider the interface to the contact
lens system, as shown in Figure 4. The underlying model
is parametrised for the number of machines of the differ-
ent types, their capacities, etc. A simple front-end in Visio
allows the user to drag-and-drop new machines (or remove
them by dragging them off the screen), and set their parame-
ters. When the user gives the command to run the scheduler,
a script iterates through the machines and sets up the model
with the right parameters. Deploying a scheduling applica-
tion through a graphical tool commonly found on the man-
ager’s desk supports its acceptance, while at the same time
not investing in developing a new interface from the basics.
In all of this, the application needs to be easily integrated
within whatever system the user wants, as is discussed in
more detail in the next section.

95

Figure 3: Graphical interface to the timber harvesting scheduling system based on Google Maps

Integration Works Both Ways
When the outcome of a project is a production system, it is
important that the scheduling tool is integrated with the or-
der management/fulfilment system (such as an ERP or MRP
package). This prevents the double entry of data, which is
not only additional work, but may also introduce errors. The
interface between the scheduling system and the order man-
agement system should be simple and open, and well docu-
mented. Quite often the commercial system will be replaced
(because the company is sold, or merged with another divi-
sion) before the production scheduling system. In that case
having a clearly defined, documented interface helps a lot to
keep the scheduling system alive.

One of the issues that may arise here, is the correctness
of the data in the order management system. When human
schedulers extract the current state of the factory and the
work that is to be scheduled from the order management sys-
tem, they will recognise incorrect or missing data, and use
their knowledge to make up for this. The scheduling sys-
tem cannot do this, however, and some means of validating
the input is needed. It may also require the people entering
the data into the management system to be more accurate.
For example, one of the problems we faced with the cellular
manufacturing scheduling system was the inaccuracy of the
work-in-progress (WIP) that was recorded in the work floor
management system. People would often forget to scan the
piece of equipment they were working on, so that it would
seem that their station was available, and that the product
was sitting in a buffer waiting to be processed. Improving
the accuracy of the WIP data proved to be a key issue in the
success of the tool.

One should also recognise the fact that very often, people
have built their own set of tools around the “official” system.
Often, these are macros built in a spreadsheet application
that help the user perform common tasks on some of the
data. Providing these users with a way to keep using their

existing tools will make sure not to alienate them from the
project.

A Scheduling Tool Is No Silver Bullet
Another important point that we want to make is that when
a tool is intended to replace a manual schedule, the results
are rarely much better than those obtained by the experi-
enced human scheduler. This somewhat disappointing con-
clusion is derived from the fact that the production process
has been tailored to suit the capability of the human sched-
ulers. A good scheduling system to support the scheduler,
however, does make him or her much more efficient, pro-
ducing schedules in less time. This frees up some time that
the scheduler can use for other purposes. Also, the auto-
mated tool is much better than the schedule made by the
boss of the human scheduler, in case he is on holidays or
sick leave. Hence, a scheduling system can make a company
less dependent upon the knowledge of a single expert. This
is especially true in SMEs where duplication of resources is
difficult to justify financially.

A scheduling tool may also be very helpful when a major
reorganisation of the factory invalidates the built up knowl-
edge of the experts. In the cellular manufacturing case we
discussed in an earlier section, a new way of working meant
that the schedulers had no experience of how best to organ-
ise the work in the new working practices. Since the order
in which products were started is so much more important
in the new situation (a wrong order may starve certain cells,
while others are faced with a buffer full of products wait-
ing to be processed). By having a scheduling tool to support
them, they were greatly helped in the transition to the new
way of working.

Another reason why human schedules are often better
than automated ones, is that humans may take some liberty
when it comes to satisfying the constraints. In some cases,
the fact that the automated schedule is guaranteed to satisfy

96

Figure 4: Graphical description of a fictitious production facility

all constraints is an important benefit in itself. For example,
the TACT system (Simonis, Charlier, and Kay 2000) is used
to schedule the transportation of poultry from farms to food
processors. The human schedulers would often overload the
trucks in order to obtain a more efficient schedule. If in-
spected, such trucks are liable to heavy fines both from an
animal welfare perspective as well as from a road safety per-
spective. The schedules produced by the TACT system, on
the other hand, will satisfy the constraints, preventing such
fines. It is important to note, however, that one sometimes
has to break some constraints (e.g. when assigning overtime)
in order to find (efficient) solutions. To allow for this, the
TACT systems allows the scheduler to turn off certain con-
straints to see what the impact is of relaxing those.

Technology Transfer Are the Hardest Words
Often, projects with industry will result in an acceptable pro-
totype or demonstration system. However, it may be the case
that the outcome of a project is envisioned to be a tool that
needs to be deployed, or the prototype may prove so suc-
cessful that the company wants to deploy it. One of the
biggest challenges in such cases, is to successfully transfer
the technology to the company. The scheduling tool is an
advanced piece of software, which may need maintenance
to reflect changing work practices, product ranges, equip-
ment, etc. This requires specialised knowledge of the model
and the scheduling strategy, that the company may not have
in-house. Whereas companies can provide support contracts
for such cases, this is difficult to provide in a university con-
text. How to deal with this situation will vary from project

to project, but our advice would be to start thinking about
how to deal with the issue early.

Successful projects have led to start-ups or spin-offs. A fi-
nal point we want to make here, is that there exists a flawed
perception within industry that small start-ups are unlikely
to be able to maintain a piece of software over a longer
period, whereas a large company can. The reality is often
quite different, however. There is a variety of reasons for
this. Firstly, a large company can more easily decide to
leave a market, focusing on more profitable aspects of its
business. A small company is usually only active in one
field, however, and cannot make this switch. Secondly, un-
less a support contract brings in new revenue in terms of new
projects, such a contract may be conceived as not worth the
effort for a larger company. With many sources of revenue,
a relatively small support contract is not that important. It
is however, for a smaller company. Hence, the quality of
support is likely to be better. Finally, there is of course the
fear that a small company may be unsuccessful and go out
of business altogether. However, if it develops a successful
scheduling system that the customer still wants supported
in 5 or 10 years time, they have clearly demonstrated their
competency and will be viable. Unfortunately, from our ex-
perience in small start-ups, we know that it may be hard to
convince people of this fact.

Conclusions
In this paper, we listed a number of issues that one encoun-
ters when developing scheduling systems for industry, be it

97

prototype or production systems. We also proposed a num-
ber of recommendations. These issues and recommenda-
tions can be summarised as follows:

• Real world scheduling problems pose different problems
than the research benchmarks, due to some artificial con-
straints on the solution posed by the particular production
environment. Thus, custom algorithms are required, but
these can often be derived from existing research.

• Constraint Programming provides a good framework for
building real world scheduling systems.

• Real world scheduling problems are fuzzy. The details
should be carefully elicited from the user. A prototype
system may help to formally describe the problem and
discover discrepancies and areas that are still not ade-
quately described.

• Real world scheduling problems usually involve multiple
optimisation criteria, with the user not able to tell you the
relative weights of these criteria. They will be able to
tell which of a number of schedules they prefer, however,
which can be used to elicit this information.

• Real world scheduling problems may involve multiple
stakeholders. It is important to discuss with the different
stakeholders and represent their views in the model. The
weights of these views can be determined by the stake-
holders forming a common understanding of the problem
through running the model in different scenarios. Only
then will the project be deemed a success.

• A reasonably sophisticated user interfaces makes any
scheduling tool much more useful to the user. Being able
to interact with the tool, exploring different alternatives,
will help the user in understanding the schedules that the
system proposes, even why that schedule is suggested and
in turn increase the confidence in the system.

• Integration with the existing order management software
is imperative. We cannot expect the scheduling system
to impose additional, disproportionate overheads on the
company’s IT structure. The acceptance of a system is
often how little it disturbs the current setup.

• The benefits of a scheduling system do not necessarily
come solely from the fact that more efficient schedules
are derived. The guarantee that all constraints are satis-
fied may be highly valued in itself and act to support the
manual scheduler in better decision making.

• Technology transfer is an important issue, that should
tackled at an early stage. It is hard for a research group to
provide adequate support into the future. If the scheduling
application is important enough, the company must make
provision to support it throughout the project timescale –
although this may mean the researcher spending time with
the company.

Despite the difficulties that we have listed, developing
scheduling systems for industry is both challenging and re-
warding. The difficult problems are rarely technical – they
are social, managerial, but which the researcher should be-
come aware of. Knowing that a factory employs a system

that you helped design is a very satisfactory notion. We sin-
cerely hope that this paper encourages people to apply their
research in practice, and helps them avoid some of the pit-
falls we mentioned.

References
Bellone, J.; Chamard, A.; and Fischler, A. 1995. Constraint logic
programming decision support systems for planning and schedul-
ing aircraft manufacturing at Dassault Aviation. In Proceedings of
the Third International Conference on the Practical Applications
of Prolog, 111–113.
Bixby, R.; Burda, R.; and Miller, D. 2006. Short-interval de-
tailed production scheduling in 300mm semiconductor manufac-
turing using mixed integer and constraint programming. In The
17th Annual SEMI/IEEE Advanced Semiconductor Manufactur-
ing Conference (ASMC-2006), 148– 154.
Conway, R.; Maxwell, W.; and Miller, L. 1967. Theory of
Scheduling. Reading, MA: Addison-Wesley.
Irani, S. 1999. Handbook of Cellular Manufacturing Systems.
New York, NY: John Wiley & Sons.
LePape, C. 1995. An application of constraint programming to a
specific production scheduling problem. Belgian Journal of Op-
erations Research, Statistics and Computer Science.
Leung, J. Y.-T. 2004. Handbook of Scheduling: Algorithms, Mod-
els and Performance Analysis. Boca Raton, FL: CRC Press.
Little, J., and Coughlan, B. 2008. Optimal inventory policy
within hospital space constraints. Health Care Management Sci-
ence 11(2):177–183.
McKay, K.; Safayeni, E.; and Buzacott, J. 1995. Com-
mon sense realities of planning and scheduling in printed circuit
board production. International Journal of Production Research
33(6):1587–1603.
Nugent, C.; Curran, D.; Prestwich, S.; and Little, J. 2008. A
hybrid evolutionary approach to forest management. In Proceed-
ings of the 19th Irish Conference on Artificial Intelligence and
Cognitive Science.
Pinedo, M. 2002. Scheduling: Theory, Algorithms, and Systems.
New Jersey: Prentice-Hall.
Simonis, H.; Charlier, P.; and Kay, P. 2000. Constraint handling
in an integrated transportation problem. IEEE Intelligent Systems
15(1):26–32.
Simonis, H. 2001. Building industrial applications with constraint
programming. In Constraints in Computational Logics. 271–309.
Simonis, H. 2007. Models for global constraint applications.
Constraints 12(1):63–92.
van der Krogt, R., and Little, J. 2006. The PDES workbench. In
Proceedings of the Thirteenth International Conference on Con-
current Engineering: Research and Applications, 619–626.
van der Krogt, R.; Little, J.; Pulliam, K.; Hanhilammi, S.; and
Jin, Y. 2007. Scheduling for cellular manufacturing. In Proceed-
ings of the Thirteenth International Conference on Principles and
Practice of Constraint Programming (CP-07), 105–117.
van der Krogt, R. 2007. Scheduling implant operations using
constraint-based scheduling (abstract). In Online Proceedings
of the Third Workshop on Simulation in Manufacturing, Services
and Logistics.
Wiers, V. 1997. Human-Computer Interaction in Production
Scheduling: Analysis and Design of Decision Support Systems
for Production Scheduling Tasks. Ph.D. Dissertation, Eindhoven
University of Technology, Eindhoven, The Netherlands.

98

