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Abstract

We investigate the problem of learning action effects in par-
tially observable STRIPS planning domains. Our approach is
based on a voted kernel perceptron learning model, where ac-
tion and state information is encoded in a compact vector rep-
resentation as input to the learning mechanism, and resulting
state changes are produced as output. Our approach relies on
deictic features that embody a notion of attention and reduce
the size of the representation. We evaluate our approach on
a number of partially observable planning domains, adapted
from domains used in the International Planning Competi-
tion, and show that it can quickly learn the dynamics of such
domains, with low average error rates. Furthermore, we show
that our approach handles noisy domains, and scales indepen-
dently of the number of objects in a domain, making it suit-
able for large planning scenarios.

Introduction and motivation
An agent operating in a real-world domain often needs to
do so with incomplete information about its environment.
In particular, an agent must often act or make decisions with
only partial or noisy information about the state of the world.
Automated planning systems are effective at controlling the
behaviour of agents in a variety of domains. However, such
tools require a model of the domain in which the agent will
operate. In real-world domains, such models may not be
readily available, nor be sufficiently detailed to account for
the subtleties inherent in complex environments.

Acquiring a domain model automatically through learn-
ing and experience gives an agent greater flexibility to han-
dle unexpected situations, and avoids the need for a pre-
existing model of the world. Learning the dynamics of a do-
main can be a challenging problem, however, especially in
domains where an agent only has partial access to the world
state, or external sensors that are susceptible to noise. Fur-
thermore, since a learnt action model may be subsequently
used for planning, the resulting learning method should be
as accurate, fast, and scalable as possible.

Using machine learning techniques to induce action mod-
els is not a new idea, with the literature divided between
two main approaches: high-level, logical approaches and
low-level, sensor-driven approaches. High-level approaches
work within the space of transition rules (Wang 1995;
Gil 1994; Amir and Chang 2008; Pasula, Zettlemoyer, and

Kaelbling 2007; Benson 1996) to find either a “good” set or
all consistent sets of rules. These methods attempt to exploit
relational structure in order to improve speed and general-
isation performance. Such approaches have also been ap-
plied to partially observable (Amir and Chang 2008) or non-
deterministic (Pasula, Zettlemoyer, and Kaelbling 2007) do-
mains. Alternatively, low-level methods operate closer to
the sensor level. Such approaches construct transition rules
from actions and robot sensor data coded as sets of objects
or raw sensor readings, and predicates derived from this
data (Metta and Fitzpatrick 2003; Holmes and Isbell 2005;
Doǧar et al. 2007; Modayil and Kuipers 2008). Although
many of these methods have had limited success at learning
aspects of particular domains, few of them fully address the
problem of learning partially observable domains, and fewer
still are capable of handling noise.

In this paper we consider the problem of learning the ef-
fects of an agent’s actions, that is, the transition rules be-
tween world states. We focus on learning the effects of
STRIPS actions (Fikes and Nilsson 1971) in deterministic
and partially observable domains. In particular, we consider
actions which affect a subset of the propositional features
that make up the world state. Following (Pasula, Zettle-
moyer, and Kaelbling 2007; Benson 1996), we use deictic
features that embody a notion of attention to produce a com-
pact representation of the domain.

This paper builds on our previous work (Mourão, Pet-
rick, and Steedman 2008) which also used deictic coding to
generate a compact vector representation of the world state,
and learnt action effects as a classification problem. How-
ever, the method only applied to fully observable domains,
as the kernel perceptron classifier used there performs badly
with noisy or partially observable data. Additionally, the ap-
proach was only tested on a single synthetic domain with
simulated states which were not necessarily reachable by a
sequence of actions in the domain.

Here we extend this work to partially observable (and
noisy) domains using kernelised voted perceptrons (Aizer-
man, Braverman, and Rozoner 1964; Freund and Schapire
1999) to learn action transitions in the domains. Such meth-
ods are particularly useful since they provide good perfor-
mance, in terms of both the training time and the quality
of the learnt models. Furthermore, we test our approach
against a set of standard planning domains taken from the
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3rd International Planning Competition,1 demonstrating that
our method is fast, accurate, and scales independently of the
number of objects in the world, thereby making it suitable
for large planning scenarios.

Domain learning
Definitions
The action representations we will use are based on the log-
ical representations typically found in planning systems. A
domain D is defined as a tuple D = 〈O,P,A〉, where O is a
finite set of world objects, P is a finite set of predicate (rela-
tion) symbols, andA is a finite set of actions. Each predicate
and action also has an associated arity. Predicates of arity 0
are referred to as object independent properties, while those
of arity at least 1 are object dependent properties.

A fluent is an expression p(c1, c2, . . . , cn), where p ∈ P ,
n is the arity of p, and each ci ∈ O. A state is any set of
fluents, and S is the set of all possible states. For any state
s ∈ S, a fluent p is true at s iff p ∈ s. The negation of a
fluent, ¬p, is true at s (also, p is false at s) iff p 6∈ s.

Each action a ∈ A is defined by a set of preconditions,
Prea, and a set of effects, Effa. Prea can be any set of fluents
and negated fluents. In STRIPS actions each effect e ∈ Effa
has the form add(p) or del(p), where p is any fluent. Action
preconditions and effects can also be parameterised. An ac-
tion with all of its parameters replaced with objects from O
is said to be an action instance.

Action instances are state transforming. Given a state s
and an action instance A, A is applicable (or executable) at
s iff each precondition p ∈ PreA is true at s. An applicable
action produces a new state s′ that is identical to s, but up-
dated with the effects of A as follows: for each e ∈ EffA, (i)
if e is an effect add(p) then p is added to s′, and (ii) if e is
an effect del(p) then p is removed from s′.

Learning model
The task of the learning mechanism is to learn the associ-
ations between action-precondition pairs and their effects,
that is, rules of the form 〈A, PreA〉 → EffA. As a result of
the form of the planning actions we allow, effects of rules
are assumed to be deterministic and disjunctive effects (i.e.,
effects of the form “either p1 or p2 changes”) are not al-
lowed. Instead, all effects are simply conjunctions of pred-
icates, meaning it is sufficient to learn the rule for each ef-
fect predicate separately. Thus, we can treat the learning
problem as a set of binary classification problems, with one
problem for each effect predicate.

To address our particular learning problem we use the
perceptron (Rosenblatt 1958), a simple yet fast binary clas-
sifier. The perceptron maintains a weight vector w which
is adjusted at each training step. The i-th input vector
xi ∈ {0, 1}n in a class y ∈ {−1, 1} is classified by the per-
ceptron using the decision function f(xi) = sign(〈w ·xi〉).
If f(xi) is not the correct class then w is set to w + yxi;
if f(xi) is correct then w is left unchanged. Provided the

1See http://ipc.icaps-conference.org/.

data is linearly separable, the perceptron algorithm is guar-
anteed to converge on a solution in a finite number of steps
(Novikoff 1963; Minsky and Papert 1969). If the data is not
linearly separable then the algorithm oscillates, changing w
at each misclassified input vector.

One solution for non-linearly separable data is to map the
input feature space into a higher-dimensional space where
the data is linearly separable. However, an explicit map-
ping may lead to a massive expansion in the number of fea-
tures, making the classification problem computationally in-
feasible. Instead, an implicit mapping is achieved by apply-
ing the kernel trick to the perceptron algorithm (Freund and
Schapire 1999), by noting that the decision function can be
written in terms of the dot product of the input vectors:

f(xi) = sign(〈w · xi〉) = sign(
n∑

j=1

αjyj〈xj · xi〉),

where αj is the number of times the j-th example has
been misclassified by the perceptron. By replacing the dot
product with a kernel function k(xi,xj) which calculates
〈φ(xi) · φ(xj)〉 for some mapping φ, the perceptron algo-
rithm can be applied in higher dimensional spaces without
ever requiring the mapping to be explicitly calculated.

We represent each state s as a vector (see below) and
learn state transitions using a bank of kernel perceptrons,
one for each output bit, corresponding to a single predicate
p. Since in general the problem of learning action effects
is not linearly separable, the kernel perceptron is an appro-
priate choice for this problem. Kernel perceptrons obtain
reasonable accuracy at acceptable training and prediction
speeds, allowing us to use this approach in practical plan-
ning applications. Alternative non-linear classifiers, such as
SVMs (Boser, Guyon, and Vapnik 1992), can be substan-
tially slower (Surdeanu and Ciaramita 2007) while perfor-
mance is not guaranteed to be better (Graepel, Herbrich, and
Williamson 2000). To improve the speed of the classifier we
use a variant of the kernel perceptron, the voted perceptron
(Freund and Schapire 1999), which is computationally effi-
cient and produces performance close to the best performing
maximal-margin classifiers on similar problems. Prelimi-
nary tests using SVMs on our problem give similar results
with longer computation times.

The kernel is chosen to allow the perceptron algorithm
to run over conjunctions of features in the original input
space, as this permits a more accurate representation of the
exact conjunction of features (action and preconditions) cor-
responding to a particular effect. We use the polynomial
kernel of degree 3, k(x, y) = (x.y +1)3 so that feature con-
junctions of up to three features make up the feature space.

Representation
We compute a reduced form of the input state space for each
action using deictic coding (Agre and Chapman 1987). A
deictic representation maintains pointers to objects of inter-
est in the world, with objects coded relative to the agent or
current action. Objects which cannot be indexed in this way
are excluded from the reduced state for the current action.
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Figure 1: Action stack (A,B) results in objects A, B, and
C being attended to, while unrelated objects D, E and F
are ignored. Objects A, B, and C are referred to by the
variables obj1, obj2 and obj3, respectively, in the vector
representation shown in Figure 2.

For instance, such a deictic representation might arise from
an attentional mechanism (Ballard et al. 1997).

For a given action instance A we construct the set of ob-
jects of interest OA, by combining a primary set of objects,
given by the parameters of the action, and a secondary set
of objects which are directly related to the primary set, in
the current state. We define a direct relation between ob-
jects ci and cj to exist in state s ∈ S if ∃p ∈ P such that
p(c1, c2, . . . , cn) ∈ s and ci, cj ∈ {c1, c2, . . . , cn}

The related objects are identified via deictic references,
e.g., if a particular action grasps an object x, then the pri-
mary set of objects consists of the “grasped-object” x, and
the secondary set might consist of the “object-under-the-
grasped-object” y; other objects which are not directly re-
lated to x are not represented. We define M = maxA |OA|
to be the maximum possible number of objects of interest
for any action instance.

Figure 1 presents an example from the BlocksWorld do-
main, in which an agent can manipulate a set of blocks on a
table. Given the action stack (A, B), i.e., stack block A on
top of block B, the primary set of objects is {A, B}. The
only object related to A or B is C, since B is on C. There-
fore the full set of objects of interest is {A, B, C}.

An input vector representing the state space is constructed
as follows. Each action a ∈ A, and each 0-ary predicate,
is represented by a bit. Then for each object o ∈ OA, all
the possible relations between o and all other objects in OA

must be represented. This requires at most
(
M−1

n

)
bits for

each n-ary predicate, for each object in OA. The value of a
bit is 1 (−1) if the corresponding predicate is true (false), or
if the corresponding action is (not) the current action. If a
bit corresponds to an unobserved predicate, the value is set
to 0. When |OA| < M for some action instance A, bits for
unused predicates are set to 0. Figure 2 shows the vector
representation of the state in Figure 1.

The form of the output vectors representing an action’s
effects on a state are identical to the input vectors, except

Input vector Corresponding action/predicate

−1 pickup(obj1)
−1 putdown(obj1)

1 stack(obj1, obj2)
−1 unstack(obj1, obj2)

9>=>; Actions

−1 armempty
. . .

ff
Object independent
properties

1 holding
−1 ontable
−1 clear
−1 on-obj1
−1 on-obj2
−1 on-obj3

. . .

9>>>>>>>=>>>>>>>;
Properties of obj1

−1 holding
−1 ontable

1 clear
−1 on-obj1
−1 on-obj2

1 on-obj3
. . .

9>>>>>>>=>>>>>>>;
Properties of obj2

−1 holding
1 ontable

−1 clear
−1 on-obj1
−1 on-obj2
−1 on-obj3

. . .

9>>>>>>>=>>>>>>>;
Properties of obj3,
included as obj3 is
related to obj2

Figure 2: Input vector representation of the (fully observ-
able) BlocksWorld stack action and prior state from Figure
1. The first 4 bits correspond to the 4 domain actions. The
bit for stack is set to 1 since it is the current action. The
0-ary predicate armempty is represented by a single bit, set
to -1 since the gripper is holding object A. The first set of
object predicates represented in the vector are those for ob-
ject A since it is the first parameter of stack. The second
set of object predicates relate to object B, as the second pa-
rameter of stack, and finally the third and last set of object
predicates relate to object C, as it is related to object B by
the on predicate. If object B were being stacked on object
A the predicates for object B would precede those for object
A instead.

that the actions themselves are excluded from the vector, and
bits are set to 1 if the corresponding predicate changes, −1
if the corresponding predicate does not change, and 0 if the
corresponding predicate was not observed either before or
after the current action. During learning, only examples with
a known change, i.e. values 1 or −1, are used to train the
kernel perceptrons. The ordering of object representations in
the vectors is constrained so that two objects with the same
role in the same action, but in two different instances of the
action, must always be represented at the same position in
the vectors.

Deictic coding has a number of benefits. It greatly re-
duces the size of the input for an algorithm learning to pre-
dict action effects, as information is discarded about objects
unrelated to the action or its parameters. As a consequence,
scalability is improved, because the size of the representa-
tion does not increase with the size of the universe.

17



The size of the representation required for relations be-
tween objects is also reduced. Firstly, any relations includ-
ing discarded objects can be ignored. More importantly, de-
ictic coding means that objects are represented by variables
rather than by constants, and so whether we grasp object A
sitting on object B, or grasp object C sitting on object D,
the “on” relation is always represented as “the-object-I-will-
grasp is on the-object-under-the-object-I-will-grasp”. Thus,
if the representation considers M objects of the possible |O|
in the state space, the number of instances of each binary
relation which needs to be represented drops from O(|O|2)
to O(M2). M < |O| but is otherwise unrelated to |O|, and
instead typically depends on the complexity of the domain
(M < 8 for the domains considered here). Finally, deictic
coding creates a strong bias for generalisation.

Experiments
We tested the learning model on standard planning domains
from the 3rd International Planning Competition (IPC): De-
pots and ZenoTravel, as well as a standard BlocksWorld do-
main. The domains are described in PDDL (McDermott et
al. 1998), the standard representation language of the IPC.
BlocksWorld is a very simple domain with 4 actions (maxi-
mum 2 parameters) and 5 predicates (maximum arity 2). All
objects are blocks. The maximum possible number of ob-
jects of interest, M , is 3. Depots and ZenoTravel are more
complex. Depots has 5 actions (maximum 4 parameters), 6
predicates (maximum arity 2) and 6 types of objects (rep-
resented as predicates of arity 1). ZenoTravel has 5 actions
(maximum 6 parameters), 8 predicates (maximum arity 2)
and 4 types of objects (again represented as predicates of
arity 1). M = 5 and M = 7 for Depots and ZenoTravel
respectively.

Sequences of random actions and resulting states were
generated from PDDL domain descriptions and used as
training and testing data.2 The number of objects in the state
space was higher in the test data than in the training data, to
demonstrate that the learnt models could be applied across
different instances of the same domain. Specific problems
from the IPC were used to set the sizes of the initial states for
each sequence.3 BlocksWorld was initialised with 13 blocks
for training and 30 blocks for testing. The actual initial states
were generated at random using the IPC3 problem genera-
tor and a BlocksWorld state generator (Slaney and Thiébaux
2001).

Partial observability was simulated by randomly selecting
a number of predicates from the world to observe after each
action. The remaining predicates were discarded and the re-
duced state vector was generated from the observed fluents.
The number of observed predicates was set to approximately
5-20% of the total number of predicates (including nega-
tions) required to fully describe the state (BlocksWorld: 209,
ZenoTravel: 2116, and Depots: 1764).

2All data was generated using the Random Action Generator
0.5 available at http://magma.cs.uiuc.edu/filter/.

3Depots problem 5, and ZenoTravel problem 9 for training; De-
pots problem 19 and ZenoTravel problem 14 for testing.

To determine an error bound on our results, 10 runs with
different randomly generated training and testing sets were
used. Our testing environment was a 2.4 GHz quad-core
system with 4 Gb of RAM. All experiments were run on
a single CPU. Each training set consisted of sequences of
actions and state observations of lengths ranging from 1000-
20000, and each test set was a sequence of length 2000.

Results
Using our representation, learning in fully observable do-
mains is easy. Accordingly, the action models in all three
domains were learnt in under 250 examples, which was suf-
ficient to fully predict the 2000 test examples (Figure 3(a)).

Partial observability reduces the number of useful exam-
ples which can be learnt from, and also reduces the number
of useful bits in each example. Substantially more examples
are therefore needed to learn the action model. Furthermore,
the variance of the errors on the test set is much higher than
in the fully observable case. The higher variance is due to
the small number of observed predicates during training. Al-
though the test case is fully observable, only a fraction of the
state is used for prediction. This can cause the learner to mis-
take one action for another (a form of perceptual aliasing)
and wrongly predict every instance of the action, resulting
in a high number of errors on the test set.

In the BlocksWorld domain, observing 30 randomly cho-
sen predicates from the full state description (approximately
15% of the state) over 9000 examples is sufficient to fully
predict all the test sets of 2000 examples (Figure 3(b)). Ob-
serving fewer predicates also produces good results: training
on 9000 examples is sufficient to fully predict eight of the ten
test sets for both 10 and 20 observations at each time step.
The failures are all instances of the stack action. Most in-
correctly predict all instances of stack , resulting in approx-
imately 25% error on each test set. One case wrongly pre-
dicts the results of the stack action only when the block be-
ing stacked upon is already stacked on top of another block,
producing an 8% error.

In the ZenoTravel domain, 300 observations at each step
(again, approximately 15% of the state) allows for complete
prediction of the test set in three of the ten test cases. Of the
remaining test sets, five have only 1 or 2 prediction errors,
while the last three wrongly predict every case of the refuel
action (by not predicting the deletion of the fluent specifying
the initial fuel level), resulting in approximately 27% errors
on each test set. By increasing the number of observations
at each step to 400, eight of the ten test sets can be fully
predicted, with only one error and two errors respectively
on the remaining test sets (Figure 3(c)). The Depots domain
is more challenging for our method and 300 observations at
each step (approximately 17% of the state) are only suffi-
cient to completely predict the test set in half the test cases.
The other test sets have around 15% error as every case of
the load action is wrongly predicted. However, with 400 ob-
servations at each step, after 14000 steps, all of the test sets
are fully predicted (Figure 3(d)).

The poorly predicted test cases in the three domains are
all instances of the perceptual aliasing problem discussed
above. The problem can be resolved by supplying an exam-
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ple to the learner which it would predict incorrectly, so that a
new prediction function can be learnt. With a randomly gen-
erated sequence of actions, many additional examples could
be required before such an example was generated. How-
ever, in a planning scenario the necessary example could be
identified from a plan execution failure and used to improve
the prediction.

Scalability
Our empirical results demonstrate the effectiveness of our
approach in a number of standard planning domains. Our
approach can also be shown to scale, making it suitable for
more complex problems in domains with large numbers of
actions and objects. In particular, our approach takes time
proportional to a measure of the complexity of the domain,
and the number of mistakes made during learning.

For a reduced state vector of length l, there are l − |A|
voted perceptrons each computing one bit of the output vec-
tor. In the fully observable case, each voted perceptron
learns in time proportional to the number of training ex-
amples n, the length of the reduced state vector l, and k,
the number of mistakes made so far (k ≤ n). Thus, the
complexity of the learning algorithm is O(l2n2). Predictions
are made in time O(l2n). The same analysis applies to the
partially observable case, however many more observations
are needed, firstly because many observations will not con-
tain the necessary information about whether a predicate has
changed as a result of an action, and secondly because there
is less information in the partially observed world state from
which to learn. The former is mitigated by the fact that the
kernel perceptrons only train on “useful” training examples
where the change in a predicate is known, and only these
examples incur significant computational cost.

Recall that M is the maximum possible number of ob-
jects of interest for any action instance. Additionally, we
define Pi = {p ∈ P : arity(p) = i} and m =
maxp∈P(arity(p)). Then the length of the reduced state
vector is given by l = |A| + |P0| + M

∑m
i=1

(
M−1

i

)
|Pi|.

Thus, l depends on the number and arity of predicates in
the domain, and the maximum possible number of objects
of interest. Intuitively it makes sense that more complex
domains with more predicates and more inter-relations be-
tween objects should require more time to learn and predict.
In particular, M does not depend on the number of object
instances in the domain. For the planning domains consid-
ered here, which only have predicates with arity below 3, M
is typically not very large (M < 8).

When the domain is fully observable, the number of ob-
servations n required by our method to learn the action
model does not depend on the number of objects in the
world. However, this is not the case for partially observ-
able domains. An observation is only useful to the learning
process if it contains fluents relating to the set of objects
of interest, and at least one which was observed immedi-
ately before the current action, so that it is known whether a
change occurred. Under partial observability, the probability
of observing ‘useful’ fluents decreases as the number of ob-
jects in the world increases, as the number of ‘useful’ fluents

remains constant while the total number of fluents increases.
Thus the number of observations needed to learn the domain
increases with the number of objects in the world. However
we can learn in a smaller state space and apply the results to
a larger one, since the representation is not dependent on the
number of objects in the world.

The complexity can be reduced by limiting the number of
vectors the voted perceptron stores, which has the effect of
fixing k to be constant, and reduces the learning complex-
ity by a factor of n to O(l2n). However, the reduction of
the state to a vector of length l by the deictic representation
remains crucial. Accuracy may also be affected if k is too
small. Furthermore, our solution is embarrassingly paral-
lel, since the learning and prediction of each output bit is
independent of the others. Running the calculations for each
output bit in parallel would further reduce the complexity of
learning and prediction, by a factor of l.

Currently our approach does not directly support typed
domains. Instead, types are represented by adding new flu-
ents to the domain description. As with the introduction of
new objects, these additional fluents increase the number of
observations needed to learn the domain. However, by sup-
porting typed domains, we could also significantly improve
the performance of our approach.

Discussion
Our method is dependent on the existence of a structured
parametric representation, abstracted from the grounded
sensory manifold itself. In particular, actions must be speci-
fied whose parameters are exactly those objects acted on, so
that the correct set of objects is passed into the reduced state
vector. We anticipate such information would be provided
by an attentional model applied to a visual scene which picks
out the necessary actions and their parameters. Such a model
exists (Satish and Mukerjee 2008), and could be used to pro-
vide grounded parameterised actions.

Our method also depends on the use of a deictic represen-
tation, which both introduces a bias for generalisation and
limits the number of objects considered by the learning and
prediction process. Deictic representations have previously
been applied to learning domain dynamics. (Benson 1996)
converts the first-order logic description of the state space
into a propositional description by representing objects with
deictic variables. Our use of deictic variables is essentially
the same. However (Benson 1996) uses the transitive clo-
sure of the relations among objects rather than the single step
computation which we use. Similarly, (Pasula, Zettlemoyer,
and Kaelbling 2007) use deictic references to objects to pro-
vide a generalisation bias and to reduce the search space of
transition rules.

Our training and testing data was generated to mimic data
collected by an agent exploring the world, and corresponds
to sequences of actions and observations taken from random
walks through the state space. In some domains (e.g. Grid,
Freecell) certain actions occur infrequently, if at all, under
these conditions, and so learning of such actions may fail. A
more guided exploration of the state space may be necessary
to learn in these domains. In particular, we do not use exam-

19



0 50 100 150 200 250
0

5

10

15

20

25

30

35

40

Number of training examples

%
 e

rr
or

 o
n 

te
st

 s
et

Fully Observable Domains

 

 

BlocksWorld

Depots

ZenoTravel

(a) Learning in fully observable domains

0 5000 10000 15000 20000
0

10

20

30

40

50

60

70

80

90

100

Number of training examples

%
 e

rr
or

 o
n 

te
st

 s
et

BlocksWorld

 

 

10 observations
20 observations
30 observations

(b) Partially observable BlocksWorld

0 5000 10000 15000 20000
0

10

20

30

40

50

60

70

80

90

100

Number of training examples

%
 e

rr
or

 o
n 

te
st

 s
et

ZenoTravel

 

 

100 observations
200 observations
300 observations
400 observations

(c) Partially observable ZenoTravel

0 5000 10000 15000 20000
0

10

20

30

40

50

60

70

80

90

100

Number of training examples

%
 e

rr
or

 o
n 

te
st

 s
et

Depots

 

 

100 observations

200 observations

300 observations

400 observations

(d) Partially observable Depots

Figure 3: Results of learning action models in standard planning domains

ple plans as training data, since this presupposes an existing
model of the domain which is to be learnt.

Tractability is a significant issue in learning action models
in partially observable domains: methods such as HMMs,
Dynamic Bayes Nets and Reinforcement Learning scale
poorly (Amir and Chang 2008). More tractable methods
use schema learning (Holmes and Isbell 2005), build a
CNF representation of all possible transition models (Amir
and Chang 2008), or convert the problem into a weighted
MAXSAT problem (Yang, Wu, and Jiang 2007). In terms of
tractability, our approach is competitive with these methods.
A direct comparison is not straightforward as our method
currently does not produce explicit rules which could be
compared.

We learn action models in partially observable noiseless
domains. Our approach also performs well in fully observ-
able noisy domains (submitted). Figure 4 shows the results
of our method applied to learning the ZenoTravel domain
with 5% and 10% uniform noise, under full observability.
We believe our approach will extend to learning in noisy par-
tially observable domains. Future work will investigate this
claim. Some earlier work learns action models in probabilis-
tic, partially observable, noisy domains using schema learn-
ing (Holmes and Isbell 2005). However, the action models

apply to sensor values rather than features of the domain,
and so objects and relations between objects are not mod-
elled. Other work uses noiseless domains (Amir and Chang
2008; Yang, Wu, and Jiang 2007), and these methods have
not been shown to work in noisy domains.

The form of partial observability can also vary. We follow
(Amir and Chang 2008) where a fixed number of randomly
chosen fluents are observed after each action in a random se-
quence of actions. Additionally, (Amir and Chang 2008) do
not require knowledge of an initial state, fluents, or the size
of the domain in their approach. In contrast, our method
currently requires prior knowledge of the fluents and objects
in the domain in order to build the state vector representa-
tion. (Yang, Wu, and Jiang 2007) describe a different form
of partial observability, where the full state is observed at in-
tervals after a fixed number of actions in a plan are executed,
in combination with knowledge of the initial state and goal
state. Since we rely on observing state changes before and
after action application, our approach is not directly appli-
cable to this form of partial observability.

We also believe the form of partial observability we use
allows our model to be extended to sensing actions. While
prior approaches (including ours) have primarily focused
on learning the effects of ordinary actions—actions which
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Figure 4: Learning results in noisy and fully observable ver-
sions of the ZenoTravel domain. Noise at level p% was sim-
ulated by flipping each bit in the state vector with probabil-
ity p (for p = 0%, p = 5% and p = 10%). The test sets
were noiseless, fully observable sequences of observations
and actions, of length 2000.

change both the world state as well as the agent’s knowl-
edge state—they have ignored the role of sensing actions
in partially observable domains. Sensing actions are partic-
ularly useful since they provide an agent with information
about the state of the world, thereby changing the agent’s
knowledge state, but without necessarily changing the world
state. We admit sensing actions into our account by assum-
ing such actions have parameters (fluents and parameters of
the fluents) and that these actions only alter knowledge re-
lating to those parameters, or objects directly related to the
parameters of the fluents. Furthermore we disallow sens-
ing actions which are non-deterministic or have disjunctive
effects. Then a reduced knowledge state vector can be con-
structed in the same manner as the reduced world state vec-
tor. In the input, the value of each bit indicates whether the
corresponding fluent is known or not, and in the output in-
dicates changes to the knowledge state. The learning model
can then operate on both the knowledge and world state vec-
tors. Standard actions are learnt as before, with effects now
including changes to the knowledge state. Sensing actions
are learnt in the same way, but changes to the world state
will have to be ignored, since these are unpredictable. The
addition of sensing actions would allow our method to be in-
tegrated with knowledge-based representations such as those
used by the PKS planner (Petrick and Bacchus 2004).

Finally, the relative difficulty of learning action models
in different domains is not well understood. For example,
from the domain description, the Depots domain appears to
be simpler than the ZenoTravel domain since the maximum
number of parameters of any action is lower, and there are
fewer predicates. Our results show that Depots is harder to
learn, however, at least for our learning method. In fact, the
method presented in (Yang, Wu, and Jiang 2007) also pro-

duces more errors in the Depots domain than in the Zeno-
Travel domain, suggesting that the additional difficulty may
be a feature of the Depots domain rather than the learning
method. In general, further investigation of the relative diffi-
culties of learning different domains is important for further
research in this area.

Conclusions and Future Work
We have presented a method for learning deterministic ac-
tion models which is fast, scalable and handles partial ob-
servability of the world state. Furthermore, the error rate
of the predictions made by the model is low. The speed,
scalability and accuracy make the approach highly suitable
for use in planning applications. It is straightforward to ex-
tend our method to learn the effects of sensing actions. Our
method also performs well in noisy domains, and a key step
will be to apply it to partially observable noisy domains.

In future work we plan to link our learning mechanism
to a planning system applied to more complex domains,
such as the problem of learning and planning actions for the
ARMAR-III humanoid robot (Asfour et al. 2006) in a real-
world robot environment. We also plan to extend the mech-
anism to learn more sophisticated action representations be-
yond STRIPS, such as those requiring functions.
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mann, R. 2006. ARMAR-III: A humanoid platform for
perception-action integration. In 2nd International Work-
shop on Human-Centered Robotic Systems (HCRS’06).
Ballard, D. H.; Hayhoe, M. M.; Pook, P. K.; and Rao, R. P.
1997. Deictic codes for the embodiment of cognition (with
commentary). Behavioral and Brain Sciences 20.
Benson, S. S. 1996. Learning Action Models for Reactive
Autonomous Agents. Ph.D. Dissertation, Stanford Univer-
sity.
Boser, B. E.; Guyon, I. M.; and Vapnik, V. N. 1992. A
training algorithm for optimal margin classifiers. In COLT

21



’92: Proceedings of the fifth annual workshop on Compu-
tational learning theory, 144–152. New York, NY, USA:
ACM Press.
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