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Abstract

The computation of relaxed plans provides valuable informa-
tion about the solution to a planning problem in polynomial
time. Moreover, in some domains relaxed plans can be di-
rectly taken as part of the solution saving expensive search
episodes. Unfortunately, given that the construction of re-
laxed plans ignores the delete effects of actions, relaxed plans
may present flaws. In this paper, we propose a novel tech-
nique for repairing flaws in relaxed plans, based on domain-
specific rules learned from experience. The paper presents
and evaluates three different relational learning approaches
to automatically induce domain-specific rules from examples.
The three learning approaches correspond to the planning
systems ROLLER, CABALA and REPLICA that took part in the
IPC-2008 learning track.

Introduction
The lookahead strategy for heuristic planning (Vidal 2004)
benefits from the fact that relaxed plans usually contain
many actions from the final solution plan. Specifically, the
lookahead strategy exploits a given relaxed plan to generate
a new state, called lookahead state, through consecutive ap-
plication of the actions in the relaxed plan. This lookahead
state is often closer to the goals and can be used in the search
as an extra descendent of the current state.

Unfortunately, relaxed plans present flaws in many plan-
ning domains. Particularly, in domains with limited re-
source sharing, like the Ferry domain, and/or in domains
with strong subgoals interactions, like the Blocksworld do-
main, relaxed plans lack essential actions, present useless
actions and/or mess up the order of some. The lookahead
strategy for heuristic planning designed two mechanisms to
overcome these flaws: (1) including the lookahead states
into a Best First Search (BFS), so the search can find solu-
tions despite misleading lookahead states and (2) defining
a set of rules for repairing relaxed plans when actions from
the relaxed plan are non-applicable.

Since these rules for repairing relaxed plans are general
rules, they miss particularities of domains and hence they are
only able to address a limited set of flaws. In this paper we
propose a mechanism to automatically learn domain-specific
rules for repairing relaxed plans. In particular, we present
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three relational learning approaches for automatically ac-
quiring these rules in the form of generalized policies. These
three learning approaches correspond to the planning sys-
tems ROLLER, CABALA and REPLICA that took part in the
IPC-2008 learning track.

The paper is organized as follows. The second section
describes the concept of a relaxed plan and the common
flaws of relaxed plans. The third section explains how to
use relaxed plans within a lookahead strategy to generate
lookahead states. The fourth section explains how to repair
flaws in relaxed plans to generate good quality lookahead
states. The fifth section describe the ROLLER, CABALA and
REPLICA systems. The sixth section discusses the results
obtained by these three systems at the learning track of IPC-
2008. Finally, the last section presents the related work and
some conclusions.

The Relaxed Plan
We follow the propositional STRIPS formalism to describe
our approaches. We define a planning problem P as the tu-
ple (L,A, s0, G) being L the set of literals of the problem,A
the set of actions, s0 the set of literals describing the initial
state and G the set of literals describing the problem goals.
Each action a ∈ A is a tuple (pre(a), add(a), del(a)) where
pre(a) represents the action preconditions, add(a) repre-
sents the positive effects of the action and del(a) represents
the negative effects of the action. The actions applicable
in a state si are those a ∈ A such that pre(a) ⊆ si. The
state resulting from applying the action a in the state si is
result(si, a) = {si − del(a)} ∪ add(a). Under this def-
inition, the solution to a planning problem P is a plan P
consisting of the sequence of actions (a1, . . . , an) that cor-
responds to the sequence of state transitions (s0, s1, ..., sn)
such that si results from executing the action ai in the state
si−1 and sn is a goal state, i.e., G ⊆ sn.

Computing the Relaxed Plan
The relaxed plan, denoted by P+, is a solution to the relaxed
planning problem P+; a simplification of the original prob-
lem in which the delete effects of actions are ignored. The
relaxed plan is extracted from the relaxed planning graph, a
sequence of fact layers and action layers (F0, A0, . . . , Ft−1,
At−1, Ft). This sequence is built in polynomial time and
space, and represents a reachability graph of the applicable
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actions in the relaxed problem P+. The relaxed plan is di-
rectly extracted from the planning graph by goal regression.

Flaws in Relaxed Plans
One can find three types of flaws in a relaxed plan:

• Disorganized actions. In domains with strong sub-
goals interactions, e.g., in the Blocksworld domain,
the order of subgoals is decisive for achieving a
solution plan. For example, in the Sussman’s
anomaly problem (initial state {ontable(B), clear(B),
ontable(A), on(C,A), clear(C), armempty()} and
goals {on(A,B), on(B,C)}), there are two actions in
the first action layer of the relaxed planning graph:
(pickup(B) and unstack(C,A)). These actions are both
members of the relaxed and the solution plans. However,
action unstack(C,A) must be applied first in order not to
undo the goal on(B,C).

• Missing actions. In domains that involve strong sharing
of limited resources and/or navigation, relaxed plans may
lack of actions that appear in solution plans. In these
domains, ignoring the delete effects of actions produces
relaxed plans assuming that limited resources are always
available and/or navigation objects are located at diverse
places at the same time. For example, in the Sussman’s
anomaly problem, action putdown(C) does not appear in
the relaxed plan because the fact armempty() is never
deleted in the relaxed plan.

• Useless actions. In domains that involve strong sharing
of limited resources and/or navigation, relaxed plans fre-
quently contain actions that are absent in solution plans
for the same previous reason.

Lookahead Strategy for Heuristic Planning
Relaxed plans can be exploited to synthesize intermediate
states that are closer to a goal state than the direct descen-
dants of the current state. These intermediate states, called
lookahead states, are then added to the list of nodes that
can be chosen to be expanded so they can be used within
different search algorithms. This strategy slightly increases
the branching factor of the search process but generally, as
shown by the YAHSP planner at IPC-2004, 1 this strategy
improves the performance.

When relaxed plans present flaws, the generated looka-
head states may not guide the search towards the goals. To
relieve this problem one can include lookahead states into a
Weighted Best-First Search (WBFS) algorithm. This algo-
rithm is complete so even when lookahead states are mis-
leading, the search process can find a solution. Additionally,
one can develop methods for repairing the relaxed plan to
generate better lookahead states.

Figure 1 shows the algorithm for using lookahead states
during the search. This algorithm is based on a modifica-
tion of a BFS where a lookahead state is inserted into the
open list in each node expansion. This algorithm is slightly
different than the one implemented in YAHSP, where the

1http://ipc04.icaps-conference.org/

Lookahead BFS (s0,G,GP ): plan

s0: initial state
G: goals
GP : Generalized Policy

open-list = {s0}
n = ∅
while open-list 6= ∅ and not solved(n,G) do

n = pop-first-node(open-list)
RP = compute-relaxed-plan(n,G)
RRP = repair-relaxed-plan(RP, n,G,GP )
ls = get-lookahead-successor(RRP, n)
S = get-standard-successors(n)
S = sort(ls,S)
open-list = merge(S,open-list)

Figure 1: A Generic Lookahead BFS algorithm.

generation of lookahead states was implemented with a re-
cursive function, which allows the process to concatenate
several lookahead states (if possible) without inserting these
nodes into the open-list.

Repairing Relaxed Plans: A Domain-specific
Approach
The original definition of the lookahead strategy for heuris-
tic planning used heuristic information, based on experimen-
tal knowledge, to build the lookahead state for a given state.
Particularly, it heuristically searches for one plan (the re-
paired relaxed plan) containing as many actions as possi-
ble from the relaxed plan. Since this technique is domain-
independent, it is not able to capture some singularities of
the diverse planning domains. For a detailed explanation of
the technique refer to (Vidal 2004).

Our approach replaces the standard mechanism for repair-
ing relaxed plans with domain-specific rules in the form of
a generalized policy. Specifically, our approach computes
the lookahead state of the current state by iteratively select-
ing the best action to apply from the relaxed plan following
a generalized policy. The algorithm for the generation of
lookahead states following a generalized policy is defined in
Figure 2. This algorithm is able to repair disorganized and
useless actions of the relaxed plan but, by the time being, it
cannot identify the actions that are missing.

A generalized policy is a set of rules that map any problem
of a given domain, i.e. the diverse combinations of initial
state and goals, into the preferred action to execute in order
to achieve the problem goals. Consequently, a perfect gen-
eralized policy is able to solve any problem instance from
a given domain. Learning a generalized policy for a given
planning domain is a three-step process:

1. Definition of the policy representation. Predicate Logic
seems to be the obvious option for representing a general-
ized policy for planning. Nevertheless, other kinds of lan-

38



repair-relaxed-plan (RP, n,G,GP ): RRP

RP : Relaxed-plan
n: current node
GP : Generalized Policy

RRP = ∅
ls = n
while (A = applicable(ls, RP )) 6= ∅ do
action = query-policy(ls,G,GP )
ls = apply(action, ls)
RP = RP − {action}
RRP = push (action,RRP )

return RRP

Figure 2: Algorithm for repairing the Relaxed plan with a
learned generalized policy.

guages make learning easier for some domains. For exam-
ple, Description Logics (Martin & Geffner 2004) is more
suitable for capturing recursive information or Temporal
Logic (Bacchus & Kabanza 2000) for capturing time-line
restrictions over actions in the plan. Additionally, one can
define extra predicates to improve learning. These predi-
cates, also known as meta-predicates (Veloso et al. 1995),
can capture diverse extra information of the planning pro-
cess such as previously executed actions (Minton 1988),
pending goals in the case of backward search planners
(Borrajo & Veloso 1996), hierarchical levels in the case
of hybrid POP-hierarchical planners (Fernández, Aler, &
Borrajo 2005), or deletes of the relaxed plan graph (Yoon,
Fern, & Givan 2007).

2. Generation of learning examples. Learning examples
are extracted from the experience collected solving train-
ing problems. Therefore, the quality of the learning ex-
amples depend on the quality of the problems used for
training. At IPC-2008, the training problems were pro-
vided by the organizers. Different approaches consists of
incrementally generating larger problems through random
walks (Fern et al. 2004) or actively generating the prob-
lems that can lead to interesting learning (Fuentetaja &
Borrajo 2006).

3. Generalization from the learning examples. At this
step, a relational learning algorithm is used to generalize
the decisions made when solving the training problems.

Next, we instantiate this three-step general scheme in the
learning systems: ROLLER, CABALA and REPLICA.

Roller: Learning Helpful Context-action
Policies

Definition of the Policy Representation ROLLER learns
helpful context-action policies. This kind of generalized pol-
icy encodes the state using the concept of helpful actions,
introduced in the FF planner (Hoffmann & Nebel 2001) for

pruning the search space. Formally, the set of helpful actions
of a given state s is defined as:

helpful(s) = {a ∈ A0 | add(a) ∩G1 6= ∅}
where A0 is the first action layer in the relaxed planning

graph andG1 is set set of (sub)goals that need to be achieved
in the proposition layer F1, which are determined during the
relaxed plan extraction. Given that each state generates its
own particular set of helpful actions, ROLLER assumes that
the helpful actions, together with the remaining goals and
the static literals of the planning task, encode a useful con-
text related to each state. Particularly, ROLLER defines the
helpful context,H(s), of a state s as:

H(s) =< helpful(s), target(s), static(s) >

where target(s) = G − s describes the set of goals not
achieved in state s, and static(s) = static(s0) is the set of
literals that remain true during the search, since they are not
changed by any action in the problem.

Generation of Learning Examples ROLLER solves the
training problems, first using the Enforced Hill Climbing al-
gorithm (EHC) (Hoffmann & Nebel 2001), and then, refin-
ing the found solution with a Depth-first Branch-and-Bound
algorithm (DFBnB). DFBnB increasingly generates better
solutions according to a given metric (the plan length in
this ROLLER version) and a time bound. The final search
tree is traversed and all nodes belonging to one of the so-
lutions with the best cost are tagged for generating learning
instances for the generalization step. Specifically, for each
tagged node, ROLLER generates learning examples consist-
ing of:

• The helpful context of the node, i.e., the current state en-
coded by its helpful actions plus the set of remaining goals
and the static predicates of the planning problem.

• The class of the node, i.e., the action selected in the best
cost solution at this search node. The fact that each ac-
tion may have different arguments (in terms of type and
number of arguments) makes the definition of this class
concept unfeasible for many classifiers. Accordingly,
ROLLER separates examples into two classification steps
in order to build generalized policies with off-the-shelf
classifiers.

– Action class. ROLLER labels the best operator to
choose in the different helpful contexts of the search.

– Bindings class. For each operator in the domain,
ROLLER labels the best bindings (instantiated argu-
ments) to choose in the different helpful contexts of
the search. In this case, the class indicates whether the
node is part (selected class) or not (rejected class) of
one of the best cost solutions.

Besides, we believe that this two-step decision process is
also clearer from the decision-making point of view, and
helps users to understand the generated policy better by
focusing on either the decision on which action to apply,
or which bindings to use given a selected action.
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Generalization from Learning Examples ROLLER uses
TILDE (Blockeel & De Raedt 1998) for both the action
and bindings classification. This tool implements a rela-
tional version of the TDIDT algorithm, though we could
have used any other off-the-shelf tool for relational clas-
sification. Figure 3 shows the actions tree learned for
the Blocksworld domain. Regarding this tree, the first
branch states that when there is a stack(X,Y) action in
the set of helpful/candidate actions and there is a pend-
ing goal on(X,Y), the action stack was selected in the
learning examples 69 over 71 times, independently of the
rest of helpful/candidate actions.

selected(-A,-B)
candidate_stack(A,-C,-D) ?
+--yes: target_goal_on(A,C,D) ?
| +--yes: [stack] 71.0 [[pick_up:0.0,put_down:2.0,
| | stack:69.0,unstack:0.0]]
| +--no: target_goal_on(A,C,-E) ?
| +--yes: target_goal_on(A,E,D) ?
| | +--yes: [put_down] 2.0 [[pick_up:0.0,put_down:2.0,
| | | stack:0.0,unstack:0.0]]
| | +--no: [stack] 6.0 [[pick_up:0.0,put_down:2.0,
| | stack:4.0,unstack:0.0]]
| +--no: [put_down] 33.0 [[pick_up:0.0,put_down:29.0,
| stack:4.0,unstack:0.0]]
+--no: candidate_unstack(A,-F,-G) ?

+--yes: candidate_pick_up(A,-H) ?
| +--yes: target_goal_on(A,F,H) ?
| | +--yes: [pick_up] 11.0 [[pick_up:7.0,put_down:0.0,
| | | stack:0.0,unstack:4.0]]
| | +--no: target_goal_on(A,-K,G) ?
| | +--yes: [unstack] 22.0
| | | [[pick_up:0.0,put_down:0.0,
| | | stack:0.0,unstack:22.0]]
| | +--no: target_goal_on(A,G,F) ?
| | +--yes: [pick_up] 2.0
| | | [[pick_up:2.0,put_down:0.0,
| | | stack:0.0,unstack:0.0]]
| | +--no: [unstack] 14.0
| | [[pick_up:2.0,put_down:0.0,
| | stack:0.0,unstack:12.0]]
| +--no: [unstack] 36.0 [[pick_up:0.0,put_down:0.0,
| stack:0.0,unstack:36.0]]
+--no: [pick_up] 27.0 [[pick_up:27.0,put_down:0.0,

stack:0.0,unstack:0.0]]

Figure 3: Relational decision tree learned for the action se-
lection in the Blocksworld domain.

A more detailed explanation of ROLLER can be found at
(De la Rosa, Jiménez, & Borrajo 2008). This work used the
helpful-context policy for guiding search algorithms instead
of for repairing relaxed plans.

Cabala: Learning Generalized Policies as
Planning Cases

Definition of the policy representation
CABALA learns the generalized policy in the form of plan-
ning cases called typed sequences. A typed sequence is
an abstracted sub-state transition relative to an object type,
which partially captures a plan from an object perspective.
Formally, a typed sequence of a given type is an ordered list
of pairs

Q = (T0, ∅), (T1, a1) . . . , (Tn, an)

where Ti is a typed sub-state generated from the state si and
ai is the applied action in the state state si−1. A typed sub-
state Ti is a collection of properties. Referred to a particular
object o, it represents all properties that object o can define

for a particular state si. A property, first introduced by the
domain analysis in TIM (Fox & Long 1998), is defined as
a predicate subscripted with the object position of a literal,
e.g., on1 is a property of object A in the literal on(A,B). In
addition, an object sub-state is the set of the state literals in
which the object is present. Then, the set of object properties
that forms the typed sub-state is computed from the object
sub-state. For instance, suppose we have the following state,

si = {on(A,B), ontable(B), clear(A), armempty()}
Then, the object sub-state for block A would be:

sA,i = {on(A,B), clear(A)},
which is generalized to the typed sub-state of type block

Tblock,i = (on1 clear1).

If action pickup(A) is applied in the state si, the new object
sub-state for block A would be sA,i+1 = {holding(A)},
and consequently, the typed sub-state would become
Tblock,i+1 = {holding1}.

Generation of learning examples
CABALA obtains the learning examples from solved prob-
lems as follows: For each object instance in the problem,
a typed sequence is generated. This process is straightfor-
ward, since each step in the sequence is created with the
corresponding object sub-state from the solution path. Se-
quences are grouped in a case base by domain types, so a
new case is inserted in the type of object from which it was
generated. If the object sub-state does not change when an
action is applied, a no-op is saved to represent a void ac-
tion from the object perspective. A merge process verifies
that equivalent sequences, only varying in the number of
no-op, do not repeat in the case base. Figure 4 shows a
complete example of a typed sequence generated from a so-
lution plan in the Blocksworld domain. The typed sequence
has one step more because the typed sub-state of the initial
state is included without any action.

Initial State: (ontable A) (clear A)
(ontable B) (clear B)
(ontable C) (clear C)

Goals: (on A B) (on C A)
Plan Typed Sequence (Block A)
initial state [(clear1 ontable1), ∅]
0: (PICKUP A) [(holding1), pickup]
1: (STACK A B) [(clear1 on1), stack]
2: (PICKUP C) [(clear1 on1),no-op]
3: (STACK C A) [(on1 on2), stack]

Figure 4: A typed sequence example in the Blocksworld do-
main

Generalization of learning examples
CABALA implements a lazy generalization of the learning
examples. CABALA stores learning examples in a case base,
and when a new problem needs to be solved, the most sim-
ilar case is retrieved. For each object instance in the new
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problem, a typed sequence is retrieved. CABALA imple-
ments a simple retrieval scheme that only considers the first
step of the sequence referred to the initial state, and the last
step of the sequence referring to the goal state. CABALA
performs two matches to retrieve a sequence. The first one
matches the typed sub-state generated from the goals against
the last step of all sequences of the corresponding type. For
the second match, the typed sequence generated from the
initial state is matched against the first step of the sequences
resulting from the first match.

A more detailed explanation of the CABALA retrieval
scheme is in (De la Rosa, Garcı́a-Olaya, & Borrajo 2007).
This work used typed sequences to order node evaluations
in the Enforced Hill-Climbing algorithm.

Replica
Definition of the policy representation
REPLICA learns Relational Instance-Based Policies (RIBP).
A RIBP is defined by a tuple π =< L,R, d > where:

• L defines the set of literals used to describe the state
space.

• R is a set of tuples, ti =< mi, ai >, where mi is a meta-
state, i.e., an instant in the search process containing rele-
vant information about the search state. In this case, each
mi is composed of the current state si and the pending
goals gi. Otherwise, ai is the instantiated action applied
in si.

• d is a distance metric that can compute the relational dis-
tance between two different meta-states.

Given a meta-state m, the policy decides the action to ex-
ecute inm by computing the closest tuple inR and returning
its associated action, as shown in Equation 1.

π(m) = argai
min

(<mi,ai>∈R)
dist(m,mi) (1)

To compute the distance between two generic meta-states,
d(m1,m2), we follow a simplification of the RIBL distance
metric (Kirsten, Wrobel, & Horváth 2001), which has been
adapted to our approach. Let us assume that there are K
predicates in a given domain, p1, . . . , pK . Then, the distance
between the meta-states is a function of the distance between
the same predicates in both meta-states:

d(m1,m2) =

√√√√∑K
k=1 wkdk(m1,m2)2∑K

k=1 wk

(2)

Equation 2 includes a weight factor, wk, for each predi-
cate. These weights modify the contribution of each predi-
cate to the distance metric. And dk(m1,m2) computes the
distance contributed by predicate pk to the distance metric.
For instance, in the Zenotravel domain, there are five differ-
ent predicates (K = 5) that define the regular predicates of
the domain, plus one referring to the goalLzenotravel = {at,
in, fuel level, next, goal at}. In each state, different in-
stantiations of the same predicate may coexist. For instance,
two literals of predicate at: (at p0 c0) and (at pl0 c0). Then,

when computing dk(m1,m2) we are, in fact, computing the
distance between two sets of literals. Equation 3 shows how
to compute such distance:

dk(m1,m2) =
1
N

N∑
i=1

min
y∈Yk(m2)

d′k(Y i
k (m1), y) (3)

where Yk(mi) is the set of literals of predicate yk in mi,
N is the size of the set Yk(m1), Y i

k (mi) returns the ith lit-
eral from the set Yk(mi), and d′k(y1

k, y
2
k) is the distance be-

tween two literals, y1
k and y2

k of predicate yk. Basically, this
equation computes, for each literal y in Yk(m1), the mini-
mal distance to every literal of predicate yk in m2. Then,
the distance returns the average of all those distances. Fi-
nally, we only need to define the function d′k(y1

k, y
2
k). Let us

assume the predicate yk has M arguments. Then,

d′k(y1
k, y

2
k) =

√√√√ 1
M

M∑
l=1

δ(y1
k(l), y2

k(l)) (4)

where yi
k(l) is the lth argument of literal yi

k, and
δ(y1

k(l), y2
k(l)) returns 0 if both values are the same, and 1 if

they are different.
Given these definitions, the distance between two in-

stances depends on the similarity between the names of both
sets of objects. For instance, the distance between two meta-
states that are exactly the same, but with different object
names, is judged as maximal distance. To partially avoid this
problem, in our approach, the object names of every meta-
state are renamed. Each object is renamed by its type name
and an appearance index. The first renamed objects are the
ones that appear as parameters of the action, followed by the
objects that appear in the goals. Finally, we rename the ob-
jects appearing in literals of the state. Thus, we try to keep
some kind of relevance level of the objects to find a better
similarity between two instances.

Generation of learning examples
REPLICA solves the training problems, first using the En-
forced Hill Climbing algorithm (EHC) (Hoffmann & Nebel
2001), and then, refining the found solution using a DFBnB
algorithm. Once we have the solution plans, we extract the
examples to define the policy. The best cost solution in the
form < a1, . . . , an > is used to generate state transitions
that can be seen as tuples ti =< mi, ai >, where ai ∈ A
is an instantiated action of the plan, and mi ∈ M is a meta-
state.

Generalization of learning examples
The higher the number of tuples ti, the longer time will be
needed to reuse the policy. After solving the training prob-
lems, the set of training tuples ti is reduced. To reduce the
number of tuples, we use the Relational Nearest Prototype
Classification algorithm (RNPC) (Garcı́a-Durán, Fernández,
& Borrajo 2008), which is a relational version of the original
algorithm ENPC (Fernández & Isasi 2004). There are three
main differences with the ENPC algorithm: RNPC uses a
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relational representation; the prototypes are extracted by se-
lection as in (Kuncheva & Bezdek 1998); and we can reduce
the number of final prototypes by using an optional param-
eter, the reduction factor, which refers to percentage of re-
duction in the number of instances between the original data
set, and the one that RNPC returns. The goal is to obtain a
reduced set of prototypes P which generalizes the data set,
such that it can predict the class of a new instance faster
than using the complete data set, and with equivalent accu-
racy. The RNPC algorithm is independent of the distance
measure and different distance metrics could, in principle,
be defined for different domains.

Because the RNPC algorithm is stochastic, it is executed
ten times, generating ten different RIBPr. In order to use
only one of them, we select the best RIBPr using a validation
set of problems (in the case of the competition, the target
problems). This step will return the RIBPr that solves the
most problems (in the validation time-bound), following the
metric used in the competition.

A more detailed explanation of REPLICA is in (Garcı́a-
Durán, Fernández, & Borrajo 2008). This work showed how
to use this system for guiding a heuristic planner.

Experimental results of the IPC-2008
This section analyzes the results obtained by the systems
ROLLER, CABALA and REPLICA at the learning track of
IPC-2008.

Domains
The selected set of domains for the learning track of IPC-
2008 presented a common feature: the relaxed plan heuris-
tic implemented in the FF planner is not accurate in these
domains. Heuristic planning is one of the most extended
planning paradigms and FF is one of the most representa-
tive planner of this paradigm. Therefore, performing well
in domains where this heuristic is misleading is very signif-
icant for the planning and learning community. Besides, we
want to point out that there still are interesting challenges
for this community even in domains where the FF heuristic
has been shown to be accurate. For example, heuristic plan-
ners present strong scalability limitations in problems with
large number of objects. These limitations restricts the ap-
plication of heuristic planners to real world problems like
Logistics applications.

Next, we discuss the flaws of relaxed plans in the compe-
tition domains:

Gold-Miner In this domain relaxed plans present flaws
because there is strong sharing of limited resources. In the
relaxed plan the robot can handle a bomb and a laser at the
same time for destroying rocks, which is unfeasible in prac-
tice. Besides, in the relaxed plans, the robot can always de-
stroy rocks with the laser because it ignores the fact that the
laser destroys the gold. Finally, navigation is required. The
propagation of the move action in the relaxed plan allows
the robot to be in many places at the same time causing re-
laxed plans with useless and missing actions.
The key knowledge for this domain is recognizing that the
robot must use a bomb to destroy rocks bordering the gold.

This key knowledge can be captured as an IF-THEN rule
that selects the right action to be executed in terms of the
current state and the goals.
Matching Blocksworld In this domain relaxed plans
present useless and missing actions because they ignore that
actions put-down and stack make the handled block not solid
when the polarity of the block and the robot arm are differ-
ent.
The key knowledge for this domain is recognizing that robot
arms should unstack or pick-up blocks of the same polar-
ity. Nevertheless, in this domain there are solutions that are
exceptions to this statement. Specifically, when the robot is
handling a top block, i.e., a block with no other blocks above
at a goal state, the polarity of the robot arm is meaningless.
These exceptions include noise in the learning examples and
make inductive generalization very complex in this domain.
N-Puzzle In this domain relaxed plans present useless ac-
tions because ignoring the delete effect of the action move
(the only action of the domain) makes tiles be at different
places at the same time. Traditionally, the control knowl-
edge for this domain has been represented in the form of
numeric functions, such as the Manhattan distance, that pro-
vide a lower-bound for the solution length. Besides, macro
actions can also be useful to find solutions faster because
they can group series of movements that typically go to-
gether.
Parking Similar to the Blocksworld, relaxed plans in this
domain assume that all the cars and all the curbs always stay
clear which means missing actions from the final plan and
useless actions in the relaxed plan. Besides, there are strong
interactions between subgoals thus partial ordered actions
must be well ordered to be useful.
The domain definition is flawed given that it was pos-
sible to find applicable actions, instantiated from action
move-curb-to-car which can produce semantically in-
correct states. This issue should not directly affect the plan-
ners performance because the relaxed plan heuristic recog-
nizes these flawed states as dead-ends.
Sokoban Relaxed plans in this domain present useless and
missing actions because either the robot and/or the blocks
may be at different places at the same time. As it happens in
the N-Puzzle, control knowledge for this domain has been
traditionally expressed as numeric functions that estimate
the solution length (Junghanns 1999). And again, macro-
actions can find solutions faster in this domain because they
can group series of movements that typically go together.
Thoughtful In this domain it is difficult to recognize the
key knowledge that should be learned. The large number of
predicates (18) and actions (21) and the enormous possibili-
ties of instantiations make the generalization of any kind of
knowledge difficult. At this point, we can not give an expla-
nation of the key knowledge needed for this domain.

Problems

For each planning domain there are two distinct distributions
over problem instances: the bootstrap distribution and the
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target distribution. Problems from both distributions can be
used for learning and the performance of planners is finally
evaluated over problems from the target distribution.

Learning problems from the bootstrap distribution are
fixed. Accordingly, systems that are not able to extract
significant knowledge from this problem set will perform
poorly. In this sense, participants that explore a whole search
tree for generating the learning examples, are more sensi-
tive to this effect, because exploring the whole search tree
for several problems from the bootstrap distribution was fre-
quently unfeasible. This problem could be relieved provid-
ing participants with a problem generator so they can try to
generate the suitable set of learning examples. In this way
the competition would also serve as a platform to evaluate
active learning techniques.

In addition, the target distribution of problems is ’a pri-
ori’ known. It means that a system can try to learn to plan
in this distribution directly without performing deep gener-
alizations on the number of problem objects, goals, . . .

Metrics
The IPC-2008 learning track has evaluated the performance
of planners analyzing two different dimensions: computa-
tion time and plan length. The metrics for measuring these
dimensions were the same as those used for the determinis-
tic part. The performance of a given planner in terms of plan
length is computed as follows: For each problem the planner
receives N∗i /Ni points, where N∗i is the minimum number
of actions in any solution returned by a participant for the
problem i, and Ni is the number of actions returned by the
evaluated planner for the problem i. If the planner does not
solve the problem it receives 0 points for this problem.

Likewise, the metric for measuring the performance of a
given planner in terms of computational time is computed
giving a planner T ∗i /Ti points for each problem, where T ∗i
is the minimum time used by any planner for solving the
problem i, and Ti is the time used by the evaluated planner
for solving the problem i. The planner receives 0 point if it
does not solve the problem.

Results
Tables 5 and 6 show an extract of the results obtained at
the learning part of IPC-2008. Specifically, Table 5 shows
the results using the computational time evaluation metric
for the described planning and learning systems ROLLER,
CABALA and REPLICA together with the overall competi-
tion winner PBP (Gerevini, Saetti, & Vallati 2004) and the
winner of the best learner award OBTUSE WEDGE. Table 6
shows the results for the plan length evaluation metric.

Performance Notes
The three systems presented in this paper use the SAYPHI
planner as the base planner. SAYPHI is a collection of
search algorithms implemented in LISP, together with a re-
implementation of the relaxed plan heuristic. Having these
systems in a common implementation, facilitates testing nu-
merous ideas and helps cleaning-up implementation tricks.
However, LISP is not a good choice for implementing a

Roller Cabala Replica O. Wedge PbP
Gold-Miner 6.37 0.0 5.14 9.38 4.42

M. Blocksworld 0.0 0.0 0.0 2.03 25.85

N-Puzzle 0.26 0.0 0.0 29.33 7.10

Parking 2.27 0.0 2.42 28.08 8.96

Sokoban 0.0 0.0 0.0 4.42 10.82

Thoughtful 0.0 0.0 0.0 3.42 23.02

Figure 5: Time metric results.

Roller Cabala Replica O. Wedge PbP
Gold-Miner 7.85 0.0 7.97 17.46 23.96

M. Blocksworld 1.10 1.89 1.59 5.69 20.22

N-Puzzle 0.45 0.0 0.38 24.50 17.77

Parking 15.61 0.74 14.22 25.54 19.48

Sokoban 0.0 0.0 0.88 15.27 27.24

Thoughtful 0.0 0.0 0.0 6.62 18.01

Figure 6: Number of actions metric results.

competing planner. Results presented in previous section
are fair in the sense that all participants have the same com-
petition rules, including the decision of the implementation
language. Obviously, an optimized implementation using C
would perform far better than the obtained results (mainly in
terms of planning time).

Related work
There is previous work using relational learning to correct
the flaws of relaxed plans (Yoon, Fern, & Givan 2006). In
this work, relational regression is used to learn corrections
of the heuristic evaluations computed with the relaxed plan.
These corrections consist of a generalization of the differ-
ences between the length of relaxed plans and solution plans
over a set of training problems. Given that these corrections
followed a numerical representation, they were not appli-
cable within a lookahead strategy for constructing partial
solution plans avoiding node evaluations. There has also
been plenty of previous work on learning either domain-
dependent control knowledge or generalized policies. See
(Zimmerman & Kambhampati 2003) for a survey.

Conclusions and future work
None of the proposed approaches capture the key knowl-
edge over all the competitions domains. In some domains,
the bias of the representation language prevents the systems
from learning the key knowledge, in others the poor quality
of the learning examples or the limitations of the learning
algorithms. Accordingly, it is clear that there is a need for
understanding which is the best configuration for capturing
correct and complete knowledge for a given domain. This
task involves: (1) Deciding which is the best set of features
for capturing the key knowledge for a given domain. (2)
Deciding which is the best training problems for the diverse
kind of planning domains. And (3) deciding which is the
most suitable learning algorithm for capturing this knowl-
edge. On the other hand, there is also a need for develop-
ing methods for robust planning when the captured control
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knowledge is incorrect and incomplete. Thereby the per-
formance of the planner is not penalized very much by the
learned knowledge. A good example of this work is the in-
tegration of the learned policies within a Best First Search
strategy (Yoon, Fern, & Givan 2007).
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