
Learning Instance-Specific Macros

Maher Alhossaini
Department of Computer Science

University of Toronto
maher@cs.toronto.edu

J. Christopher Beck
Department of Mechanical and

Industrial Engineering
University of Toronto
jcb@mie.utoronto.ca

Abstract

The acquisition and use of macro actions has been shown to
be effective in improving the speed of AI planners. Current
macro acquisition work focuses on finding macro sets that,
when added to the domain, result in improvedaveragesolv-
ing performance. Instance-specific macro learning, in con-
trast, aims to build a predictor that can be used to estimate,
for each planning instance, a subset of the previously identi-
fied macros that is best for a specific problem instance. Based
on off-line measures of the correlation between problem in-
stance features and planner performance in macro-augmented
domains, we build two such predictors using a standard ma-
chine learning approach. Online, the features of the current
problem instance are measured and a predictor selects the
macros that should be added to the domain. Our empirical
results over four standard planning domains demonstrate that
our predictors perform as well as the perfect predictor on
all domains and never perform worse than any of the other
macro-based approaches tested, including an existing macro-
learning system. However, a simpler, non-instance-specific
method that chooses the best-on-average macro subset over
the learning problems performs just as well as our predictors.

Introduction
Macro action acquisition methods are common in AI plan-
ning. They depend on finding a set of macro actions, that
is, sequences of domain actions, and adding them to the
domain as atomic actions. This remodeling of the domain
has been shown to be effective in improving the speed of
search (Coles, Fox, and Smith 2007; Botea et al. 2005;
Newton et al. 2007). The work done so far focuses on find-
ing the macro set that can improve average problem solv-
ing performance in a given domain. Instance specific macro
learning, in contrast, aims to find sets of macros that best im-
prove performance for solving an individual instance based
on the analysis of the instance’s features. Such instance-
specific macro sets are subsets of an original set of macros
that were found to be useful for the domain. In rich domains,
and when we have a large set of potentially useful macros,
it may be better to use different subsets to solve different in-
stances as opposed to using the whole set for all instances.
For any given instance, we conjecture that a large number of

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

macros and/or irrelevant macros can affect the performance
negatively, since they increase the branching factor unnec-
essarily.

Our approach is to use machine learning to develop a pre-
diction model relating the problem instance features to the
performance of a planner on domains augmented with the
different macro subsets. This is done off-line, using a train-
ing set of problem instances. We experiment with three dif-
ferent predictors. Online, when presented with a problem
instance, the predictor measures the instance’s features and
selects a macro subset to be added to the domain to solve the
given instance.

The novel aspect of our approach is that it focuses on the
planning instance rather than the planning domain. We are
learning how to best remodel the domain for a given instance
based on its features as opposed to finding a fixed set of
macros applied to all instances in the planning domain. We
have three reasons to believe that our approach may be suc-
cessful. First, adding too many macros to a domain, even
if they individually might improve search on every instance,
reduces the planner performance due to an increased branch-
ing factor. If we manage to find a small macro subset that is
good enough, we may improve the performance just because
the number of operators is reduced. Second, our method
builds on the current method of learning as it uses macros
suggested by a current system, Wizard (Newton and Levine
2007), as input. Instead of adding all the good macros to any
problem from the domain, we add only those that appear rel-
evant to the problem instance. Finally, and more broadly,
real planning problems are large and complex. For such
problems, humans tend to consider different approaches de-
pending on the instance and the extent to which it is simi-
lar to other problems solved in the past. The problem solver
should be able to learn to remodel the problem domain based
on experience with similar problem instances. We also con-
jecture that, in the traditional macro learning approaches,
it is usually not the case that many macros are used in the
plan for a given instance. Therefore, there may be scope for
improvement by identifying a few promising macros for an
instance.

This paper makes the following contributions:

1. We show that using a particular macro subset to solve all
instances of the domain is sometimes less effective, on
average, than using a macro subset that is predicted to suit

7

the problem instance.

2. We introduce a way to learn a predictor of the best subset
of macro operators using planning instance features.

3. We demonstrate that our approach can build on and out-
perform an existing macro acquisition tool.

Literature Review
Macro acquisition has a long history in planning, dating
back as far as the the work of (Fikes and Nilsson 1971).
The approach primarily depends on the fact that plans for
different problem instances in a domain often contain com-
mon small sequences of actions. These action sequences can
be extracted and, in generalized form, added to the domain
to enhance the search when solving new problems. This ap-
proach can be beneficial because the search does not have
to rediscover subsequences of actions if they can be applied
for the new problem instances. The drawback, of course,
is that macro actions that are not relevant for a given prob-
lem instance can act to slow performance as they expand
the branching factor. Finding the right set of macro actions,
therefore, is important if search is to be improved.

Wizard (Newton and Levine 2007; Newton 2008), is a re-
cent macro acquisition system, which has shown promising
results over a number of planning domains and planners. For
a given planner and problem generator, Wizard identifies and
improves macro actions with a two-phase approach:

1. Chunking: Wizard generates small problem instances and
solves them with the specified planner. Using a lifting
operator, promising subsequences are extracted from the
plans. A genetic algorithm is then used to modify start-
ing macros with each generation being evaluated based
on problem solving performance on a set of ranking prob-
lems. The result of the chunking phase is a ranked list of
macros of which the top ones are returned based on a user
specified quality threshold.

2. Bunching: Starting with the output of the chunking phase,
the bunching phase uses a genetic algorithm to search
through macro subsets. As in the chunking phase, each
subset is evaluated using ranking problems and the final
output is the highest-rated macro subset.

Experimental studies show an improvement in the prob-
lem solving ability when the new macro subset is added to
the domains and evaluated on a set of test problems. Impor-
tantly, this result is independent of both the domain and the
planner. That is, Wizard can successfully find useful macro
subsets for different combinations of planner and domain
rather than being a system which is specific to one planner
or one domain.

In other work, Botea el al. (Botea et al. 2005) presented
Macro-FF, a planner built on top of the FF planner. Macro-
FF learns macro operators off-line and uses them during
the planning process. The approach automatically analyzes
the planning domain to discover abstract components, gen-
erates macro operators using the components, and then fil-
ters and ranks the macros using training instances. A set of
macro operators is initially generated by searching the space
of operators, such that the operators meet some constraints

that consider the abstract components’ structures. Then, the
macros are filtered and ranked based on how likely they ap-
pear in the plans of solved problems.

In our work, we follow an approach similar to that
of Leyton-Brown and co-authors, who have built off-line
predictors for the winner determination problem (Leyton-
Brown et al. 2003) and SAT solving (Xu et al. 2007).
In both cases, the authors emphasize the fact that there is,
usually, not a best algorithm for a given problem instance,
and that relative algorithm performance varies on different
instances. The authors show that a strategy that chooses
an algorithm based on the features of the problem instance
(and off-line learning) provides better performance than the
winner-takes-all approach which chooses the one algorithm
that is best, on average, over the set of training instances.
The core of the work is using machine learning to build
a multiple regression-based predictor that relates algorithm
performance to problem instance features.

Roberts et al. in (Roberts et al. 2008), have done simi-
lar learning work in planning, though not in the context of
macro learning. A system is developed to predict which of
28 different planners will succeed in solving a given problem
instance and which of them will have the best time based on
measuring problem instance parameters. The system used
the Waikato Environment for Knowledge Analysis (WEKA)
machine learning tool (Witten and Frank 2002) for the train-
ing and prediction. Thirty-two different techniques available
in WEKA are tried with every planner to learn which works
best with each planner. The problem instance parameters
were domain independent, not referring to particular objects
or actions of a domain but rather to structural characteristics
such as the number of operators and predicates, the arity of
predicates, the number of predicates in preconditions, etc.
The approach performs better on average than any individ-
ual planner and than choosing random planners taken from
a set of top performing planners.

Approach
The main goal of this work is to improve the performance
of planners on macro-enhanced domains by trying to predict
which macro sets are relevant and useful to a given problem
instance based on the features of that instance. Rather than
augmenting a domain once with a set of macros that work
well on average over a training set, we want to more specif-
ically identify macros that should be added to the domain
for a given problem instance. To do this, two issues must be
addressed: a source of macros and the features that will be
used for prediction. We address each of these in this section
before presenting our approach in detail.

• A source of macros: In order to evaluate the useful macros
for a problem instance, we need to have a set of macros
to choose from. Furthermore, these macros need to be
of reasonable quality since our approach cannot perform
better than the “perfect” predictor that can find the best
macro subset for any given instance. Our approach is to
start with the macros produced by the chunking phase of
Wizard. As noted above, this phase finds a set of individ-
ual macros that are highly ranked based on average plan-

8

ner performance on a domain that is augmented with the
macro.

• Problem instance features: A more critical issue is the se-
lection of problem instance features to be measured and
correlated with planner performance. Unlike Roberts et
al. in (Roberts et al. 2008), we have chosen to use
domain-specific features (e.g., in the Logistics domain,
the number of cities, number of airplanes, number of
packages, etc.). We believe that the values of such fea-
tures are much more likely to be reflective of underly-
ing problem structure than the domain independent fea-
tures used by Roberts et al: we believe that it is much
more likely that our features reflect something meaning-
ful that can be learned. However, there are obvious draw-
backs to this approach: meaningful problem features must
be derived for each domain (which may be a challenge
in itself (Carchrae and Beck 2005)), a predictor must be
learned for each domain and planner, and our domain-
independence is somewhat questionable. We return to this
issue in the Discussion section below.

At a high-level, our system design is straightforward and
similar to previous work (i.e., (Leyton-Brown et al. 2003)).
In an off-line, training phase, we learn a prediction model
that relates measures of problem instance features to the per-
formance of the planner in a domain augmented with a given
macro set. Online, the features of a new instance are mea-
sured and the predictor is used to identify an appropriate
macro subset. That subset is added to the domain and the
problem instance is solved.

System Details
We build two prediction models: theDirect model which
predicts the best macro subset directly based on the prob-
lem features and theTimemodel which predicts the run-time
of the planner for a given problem instance for each macro
set. The Time model is composed of a number of small pre-
dictors, one for each macro subset, that individually try to
predict the time needed to solve the instance using the cor-
responding macro subset. The macro corresponding with the
smallest predicted run-time is chosen.

We also use the WEKA machine learning tool. For our
experiments, we used two learning models from the built-in
learning models of WEKA: the M5P learning model for our
Time predictor, and the logistics regression for our Direct
predictor.

Figure 1 shows the training phase for both models. For
a given planning domain and planner, the training phase is
as follows for the Time predictor (the numbering in Figure 1
corresponds to these steps):

1. The original domain and planner is provided to Wizard
and the output of its chunking phase is captured. To re-
duce the subsequent combinatorics, we limit the number
of macros to the topn ranked macros wheren is a rela-
tively small number. We usen = 5 in our experiments,
though none of the problem domains resulted in more than
five macros, and so this threshold was not active.

2. The domain generator createsk macro subsets from the
original n macros augmenting the original domain with

Figure 1: A schematic diagram of the training phase for the
Time and Direct predictors.

each subset in turn. This producesk different domains.
In our experiments, we exhaustively generated allk = 2n

subsets.

3. A problem generator for the domain is used to create
training instances that span our chosen range of param-
eter settings.

4. Each of the training instances are solved with the same
planner for each of the augmented domains. The run-time
for each macro subset and problem domain is recorded.
In our experiments, we used the FF planner (Hoffmann
and Nebel 2001) as shown in Figure 1.

5. Independently for each augmented domain, a Time pre-
diction model is generated using the M5P learning model
in the WEKA package. A predictori attempts to learn to
predict the solving time in augmented domaini of prob-
lem instances based on their features.

6. The final Time predictor is created by combining each of
the individual predictors. When provided with a new in-
stance, the predictor runs each of the individual predictors
and chooses the macro subset with the smallest predicted
run-time, breaking ties randomly.

The Direct predictor is built in much the same fashion
and, indeed, steps 1 through 4 for the Time model are iden-
tical. The subsequent steps, 7 and 8 in in Figure 1, are as
follows:

9

Table 1: Selected features of the four domains used in the
experiments.

Domain Features # of Instances
Logistics cities:{3, 5, 7} Training: 1980

airplanes:{1, 3, 5, 7} Testing: 396
locationsper city:{3, 5, 7}
packages{11, 16, . . . , 61}

Ferry locations{5, 10, . . . , 50} Training: 500
cars{10, 20, . . . , 100} Testing: 100

Gripper balls{1, 6, . . . , 401} Training: 405
Testing: 81

Miconic floors{2, 7, . . . , 97} Training: 2095
passengers{1, 21, . . . , 401} Testing: 419

7. The Direct Macro set selector processes the results of
running the planner on each training instance with each
macro subset. It outputs the problem instance feature
measurements and the index of the macro subset which
had the lowest run-time, with ties broken randomly.

8. The Direct model is built by WEKA’s logistic regres-
sion algorithm relating instance feature measurements to
macro subset index.

Conceptually, the system will produce a ready-to-use pre-
dictor of the best macro subset for a given problem instance.
The inputs to the predictor are the problem instance features
and the output is the macro subset that is estimated to per-
form best with the instance.

Experiments
In order to evaluate our approach to learning instance-
specific macros, we experiment with four well-known do-
mains: logistics, ferry, gripper, and miconic. In this section,
we discuss the domains, the domain features, and present the
experimental details.

Experimental Domains
We have chosen four domains for our experiments: logistics,
ferry, gripper, and miconic. These domains vary from small
domains with a small number of operators (e.g., gripper) to
large domains with many operators and a variety of instances
(e.g., logistics). Each of these domains has a problem gener-
ator that is used both internally for Wizard (i.e., to generate
its seeding and ranking instances) and for the training and
test instances for our experiments.

Table 1 presents the features and feature-values for each
domain. Note that these features are also the input param-
eters to the corresponding problem generators. Using the
same characteristics as features and as generator parameters
again raises the issue of feature engineering and the objec-
tion that real problems do not come with convenient prob-
lem generators attached to them. Again, we defer addressing
these issues to the Discussion.

Experiment Details
The experiments were conducted on a Beowulf cluster with
each node consisting of two Dual Core AMD 270 CPUs, 4

GB of main memory, and 80 GB of disk space. All nodes
run Red Hat Enterprise Linux 4. The programming language
that we used to write all of our code was C.

For each domain, we ran the experiment 10 times. In
each repetition, we generate an initial set of macros using
the chunking phase of Wizard and produce domains aug-
mented with each subsets of the initial macros. As noted
above, this never exceeded 32 domains. Then, using a prob-
lem generator with varying parameter settings, we generate
a set of training and testing instances. For every parame-
ter setting, we generate one test instance and five training
examples. The total number of instances for each domain
is displayed in Table 1. Note that these are the number of
instances for a single repetition. Over all repetitions, the
number of training and test instances is ten times larger.

Each training instance is solved with each augmented do-
main by the FF planner with a 600 CPU second time-out.
Any instances that failed to solve within that time-limit are
treated, for the purposes of learning, as if they had been
solved with a run-time of 600 seconds.

For the Time predictor, we used WEKA’s M5P decision
tree learning algorithm to learn a predictor for each macro
subset as described above. For the Direct predictor, we used
WEKA’s logistic regression model.

In order to evaluate the quality of the predictions from
our models, we also ran FF on every test instance with every
macro subset. This methodology, for example, allows us to
a posterioricreate a perfect model that is able to infallibly
choose the best macro subset for each test instance.

The experiment is repeated 10 times for each domain. In
each repetition, we generate a new macro set from Wizard.

Results
In order to evaluate the performance of our models, we also
measure the performance of other selected models and com-
mon macro subsets. We compared the following seven mod-
els/macro subsets:

1. Perfectpredictor: This predictor infallibly identifies the
macro subset that will have the minimum run-time on the
given instance. We create this predictora posterioriafter
having run all the macro subsets on all test instances. The
performance of this model is the best that can be achieved
by any predictor.

2. Direct predictor (see above)

3. Timepredictor (see above)

4. Emptysubset: This subset is the original domain, not aug-
mented by any macros.

5. Full subset: This subset is all the macros identified by
Wizard’s chunking phase. It is the original macro set used
as input to our off-line learning mechanisms.

6. Best-on-averagesubset: This subset is the one which has
the smallest mean run-time on thetraining instances. This
is not an instance-specific macro subset but rather repre-
sents the standard approach to macro learning in the liter-
ature.

10

0

10

20

30

40

50

60

70

80

90

100

logistics ferry gripper miconic

av
er

ag
e

ti
m

e
(s

ec
)

Perfect model
Time model
Direct model
Empty subset
All macros subset
Best on average subset
Wizard's subset

Figure 2: The mean time taken to solve the testing problems in
each of the domains.

7. Wizard’s macro subset: This subset is the one chosen by
Wizard, using its default parameters, after both the chunk-
ing and bunching phases.

The experiment on each domain was repeated 10 times
with different training and test instances. This design means
that, with the exception of the Empty subset, each of the
models/subsets above potentially identifies a different sub-
set for each repetition: the Best-on-average subset in repeti-
tion 1 may not be the same as the Best-on-average subset in
repetition 2.

Figure 2 shows the mean time taken to solve the test in-
stances using the models/subsets in each of the domains for
the 10 repetitions. For the timed-out instances, we regis-
tered 600 seconds as their run-time and included that data
point in the calculation of the mean. The figure shows the
clear result that using all the macros of the original set (Full)
has a substantial negative effect on the performance. It also
shows that the Direct predictor model was equal to or better
than the Time model. Our models, the Perfect model, and
the Best-on-average subset display very similar mean run-
times.

Figures 3, 4, 5, and 6 show the fraction of test problems
solved over time for each of the models/subsets in each of
the domains. Note that we used difference ranges in the x-
axis in these graphs to clarify the differences between the
sets. As in Figure 2, these are aggregate results over the
10 repetitions of each domain. For a given domain and
model/subset, we calculate the mean fraction of solved in-
stances over each repetition.

Figure 3 shows, unlike the other three figures, that there
is a clear order in performance: the Perfect model, the Best-
on-average and Direct model, the Time model, Wizard, the
Empty subset, and finally Full subset. In Figure 4, the differ-
ence between the data sequences of the top models/subsets
was not as clear, except for Time model which was slightly
worse than the rest. In Figure 5, Wizard’s subset was worse
than the other models/subsets (except Full), the empty sub-
set was slightly worse than the top four models/subsets, and

the difference between the top models/subsets was, also, not
clear. In Figure 6, Wizard was worse than the top five, the
Time model was slightly worse than the top four, the Empty
set was slightly worse than the top three, and the difference
between the remaining models/subsets was marginal. One
common result in these graphs is that the full subset was the
worst.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20
fr

ac
tio

n
so

lv
ed

time (sec)

logistics

Perfect model
Time model

Direct model
Empty subset

All macros subset
Best on average subset

Wizard subset

Figure 3: Mean solubility vs. time for each of the seven mod-
els/subsets in the logistics domain.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

fr
ac

tio
n

so
lv

ed

time (sec)

ferry

Perfect model
Time model

Direct model
Empty subset

All macros subset
Best on average subset

Wizard subset

Figure 4: Mean solubility vs. time for each of the seven mod-
els/subsets in the ferry domain.

To test the differences between the mean run-times of
each of the chosen models and macro sets, we performed an
ANOVA and Tukey’s Honest Significant Difference (HSD)
test (Tukey 1973) using the statistical package, R (R De-

11

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

fr
ac

tio
n

so
lv

ed

time (sec)

gripper

Perfect model
Time model

Direct model
Empty subset

All macros subset
Best on average subset

Wizard subset

Figure 5: Mean solubility vs. time for each of the seven mod-
els/subsets in the gripper domain.

velopment Core Team 2006). The ANOVA indicated that
the model parameter was a significant factor. Table 2 shows
the significant differences atp ≤ 0.005 between all pairs of
subset/models. The Tukey HSD test corrects for the impact
of multiple pair-wise statistical comparisons. The data se-
ries of the models/subsets were the run-times taken to solve
every test instance with each model/subset on every repe-
tition. The table shows the number of domains in which
the models/macro subsets were significantly better than the
other models. The entries of the form (+x,-y) mean that the
model/set that corresponds to the row is significantly better
than the model/set that corresponds to the column inx do-
mains while being significantly worse iny domains. The
difference between the sum ofx andy and 4 (i.e., the total
number of domains) indicates the number of domains with
no significant difference between the models/sets.

It can be seen that the Perfect model is significantly bet-
ter than the Empty, Full, and Wizard subsets in one, four,
and two domains, respectively. Naturally, no model was sig-
nificantly better than the Perfect model. The Direct model
and the Best-on-average subset were not statistically signif-
icantly different than the Perfect model on any domain. The
Time model performed similarly to the Direct model except
that it was not significantly better than the Empty subset in
any domain, whereas Direct significantly out-performed the
Empty subset on one domain. The Empty subset was sig-
nificantly better than the Full subset in three domains and
significantly better than Wizard in two domains. Wizard’s
subset was better than the full subset in all four domains.

Discussion
Our experimental results demonstrate that the Direct and
Time predictors perform as well as the Perfect predictor and
better than Wizard. A more even-handed examination of the
data, however, suggests that we have not found convincing

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9

fr
ac

tio
n

so
lv

ed

time (sec)

miconic

Perfect model
Time model

Direct model
Empty subset

All macros subset
Best on average subset

Wizard subset

Figure 6: Mean solubility vs. time for each of the seven mod-
els/subsets in the miconic domain.

evidence for our belief that domain remodeling via instance-
specific macros can improve planner performance. Table 2
also shows that Best-on-average, the macro set with the low-
est mean run-time on the training instances, also performs
just as well as the Perfect model and also better than Wiz-
ard. Furthermore, the Perfect model is only significantly
better than the Empty model on one of the four domains. It
appears, therefore, that our experiments suffer from a ceil-
ing effect: there is little room to significantly improve plan-
ner performance by choosing a subset of the original set of
macros. This could be due to the starting macro set being
of too low a quality, to the domains not being amenable to
macro-augmentation, or, most likely, to test problems being
too easy. A primary direction for future work, therefore, is
to understand the reasons underlying the results we have ob-
served.

The comparison between Best-on-average and Wizard is
also a bit unfair. Recall that the bunching phase of Wizard
begins with the same macros as the Best-on-average and ap-
plies a genetic algorithm to search within the space of macro
subsets. Best-on-average performs an exhaustive test ofall
subsets. It is to be expected that the increased computation
of Best-on-average would lead to better performance. While
we believe that Best-on-average is a reasonable approach,
since macro learning is an off-line process and at least from
the domains tested there do not seem to be a large number of
high-quality candidate macros, it is also expected that Wiz-
ard will scale much better as this candidate list grows.

The issue of problem instance features has been alluded to
above. Knowledge-based problem-solving techniques such
as explored here but, of course, dating back to at least the
1970s (Simon 1973), require some problem structure that
can be recognized and used. We do not believe that domain-
level characteristics like the number of operators or their ar-
ity reflect a rich enough structure to be usefully exploited.

12

Table 2: Statistical differences between pairs of selected macro subsets and models of the experiment.
Perfect Time Direct Empty Full Best-on-average Wizard

Perfect (+0,-0) (+0,-0) (+1,-0) (+4,-0) (+0,-0) (+2,-0)
Time (+0,-0) (+0,-0) (+4,-0) (+0,-0) (+2,-0)
Direct (+1,-0) (+4,-0) (+0,-0) (+2,-0)
Empty (+3,-0) (+0,-1) (+2,-0)
Full (+0,-4) (+0,-4)

Best-on-average (+2,-0)
Wizard

While such measures may embody some indication of the
possible aggregate complexity of a domain (e.g., the number
of different types of objects that may affect each other), the
characteristics of a given instance will vary widely depend-
ing on the number of objects of each type that are present.
In short, we are looking for exploitable structure where we
think it might exist.

However, this approach, as well as some of the decisions
made in this paper, introduce a number of weaknesses to be
addressed.

• Is our approach domain independent? Our overall ap-
proach can be applied to any domain, provided that there
is a source of problem instances and a defined set of fea-
tures. The requirement for a feature set does increase do-
main dependence but we do not believe that this is on the
same scale as the knowledge and control rules that have
traditionally informed domain dependent planners.

• Where do the features come from? Once features are re-
quired, it is necessary to engineer them. We believe this is
a weakness of “high-knowledge” problem solving, in gen-
eral (Carchrae and Beck 2005) and, indeed, some efforts
in this direction in other problem domains are extensive
(Xu et al. 2007; Leyton-Brown et al. 2003). However, in
planning, at least at this stage in its development, it does
not seem a significant overhead beyond the domain defini-
tion itself: a domain modeler is likely to be able to easily
identify interesting instance features. Furthermore, auto-
mated feature generation, at least for basic features, may
be feasible by examining the differences among problem
instances (e.g., types with a varying number of objects in
different problem instances).

• Is basing the features on problem generator parameters
problematic? Our choice to using problem generator pa-
rameters as features is natural and supports our claim
above that domain modelers are likely to be able to gener-
ate features. These parameters are exactly what the author
of the generator believe would create instances with a va-
riety of characteristics and, therefore, they represent just
the type of knowledge we would like to exploit. While
real-world problems do not come with their own genera-
tors, it is unlikely that we are going to be able to scien-
tifically study the solving of multiple instances in a do-
main without the ability to create such a generator. Fi-
nally, some readers may argue that our approach is hiding
structure in a problem instance based on the generator pa-
rameters only to tell the learner exactly where to look to

uncover the “hidden” structure. As implied above, we be-
lieve that the process of identifying features is fundamen-
tally related to identifying useful problem generator pa-
rameters. To understand a new domain and to model it or
develop planners that can solve it, a scientifically minded
modeler will necessarily make and test hypotheses about
what aspects of the domain make the problem challeng-
ing. It is precisely those hypotheses that are supported
that result in both interesting generator parameters and
promising problem features. Rather than hiding and dis-
covering artificial structure, both problem generator pa-
rameters and instance features represent our best under-
standing of the factors responsible for problem difficulty.

Conclusion
In this paper, we presented a novel approach to macro acqui-
sition that depends on machine learning methods to suggest
macro sets based on the measurement of the features of a
given problem instance. Off-line, a set of candidate macros
is produced by the first phase of an existing macro acquisi-
tion system, Wizard. All subsets of this initial set are then
evaluated by adding them to the original domain and solv-
ing a set of training instances. The resulting data is used to
produce a predictor to related problem instance feature mea-
surements to augmented-domain performance. Using the
FF planner and the machine learning tools available in the
WEKA system, we demonstrate that our models perform as
well as thea posterioriperfect predictor. However, we also
show that the standard approach of identifying the macro
subset that performs best on average over the training set
also performs as well as the perfect predictor. We conjec-
ture that more challenging test instances may better reveal
performance differences between the models.

Acknowledgements
The authors wish to thank M.A.H. Newton for making the
Wizard source code available and for helpful discussions.

References
Botea, A.; Enzenberger, M.; Muller, M.; and Schaeffer,
J. 2005. Macro-FF: Improving AI Planning with Auto-
matically Learned Macro-Operators.Journal of Artificial
Intelligence Research24:581–621.
Carchrae, T., and Beck, J. C. 2005. Applying machine
learning to low knowledge control of optimization algo-
rithms. Computational Intelligence21(4):372–387.

13

Coles, A. I.; Fox, M.; and Smith, A. J. 2007. Online identi-
fication of useful macro-actions for planning. InProceed-
ings of the Seventeenth International Conference on Auto-
mated Planning and Scheduling (ICAPS 07).
Fikes, R., and Nilsson, N. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artificial Intelligence2(3/4):189–208.
Hoffmann, J., and Nebel, B. 2001. The FF Planning Sys-
tem: Fast Plan Generation Through Heuristic Search.Jour-
nal of Artificial Intelligence Research14:253–302.
Leyton-Brown, K.; Nudelman, E.; Andrew, G.; McFadden,
J.; and Shoham, Y. 2003. Boosting as a metaphor for algo-
rithm design. InConstraint Programming, 899–903.
Newton, M. A. H., and Levine, J. 2007. Wizard: Suggest-
ing macro-actions comprehensively. InProceedings of the
Doctoral Consortium held at ICAPS 07.
Newton, M.; Levine, J.; Fox, M.; and Long, D. 2007.
Learning macro-actions for arbitrary planners and do-
mains. InProceedings of the ICAPS.
Newton, M. 2008.Wizard: Learning Macro-Actions Com-
prehensively for Planning. Ph.D. Dissertation, Depart-
ment of Computer and Information Science, University of
Strathclyde, United Kingdom.
R Development Core Team. 2006.R: A Language and
Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria. ISBN 3-900051-
07-0.
Roberts, M.; Howe, A. E.; Wilson, B.; and desJardins, M.
2008. What Makes Planners Predictable? InProceedings
of the Eighteenth International Conference on Automated
Planning and Scheduling (ICAPS 2008).
Simon, H. A. 1973. The structure of ill-structured prob-
lems.Artificial Intelligence4:181–200.
Tukey, J. 1973. The problem of multiple comparisons.
Princeton University Princeton, NJ.
Witten, I., and Frank, E. 2002. Data mining: practical ma-
chine learning tools and techniques with Java implementa-
tions. ACM SIGMOD Record31(1):76–77.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K.
2007. SATzilla-07: the design and analysis of an algorithm
portfolio for SAT. InPrinciples and Practice of Constraint
Programming (CP-07), 712–727.

14

