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Abstract 
We describe the modeling and reasoning about operations 
constraints in an automated mission planning system for an 
earth observing satellite – EO-1.  We first discuss the large 
number of elements that can be naturally represented in an 
expressive planning and scheduling framework.  We then 
describe a number of constraints that challenge the current 
state of the art in planning systems and discuss how we 
modeled these constraints as well as discuss tradeoffs in 
representation versus efficiency.  Finally we describe the 
challenges in efficiently generating operations plans for this 
mission.  These discussions involve lessons learned from an 
operations model that has been in use since Fall 2004 
(called R4) as well as a newer more accurate operations 
model in final testing before going operational in April 2009 
(called R5).  We present analysis of the R5 software 
projecting a significant (>50%) increase in the science 
return of the EO-1 mission and that R5 produces schedules 
within 15% of an upper bound on optimal schedules.  

 Introduction   
Spacecraft operations have been a major area of 
application for automated planning and scheduling with 
successful applications including  the Hubble Space 
Telescope [Johnston et al. 1993], space shuttle 
refurbishment [Deale et al. 1994], shuttle payload 
operations [Chien et al. 1999], The Modified Antarctic 
Mapping Mission [Smith et al. 2002], Mars Exploration 
Rovers [Bresina et al. 2005], Earth Observing One (EO-1) 
[Chien et al. 2005a] Mars Express [Cesta et al. 2007], and 
Orbital Express [Chouinard et al. 2008].  Automated 
planning has even flown as a technology demonstration on 
the Deep Space One (DS1) Mission in 1999 [Muscettola et 
al. 1998] and as the primary operations system on 3CS 
[Chien et al. 2001] in 2004 and EO-1 [Chien et al. 2005b] 
2004-present.   
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 Spacecraft operations are of interest for planning & 
scheduling applications as follows. 
 

1.   Spacecraft operations require modeling of a number 
of challenging operations constraints including: 
instrument and subsystem timing and 
synchronization, thermal, power, data volume, 
visibility, and spacecraft pointing.  

2.   Because spacecraft are so expensive  ($100M+ US is 
not unusual), a planning model must be highly 
reliable to not produce operations plans that might 
endanger a valuable asset.   

3.   Because communications to spacecraft are limited in 
frequency and duration, from an AI planning 
perspective a spacecraft has a flight and ground 
version of the planning problem.  The flight version 
typically involves embedded replanning in modest 
context whereas ground planning may tackle large 
problems involving hundreds or thousands of 
activities. 

4.   Limited onboard computing often requires 
algorithms that are not computationally or memory 
intensive.  

5.   Because of the complex nature of science operations 
priority and optimization are often involved either 
implicitly or explicitly. 
 

In the remainder of this paper we first describe the EO-1 
operations scheduling problem.  We then describe the 
wide range of operations constraints that are naturally 
modeled in typical planning & scheduling modeling 
languages.  We then describe a number of more difficult 
to model constraints including thermal, pointing, and 
prioritization.  We then describe a heuristic approach to 
generating schedules for the EO-1 mission.  We then 
present an analysis of impact on operations.  Finally we 
present related work and conclusions.  
Disclosure: Note that many of the specific operational 
constants (e.g. instrument temperatures, warmup times, 
etc.) in this paper have been altered for export control 
purposes.  Impact and problem scale numbers (e.g. # of 
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observations per week, numbers of resources scheduled, 
have not been modified). 

Background 
 The Earth Observing-1 (EO-1) satellite was launched in 
2000 into an orbit with a ~16-day repeat track, with at least 
5 day and 5 night over-flights per 16-day cycle separated 
by a <10-degree change in viewing angle. 
 EO-1 carries three instruments: the Advanced Land 
Imager (ALI), the hyper-spectral Hyperion Imager, and the 
Atmospheric Corrector (AC). Together the three 
instruments collect over 20-Gbits of science data to the 
onboard solid-state data recorder for each scene (which 
consists of one science and two calibration images for ALI 
and Hyperion - the AC is no longer used in nominal 
observations). 
 The EO-1 spacecraft has two Mongoose M5 processors. 
One of these M5’s is available for partial use by onboard 
autonomy software.  Each M5 runs at 12 MHz (for ~8 
MIPS) and has 256 MB RAM. Both M5’s run the 
VxWorks operating system.  The Autonomous 
Sciencecraft (ASE) [Chien et al. 2005b] AI software 
operates on the secondary WARP M5 processor.  
 Following a one-year primary mission, EO-1 entered 
extended mission in January of 2002 having surpassed all 
original technology validation goals.   By 2004 continuous 
improvements in EO-1 conventional operations enabled 
acquisition of approximately 100 scenes per week 
significantly beyond the pre-launch success criteria of 7 
scenes per week.   
 In 2004, onboard and ground-based automated mission 
planning software was deployed operationally to automate 
mission planning and sequencing elements of the EO-1 
mission [Chien et al. 2005a, 2005b].  This software, called 
R4, automated existing operations policies rather than 
trying to increase the number of science observations 
acquired by the mission (to reduce the risk and cost of 
automation).  This automation was tremendously 
successful - enabling an over $1M per year operations 
costs reduction and allowing more rapid response to 
science events and anomalies such as ground station 
failures.  This automation was able to continue this pace of 
~ 100 observations per week.  The 2004 automation has 
operated flawlessly and has acquired over 20,000 scenes in 
the almost 5 years of operations (a scene includes one 
science and two calibration images). 
 More recently (2008-2009), the ground and flight 
mission planning software for EO-1 is being upgraded 
again.  This upgrade (R5) emphasizes: 1. increasing 
operational flexibility to change scenes immediately before 
acquisition and 2. acquiring more science scenes.   
 EO-1 has a 90-minute orbital period, meaning that in 
any given week it has ~ 112 orbits.  Typically under R4 
orbits would be used as follows: ~60 orbits EO-1 takes a 
single scene, ~30 orbits EO-1 takes two scenes, the 
remainder EO-1 performs instrument calibration or 
instrument decontaminations and therefore be unable to 

acquire science images.  In a typical week from 2004-2009 
under R4 software control EO-1 might acquire 120 scenes.  
Restrictions limiting the number of scenes include: 
 Visibility – even though the spacecraft might be unused 
it cannot see a desired science target. 
 Pointing/maneuver – the spacecraft takes time to move 
from pointing at one target to the next and must allow time 
for the spacecraft to stabilize after pointing to enable 
precise imaging. 
 Thermal – the instruments have minimum and maximum 
temperatures at various locations that must be met to 
acquire valid science imagery.  The minimums mean that 
warmup activities are required.  The maximums mean that 
too many consecutive images will overheat the instrument. 
 Data volume – the spacecraft can only store a limited 
number of observations onboard. 
 Downlink – the spacecraft can only downlink at pre-
scheduled times and overflights of fixed ground stations 
 Mode – various spacecraft subsystems have operational 
modes that must all be carefully selected and achieved for 
valid operations. 
 In the following sections we describe our approach to 
modeling these many constraints.  In our implementation 
we use the ASPEN [Chien et al. 2000] modeling system 
with an emphasis on the timeline-based modeling 
capability but our observations are relevant to most fixed 
time, timeline based scheduling approaches. 

 Spacecraft Operations Modeling 
In this section we describe the range of spacecraft 
operations constraints present in the Earth Observing One 
Model.  We begin by describing constraints that are easily 
modeled in automated planning/scheduling systems and 
then discuss problematic constraints.   

Easily modeled spacecraft operations constraints 
The updated EO-1 operations domain has a wide range of 
constraints that can be naturally represented in common 
planning & scheduling system modeling constructs.   
 Activity overlap – instances of activities cannot overlap 
such as those that require an atomic resource.  For 
example, two image sequence parent activities cannot 
overlap.  This is represented by a simple atomic resource (a 
unit capacity resource) that an 
image sequence parent activity 
claims.  If a second image 
activity overlaps it also claims 
this resource, exceeding the 
capacity. 
 Integer capacity – 
depletable – this is an integer 
capacity resource reserved by 
one activity making a portion 
of the resource unavailable 
until it is freed by another 
activity.  For example, EO-1 
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has a mass storage device primarily for science data.  The 
storage device, called the WARP, has two capacity 
constraints.  First, there is a limitation on the total number 
of files on the WARP at any given time.  The file count is 
represented as a depletable resource the maximum 
capacity.  When files are created they are counted against 
the file count resource.  When files are deleted after 
downlink activities the resources are freed.  Second, the 
total size of all of the files (summed) cannot exceed a 
different bound.  This resource is consumed as data is 
written to a file on the recorder and released when files are 
deleted (after being downlinked).  Usage of these resources 
can depend on activity parameters – for example the 
amount of data generated by an imaging sequence is 
dependent on how long the instrument is imaging as 
dictated by a function (a base amount plus a fixed rate 
times the image activity duration).   This resource usage is 
shown in Figure 1. 
 Discrete states – there are numerous discrete state 
constraints including transition constraints and state 
constraints.  For example, the solid state recorder has 
several states (record, playback, idle, standby,…) with a 
specific subset of legal transitions and activities to change 
the state as specified in the planning model.  As another 
example, the ALI instrument has a cover with specific 
activities to change its state and imaging activities require 
specific states (dark calibrations require closed state, 
science images require open state).   Figure 2 shows some 
aspects of constraints on the ALI cover state. 
 Decomposition – often a high level activity consists of 
several lower level activities.  These are represented as 
Hierarchical Task Network planning decompositions.   For 
example, and imaging sequence high level activity consists 
of a large number of lower level activities including ALI 
and Hyperion (HSI) prep activities and post activities.   
Figure 3 shows the first level of decomposition for a 
Hyperion Lamp Calibration activity set.  While these 
decompositions can include subgoals solved by means end 
analysis and alternative achievement methods these are not 
required by the EO-1 domain (e.g. it is a scheduling 
problem not a planning problem). 
 Temporal constraint – constraints on the relative timing 

or ordering of two related activities.  For example, in an 
image sequence, the instrument parameters must be set 4.5 
seconds before the image start time and the Hyperion 
instrument covers must be opened 28.5 seconds before the 
image start time.  Most of these temporal constraints are 
enforced in the decompositions outlined above.   
 Some of these temporal relationships utilize 
dependencies upon timeline values or activity parameters.  
For example, the Hyperion and ALI warm-up times are 
dependent on the expected temperatures entering into the 
imaging activity.  If the instruments are already warm from 
prior image sequences the warmup time can be shortened 
allowing images to be acquired closer together and 
preventing the instrument from overheating (this is 
discussed in the section on thermal modeling below).   

More challenging operations constraints 
In this section we describe modeling and non-modeling of 
several operations constraints – thermal, pointing and 
wheel biasing, power, prioritization, and others. 
Modeling Instrument Thermal Constraints 
One challenging constraints in the R5 model upgrade was 
thermal modeling for the Hyperion instrument.  The 
Hyperion instrument has two imaging subsystems: a 
visible and near infrared module (VNIR) and a short wave 
infrared module (SWIR) with somewhat decoupled 
behavior.  VNIR and SWIR gradually increase when 
imaging and cool when not in use. 
 VNIR and SWIR have minimum and maximum 
operating temperature requirement for both precise 
imaging and instrument protection.  The Hyperion 
instrument also has a setup time so that the instrument 
must be powered on by this amount prior to imaging to 
allow the instrument to enter the correct mode to accept 
imaging control parameters prior to imaging.  Thus the 
Hyperion operations challenge is to control the power state 
of the instrument such that both the SWIR and VNIR are 
operating within acceptable temperature ranges and the 
instrument is able to accept imaging parameters for all 
desired images. 
 The VNIR module is tightly temperature controlled such 
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that it always remains above 311 to prevent the instrument 
from damage in the cold of space.  The VNIR is thusly 
readily available to image at its minimum operating 
temperature of 313.  A brief warm-up period in advance of 
an image is modeled to allow the instrument to reach this 
temperature, if needed. During sparse operations, the 
instrument then cools back to its set point over a period of 
approximately an hour. However, extended instrument 
duty cycles (e.g. during a rapid sequence of adjacent 
observations) can cause this temperature to build up 
without a chance to cool down.  Because the EO-1 mission 
flight rules include an instrument maximum rated 
operating temperature of 415 as well as a maximum design 
temperature of 515, the planner must space its observations 
so the duty cycle does not lead to unacceptable temperature 
build up. 
 Similarly, the SWIR module has a maximum operating 
temperature of 415 and a maximum design temperature of 
515, but it does not have any defined optimal operating 
temperature minimum. The SWIR module is allowed to 
cool arbitrarily, eventually reaching an oscillating 
equilibrium with the rest of the spacecraft, the sun (if 
visible), and space at between -19 and -16. Notably, at 
these lower temperatures, the SWIR module is much less 
effective at dissipating heat (and more suceptible to 
absorbing heat), as expected from classical Newtonian 
cooling models. This means that temperature builds more 
rapidly in the SWIR once the instrument is cycled on, and 
that it takes much longer for it to return to ambient -- on 
the order of 12 hours. 
 We began by implementing a simple model using a non-
depletable resource in which the planner modeled the 
SWIR and VNIR temperature as instantaneously increasing 
when turned on and cooling after turned off with the time 
duration of the increase based on the on-time.  This model 
had the advantage of only requiring local timeline 
propagation (e.g. the duration of the effect on the 
temperature timeline is local based on a calculated on-time 
duration).   Each time instrument operations are added or 
deleted from the timelines, this model requires re-
computation of the instrument temperature over the 
duration of the on-time chance.   
 We took this indirect approach of modeling a depletable 
resource as a non-depletable resource due to a number of 
efficiency concerns.  First modeling run time is a concern 
because we only have a 5 MIPS onboard computing budget 
for all of the autonomy software.  Non-depletable activities 
only change the resource timeline twice, once at the start of 
the activity and once at the end of the activity.  The natural 
heating and cooling activity driven model is periodic and 
requires a number of activities (and potential resource 
changes) proportional to the length of the modeled 
schedule – significantly increases the CPU time & RAM 
for the temperature model. 
 Unfortunately, the non-depletable model is very 
inaccurate when consecutive imaging events occur before 
the instrument is allowed to completely cool to ambient 

temperature, as often occurs for the SWIR subsystem in 
EO-1 operations. 
 Our next iteration model used the starting temperature of 
the instrument to calculate its duration and therefore again 
caused a localized effect to the temperature timeline but 
had a longer duration the higher the input temperature.  
This model still retains the non-depletable efficiency in 
runtime and RAM.  However, this model also produces 
inaccurate estimates in cases where a large number of 
observations occur consecutively. 
 We finally directly modeled the timeline temperature 
with a periodic heating and cooling timestep affecting the 
timeline temperature based on a sampling of if the 
instrument is on or off.  This model directly accounts for 
the heating and cooling effects most accurately but has the 
downside of being the most costly computationally to 
update and propagate during planning.  Even this model 
does not have the most accurate parameters (such as a 
variable heating and cooling rate based on the current 
temperature) - the instrument points heat more slowly and 
cool more quickly when at higher temperatures.) 
 Figure 5 shows the SWIR temperature as observed in 
flight, modeled in simulation, and modeled by the planning 
system.  Figure 6, shows the corresponding information for 
the VNIR subsystem.  The graphs show that the SWIR and 
VNIR temperatures appear to increase and decrease in 
approximately linear segments, with continuous curves 
between the areas of linear heating and cooling.  The 
planning model only roughly approximates the actual and 
simulated temperatures but for planning purposes it only 
need answer the question “will this set of observations 
exceed the temperature limit” and “how long must the 
instrument warmup so that this observation will be at least 
at the minimum of the operating range.” 
 The above model development was performed using 
historical operations data.  While we had virtually 
unlimited examples of imaging (thousands of scenes) this 
data only included single and dual observations per orbit.  
In order to further refine the model we performed a flight 
experiment in which we controlled the power state of the 
instrument simulating three sequences of four observations 
each.   
 
Pointing and wheel Biasing 
Another challenging operations constraint for EO-1 is 
pointing.  The EO-1 spacecraft has three reaction wheels 
for pointing plus a magnetic torquer bar for momentum 
dumping.  Reaction wheels change the orientation of a 
spacecraft by Newton’s Third Law (equal and opposite 
reaction).  Intuitively, spinning a wheel at one end of the 
spacecraft will cause a rotation in the spacecraft in the 
opposite direction.  Because the spacecraft is in orbit 
around the Earth, if it continually points directly downward 
towards the Earth, it will make one 360 degree rotation per 
orbit.  From a spacecraft stability standpoint, for ideal 
imaging each reaction wheel should be at a target speed of 
100 rpm in either direction.  Faster or slower speeds are 
less desirable for imaging quality and reaction wheel wear. 
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The worst case for image quality occurs when the wheels 
change direction from spinning in one direction to the 
opposite (e.g. rate going from positive to negative called a 
“zero crossing”) as the spacecraft will shudder and cannot 
acquire a high quality image for a period of time.  In order 
to prevent momentum buildup EO-1 has a torquer bar, 
which applies torque to the spacecraft based on interaction 
between the magnetic field from running an electrical 
current through the bar and the Earth’s magnetic field.   
 Operationally, if the mission planner wishes to acquire 
scene A then scene B, maneuver planning software takes 
the requests and computes parameters that the spacecraft 
attitude control system ingests at execution time to achieve 
the desired pointings.  One challenge is that computing 
these maneuvers is a challenging flight dynamics problem 
– the maneuver planning software in fact uses a heuristic 
method to attempt to design such maneuvers that respect 
rate constraints, timing constraints, and instrument pointing 
constraints.  From a mission planning perspective these 
constraints are treated as black box solutions that possess 
challenging non-monotonic properties.  For example, the 
maneuver planning software may return that starting from 
nadir pointing, taking observation O2 followed by 
observation O3 is not possible.  But the same software 
might return that starting from nadir, taking O1 followed 
by O2 followed by O3 is possible.  Clearly this means that 
moving from nadir to O2 to O3 is possible but that the 
solution through O1 was not found by the maneuver 
planning software when planning for only O2 and O3.  The 
lack of structure of these returned constraints make the 
EO-1 mission planning problem computationally harder. 
     Originally in operations, the spacecraft 
was “nadir pointed” (i.e. pointed directly 
at the ground) and “zero biased” (i.e. 
reaction wheels not spinning) in between 
every scene.  While this is the most 
straightforward operationally it is not very 
efficient because considerable spacecraft 
time is wasted slewing the spaceraft to 
nadir and slowing the spin of the reaction 
wheels.  One of our upgrades enables EO-
1 to go directly from one image to the next 
without zero biasing or nadir pointing for 
up to four consecutive images. 
 Because the planning system cannot 
directly represent the pointing and 
momentum state of the spacecraft, we 
implemented these constraints in the goal 
generation process (see below).  Basically, 
when all of the individual scene requests 
are received, we construct sets of 
combinations of the scenes (called 
“tuples”) that represent scenes without 
intervening nadir pointing and zero 
biasing.  The mission planner then 
operates on these tuples, considering 
combinations of tuples for a weekly 
schedule. 

 The mission planner only indirectly models spacecraft 
location and therefore image overflights.  The mission 
planner accepts as inputs goals to image targets but it does 
not directly consider alternate opportunities to image the 
same target.  Because the EO-1 general planning horizon is 
only at the one week granularity, it does not offer a direct 
method of considering among alternate overflights for 
specific targets.  The mission team does often consider 
alternate overflights but does so outside of the automated 
mission planning process.  
 The EO-1 spacecraft has gimbaled solar arrays that track 
the sun when visible to generate power.  Operationally, the 
EO-1 spacecraft may generate less power when it is 
imaging more because its pointing actions make it more 
difficult for the solar panels to track the sun and generate 
energy.  Also, imaging more implies that more subsystems 
are powered so they are using more power.  Preliminary 
analyses indicate that even with significantly increased 
imaging (150 images per week) power will not limit 
imaging but as the upgrade becomes operational and is 
checked out the EO-1 power situation will be tracked and 
analyzed if necessary. 
 EO-1 operations also have a number of trending and 
tracking calibration and instrument maintenance activities.  
These include ALI calibrations (data collected with covers 
closed and internal lamp on or off) as well as outgassing of 
the instruments.  Other engineering activities include orbit 
determination calculations, burns to maintain orbit, and 
fuel calculation.  An ideal planning system would track 
these events and schedule them when needed based on 
periodicity, schedule conflict, and imaging parameters.   
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Creating Schedules ground and flight: 
integrating modeled & implied constraints 

One of the challenges of EO-1 operations is to tractably 
generate schedules given the large numbers of 
combinations of observations and heavily interacting 
constraints.  On EO-1 there are two very different version 
of the scheduling problem – weekly schedule generation 
and onboard replacement scheduling.   
 On the ground a weekly schedule of EO-1 operations is 
maintained.  This schedule is generated in several versions 
3-5 days prior to its start (e.g. the schedule is generated 
Wednesday for the week starting the following Sunday and 
then refined several times).  This schedule must consider 
hundreds of individual scenes that can comprise thousands 
of potential tuples that must be heuristically pruned in 
order to produce a manageable problem.    
 The onboard version of the scheduling problem is more 
constrained.  Due to limited computational resources 
onboard the spacecraft the onboard scheduler cannot 
consider the weekly scheduling problem and instead 
considers a small number of new tuples within a schedule 
horizon of 8 hours potentially inserting or replacing 
existing tuples while respecting priorities and operations 
constraints. 
 One challenge relating to schedule generation is science 
priority.  The EO-1 mission has a simple model of priority 
that does not fully capture the science and operations 
constraints of the mission.  Within this model priority 
ranges from 0-999 with 999 being the highest priority.  
Users have the authorization to submit scenes at a range of 
priorities.  The semantics of the priorities are that a higher 
priority scene will be selected over any number of lower 
priority scenes that may conflict.  The priorities are 
incorporated in the core of the scene selection and 
scheduling algorithm as indicated below. 
 A better system for representing priority would allow for 
the scheduling system to be aware of contention (which 
other scenes are also competing for the overflight), 
periodicity of the contention (i.e. is this going to happen 
for every overflight or is it only for some known subset of 
overflights), urgency (is there a temporal urgency to 
acquire this scene now – e.g. is it a short lived event such 
as a ground-truthing, flood, or volcanic event), and age 
(many targets are designed to be periodically observed and 
this target may have just been observed). 

Weekly Scheduling (Ground) 
Weekly scheduling consists of: submission of requests 
from a set of customer groups, scheduling engineering 
activities, and scheduling science activities.  The weekly 
scheduling algorithm is shown below as Algorithm 1.   
 The weekly scheduling algorithm can be understood as 
follows.  First the tuples (combinations of adjacent scenes) 
are generated from the individual requests.  Next the 
downlink contacts are processed.  All of the approved 
downlink contacts will be S-band engineering downlinks 
since S-band activities do not interfere with the other 

spacecraft operations.  X-band high rate science downlink 
however does preclude simultaneous science image 
acquisition.  By default we take all downlink opportunities 
and schedule them as X-band activities but later in the 
scheduling algorithm we consider removing them for high 
priority scenes. 
 Next we sort the generated tuples by the greater 
minimum priority scene in the tuple (so that we consider 
all tuples that have only high priority scenes first, then all 
that have only high and slightly lower, and so on…). 
 As we consider a new candidate tuple, we try to insert it 
into the schedule (e.g. “ScheduleTuple” below).  
ScheduleTuple considers whether the new tuple should be 
added in three conditions: a) the new tuple can be added 
without needing to remove anything from the schedule 
(e.g. does not create any conflicts); b) it can be added and 
can be conflict free after deleting all subsumed observation 
tuples currently in the schedule (e.g. if adding a tuple with 
observations A B and C, if deleting the tuple A B enables 
A B C to be added without conflict accept ABC); or c) if 
the new tuple conflicts with an X-band, only add the tuple 
if after deleting the X-band a) or b) above holds. 
 The net effect of this scheduling algorithm is that it 
starts out with tuples (note that single observations are 
degenerate tuples) with only high priority observations.  It 
then adds lower priority observations where they fit in 
between high priority observations (not too common) or by 
growing the tuples with high priority scenes by adding 
lower priority scenes to the tuples.  In each case a single 
higher priority scene is preferred over lower priority 
scenes.  X-bands can be bumped but only if they are not 
needed for storage of higher priority scene (which would 
have been already scheduled).  Because the scenes are 
secondarily sorted by number of lowest priority scene the 
algorithm generally prefers more scenes of a given priority.  
However it cannot guarantee optimality at this level due to 
the possibility of a tie-break at a higher level priority 
precluding a larger number of lower priority scenes. 
 
scheduleWeekly 
  generate tuples from individual requests 
  schedule the given S-bands 
  schedule one X-band for every S-band 
  sort unsatisfied tuples by greater min priority 
  for each unsatisfied tuple 
    scheduleTuple(tuple) 
  repair resulting schedule 
 
scheduleTuple(tuple) 
  find satisfied subsets of the given tuple 
  if tuple has unsatisfied scenes  
        (not part of a subset) 
    remove subsets from satisfied tuples 
    unschedule subsets 
    unschedule X-bands that overlap with a new 
scene 
    schedule tuple 
    if no conflicts 
      add tuple to satisfied tuples 
      return true 
    else // undo 
      unschedule tuple 
      schedule subsets 
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      add subsets to satisfied tuples 
      schedule overlapping xbands 
  return false 
 
schedule(goal) 
  expand goal activity and model states/resources 
 
unschedule(goal) 
  unexpand goal activity & unmodel 
states/resources 
 
Algorithm 1 

Onboard Scheduling (Flight) 
The onboard scheduling problem is much simpler than the 
ground (weekly) scheduling problem.   In flight the 
scheduler must accept incremental changes to the baseline 
(weekly) schedule derived on the ground.  These changes 
are generally due to the addition of new higher priority 
goals but in theory could also be due to anomalies onboard.  
The onboard scheduling algorithm is the iterative repair, 
local search algorithm outlined in Rabideau et al. 
[Rabideau et al. 1999] but heuristically informed to delete 
the tuple with the lower priorities.  This algorithm is shown 
below as Algorithm 2. 
 
repair 
  while conflicts 
    heuristically choose a conflict 
    heuristically choose a repair method 
    apply repair method 
 
choose repair method 
  if conflict is between tuples 
    lexicographically compare priorities of 
scenes in tuples 
    return tuple with smallest priority 
comparison 
 
In a lexicographical comparison, the priority of 
tuple T1 is less than the priority of tuple T2 
iff the highest priority scene of T1 (T1S1) is 
less than the highest priority scene of T2 
(T2S1), or they're equal and T1S2 is less than 
T2S2, etc. With all priorities being equal, a 
tuple with fewer scenes is lower priority. 
Algorithm 2 

Evaluating EO-1 scheduling effectiveness  
Originally the motivation for the R5 software upgrade was 
to increase flexibility to change the schedule.  In R4 once 
X-bands were selected they could not be later pre-empted 
by high priority scenes.  Additionally, scenes priorities 
resulted in several unnatural constraints in their 
implementations: (1) dual collects had to consist of two 
scenes of the same priority (so that the priority of the dual 
scene was semantically unambiguous) and (2) 
replacements of a single or dual scene had to be with the 
same number of scenes (e.g. a single replacing a single or a 
dual replacing a dual).   

 When we decided to upgrade the model, we decided to 
investigate if the total number of scenes could also be 
significantly increased as part of the upgrade.  In order to 
assess this potential gain we ran a number of simulations 
with rough constraints – these indicated the potential to 
increase the number of scenes acquired through better 
thermal management of the instruments and reducing nadir 
pointing and zero biasing. 
 To assess scheduling improvement we ran the R4 and 
R5 on four weekly schedules from Spring 2009.  To 
simplify analysis we scheduled these weeks without any 
engineering activities (which require human input).  Ideally 
we would compare R5 schedules against optimal weekly 
schedules.  Unfortunately non-monotonic constraints 
(slewing and maneuver in creating tuples) and 
computationally expensive modeling (thermal) and weekly 
problem size prohibit generating optimal solutions.  The 
problem cannot even be localized to small NP-hard 
problems between X-bands because X-band selection is 
part of the search space and tuples can span X-bands.  
Therefore we developed a series of optimal schedulers that 
ignore certain hard (e.g. maneuver, slew, temperature) 
constraints and produce optimal schedules for these 
relaxed problems – thereby providing upper bounds on 
optimal schedules for the real problem.  The results of 
these schedule runs are shown below in Table 1.  O1A & 
O1B below used the fixed X-band selections from the R5 
algorithm.  O3 uses an alternative approach for X-bands.  
Table 1 shows the number of X-bands and scenes 
scheduled as well as a priority score of the schedule 
indicating a weighted score where a scene of each priority 
level is worth 10x the value of a scene of the next lower 
priority.  
Algorithm X-

bands 
Scenes 
scheduled 

Priority 
Score 

R4 32 130 1233 
R5 51 217 1243 
O1: Optimal no 
thermal, no maneuver, 
R5 X-bands 

51 243 1286 

O1A: O1 removing 
onboard storage  

51 419 1286 

O1B: O1 ignoring 
scene overlap 

51 252 1422 

O2: O1 but choose all 
X-bands not in conflict 
with high priority 

48 229 1246 

The data shows several interesting points. 
1. The most significant constraint limiting scenes is 
onboard storage (seen by the jump in scenes removing this 
constraint from O1 to O1A).  However, the gained scenes 
are not important ones as the priority score is unchanged 
(e.g. there are no gained scenes in the top several priority 
levels).  It is also worth noting that O1, O1A, and O1B all 
ignore instrument thermal constraints, which would 
certainly prevent taking of 400 scenes in a week. 
2. The biggest constraint preventing acquiring higher 
priority scenes is scene overlap as indicated by the jump in 
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schedule score from O1 to O1B.  Note that maneuver (also 
unmodeled by O1, O1A, and O1B) would certainly 
preclude taking many of these high priority combinations 
even if scene overlap could be relaxed. 
3. The R5 scheduler significantly outperforms R4 in scene 
count increasing average scene count from 130 to 
217(+67%) – primarily by enabling two or three scenes to 
be taken many orbits.  Weekly averages for R4 are 70 
singles and 30 duals whereas R5 averages 18 singles 45 
duals and 37 triples.  Note that the R4 algorithm was also 
constrained to take duals of only the same priority and also 
have a designated primary scene as the first scene.  
However most of the additional scenes that R5 acquires are 
not high priority – this is because the operations team self 
selects by not choosing multiple high priority scenes that it 
believes will conflict – further study will enable us to 
acquire less biased input requests. 
4. R5 also performs well compared to the tightest upper 
bound on optimal schedules (O1).  R5 is within 11% of the 
optimal upper bound by scene count and within 3.4% by 
priority score.  Given that O1 is an upper bound and 
maneuver and thermal are significant additional constraints 
it is likely that R5 is closer to a true optimal schedule. 
  What is the value of the additional scenes?  A 
conservative estimate based on the 2004 mission cost 
valued the EO-1 mission at ~$3.6M/year so one measure 
(scene count) would estimate the value of the additional 
50% scenes at $1.8M/year.  One might argue that the worth 
of additional scenes is lower per scene because the highest 
priority scenes would be taken first.  However one might 
also argue that more scenes enables studies at a finer 
temporal resolution thereby enabling studies not allowed 
with fewer scenes. 

Discussion, Related Work, and Conclusions 
One of the recurring themes in space operations is 
validation and reliability.  Because of the high costs of 
space missions, reliable operations are very important.  AI 
planning specializes in generating novel sequences to 
achieve combinations of goals.   Because of the importance 
of safety in space operations, novelty in sequencing is 
discouraged.  Consequently, most planning in space 
operations is performed by hierarchical task network 
methods, which have the advantage of repeatability to 
facilitate testing.  It is an unusual event to find a novel way 
of doing something in space operations - the more common 
case is large scale scheduling of combinations of repeated 
sequences (such as observations). 
 As listed in the introduction, space mission operations 
have been a fertile area of applications and research for 
automated planning and scheduling.  This paper has tried 
to focus on details of constraint representation for a 
specific mission model, EO-1 as well as our specific 
heuristic scheduling algorithm. 
 This paper has described a number of challenges in 
representing operations constraints and automatically 
scheduling operations for an earth observing satellite, the 

EO-1 spacecraft.  We described a large number of 
operations constraints that were naturally modeled in an 
expressive planning and scheduling system including 
states, resources, temporal constraints, and 
decompositions.  We then described a number of 
constraints that were more challenging to model including 
thermal, location/pointing, and science/image quality.  We 
then described our heuristic approach to EO-1 schedule 
generation: (1) documenting its significant increase in 
science observations; and (2) showing its performance 
approaches that of an upper bound on optimal scheduling 
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