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Abstract

Deep space missions are characterized by severely con-
strained communication links and often require intervention
from Ground to overcome the difficulties encountered dur-
ing the mission. An adequate Ground control could be com-
promised due to communication delays and required Ground
decision-making time, endangering the system, although saf-
ing procedures are strictly adhered to. To meet the needs of
future missions and increase their scientific return, space sys-
tems will require an increased level of autonomy on-board.
We propose a comprehensive approach to on-board auton-
omy relying on model-based reasoning. This approach en-
compasses in a uniform formal framework many important
reasoning capabilities needed to achieve autonomy (such as
plan generation, plan validation, plan execution and monitor-
ing, fault detection identification and recovery, run-time di-
agnosis, and model validation). The controlled platform is
represented symbolically, and the reasoning capabilities are
seen as symbolic manipulation of such formal model. In this
approach we separate out the discrete control parts and the
continuous parts of the domain model (e.g., resources such
as the power consumed or produced and the data acquired
during an execution of a certain action) to facilitate the de-
liberative actions. The continuous part is associated to the
discrete part by means of the resource estimation functions,
that are taken into account while validating the generated plan
and while monitoring the execution of the current plan.
We have developed a prototype of this framework and we
have plugged it within an Autonomous Reasoning Engine.
This engine has been evaluated on two case studies inspired
by real-world ongoing projects: a planetary rover and an or-
biting spacecraft. We have performed a characterization of
the approach in terms of reliability, availability and perfor-
mances both on a desktop platform and on a spacecraft simu-
lator.

Introduction
Deep space and remote planetary exploration missions are
characterized by severely constrained communication links.
Limited spacecraft visibility, reduced data rates and high
communication latency do not allow for the real-time con-
trol by Ground operators. For the surface missions, high
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level of interaction with the environment may require sig-
nificant efforts from Ground control, implying high cost of
operations. Furthermore, adequate Ground control could
be compromised due to communication delays and required
Ground decision-making time, endangering the system, al-
though safing procedures are strictly adhered to.

To meet the needs of future missions and increase their
scientific return, space systems will require an increased
level of intelligence on-board. Taking autonomous decisions
through creating their own plans based on up-to-date infor-
mation, and re-planning in response to unexpected events or
anomalous conditions, would greatly improve the efficiency
of a mission, system safety, and potentially reduce the cost
of Ground operations.

In this paper we propose a solution to on-board auton-
omy relying on symbolic model-based reasoning. Our ap-
proach integrates plan generation, plan execution and moni-
toring, fault detection isolation and recovery, and run-time
diagnosis functionalities in a common formal framework.
This framework relies on a symbolic representation of the
system to control, and allows to capture the intrinsic partial
observability of the controlled system (available system sen-
sors may not allow for conclusive determination of the con-
trolled components’ status). We propose to use safe assump-
tion based contingent plans. These plans at execution time
sense the world and, depending on the state of the world,
can execute different actions. Moreover, they are annotated
with conditions to help monitoring whether the assumptions
under which the plan was generated for are satisfied dur-
ing the execution. All the autonomy functionalities (plan
generation, validation, execution, monitoring and FDIR) are
seen as symbolic transformations applied to the symbolic
representation of the controlled system. We remark that,
this framework allows for the application of model check-
ing techniques to validate the model of the controlled sys-
tem and to perform checks for diagnosability. The formal
framework separates the discrete part of the system to con-
trol from the continuous parts (e.g. power consumption, pro-
duced data) to facilitate deliberative reasoning. This solu-
tion has been developed in response to an invitation to ten-
der of the European Space Agency aiming at developing an
integrated uniform approach for model based on board au-
tonomy (OMC-ARE 2008) relying on model checking tech-
niques.
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The spacecraft is equipped with an Autonomous Reason-
ing Engine (ARE). The ARE is structured according to a
generic three-layer hybrid autonomy architecture. The De-
liberative layer provides goal-driven planning and schedul-
ing, plan validation and system-level fault detection, isola-
tion and recovery (FDIR) facilities. The Executive layer pro-
vides facilities to execute and monitor the correct execution
of the current mission plan. The Control layer provides low-
level interactions with the controlled system (sensor acqui-
sition and commands to actuators sending). The Deliber-
ative and Executive layers use the symbolic representation
of the system for all the reasoning. While, the feedback
control loop algorithms of the Control layer are not based
on symbolic reasoning, but rely on complex numerical com-
putations. Such computations are directly connected to the
symbolic representation of the system through resource es-
timation functions and logical predicates that provide an ab-
straction of the computation results and of the sensing. In
this way, the computation steps are interleaved with logical
reasoning at the higher levels. The formal model the ARE
operates on captures The model is used in the Deliberative
layer for mission plan validation, for re-planning, and for
system-level FDIR (e.g. by re-planning to solve the identi-
fied problem). The Executive layer uses the formal model
for plan execution and monitoring to detect if an anomaly
(i.e. fault, anomalous resource consumption) preventing the
achievement of the mission goal occurred. The Control layer
uses the model to encode low-level sensor information, and
to decode commands to be sent to actuators.

We have developed a prototype of the ARE. It relies on
NUSMV, a symbolic model checker for the efficient manip-
ulation of a symbolic representation of a system. On top of
its primitives, we have built all the algorithms of the ARE
(including plan generation, validation, execution and mon-
itoring, and FDIR). The ARE is largely independent of the
controlled system: the upper layers are application indepen-
dent, bound to the application domain through the system
model description; the dependencies related to the low-level
platform interactions are localized in the Control layer that
can be customized through dedicated APIs. The ARE re-
lies on the POSIX C libraries of the RTEMS operating sys-
tem, and can thus be easily adapted to any system providing
POSIX compliant interfaces.

The approach has been evaluated on three case studies (a
planetary rover, a simplified planetary rover, and an orbiting
spacecraft), all inspired by real-world, ongoing projects. For
each case study, a symbolic representation of the spacecraft
was built. It was then validated using symbolic model check-
ing techniques before deploying it within the ARE. We then
performed a characterization in terms of reliability, avail-
ability and performances using a spacecraft simulator. The
spacecraft simulator is parametrized on the functional model
of the spacecraft to simulate (i.e. in this case the two variant
of the planetary rover and the orbiting spacecraft). It also
include the on-board software framework which in turn is
run on a real hardware target emulator. This architecture al-
lows to evaluate ARE in a platform that is very similar to
the one used in real missions. The evaluation relies on sce-
narios where re-planning is necessary to take into account

possible failures or anomalies caused by changes in the en-
vironment, including cases of partial observability resulting
from the interaction of failures and anomalies. The prelim-
inary experimental evaluation showed the feasibility of the
approach, although a lot of work has still to be done to be
really deployed on-board as to use them in real missions.

This paper is structured as follows. First we present the
modeling and reasoning framework. Then we present the
ARE and we describe the experimental evaluation we car-
ried out on deploying the proposed solution on a real space
platform. Finally we discuss related work and we draw some
conclusions and future work.

Modeling and Reasoning Framework
Formal Model of the System
We model the system to control following the Planning as
Model Checking approach presented in (Cimatti et al. 2003;
Cimatti and Roveri 2000; Bertoli et al. 2006), and extending
it to allow to reason about resources (continuous variables
like e.g. the power consumed by the system).

Definition 1 (System) A system is a tuple M =
〈S, I,A, T ,Q,L,O,F ,R,RS〉 where:

• S is a finite set of states;
• I ⊆ S is a set of initial states;
• A is a finite set of actions;
• T : S ×A → 2S is the transition relation;
• O is a finite set of observations;
• X : S → 2O is the observation function;
• R is a finite set of resources;
• RS : 2S → (R→ R2) is resource estimation function.

We require that some observation is associated to each state
s ∈ S, that is, X (s) 6= ∅.

The model of the system include both the nominal behavior
and the behavior when faults occurred.

Resources R are represented by rational numbers. Re-
source estimation function RS provides an estimate of re-
sources in set of states. RS(S) is a resource estimation
function which maps resources to their lower and higher
values. For RS(S, r) = 〈m,M〉, with m ≤ M , we use
RS(S, r)l = m and RS(S, r)h = M respectively to refer
to lower and upper bound values of the resources r in the set
of states S. We say that RS(S1) ≤R RS(S2) (RS(S1) is
less then, or equal to, RS(S2)) iff ∀r ∈ R.RS(S1, r)h 6≤
RS(S2, r)l, and RS(S1) ≤R RS(S2) (RS(S1) is not less
then, or equal to, RS(S2)) iff ∃r ∈ R.RS(S1, r)hnot ≤
RS(S2, r)l.

This representation separates out the discrete control part
and the continuous parts (e.g., resources such as the power
consumed or produced and the data acquired during an ex-
ecution of a certain action) to facilitate model based vali-
dation and the deliberative actions. The continuous part is
associated to the discrete part by means of the resource esti-
mation function.

Given an action a ∈ A, the precondition of an action a is
the set of states pre(a) = {s ∈ S | ∃s′ ∈ S, 〈s, a, s′〉 ∈ T }.
An action a can be applied to a state s ∈ S (set of states

2



S) only if s ∈ pre(a) (S ⊆ pre(a)). Otherwise, s has (S
contains states with) no successors if action a is applied.

The system is fully observable if O = S and X (s) = s.
We write S[o,>] to denote the set {s ∈ S|o ∈ X (s)}, of
states compatible with observation o, and dually S[o,⊥] to
denote the set {s ∈ S|∃o′ ∈ X (s), o′ 6= o} of states that
are compatible with any observation other than o. The set of
states indistinguishable from a set S ⊆ S, written IND(S), is
the set IND(S) = {s ∈ S | ∃s′ ∈ S.∀o ∈ O(o ∈ X (s) ⇐⇒
o ∈ X (s′))}. In other words, states indistinguishable from
a set S are such that there exists an observation which make
it impossible to detect if the states are in S or not. The set
of states indistinguishable from S always includes S, i.e.
S ⊆ IND(S).

We remark that this formalization of the system model is
independent from the language used to specify it.

Model validation
Having a formal model in terms of Kripke structure allows
to validate the model to guarantee it really captures the be-
haviors of the system. Validation of the model of the system
can be performed with model checking techniques (Clarke,
Grumberg, and Peled 1999). Temporal logic formulae ex-
pressed e.g. in Linear Temporal Logic (LTL) (Pnueli 1977),
or in Computational Tree Logic (CTL) (Emerson 1990),
or even in more expressive logic like e.g. the Property
Specification Language (PSL) (PSL 2005) which combines
LTL with Regular Expressions (Hopcroft and Ullman 1979)
to express omega regular languages can be used to ex-
press expected behaviors of the system. These formulae
are then validated with the classical Binary Decision Dia-
grams (BDD) (Bryant 1992) symbolic model checking tech-
niques (McMillan 1993) or with Bounded Model Check-
ing (BMC) techniques based on propositional satisfiabil-
ity (Biere et al. 2003).

To manage the complexity of the model and of the val-
idation abstraction techniques like predicate abstraction (S.
Graf and H. Saidi 1997) and Counterexample-Guided Ab-
straction Refined (CEGAR) loop (Clarke et al. 2000) can
be applied. The CEGAR loop consists of four phases: ab-
straction, where the abstract system is built according to
a given set of predicates; verification, where the abstract
system is model checked and a if the verification succeeds
then also the concrete system is correct; otherwise, an coun-
terexample trace is produced; simulation, to check whether
the abstract trace has a realistic counterpart in the con-
crete system (in this case the verification fails and a coun-
terexample is generated); refinement: if the simulation of
the abstract trace in the concrete system fails, new pred-
icates to rule out the unrealistic path are added and the
loop is iterated. The abstract model of the system can
be computed with regards to the set of predicates P over
state variables Q at each iteration. The abstraction can be
computed efficiently by means of decision procedures and
by enumerating the models (satisfying assignments) to the
abstract variables corresponding to the predicates used in
the abstraction (Lahiri, Nieuwenhuis, and Oliveras 2006;
Cavada et al. 2007).

We also remark, that using BMC techniques extended to

use a Satisfiability Modulo Theory (SMT) solver instead of
a pure propositional SAT solver it would be also possible to
consider in the validation the continuous component of the
system.

Plan generation, validation, execution and
monitoring
The planning problem consists in finding a plan that when
executed will allow to achieve the goal. In the planning com-
munity, different notions of goal and different kind of solu-
tions to a planning problem have been studied. (See (Cimatti
et al. 2003; Cimatti and Roveri 2000; Bertoli et al. 2006;
Ghallab, Nau, and Traverso 2005; Bozzano, Cimatti, and
Roveri 2007) for a thorough discussion.) In this work we re-
strict to consider reachability goals only (Cimatti et al. 2003;
Cimatti and Roveri 2000; Bertoli et al. 2006). Reachability
goals are characterized by a non-empty set of states G ⊆ S
that the system to control is aimed to achieve.

In the setting of planning in non-deterministic do-
mains, different notions of plan strength have been consid-
ered (Ghallab, Nau, and Traverso 2005). In this work we
restrict to weak and strong plans (Cimatti et al. 2003). Weak
plans are plans that have a chance to reach the goal, while
strong plans are plans that are guaranteed to achieve the goal
despite the non-determinism and the partial observability of
the controlled system. Intuitively, a plan P is a weak so-
lution to the planning problem of reaching a goal G from a
non-empty set of states S, iff the plan is such that all the
actions in it are applicable in the set of states that can be
achieved by progressing the set of initial states S till the cur-
rent point of action execution; and the set of states that can
be reached by progressing the set of initial states following
all the possible branches of the plan has a non-empty inter-
section with the set of goal states. This means, that there
exists an execution of the plan that can reach the goal. How-
ever, because of non-determinism it might be the case that
after the execution of the plan, the controlled system is not in
the goal state. On the contrary, strong plans are such that the
execution of the plan is guaranteed to achieve the goal, de-
spite the non-determinism of the controlled system and the
incomplete run-time information. That’s all executions are
guaranteed to achieve the goal.

Planning under partial observability requires to be able to
reason about the uncertainty in which state exactly the sys-
tem is (because of the non-determinism in transition relation
T and of the partial observability). Belief states (Bonet and
Geffner 2000; Cimatti, Roveri, and Bertoli 2004; Bertoli et
al. 2006) (i.e. non empty set of states in S) have been in-
troduced to allow for this kind of reasoning. Planning un-
der partial observability consists in finding a contingent plan
that at execution time sense the world via observations and,
depending on the state of the world, can execute different
actions. Thus, contingent plans allow for conditional execu-
tion depending on the status of the system. Planning under
partial observability in non-deterministic domain is an ex-
tremely hard task, and it is often the case that strong plans
do not exist. However, in many cases it is possible to express
reasonable assumptions over the expected dynamics of the
controlled system, e.g. by identifying “nominal” behaviors.
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Using these assumptions to constrain the search may greatly
ease the planning task, allowing for an efficient construc-
tion of assumption-based solutions. The assumptions taken
when generating a plan may turn out to be incorrect when
executing the plan.

Thus, assumption-based plans must be executed within
reactive architectures (like
e.g. the one of Figure 1)
where a monitoring compo-
nent traces the status of the
domain, in order to abort plan
execution and take corrective
actions activating FDIR
whenever an unexpected
behavior (e.g. violation of
the assumptions) has com-
promised the success of the
plan.

Plan

Execute &
Monitor

Plant

FDIR

ObsAct

HWPlan

Figure 1: The approach.

In (Albore and Bertoli 2004; 2006) has been considered
the possibility to specify assumptions over the domain dy-
namic using the LTL temporal logic (Pnueli 1977), and has
been proposed a planning algorithm to generate safe (con-
tingent) LTL assumption-based plans for non-deterministic,
partially observable domains. A safe plan not only guar-
antee that the goal is reached when the given assumption
holds, but also guarantee that, during its execution, the mon-
itor will be able to unambiguously distinguish whether the
current status of the controlled system has been planned for
or not. In this way, it is possible to guarantee that, during
plan execution, the monitor will not trigger any plan abortion
unless really needed. In this work we restrict to assumptions
of type invariants: i.e. conditions the systems is suppose to
obey at each point during the execution of the plan. These
assumptions are introduced to simplify plan generation by
decreasing the search state space.

We remark that, since we are in the setting of partial ob-
servability there may be uncertainty whether the assump-
tions are satisfied. To this extent, we annotate contingent
plans with additional information, built at planning time, in
order to monitor the satisfaction of the assumptions at run-
time.

Definition 2 (Plan with Assumptions) A plan PAs with
assumptions As is a tuple 〈Sg, Spb, P 〉 where Sg ⊆ S is
a set of “good” states, Spb ⊆ S is a set of “possibly bad”
states and sub-plan P is either:
• an empty plan ε;
• a sequence a :: PAs , where a ∈ A is an action;
• a conditional plan ite(o,PAs

1,PAs
2), where o ∈ O is

an observation.

Sets Sg and Spb are introduced to allow monitoring of the
plan execution and checking if assumptions hold. The in-
tuition is the following. Set Sg consists of such states that
the assumptions hold in these states and their predecessors.
Set Spb includes Sg and may additionally have states indis-
tinguishable from Sg such that the assumptions are violated
in these states or their predecessors. I.e. if during execution
the assumptions always holds than at every step the belief
set of states has to be a subset of Sg . But if the assumptions

have been violated and it has not been detected then the be-
lief states may only partly intersect with Sg but still have to
be a subset of Spb.

Contingent plans with assumptions can be constructed
by the algorithm presented in (Albore and Bertoli 2006)
simplified to only deal with assumptions of type invariant
As . The pseudo-code of the modified algorithm is presented
in (OMC-ARE 2008).

In the following we assume PAs to be a plan with as-
sumptions built to monitor the satisfaction of the invariant
As using the adaption of the planning algorithm of (Albore
and Bertoli 2006) as presented in (OMC-ARE 2008). We
also assume given a resource assignmentRMIN specifying
the minimal values the resources are allowed to assume dur-
ing plan execution. If this limit is violated the plan execution
fails.

We can formally present the execution of a plan with as-
sumptions starting from a belief state S, assuming a resource
assignment RMIN as follows. Let PAs = 〈Sg, Spb, P 〉
be a plan with assumptions, and let S ⊆ S be a set of
states, SG = S and SPB = IND(S).. The sets of states
resulting by the execution of PAs from 〈SG, SPB〉, written
EXEC[PAs ](SG, SPB) can be computed recursively on the
structure of the plan as follows (below we allow EXEC[]() to
be applied to plan PAs as well as to sub-plan P ):

• EXEC[〈GS ,BS , P 〉](SG, SPB) = 〈∅, ∅〉 if SG 6⊆ GS ∨
SPB 6⊆ BS ;

• EXEC[〈GS ,BS , P 〉](SG, SPB) = EXEC[P ](SG, SPB) if
SG ⊆ GS ∧ SPB ⊆ BS ;

• EXEC[ε](SG, SPB) = 〈∅, ∅〉 if RMIN 6≤R RS(SPB);
• EXEC[ε](SG, SPB) = 〈SG, SPB〉 if RMIN ≤R
RS(SPB);

• EXEC[a :: PAs ](SG, SPB) = 〈∅, ∅〉 if SPB 6⊆ pre(a) ∨
RMIN 6≤R RS(SPB);

• EXEC[a :: PAs ](SG, SPB) = EXEC[PAs ](S′G, S′PB ∩
IND(S′G)) if SPB ⊆ pre(a) ∧ RMIN ≤R RS(SPB)
where S′G = {s′ : s ∈ SG ∧ s′ ∈ As ∧ 〈s, a, s′〉 ∈ T }
and S′PB = {s′ : s ∈ SPB ∧ 〈s, a, s′〉 ∈ T };

• EXEC[ite(o,PAs
1,PAs

2)](SG, SPB) = 〈∅, ∅〉
if EXEC[PAs

1](SG[o,>], SPB [o,>]) = 〈∅, ∅〉 ∨
EXEC[PAs

2](SG[o,⊥], SPB [o,⊥]) = 〈∅, ∅〉
• EXEC[ite(o,PAs

1,PAs
2)](SG, SPB) = 〈S>G ∪

S⊥G , SPB
> ∪ SPB

⊥〉 if 〈S>G , SPB
>〉 6= 〈∅, ∅〉 ∧

〈S⊥G , SPB
⊥〉 6= 〈∅, ∅〉 where 〈S>G , SPB

>〉 =
EXEC[PAs

1](SG[o,>], SPB [o,>]) and 〈S⊥G , SPB
⊥〉 =

EXEC[PAs
2](SG[o,⊥], SPB [o,⊥])

This definition is such that after plan execution the obtained
sets 〈S′G, S′PB〉 = EXEC[PAs ](SG, SPB) S′G remains to be
a subset of S′PB . Intuitively, set S′G consists of the states
whose predecessors satisfy the assumption. Set S′PB con-
sists of the states whose predecessors may violate the as-
sumptions but are indistinguishable from corresponding pre-
decessors in S′G. Thus after applying an action the set S′G is
constrained to be a subset of the assumptions As , whereas
states of S′PB may violate the assumptions but have to be in-
distinguishable from S′G. In the fifth and sixth items above,
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we check whether SPB is contained in the precondition of
the action a to execute, since at run-time while executing
the plans, we cannot distinguish the states in SG from the
states in SPB because of partial observability. Moreover, if
the action is applicable in SPB it is also applicable in SG

(since SG ⊆ SPB). The distinguishable states removed
from S′PB after applying an action (i.e. S′PB \ IND(S′G))
are those which may be reached only by violating the as-
sumptions. If such a state is indeed reached during a real
execution of the plan on an real system then this is always
detectable and has to cause the plan termination. Neverthe-
less, such plan can be considered valid since the cause of the
problem is in the incorrect assumptions, not in the plan. In
the execution of a plan PAs , the resources estimation func-
tion is computed w.r.t. the possibly bad states SPB since this
is the set of states that can be observed at run-time because
of partial observability. This choice results in considering
a more pessimistic approach to the resource consumption.
Indeed, if the resources are good for such belief state, than
they are good also for the set of good states. Different no-
tions of validity w.r.t. resources can be defined as to relax or
to strength this definition thus allowing for different notions
of planning success criteria.

A plan with assumptions PAs , given a resource assign-
ment RMIN specifying the minimal values the resources
are allowed to assume during plan execution, is applicable
in S ⊆ S iff plan’s initials SG = S ∩ As and SPB =
S ∩ IND(SG) are non empty and the plan does not fail dur-
ing execution (i.e. it does not reach empty sets):

EXEC[PAs ](SG, SPB) 6= 〈∅, ∅〉.

A plan with assumptions PAs , given a resource assign-
ment RMIN specifying the minimal values the resources
are allowed to assume during plan execution, and a goal
G ⊆ S, is valid in S for G iff it is applicable in S and for
〈S′G, S′PB〉 = EXEC[P](S ∩As, S ∩ IND(S ∩As)):
• S′PB ⊆ G if we want strong plan solutions;
• S′G ∩ G 6= ∅ if we want weak plan solutions.
For strong plans we check that the progressed set of possi-
bly bad states S′PB resulting from the execution is included
in the set of goal states G. This is because at run-time we
cannot distinguish S′G to S′PB because of partial observabil-
ity. Thus if S′PB is include in the goal then we are guar-
anteed that we indeed reached the goal. On the other hand,
for weak solutions we cannot simply check for non-empty
intersection with the goal of the set S′PB , but we check for
non-empty intersection with S′G. Indeed, if this is not the
case the assumption was violated (the actual state is bad)
and the goal G has not been reached.

These definitions provide a formal characterization of
plan execution and of success criteria for a plan execution.
In fact, a plan is successful when the plan is applicable from
the initial belief state, the resources are enough to complete
the plan (that’s they do not go below the limit specified by
RMIN , and the set of possibly bad states resulting from the
execution of the plan are included in the set of goal states G.

Algorithm 1 describes the pseudo-code of a function that
takes a plan with assumptions, the set of assumptions and

the goal the plan was created for, and it starts executing it
from the current belief state obtained from the sensors. De-
pending on the execution condition it returns success if the
plan was executed correctly without violating neither the as-
sumption nor the limit on the resources; and different failure
conditions in all the other cases.

Algorithm 1 Plan execution and monitoring.
1: function PLANEXECUTEANDMONITOR(P, Ass, G)
2: CBS = SENSORSGETBS( );
3: ER = SENSORSGETRESOURCES( );
4: 〈Good, PBad, NextPlan〉 := Pi;
5: if ¬ENTAILED(CBS, PBad) then
6: return FailureNotSupportedInitialStates;
7: while ε 6= NextPlan do
8: CBS := SENSORSGETBS( );
9: CR := SENSORSGETRESOURCES( );

10: 〈Good, PBad, NextPlan〉 := Pi;
11: if ¬INTERSECT(CBS, Good) then
12: return FailureAssertNotSatisfied;
13: if RESOURCESLOWERTHAN(CR,ER) then
14: return FailureAnomalousResourceConsumption;
15: switch NextPlan
16: case a :: Pi1:
17: cresult := EXECUTELLCOMMAND(a);
18: if Success 6= cresult then
19: return FailureCommandExecution;
20: ER := ESTIMATERESOURCES(a, CBS, Ass, CR);
21: Pi := Pi1;
22: break;
23: case ite(o, Pi1, Pi2):
24: switch COMPATIBILITYCHECK(CBS, o)
25: case CBS SUB O >:
26: case CBS SUB O > NONEMPTYINT O ⊥:
27: Pi := Pi1;
28: break;
29: case CBS SUB O ⊥:
30: case CBS SUB O ⊥ NONEMPTYINT O >:
31: Pi := Pi2;
32: break;
33: case CBS SUB O TRUEFALSE:
34: Pi := (RANDOM( ) % 2) ? Pi1: Pi2;
35: break;
36: default:
37: return FailureCondPlanWrongCondition;
38: end switch
39: case ε:
40: break;
41: default:
42: return FailureInvalidPlanStructure;
43: end switch
44: end while
45: return Success;
46: end function

Diagnosis, Diagnosability and FDIR
Diagnosis is the process of inferring the set of (most plau-
sible) causes for an unexpected behavior of a given system,
given a set of observations. Diagnosability is the possibility
for an ideal diagnosis system to infer accurate and sufficient
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run-time information on the behavior of the observed sys-
tem.

The formal framework here described allows for the
applicability of the techniques for tackling diagnosabil-
ity as described in (Cimatti, Pecheur, and Cavada 2003).
In (Cimatti, Pecheur, and Cavada 2003) it was shown how
it is possible to reduce the problem of diagnosability to the
problem of checking whether a diagnosability condition is
violated, that in turns corresponds to checking whether a
critical pair can be found. A critical pair is a pair of exe-
cutions that are indistinguishable (i.e., they share the same
inputs and outputs), but hide conditions that should be dis-
tinguished (e.g., to prevent simple failures to stay undetected
and degenerate into catastrophic events). The problem of
finding a critical pair can be reduced to a problem of model
checking a temporal formula, representing the diagnosabil-
ity conditions, over the coupled twin model M × M =
〈S ×S, I×I,A, T ×T ,O,X ×X ,R,RS×〉 where for all
s1, s2 ∈ S, 〈s1, s2〉 ∈ S ×S iff there exists o ∈ O such that
o ∈ X (s1) and o ∈ X (s2); 〈〈s1, s2〉〉, a, 〈s′1, s′2〉〉 ∈ T × T
iff 〈s1, a, s′1〉, 〈s2, a, s3〉 ∈ T ; and o ∈ (X × X )(〈s1, s2〉)
iff o ∈ X (s1) and o ∈ X (s2).

Fault detection is concerned with detecting whether a
given system is malfunctioning. Fault detection analysis
checks whether an observation can be considered a fault de-
tection means for a given fault, i.e., every occurrence of the
fault will eventually cause the observable to be true. All such
observables are reported as possible detection means.

Fault isolation analysis is concerned with detecting the
specific cause of malfunctioning. It can be performed by
generating a fault tree that contains the minimal explana-
tions that are compatible with the observable being true. In
case of perfect isolation, the fault tree contains a single cut
set consisting of one fault, indicating that the fault has been
identified as the cause of the malfunctioning. A fault tree
with more than one cut set indicates that there may be sev-
eral explanations for the malfunctioning. In this case prob-
abilistic information can be taken into account, in order to
consider the most likely explanation.

During the execution of a plan the executed actions and
the performed observations can be stored, and can then be
used to isolate the faults by restricting the search performed
to construct the fault trees. However, storing the full set of
performed actions and observations is not practical, and only
a given number of the last performed actions and observa-
tions is memorized (the so called history window) (Williams
and Nayak 1996; Mikaelian, Williams, and Sachenbacher
2005) to this purpose. The algorithm 2 can be used to isolate
faults. It takes the assumptions Ass under which the plan
has been executed and the history window HW of size N .
It starts by building a transition system that aims to monitor
the value of fault variables. This monitor is then composed
with the system model. Then, a bounded backward reacha-
bility of N steps from states such that the monitor variables
equate the respective monitor fault variables is performed.
Each step of the backward reachability is restricted to per-
formed actions (line 12) and to the observations (line 13)
stored in the history window. Finally it is restricted to the
assumptions (line 14). The resulting set is projected over

Algorithm 2 Fault isolation.
1: function ISOLATEFAULTS(Ass, HW, N)
2: Monitor := BUILDFAULTMONITOR( );
3: EM := BUILDPRODUCT(M, Monitor);
4: Reached := BUILDHVEQFV(M, Monitor);
5: Reached := Reached ∩ Ass;
6: i := N - 1;
7: if 0 ≤ i then
8: Reached := Reached ∩ GETOBS(HW[i]);
9: i := i - 1;

10: while i ≥ 0 do
11: a := GETACTION(HW[i]);
12: Reached := BWDIMAGE(M, Reached, a);
13: Reached := Reached ∩ GETOBS(HW[i]);
14: Reached := Reached ∩ Ass;
15: i := i - 1;
16: end while
17: FS := PROJECT(Monitor, Reached);
18: return EXTRACTFAULTS(FS);
19: end function

the monitor variables (line 17) and analyzed to extract the
faults (line 18).

The Autonomous Reasoning Engine
We have integrated the framework described in previous sec-
tions within a generic three layers hybrid autonomy archi-
tecture, the Autonomous Reasoning Engine (ARE), devel-
oped in response to an invitation to tender of the European
Space Agency aiming at developing an integrated uniform
approach for model based on board autonomy (OMC-ARE
2008). The spacecraft will be equipped with an ARE. The
ARE interacts with the spacecraft and with the Ground Con-
trol Station to provide autonomous reasoning capabilities.
From the spacecraft, it will receive information from the sen-
sors, and delivers control commands to the actuators. With
the Ground Control it will exchange information on the mis-
sion goals and initial mission plan, and it will also receive
direct commands to activate ARE functionalities and to in-
spect the status of the ARE.

From the logical point of view, the ARE is structured ac-
cording to a generic three layers hybrid autonomy architec-
ture: Deliberative layer, Executive layer, and Control layer
(See Figure 2).

The Deliberative Layer is responsible for generating mis-
sion plans, for validating the generated plans to ensure that
they are guaranteed to achieve the mission goal from the
current status of the controlled system, and for triggering
re-planning whenever needed. This layer includes also an
FDIR block which is activated in response to an anomaly
(e.g., a fault or an assumption violation) detected by the De-
liberative layer itself or by a lower layer to identify and then
recover from the anomaly. Several recovery strategies can
be embedded in the FDIR block depending on the degree of
autonomy that we would like to achieve, on the complex-
ity of the controlled spacecraft, and on the criticality of the
identified problem. If the anomaly is due to a change in the
environment or in the expected use of resources, then new
assumptions can be computed, and the rest of the plan can
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Figure 2: The ARE architecture.

be validated w.r.t. the new assumptions. If the validation
succeeds then its execution can be continued. Otherwise, a
re-planning with the new assumptions can be triggered. If no
recovery is possible, then a safe operational mode is entered
waiting from intervention from Ground.

The Executive layer is responsible for executing a given
mission plan coming from Ground or generated by the up-
per layer. Moreover, it also carry out plan monitoring and, in
case an anomaly (e.g., an assumption that is no longer sat-
isfied, or an anomalous resource consumption) is detected
it is responsible to give the control back to the FDIR block
in the Deliberative layer. This layer executes a contingent
plan according to the algorithm 1. The Executive layer col-
lects diagnostic information (performed observations, exe-
cuted commands, assumption violations) in order to provide
them to the FDIR block in the Deliberative layer, whenever
requested, to identify the possible cause of the anomaly (us-
ing algorithm 2) and activate the proper recovery function.

The Control layer implements the conversion between the
model-based level and the lower level of the spacecraft. It
contains the low-level code that is responsible for the ac-
quisition of sensing information and for sending low level
commands to the actuators, and for estimating the resource
consumption resulting from the execution of a command to
be sent to upper layers. The control layer is implemented as
a set of software procedures that are tailored to the control
and monitoring of specific physical devices.

The ARE functionalities are triggered according to a pre-
defined Finite State Machine (FSM) that activates the dif-
ferent building block functionalities provided by the ARE
to achieve the desired degree of autonomy. This FSM is re-
sponsible for responding to possible triggers coming from
Ground or triggers coming from lower layers (e.g. because
of a problem detected during plan execution) to activate
FDIR functionalities, to re-plan or re-validate the remaining
plan.

A prototype of the ARE has been implemented on top of
the NUSMV symbolic model checker (Cimatti et al. 2000)
exploiting the Planning as Model Checking framework de-

veloped in (Cimatti et al. 1997; 2003; Cimatti, Roveri, and
Bertoli 2004; Bertoli et al. 2006). NUSMV provides all
the low level routines for the symbolic manipulation of the
discrete model of the controlled system, and for implement-
ing all the building blocks necessary for the implementation
of the high level autonomy functionalities provided by the
ARE (i.e. plan generation, plan validation, plan execution
and monitoring, and for faults isolation).

Within the prototype additional code has been developed
to implement auxiliary functionalities typical of a spacecraft
application, i.e. functionalities to upload a new model of the
spacecraft to be used by the autonomy functionalities of the
ARE, new assumptions, or new mission goals. Moreover,
we have also implemented the low level routines responsi-
ble for the decoding of low level commands to be sent to the
actuators, and low level functions to read the sensors and to
build the internal representation to be used for the delibera-
tive and executive activities provided by the ARE.

We remark that the ARE is largely independent of the
controlled system: the upper layers are application indepen-
dent, bound to the application domain through the system
model description; the dependencies related to the low-level
platform interactions are localized in the Control layer that
can be customized through dedicated APIs. Moreover, the
whole ARE software is built on top of the POSIX C inter-
face. Thus, the software can be deployed on any operating
system providing a POSIX C interface (e.g. under RTEMS,
Linux, Solaris, Windows).

Experimental Evaluation
We experimented the proposed approach on two case stud-
ies, a planetary rover, and an orbiter. Both case studies
are extracted from real-world domains, and we have inter-
faced the ARE with a spacecraft simulator. The space-
craft simulator is based on a library that contains the ba-
sic common functionalities (TC management, TM manage-
ment, software bus services). The services offered by this
library allow to easily integrate software components into a
software bus. The spacecraft simulator can be run on a Linux
PC host equipped with an hardware simulator (currently
SiS (SIS ) for ERC32 and TSIM (TSIM2 ) for LEON3) or
on a real target (FPGA board or ASIC board). Commanding
(TC, scripts) as well as display and reporting (TM, reports,
checks) are network transparent and support multiple users
on the same simulation.

We considered two different configurations for the plane-
tary rover parametrized on the number of sub-components
each dedicated to a different space experiment. The first
configuration is composed of 3 sub-components responding
to a total of 19 commands. The second configuration is com-
posed of 17 sub-components responding to a total of 92 dif-
ferent commands. The orbiter case study is simpler and is
composed of only 3 sub-components responding to a total of
9 different commands.

The formal model of each of the three considered
case studies has been specified in the NUSMV lan-
guage starting from description of the spacecrafts in Mat-
lab/Stateflow/Simulink. Similarly, the resource estimation
functions have been implemented exploiting the information
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in the Matlab/Stateflow/Simulink models. The NUSMV
models have been thoroughly validated against simulations
generated from the Matlab/Stateflow/Simulink models, and
against several properties written to be sure the NUSMV
model (and the Matlab/Stateflow/Simulink from which the
NUSMV model has been generated from) really captures
expected behaviors of the corresponding spacecrafts.

Rover Orbiter

Small Full

# State vars 40 116 16

# Action vars 2 2 2

# Observations 20 74 5

# Bool vars 423 147 77

State Space 267 2202 231

Reachable State Space 264 2194 223

Reach. BDD size 103 333 106

Diameter 31 61 33

Figure 4: Functional characterization.

Figure 4 reports some information we gathered on the
considered case studies while validating the specified re-
spective formalizations. We report the number of state vari-
ables needed to specify the model, the number of variables
needed to specify the actions, the number of observations
we considered, the number of Boolean variables needed to
perform a logarithmic encoding of the ranges of all the vari-
ables, the size of the search space and the size of the reach-
able state space from a given initial configuration. We report
also the size of the BDD representing the set of reachable
states, and the number of images needed to compute the set
of reachable states from the initial configuration.

In Figure 5 it is reported the time to perform the initial-
ization of the reasoning engine w.r.t. the considered case
study, the time required to build the internal representation
of a mission plan generated on ground and sent on-board,
the time to validate the loaded plan, the time to execute the
validated plan, and finally the time required to build a new
plan to achieve the goal. The times have been obtained run-
ning the ARE software on the two standard target hardware
platforms considered.

Rover Orbiter

Small Full

ERC32 LEON3 ERC32 LEON3 ERC32 LEON3

Initialization 33 13 282 113 9 1

Plan Loading 3 1 6 2 2 0.5

Plan Validation 15 6.5 55 23 1 1

Plan Execution 116 121 125 121 16 16

Plan Generation 87 34 1349 540 6 2

time expressed in seconds

Figure 5: Performance characterization.

For each of the case studies, we have identified realistic
objectives, and instructed the simulator to present both nom-
inal and anomalous conditions for planning and re-planning.
Several simulations have been performed in order to eval-
uate the suitability of the approach w.r.t. different met-
rics. For instance, the rover mission characteristics as un-
predictable local conditions on the planetary surface and
with time-variable conditions; the rover mission constraints
as limited bandwidth, intermittent visibility, long round trip
delay; rover system operations to perform a measurement
cycle that included movement, sample acquisition and sam-
ple preparation and distribution; the orbiter mission charac-
teristics; the orbiter mission constraints; the orbiter system
operations; and finally the development methodology. The
approach has been experimented on two different simula-
tion scenarios: (i) re-planning after fault; (ii) re-planning
after an unexpected change in environment. The system has
been run in order to characterize the approach on the fol-
lowing parameters: reliability (requirements coverage, gen-
erated plan compliance with the goal); availability (reaction
time); and performance (processing power and memory re-
quired). The system has been characterized both from the
functional point of view, and from the performance point of
view. A typical scenario used to evaluate the system in terms
of performance includes: initialization of models, loading of
plan, plan validation, plan execution, anomaly detection and
analysis, recovery, and finally plan execution.

Figure 6 reports an excerpt of the characterization we car-
ried out on the typical scenario for an observation window
of 700 seconds using the primitives provided by RTEMS
4.9 (RTEMS ) running on the SiS hardware simulator for
ERC32. Four threads are running on the platform: the Idle
thread, the Main threads that implements the ARE FSM, the
Child thread that is responsible of the different ARE func-
tionalities, and the Monitor thread that contains the code to
extract performance figures. The first plot on the left reports
the percentage of CPU usage for the considered observation
window. The plot in the middle reports the maximum stack
used over time by the different threads. Finally, the plot on
the right reports the memory used by the ARE in the given
period. The vertical bars marks the beginning and end of
the different steps. From left to right we have: initialization,
loading of the plan, validation of the plan, execution of the
plan, and waiting for new commands to arrive. The plots
show that the CPU intensive steps are the initialization of
the model, the loading of the plan and its validation. Once
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Figure 6: The ARE characterization on SiS for ERC32 for the Planetary Rover.

the execution of the plan starts, the child thread decreases its
use of CPU since during the execution of a low level com-
mand it waits for the command to terminate before going on
with the execution of the remaining part of the plan. At the
same time the Idle thread increases its percentage use. Even
though not reported in the plot, we remark that, an increase
of CPU usage of the Child thread and a decrease of Idle CPU
usage will be showed while performing plan generation. The
Main thread, instead, is using a very low percentage of CPU
(about 1.5%). The Monitor on the other hand uses a prac-
tically constant amount of CPU which is about 0.05%. The
plots also show that the memory used by ARE grows during
the initialization and also during the plan loading and vali-
dation. During plan execution it is almost constant, and it
remains constant after the execution of the plan terminates.
The reason for this behavior resides in the NUSMV internals
used to represent the model (Cimatti et al. 2000).

The ARE software and related material can be
downloaded from http://es.fbk.eu/projects/esa
omc-are upon request to the authors.

Related work
The first notable approach to model-based autonomy is the
Deep Space One (DS1) experiment (1998-2001) by the
NASA agency. The DS1 was equipped with a “Remote
Agent”(RA) (RA ) module that provided model-based ex-
ecutive capable of goal-driven planning and scheduling, di-
agnosis and recovery from injected faults. The model-based
executive of the RA is the Livingstone model (Williams and
Nayak 1996). Titan (Fesq et al. 2002) (developed by MIT)
is the descendant of the Livingstone model. This executive
is composed of two main function: a mode estimation and
a mode reconfiguration. Mode estimation is responsible for
updating the current state by taking into account the com-
mands that have been issued, and the observations perceived
from the controlled system. This is performed by taking into
account the most likely possible state that is compatible with
the history of executed actions, with gathered observations,
and with the model of the system. Mode reconfiguration is
responsible for updating the current status, making sure that
the specified actions are still applicable and valid. The RA
is similar in spirit to the one proposed in this work. Our
approach differentiates from the RA since the same formal
model is used in all the phases from the deliberative to the

executive levels.
MUROCO-II (Kapellos 2005) is a support tool for a

generic formal framework for the specification and verifica-
tion of space missions. It implements a three layers frame-
work, but the whole approach is off-line. Basically, ac-
tions and tasks of a mission can be specified and validated.
The framework relies on the Esterel language, and simple
temporal properties can be simulated, and formally proved.
Our approach extends MUROCO-II in two main directions.
First, MUROCO-II is a framework for an off-line activity
taking place on ground, while the current approach focuses
on technologies and tools for on-board autonomy. Second,
the system developed in MUROCO is unable to deal with
diagnosis, since the tools in Esterel focus on verification;
planning is also out of reach for all those cases where non-
determinism has to be taken into account (with the environ-
ment interpreted in an adversarial manner); in our approach,
both diagnosis and planning are covered.

The MMOPS (Woods et al. 2006) approach develops an
on-board system, TVCR (Timeline Verification, Control and
Repair), that takes into account scheduling issues, and is
able to carry out limited amounts of re-planning. The ob-
jective is to try and detect whether the mission time line cur-
rently being executed is still likely to achieve its goals and
not to cause trouble given that the current conditions may
have departed from the estimated ones, and in case of de-
tected problem suggests possible repairs of the mission time
line. The main components are a plan validator, an execution
monitor, and a plan repair generator. The form of planning is
very specific, and does not address the problem of defining a
generic automated reasoning system to be reused in different
settings and for different functionalities. Our approach im-
plements functionalities similar to the ones of MMOPS, but
in a unique formal framework within a three layers hybrid
autonomous architecture.

Conclusions and future work
We presented a unified model based approach to on-board
autonomy. This approach relies on a symbolic representa-
tion of the system to control. The autonomy functionali-
ties (plan generation, validation, execution, monitoring and
FDIR) are all seen as symbolic transformations of the for-
mal representation of the system to control. This approach
allows for application of model checking techniques to val-
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idate the symbolic representation of the system to control
and to check for diagnosability conditions. Moreover, the
underlying techniques can be used to realize the autonomy
functionalities. We have implemented the approach in a pro-
totype of an Autonomous Reasoning Engine relying on the
NUSMV symbolic model checker. We have carried out a
characterization of the approach using two case studies in-
spired by real on-going projects to understand it usability in
the context of current space applications and available on-
board computers. The obtained results were promising.

There are several directions for improvements at differ-
ent levels. The reasoning engine currently uses BDDs, it
would be worth experimenting with SAT and also with SMT
techniques to consider then in a unique framework both the
continuous and the discrete components. As far as goals are
considered, it would be worth extending the approach to deal
with sequential goals. In parallel the approach could benefit
from using more complex assumptions.
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