
Verified Planning by Deductive Synthesis in Intuitionistic Linear Logic

Lucas Dixon and Alan Smaill and Alan Bundy
School of Informatics, University of Edinburgh, UK
{L.Dixon, A.Smaill, A.Bundy}@ed.ac.uk

Abstract

We describe a new formalisation in Isabelle/HOL of Intu-
itionistic Linear Logic and consider the support this provides
for constructing plans by proving the achievability of given
planning goals. The plans so found are provably correct, by
construction. This representation of plans in linear logic pro-
vides a concise account of planning with sensing actions, al-
lows the creation and deletion of objects, and solves the frame
problem in an elegant way. Within this setting, we show
how planning algorithms are implemented as search strate-
gies within a theorem proving system. This allows us to pro-
vide a flexible methodology for developing search strategies
that is independent of soundness issues. This feature is illus-
trated in two ways. Firstly, following ideas from logic pro-
gramming, we show how a significant symmetry in search,
caused by context splitting, can be pruned by using a derived
inference rule. Secondly, we show how domain specific con-
straints on synthesis are supported and how they can be used
to find contingent or conformant plans. We illustrate the ap-
proach with example planning scenarios.

1. Introduction
Linear Logic was introduced by Girard (1987) and is called
a resource sensitive logic because assumptions can be con-
sumed during inference. The intuitionistic version of the
logic can be used to formalise planning problems in a way
that elegantly solves the frame problem and provides a con-
cise logical account of planning. It also provides a more ex-
pressive framework for planning: new objects can be created
and deleted, non-deterministic and sensing actions can be
expressed, and the exponentials in linear logic can be used
to capture the notion of cached results.

In this paper, we describe a formalisation of Intuitionistic
Linear Logic (ILL) within the higher-order logic of the Is-
abelle proof assistant. This includes support for incremental
deductive synthesis by combining tools for proof automation
with a representation of proof terms which serve as synthe-
sised plans.

A language for such proof terms and semantics for their
execution was proposed in Abramsky (1993). His work pro-
vides a computational interpretation of proofs in the logic, of

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

which we use a variation. The formalisation, therefore, pro-
vides the machinery to function as a planner, where plans
are synthesised by deduction from specifications in ILL.

Our development provides a platform for the further ex-
ploration of planning via deductive synthesis, and into the
relationship between search algorithms for planning and
search in theorem proving. This is done by building an em-
bedding of ILL within a proof system with a small fixed log-
ical kernel, namely Isabelle/HOL. This has a number of ad-
vantageous features:

1. It provides a soundness-preserving methodology for ex-
ploring the automation of planning by developing proof
tactics for the theorem prover. This allows new search
strategies to be considered without modification to any
logical machinery. Existing tools for automation can also
be used, such as Isabelle’s simplifier and classical rea-
soner.

2. It allows domain specific constraints in the meta-logic to
be attached to the derivations made within the linear logic.
This additional expressivity can also be used to the guide
proof search and plan synthesis. It also simplifies the for-
malisation by using theories from Isabelle/HOL. For ex-
ample, we define a sequent’s premises using the existing
theory of multisets.

3. Derived theorems about ILL, such as the cut rule, can be
proved and used within the formalisation and as part of the
synthesis process, while the soundness of all such deriva-
tions rests only on the proof assistant’s logical kernel.

The trade-off is that steps in planning are slowed down
as they must go through the logical kernel of the proof sys-
tem. We have implemented the full ILL, which is expressive,
but undecidable in general (Lincoln et al., 1992). Search al-
gorithms can be developed as ‘proof-tactics’ that improve
proof automation by combining basic inference rules. For
example, heuristics mixing forwards and backwards plan-
ning can also be built into search. This allows us to im-
plement decision procedures for selected fragments of logic
without worrying about compromising the correctness of
found plans.

We illustrate the approach with one example from within
a decidable fragment, for which we have developed an au-
tomatic planner, and two examples showing the use of con-

55

straints, to ensure conformant plans and to bound execution
time respectively.
Overview. In §2 we describe related work, both in imple-
mentation and in relation to planning. We then describe the
relationship between theorem proving in ILL and planning
in §3, the Isabelle implementation and validation of plans
in §4, and associated reasoning techniques in §5. Search
strategies for automated planning are discussed in §6. §7 il-
lustrates contingent and conformant planning by attaching
constraints to plans. Finally we mention future work and
conclude.

2. Related Work

Implementations

There have been previous formalisations of various frag-
ments of Linear Logic in proof assistants. Sara Kalvala and
Valeria de Paiva provided a basic implementation of intu-
itionistic propositional linear logic in Isabelle (Kalvala and
de Paiva, 1995). They did not provide proof terms, and did
not attempt significant automation. Without proof terms,
there is no explicit representation of the plan. Philippe
de Groote formalised the constant-free fragment of classi-
cal multiplicative additive linear logic within Isabelle (de
Groote, 1995). He provided tactics in Isabelle to automate
proof search in classical Linear Logic, with various heuris-
tics, but no proof terms are involved, which makes it un-
suitable for our purposes as plans cannot be extracted. Our
work extends existing formalisations by providing a repre-
sentation of proof terms, needed for the synthesis of plans,
and improves on the automation by supporting lazy context
splitting (see §5.) as well as additional constraints.

A Prolog implementation of ILL with proof terms was
used to synthesise plans by Cresswell (2001). This includes
forms of induction with associated proof terms that extend
the ILL framework. It also provided a good level of automa-
tion. However, it lacks higher-order features and does not
have a fixed logical kernel. It also lacks the various libraries
present in Isabelle which simplify the presentation and aid
further automation.

There are several logic programming languages which
support theories within an appropriately restricted subset of
the logic, e.g. Hodas and Miller (1994). This subset does not
allow a direct formulation of planning where actions corre-
spond to program clauses. For instance, the second example
we present in §7. falls outside this subset. However, it does
allow simple meta-interpreters to be written for the full lan-
guage, as used by Dixon, Smaill, and Tsang (2009).

Framework logics that support linear connectives provide
a suitable form of executable proof term to represent plans
(Ishtiaq and Pym (1998); Cervesato and Pfenning (2002)).
Implementation of these provide automated type checking
and inference via a logic programming style of search. They
have not so far been used to investigate the various search
strategies available for ILL, or issues such as contingent ver-
sus conformant plans.

Relationship to Planning
A comparison of Linear Logic with other formalisms for
planning has been presented by (Große, Hölldobler, and
Schneeberger, 1996). The relationship between linear logic
and planning has been explored on various occasions since
the introduction of linear logic by Girard (1987). Work on
the geometry of conjunctive actions by Masseron (1993)
showed how a fragment of the logic given below can be
used to build plans, represented as directed graphs, from
proofs in the logic. An algorithm for realising Masseron’s
approach using a small decidable fragment of the language
is described by Jacopin (1993); as with Masseron, a richer
language is needed to deal with a realistic range of planning
problems.

More recently, various authors have suggested that the
formalism of ILL is well suited to the field of AI plan-
ning (Cresswell, 2001; Kanovich and Vauzeilles, 2001;
Küngas, 2002). We extend this approach by the use of proof
terms with a well-defined operational semantics formalised
in a proof system.

AI planning systems based on the STRIPS approach ma-
nipulate a description of the state in a procedural fashion.
To formalise the reasoning involved, a standard approach is
use of a version of the situation calculus, where notions of
state or situation appear explicitly in the object language;
Levesque, Pirri, and Reiter (1998) provide such a language
together with an associated programming language where
state is not explicitly represented.

The situation calculus representation requires axioms to
take care of the frame problem. These deal with fluents that
are needed when coding a planning problem into a propo-
sitional satisfiability problem (Kautz and Selman, 1992).
When using ILL, no such axioms are needed as the notion of
resource consumption is built in to the logic. Thus we have
a combination of reasoning in a well-defined logic, while
not reasoning explicitly about state; indeed the basic lan-
guage allows us to reason about non-deterministic or sens-
ing actions (see §7.), and distributed execution, without any
additional machinery. ILL also allows us to reason easily
about the dynamic introduction and elimination of new en-
tities associated with actions. It is possible, to some extent,
to encode this idea in the situation calculus by means of en-
tities that that have a fluent property of “existing”, but note
that this requires that all such entities that may appear at any
time must then be made available statically in the problem
specification — this is likely to be clumsy at best.

Compared to efficient planning techniques, our approach
is much slower. There are two reasons for this: firstly, there
has been relatively little work on efficient proof search for
ILL, and secondly, because our approach verifies the cor-
rectness of the plans, it necessarily takes place within an in-
terpreted system thus results a in linear, but large slowdown.
We suggest ways to improve the efficiency, in §9., as further
work.

3. Planning with Intuitionistic Linear Logic
In this work we tackle planning problems by treating them
as theorem proving tasks.

56

ILL allows us to specify the possible actions and initial
state concisely as statements written in ILL. The theorem
proving task is then to show that some goal resources can
be realised from the given resources, using actions as basic
inference steps. Furthermore, this proof, that the goal can be
achieved, has a computational reading: proofs are mapped
mechanically in a typed (linear) functional programming
language. For our purpose, these are executable plans. The
details of how these programs are extracted from proofs can
be found for example in Abramsky (1993).

The reading of “propositions as types” applies here: the
result of theorem proving is that we have a proof that the
program is well-typed, and this constitutes a proof that the
plan is correct (provided, of course, that the planning prob-
lem has been accurately formalised).

We now review briefly the main ideas from linear logic
and their connection to planning.

Formulas are treatred as resources which can be used up;
thinking in terms of functional programming, a resource is
information or data given to a program, and is used just once.
A resource of the form A (B expresses an instance of
an action that can use up A and produce B. A ⊕ B is a
resource from which one of A or B can be produced, but we
may not know which one. In contrast to this, A & B lets us
choose which of A and B we would like, but we can only get
one of them. From A ⊗ B we get both A and B. Lastly, !A
lets us get arbitrarily many A’s.

In linear logic, the connectives typically come in pairs
of multiplicative and additive depending on the way the the
contexts are combined. For conjunction:

• if we want to use both of the conjuncts, we must split
the resources used to establish the conjunction; this is the
multiplicative connective, ⊗, which has the rules:

Γ, A, B ` C

Γ, A⊗B ` C

Γ ` A ∆ ` B

Γ,∆ ` A⊗B

• if we want that just one of the conjuncts is used, we get
the additive connective & which has the introduction rule:

Γ ` A Γ ` B

Γ ` A&B

The linear implication is written (and has the rules:

Γ, A ` B

Γ ` A (B

Γ,` A ∆, B ` C

Γ,∆, A (B ` C

and disjunction (which is additive) has the rules:

Γ ` A

Γ ` A⊕B

Γ ` B

Γ ` A⊕B

Γ, A ` C Γ, B ` C

Γ, A⊕B ` C

An important case to consider when looking at the corre-
spondence between proofs and plans is the following infer-
ence rule, with plan extraction notations added:

Γ ` t : A ∆ ` u : B

Γ,∆ ` t⊗ u : A⊗B

This says that if u, t are plans that achieve goals from Γ,∆
respectively, then the plan (written overloading the symbol
“ ⊗ ”) t⊗ u will achieve the goal A⊗B

Notice that the two subproblems are therefore logically
independent. The corresponding execution can thus be dis-
tributed.

Linear logic is made more expressive by adding a unary
connective “!” (called bang): !A allows as many copies of
A as may be needed (maybe none). This connective allows
actions which can be performed arbitrarily many times to be
naturally described. For example, to see how STRIPS op-
erators are expressed in this language, consider a standard
example:

operator: stack(X,Y)

preconditions: hold(X)
clr(Y)

deletelist: hold(X)
clr(Y)

addlist: clr(X)
on(X,Y)
empty

This corresponds to an ILL statement indicating which
resources must be present before (and are thus used up), and
which present afterwards:

stack(X,Y) : !(hold(X) ⊗ clr(Y) (
empty ⊗ clr(X) ⊗ on(X,Y))

Here the claim is made that the action stack(X, Y) uses
up resources hold(X) ⊗ clr(Y) and generates resources
empty ⊗ clr(X) ⊗ on(X, Y). We use the bang connective
to let the action be performed as many times as needed.

Non-determinism is treated with the ⊕ connective:

pick : hidden ((black ⊕ white)

characterises a “pick” action which uses up a hidden re-
source, generating either a black or a white (sock), but we
do not know which will be returned.

In the ILL approach, no frame axioms are needed; the
notion of state or situation is internalised in the semantics, so
does not appear explicitly, unlike for example in the situation
theory approach.

In summary, to perform planning using ILL we construct
a sequent which describes our problem. This will have the
form:

Actions, State ` Goals

Proving this shows the realisability of the goals from the
resources available in the initial state. The corresponding
proof can be viewed as plan/program which if executed suc-
cessfully will produce the desired resources and so achieve
the goal.

4. Valid Plans with Intuitionistic Linear Logic
in Isabelle/HOL

Isabelle is a proof assistant that supports formal reasoning
in a number of object logics (Paulson, 1994). These are
formed and manipulated by Isabelle’s intuitionistic, higher-
order meta-logic, which supports polymorphic typing and
performs type-inference. The basic operation for deriving

57

Type Expressions:
type1 ⇒ . . . ⇒ typen is the type of
λ(x1 : type1) . . . λ(xn−1 : typen−1). (y : typen)

Datatype Definitions:
datatype type name =

constructor1 type expr . . . type expr (syntax)
| constructor2 . . .

Sequents:
J assn1; . . .; assnn K =⇒ conclusion

Quantification:∧
x. P(x) is used for meta-level universal quantification.

Meta Variables: a meta variable x is written as “?x”.

Figure 1: The Isabelle syntax used in this paper.

new theorems is a higher-order version of resolution. Addi-
tional proof tools can be written in ML, following the LCF
methodology (Gordon, Milner, and Wadsworth, 1979). This
requires that all functions that derive new theorems are de-
compose into applications of functions within the logical
kernel.

The Isabelle system provides a library for higher-order
logic including a simplifier and classical reasoner, as well
as definitional packages to create datatypes and inductively
defined sets. In Fig. 1, we show the syntax (taken from Is-
abelle) used in our formalisation.

Formalising ILL as a representation for plans in Is-
abelle/HOL helps ensure the correctness of plans in two im-
portant and distinct ways:

• Our formalisation is built as a conservative extension of
Isabelle/HOL. Thus its validity, assuming the formalisa-
tion is correct, rests only on the implementation and ax-
ioms of Isabelle/HOL. By following the LCF methodol-
ogy (Gordon, Milner, and Wadsworth, 1979), Isabelle’s
implementation has a strong argument for its correctness:
it has a small fixed logical kernal on which all extensions
are developed.

• Isabelle produces proof terms for which a small and in-
dependent proof checker can be written (Berghofer and
Nipkow, 2000). The use of ILL also separates the search
for a plan from the plan’s correctness. To check that a
plan does indeed solve the problem it is claimed to, the
plan simply needs to be type-checked, which also can be
done by a small independent type-checker. This allows
the generated plans to be checked easily and efficiently,
in much the same way as Isabelle’s proofs. Such check-
ing is independent of the correctness of the details of our
formalisation and search machinery.

ILL Sequents, Types and Terms
We have formalised the dual context account of ILL fol-
lowing the work of (Barber, 1997). Each sequent expresses
how a plan uses up some resources to produce some oth-
ers. These sequents have two kinds of context: the first
captures resources of which there are arbitrarily many and

is called the non-linear or intuitionistic context; the second
kind expresses ordinary resources which can be used up dur-
ing planning and is called the linear context. Both kinds of
context are formalised as a multiset of resources. This use
of the existing multiset theory in Isabelle/HOL removes the
need for explicit exchange rules.

A sequent of our embedded linear logic is characterised
by the ` constant which has type:
ires mset ⇒ lres mset ⇒ res ⇒ bool

where mset is the multiset type constructor, ires is a re-
source in the non-linear context, lres is one in the linear
context, and res is the produced resource with its corre-
sponding plan.

We use Isabelle’s syntax machinery to support the usual
notation. For example, we may write {A,B} | {C} `
p:D to express that from arbitrarily many A’s and B’s, and
a single C we can use up the C to get a D by performing the
plan p. We will sometimes omit proof terms and the non-
linear context for the sake of clarity.

The connectives of ILL express different kinds of re-
sources. We characterise these using a HOL datatype:
datatype ltyp = 1 | ltyp & ltyp | ltyp ⊗ ltyp

| ltyp ⊕ ltyp | ltyp (ltyp | ! ltyp

We use a HOL nominal datatype, which provides tools for
managing the freshness of names (Urban and Tasson, 2005),
to represent linear logic terms. This allows the datatype,
trm, to expresses the different constructors from which a
plan can be made:
nominal datatype trm =

top | var var | ivar ivar | star
| let star trm trm | trm ⊗ trm
| let tensor trm (� var� � var� trm)
| app trm trm | lam (� var� trm)
| choice trm trm
| choosel trm (� var� trm)
| chooser trm (� var� trm)
| inl trm | inr trm
| case or trm (� var� trm) (� var� trm)
| ! trm | let bang trm (� ivar� trm)

where�X� Y expresses that there is a name for subterm
of type X within Y . We use Isabelle’s meta-level universal
quantifier to express variable substitution. For example, the
cut rule is traditionally presented as:

T ` a : A x : A, S ` b : B
Cut, x must be fresh

T, S ` b[a/x] : B

In our formalisation, which also makes freshness conditions
explicit, this becomes:
J T ` a : A;V

x. x freshin S =⇒ {x : A}, S ` (b x) : B;
y freshin (T and S) K

=⇒ T, S ` (b a) : B

where
∧

is Isabelle’s meta-level universal quantifier, as
shown in Figure 1. Because b occurs both within the con-
text of the bound x and outside it, the subterm x stands for
precisely every occurrence of the variable and, correspond-
ingly, the term b can be viewed as the rest of the term. This

58

allows the framework to perform substitution of every oc-
currence of the variable in the plan. Using this approach we
characterise ILL as an inductively defined set of derivations
which correspond to the well-formed plans. The full set of
rules in our formalisation can be found online1.

5. Reasoning Techniques
We have developed tool support for planning with our for-
malisation. This assumes planning is performed by proving
a goal sequent of the form:

initial state ` ?p : goal state

where the meta-variable ?p will become instantiated to the
plan as the proof proceeds.

The available actions for planning are given by defining
a new constant for the action and by providing an axiom
that describes its effect. For example, we might specify that
when a person eats food, it causes the eaten foodstuff to dis-
appear and changes the person from being hungry to being
full. The axiom specifying the eats action would then be:

const eats :: person ⇒ food ⇒ ltypV
p x. {} `
eats p x : x ⊗ hungry p (full p

The main tool support that has been developed provides
tactics to support reasoning about linear logic by applying
actions to the current state. In particular, one tactic to per-
form a forward planning step and one for performing a back-
ward step. These provide a basis for automatic as well as in-
teractive proof. We have also developed a tactic that checks
to see if the current state can solve the goal by rearranging
and decomposing the available resources without perform-
ing any further actions.

By combining these tactics we have also developed a
simple automatic planner. When problems are within the
STRIPS (Fikes, Hart, and Nilsson, 1972) fragment of ILL
then it acts in a similar way to a traditional planner. How-
ever, we note that, being based on ILL, it can find a much
richer set of plans. In particular, plans may contain condi-
tional branching and may introduce new objects. Further-
more, arbitrary side conditions can be attached to planning.
This allows a natural integration of constraint solving with
planning. We give an example of this in §8..

Backward Reasoning
Backward reasoning involves applying a rule whose conclu-
sion unifies with the conclusion of the goal sequent. We dis-
tinguish between two common kinds of backward reasoning:
Decomposition: breaks up the conclusion of a sequent. For

example, a goal of the form T ` A & B can be decom-
posed into the two subgoals T ` A and T ` B.

Actions: show how the conclusion could have been arrived
at using an action axiom or resource in the non-linear
context. For example, consider a goal of the form T `
B and an action of the form r : A (B. Backward
reasoning reduces the goal sequent to T ` A, which cor-
responds to a backward step in planning.
1http://dream.inf.ed.ac.uk/projects/

e-Science/wfs.php

Backward reasoning about actions can be handled easily by
the following derived rule:

J (r : A (B) ∈ D ; D | T ` A K
=⇒ D | T ` B

However, decomposition is more complicated as we de-
scribe below.

Lazy Context Splitting
The main difficulty with decomposition is having to split the
context. This happens when the linear context must be split
into several parts which are used in different subgoals. For
example, this occurs with:

S ` A T ` B
⊗R

S, T ` A⊗B

The problem is that, at the point the rule is applied, it is
not always clear which resources are needed to prove which
goal. Searching over all possible ways to split the context is
exponential. A better approach is to decide in a lazy fashion
how the resources are allocated. This effectively removes
a significant source of symmetry in the search space while
maintaining completeness.

Boolean constraints have previously been used to deal
with this issue in Harland and Pym (2003); Cresswell
(2001); Cervesato, Hodas, and Pfenning (2000). The ba-
sic idea is that each resource is paired with a unique boolean
variable indicating if it has been used. An extension of this,
specially designed for logic programming proof search has
been presented in López and Polakow (2004). We propose
another solution which is independent of search and thus
allows forwards and backwards planning steps to be inter-
leaved. It also avoids expanding the trusted kernel with a
constraints package or other complex efficiency measures
by using following derived rule:
(1) S, T ` A⊗B =⇒ M ` A⊗B (2) S ` A (3) T ` B

M ` A⊗B

When used backwards, this introduces S and T as new
meta-variables. It allows us to perform backwards steps on
subgoals (2) and (3), while also continuing forward reason-
ing on the resources in M of subgoal (1). Forward reasoning
on subgoals (2) and (3) can also be performed by consider-
ing the linear context as including any resources associated
through the meta variables S and T , namely those in M .

For example, consider using this rule to prove the goal:

{B, C} ` X ⊗ (A (Y)

This would result in the following subgoals:

(1) ?S, ?T ` X ⊗ (A (Y)
=⇒ {B, C} ` X ⊗ (A (Y)

(2) ?S ` X

(3) ?T ` A (Y

Subgoal (3) can then be further decomposed using the (-
introduction rule to get the subgoal:

(4) {A}, ?T ` Y

59

To illustrate forward reasoning, we consider having an ac-
tion:

r : (A ⊗ B) (E

When forward reasoning on subgoal (4), any linear re-
sources from the subgoal associated with ?T (subgoal 1) can
be used, namely B and C. This is done by maintaining with
each meta-variable the possible goals and thus resources it is
associated with. In this example, forward reasoning reduces
subgoal (4) to:

{E}, ?T’ ` Y

As illustrated in this example, when forward reasoning is
applied, a new meta variable must be introduced in order to
maintain the lazy division of the linear context. This done
by the ?T’ in the above example, and is performed by our
proof machinery.

Decomposition
We decompose the conclusion of a goal to identify if the
linear context contains the resources necessary to solve it.
Our decomposition algorithm is defined as a recursive tactic
that breaks up the conclusion to try to show that it is made
up of the linear context. Depending on the syntactic form of
the conclusion, it does the following:

1. If the conclusion is not made up of ⊗, (, ⊕, or &, then it
looks at the resources associated with this goal to find one
that realises it (see below). If no resource in the context
realises the given one, then the subgoal is left to be solved
later.

2. If the conclusion is of the form A (B it applies the (-
introduction rule which adds A to the context and requires
that B is then shown. In this case no further decomposition
is performed. Instead it results in a subgoal to be solved.

3. If the conclusion is of the form A ⊗ B, it splits the con-
text lazily, as describe above, and then continues decom-
position on both goals.

4. If the conclusion is of the form A ⊕ B, both the ⊕-
introduction rules can be applied. The tactic searches over
further decomposition of both possibilities.

5. If the conclusion is of the form A & B, it apples the &-
introduction rule which results in two subgoals. Decom-
position continues on both subgoals.

A resource A realises B if they unify, or if A is of the form
A1 & A2 and B realises either A1 or A2. This effectively
allows the choice of between A1 and A2 to be performed
lazily. This is supported by the following derived rules:
fstL: "{A}, T ` C =⇒ {A & B}, T ` B"
sndL: "{B}, T ` C =⇒ {A & B}, T ` B"

Similarly, we also allow searching for resources in the con-
text to include those in the non-linear context.

Forward Reasoning
Forward reasoning involves applying a rule whose premises
unify with some (or all) of the resources available in a goal
sequent and introduces the conclusion of the rule as a new

resource. It is performed using the following derived varia-
tion of the modus-ponens rule for (:
(1){} ` A (B (2)T ` A (3)S, T = M (4){B}, S ` C

M ` C
Subgoal (1) is typically proved trivially by using axiom that
specifies the action. Subgoal (2) is proved by decomposi-
tion, which instantiates T . Subgoal (3) is solved using a
generic multiset equation solver which instantiates S to be
the remaining resources. This leaves only subgoal (4) re-
maining, on which the proof attempt then continues.

As well as forward reasoning with actions, we also per-
form some decomposition of compound resources in the lin-
ear context. In particular, when this context contains re-
sources of the form A ⊕ B, we apply the ⊕-elimination
rule which results in two further subgoals, one with A in the
context and the other with B. Resources of the form A ⊗
B are always decomposed using ⊗-elimination to give both
resources. Those of the form A & B, are not decomposed.
Instead, as mentioned earlier, they are included in the search
for resources during backward decomposition of the conclu-
sion. We assume that actions and resources in the non-linear
context are either already decomposed, or are representing
actions and thus of the form A (B, and therefore are ap-
plied by forward reasoning.

6. Planning by Proof Search with Tactics
Using the forward and backward reasoning tactics, we can
easily define a tactic that acts as a simple planner. This
searches by forward chaining interleaved with attempted de-
composition to see if the goal sequent can be solved.

Our planning tactic searches breadth-first, depth-first, or
using iterative deepening, over all possible applications of
forward reasoning. The breadth-first search is complete for
problems in the STRIPS fragment of ILL extended with non-
deterministic resources: if there is a plan, a plan is found.
Furthermore, it finds the smallest such plan, in terms of the
number of actions, first.

A modification of this approach suggested by Kanovich
and Vauzeilles (2001) provides a decision procedure. This
highlights one of the main features of our approach: be-
cause planning is proof search, it can be developed incre-
mentally while avoiding soundness issues. This separation
of concerns gives rise to succinct code for planning search
strategies that can easily be extended. For example, to write
the breadth first search strategy required only 8 lines of ML
code.

Example: The Synthesis of Workflows
Many web and grid-service workflows are currently created
by writing programs in scripting languages that move data
between the services. When such workflows involve ex-
pensive combinations of services, it is important to avoid
errors in the composition. Providing machinery to create
robust verified workflows is thus an important area of re-
search (Bundy, Smaill, and Yang, 2003).

Planning has previously been used to automate Grid-
service composition (Gil et al., 2004). However, we ob-
serve that limitations in the expressivity of planning systems

60

requires hand-coding characteristics of the solution in the
problem specification. In particular, they do not allow the
creation of new objects. Furthermore, planning systems typ-
ically are not engineered so that the correctness of the out-
put depends only on a small trusted logical kernel. Thus the
whole system must be trusted. Our proposed approach al-
lows some extra expressiveness, and has a small fixed trusted
code base thus giving an improved guarantee of the correct-
ness of the synthesised plans.

Workflows for Proof Transformation Services. We look
at an example workflow problem, presented in Zimmer et al.
(2004), that integrates different proof tools. The approach
they take is to give each proof system a formal description
by specifying it in terms of its input and output parameters
and conditions. A brokering agent then attempts to meet a
service request by creating a workflow that combines the dif-
ferent proof tools available. It is this brokering agent which
we model in our framework. Although Zimmer et al. (2004)
were able to synthesise suitable workflows using a planner,
to do this they had to manually introduce a number of unique
dummy objects before planning. These were needed to rep-
resent the objects created by services. If this number is not
chosen correctly, then no plan can be found.

In our framework, services are represented by actions of
the form A (B, where A is the kind the input used and
B is the result. Following the presentation of Zimmer et al.
(2004), we consider the following services: CNF conver-
sion, provided by the tramp service; first order resolution
theorem proving, using otter and vampire; and the con-
version of a resolution proof into a natural language one,
which is done by the prex system. The brokering agent
starts by placing the goal within a context containing these
services. For example, to synthesis a service that given a
conjecture, will find a natural language description of its
proof, the following goal is given to our system:
{} ` ?p : (! conj x) (nl proof x

where x is a formula and conj x denotes an resource that
states this as a conjecture. For its part, nl proof x is a
resource that describes a proof of x in natural language. We
make the conjecture a non-linear resource as we want to be
able to use it arbitrarily many times. The available resources
are:
tramp : conj x (cnf x
otter : cnf x (res proof x
vampire : cnf x (res proof x
prex : conj x ⊗ res proof x (nl proof x

This allows our planner to find both of the obvious work-
flows, which once pretty printed give the following instanti-
ations for the variable ?p:

(1)lam c. let! c’ = c in
prex (ivar c’, otter (tramp (ivar c’)))

(2)lam c. let! c’ = c in
prex (ivar c’, vampire (tramp (ivar c’)))

where we write the ILL “app” as an infix space, tensor as
“,”. Also, we use let! x = p in t for let bang p
x t, as it more closely resembles the pattern matching style
of functional programming.

7. Conformant and Contingent Planning using
Constraints

When planning in the presence of indeterminacy, a distinc-
tion is made between conformant planning, where the re-
sultant plan is executed regardless of the indeterminate out-
comes, and where, therefore, no sensing is needed; and con-
tingent planning, where plan execution is made conditional
on the outcomes of the various sensor output.

In our formalisation, this distinction can be made easily
by attaching a condition on the extracted proof terms. The
key rule is that of ⊕-elimination:

{a : A}, T ` (c1 a) : C {b : B}, T ` (c2 b) : C
⊕E

{z : A⊕B}, T ` case or a′ b′. (var z) (c1 a′) (c2 b′) : C

where a, b, and z are fresh in T. This deals with case analy-
sis during execution on a resource of the form A ⊕ B; the
rule allows distinct proof terms, c1 and c2 above, to be used
as depending on which of A or B is the case. This nat-
urally provides contingent planning. We introduce a new
meta-logical condition to require a conformant plan. This is
expressed as a derived form of ⊕-elimination:

{a : A}, T ` (c1 a) : C {b : B}, T ` (c2 b) : C
⊕E2

{z : A⊕B}, T ` case or a′ b′. (var z) (c1 a′) (c2 b′) : C

Using this derived rule instead of the usual ⊕-elimination
and checking that the constraint subgoals conformant
c1 c2 is proved ensures that the synthesised plans are con-
formant. This illustrates the ability to attached constraints
beyond those arising from higher-order unification.

For its part, the constant conformant is an recursively
defined predicate over terms and can be varied depending
on the desired notion of conformant. A selective use of ⊕-
elimination with the conformant version allows us to mix
the two approaches if required, for example if sensors are
available for some contingencies and not for others.

Example: The Socks Problem
We now illustrate conformant and contingent planning with
a simple example. The problem is to get a pair of socks from
the back of a chest. Because of the location of the socks,
their colour cannot be seen until they are taken. The two-
colour version of this problem is when there are only black
and white socks.

We formalise this problem by having a sequent where the
available linear resources are the socks at the back of the
chest. We have a single action which is that of picking a
hidden sock the effect of which is to remove a hidden sock
and add either a black sock or a white one. The conclusion
of the goal sequent is the desired state, namely to have either
two black socks or two white socks. For instance, the prob-
lem with three hidden socks is formalised as the following
goal sequent:

h1 : hidden, h2 : hidden, h3 : hidden
` ?p : (black ⊗ black ⊗ top)

⊕ (white ⊗ white ⊗ top)

61

where we use top to allow solutions containing more socks
than are needed. The action of picking a sock is specified as:

pick : hidden ((black ⊕ white)

When we use contingent planning, we get many different
possible instantiation for ?p. For instance, the normalised
version of a plan that looks at each sock after picking it is:

case or (pick h1)
(λb1. case or (pick h2) (λb2. b1⊗b2⊗h3)
(λw2. case or (pick h3)

(λb3. b1⊗b3⊗w2) (λw3. w2⊗w3⊗b1)))
(λw1. case or (pick h2)
(λb2. case or (pick h3)

(λb3. b2⊗b3⊗w1) (λw3. w1⊗w3⊗b2))
(λw2. w1⊗w2⊗h3))

If we only allow conformant planning, we find a strict subset
of the contingent plans. For the above problem, the follow-
ing plan is found:

case or (pick h1)
(λb1. case or (pick h2)

(λb2. case or (pick h3)
λb3. inl b1⊗b2⊗b3)

λw3. inl b1⊗b2⊗w3))
(λw2. case or (pick h3)

(λb3. inl b1⊗b3⊗w2)
(λw3. inr w2⊗w3⊗b1)))

(λw1. case or (pick h2)
(λb2. case or (pick h3)

(λb3. inl b2⊗b3⊗w1)
(λw3. inr w1⊗w3⊗b2))

(λw2. case or (pick h3)
(λb3. inr w1⊗w2⊗b3)

(λw3. inr w1⊗w2⊗w3)))

This plan picks three socks and then checks the possible
outcomes. Because in each case there will either be two
black socks or two white ones, this plan solves the specifi-
cation. Contingent planning would also find the plans where
each sock is examined after it is picked.

8. Attaching Constraints to Synthesis
Nareyek et al. have argued for a closer integration between
planning and constraint satisfaction (Nareyek et al., 2005).
Our formalism provide an approach to this integration by
allowing constraints to be attached to planning as extra sub-
goals. These extra constraint goals can then be checked dur-
ing planning to prune the search, or at the end of planning to
remove certain results and force backtracking.

Example: Scheduling a Fried Breakfast
We show the integration of constraints with an example of
a scheduling problem for cooking a fried breakfast. We
consider the problem of having two frying pans and want-
ing to cook eggs, bacon, tomatoes, and mushrooms, within
seven minutes. We represent a frying pan as being free at a
time x with pan(x). Cooking each item of the breakfast
then takes a pan at some point in time, the ingredient being
cooked and gives back the cooked ingredient and the pan
noted as free at a later time:

cook egg : pan(x) ⊗ egg
(pan(x+1) ⊗ c egg

cook bacon : pan(x) ⊗ bacon
(pan(x+3) ⊗ c bacon
cook tomatoes : pan(x) ⊗ tomato
(pan(x+4) ⊗ c tomatoes

cook mushrooms : pan(x) ⊗ mushrooms
(pan(x+3) ⊗ c mushrooms

We use c X to represent that X is cooked. Because our for-
malism does not contain a notion of universal quantification
within ILL, we represent these actions as constants and as-
sume that they are derivable without any context. For exam-
ple, the assumption that we can cook eggs is:

∀x. {} ` cook egg : pan(x) ⊗ egg
(pan(x+1) ⊗ c egg

With an ILL universal quantifier the above can also be rep-
resented in the non-linear context.

We then use our planner to tackle the goal which is repre-
sented as:

{egg, bacon, tomatoes, mushroom,
pan(0), pan(0)}
` ?p : c egg ⊗ c bacon ⊗ c tomatoes
⊗ c mushrooms ⊗ pan(?y) ⊗ pan(?z)
∧ ?y < 7 ∧ ?z < 7

When ?y and ?z are instantiated, we check the two ad-
ditional goals to ensure that the final plan meets the added
constraint. To constrain the search during synthesis we can
define a HOL predicate that examines the goal sequent and
ensures that in every occurrence of pan(x), the constraint
x < 7 is true. We use Isabelle simplifier to check if the
constraint holds.

Another approach we have examined is to constrain the
search by adding timing information into the proof term and
then constrain ?p. This requires fully instantiating ?p with
a dummy constant in order that the HOL predicate can then
be computed.

9. Further Work
The work presented in this paper can be extended by for-
malising the execution of proof terms, which can be re-
lated to normalisation of plans. Another interesting avenue
of further work would be to extend our formalisation of
ILL by adding quantifiers and iteration, following the work
of Cresswell (2001).

Our planner could be applied to various applications and
could be combined with a system for executing workflows.
One suitable candidate is Zimmer’s mathematical services
system. Another application is in the parsing of natural
language, following the approach proposed by (Steedman,
2002).

We intent to further explore the automation of planning
problems which allow entities to be created and destroyed
by actions. This can be easily expressed in ILL and takes
us outside the formalism of STRIPS with non-deterministic
actions; §8. gives such an example.

Another area of future work is to improve the efficiency
of automation. Although our framework is more expressive,

62

the speed of proof search in Isabelle results in planning be-
ing many orders of magnitude slower than other planners.
Improvements to efficiency can be made by including fur-
ther heuristic information in the synthesis of plans, or by us-
ing existing planners as an ‘oracle’ and verifying the result.
The ‘oracle’ approach (Harrison and Théry, 1998) would use
an efficient planner to search for the plans and simply check
the plans are valid using our proof machinery. For proof
search within Isabelle, we also intend to implement further
symmetry removing techniques along the lines of Andreoli
(1992).

There has been significant work on interfaces for inter-
active proof assistants, with various approaches to manag-
ing user interaction, such as Aspinall and Kleymann (2004);
Dixon (2005). Thus, a natural avenue of further work is to
consider how such interfaces could be used for interaction
with a planner, and more generally in the field of mixed ini-
tiative planning (Burstein and McDermott, 1996).

10. Conclusions
We have formalised ILL as an embedding in Isabelle/HOL
where both terms and types are HOL datatypes and deriv-
ability in ILL is defined as membership of an inductively
defined set.

We interpret the ILL proof terms as plans and provide
tactics to perform basic planning steps within our formal-
isation. This extends other planning formalisms by allow-
ing the introduction of new objects as well as their removal,
supporting non-deterministic resources, and allowing con-
ditions to be attached to planning. Unlike previous work
using linear logic for planning, we use the proof terms for
the non-deterministic resources to support synthesis of both
contingent and conformant plans. Moreover, our synthesis
framework separates the proof search from the logical rep-
resentation which allows it to employ the LCF methodology
for extending automation while preserving soundness. The
synthesised plans have been verified by a small logical ker-
nel of trusted code and they can easily be checked by a small
independent type-checking program.

Tactics for forward and backward reasoning have been
defined and combined to provide fully automatic planners.
These have been applied to the synthesis of workflows for
combining theorem proving systems. We have also shown
how integrating constraints on the derived plans can be done
using the existing theories of Isabelle/HOL. We also apply
these techniques to solve the socks problem illustrating how
plans with disjunctions can be handled in both a contingent
and conformant manner. This has also been used to solve
a scheduling problem where the attached constraints were
used to reduce the size of the search space during planning.

Although our framework is very expressive, planning is
slow. This is because we are working in an interpreted envi-
ronment and, although we avoid context splitting, our proof
search algorithm is otherwise naive. Approaches to improve
this include the use of existing planners as oracles (Harrison
and Théry, 1998), so that verifiation of the plan would sim-
ply be type-checking, and the development of more efficient
proof search for ILL.

We have thus provided a platform for the exploration of
the relationship between ILL specifications, proof terms,
planning problems and planning algorithms implemented as
proof search.

References
Abramsky, S. 1993. Computational interpretations of linear

logic. Theor. Comput. Sci. 111(1–2):3–57.

Andreoli, J. M. 1992. Logic programming with focusing
proofs in linear logic. J. Log. Comp. 2(3):297–347.

Aspinall, D., and Kleymann, T. 2004. Proof General Man-
ual. University of Edinburgh, proofgeneral-3.5 edition.

Barber, A. 1997. Linear Type Theories, Semantics and Ac-
tion Calculi. Ph.D. Dissertation, University of Edinburgh.

Berghofer, S., and Nipkow, T. 2000. Proof terms for simply
typed higher order logic. In TPHOLs ’00: Proceedings
of the 13th International Conference on Theorem Proving
in Higher Order Logics, 38–52. London, UK: Springer-
Verlag.

Bundy, A.; Smaill, A.; and Yang, B. 2003. Formalising
the grid - the 1st step to automate grid application assem-
bly using deductive synthesis. In Proceedings of UK e-
Science Second All Hands Meeting, 337–341.

Burstein, M. H., and McDermott, D. V. 1996. Issues in the
development of human-computer mixed-initiative plan-
ning systems. Cognitive Technology: In Search of a Hu-
man Interface 20.

Cervesato, I., and Pfenning, F. 2002. A linear logical frame-
work. Information & Computation 179(1):19–75.

Cervesato, I.; Hodas, J. S.; and Pfenning, F. 2000. Efficient
resource management for linear logic proof search. Theor.
Comput. Sci. 232(1-2):133–163.

Cresswell, S. 2001. Deductive Synthesis of Recursive Plans
in Linear Logic. Ph.D. Dissertation, University of Edin-
burgh.

de Groote, P. 1995. Linear logic with Isabelle: pruning the
proof search tree. In CADE’95. Springer-Verlag LNCS
814.

Dixon, L.; Smaill, A.; and Tsang, T. 2009. Plans, actions and
dialogue using linear logic. Journal of Logic, Language
and Information 18(2):48.

Dixon, L. 2005. Interactive and hierarchical tracing of tech-
niques in IsaPlanner. ENTCS: User Interfaces For Theo-
rem Provers 13.

Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972. Some new
directions in robot problem solving. In Machine Intelli-
gence 7. Edinburgh University Press. 405–430.

Gil, Y.; Deelman, E.; Blythe, J.; Kesselman, C.; and Tang-
munarunkit, H. 2004. Artificial intelligence and grids:
Workflow planning and beyond. IEEE Intelligent Systems
19(1):26–33.

Girard, J.-Y. 1987. Linear logic. Theor. Comput. Sci. 50:1–
102.

63

Gordon, M. J.; Milner, A. J.; and Wadsworth, C. P. 1979.
Edinburgh LCF - A mechanised logic of computation, vol-
ume 78 of LNCS. Springer-Verlag.

Große, G.; Hölldobler, S.; and Schneeberger, J. 1996. Linear
deductive planning. J. Log. Comput. 6(2):233–262.

Harland, J., and Pym, D. J. 2003. Resource-distribution via
boolean constraints. ACM Trans. Comput. Log 4(1):56–
90.

Harrison, J., and Théry, L. 1998. A skeptic’s approach to
combining HOL and Maple. Journal of Automated Rea-
soning 21:279–294.

Hodas, J. S., and Miller, D. 1994. Logic programming in
a fragment of intuitionistic linear logic. Information and
Computation 110(2):327–365.

Ishtiaq, S. S., and Pym, D. J. 1998. A relevant analysis of
natural deduction. J. Log. Comput. 8(6):809–838.

Jacopin, E. 1993. Classical AI planning as theorem proving:
The case of a fragment of linear logic. In AAAI Fall Sym-
posium on Automated Deduction in Nonstandard Logics,
62–66.

Kalvala, S., and de Paiva, V. 1995. Mechanizing linear
logic in Isabelle. In 10th International Congress of Logic,
Philosophy and Methodology of Science.

Kanovich, M. I., and Vauzeilles, J. 2001. The classical AI
planning problems in the mirror of horn linear logic: se-
mantics, expressibility, complexity. Mathematical Struc-
tures in Computer Science 11(6):689–716.

Kautz, H. A., and Selman, B. 1992. Planning as satisfiabil-
ity. In ECAI’92.

Küngas, P. 2002. Resource-conscious AI planning with con-
junctions and disjunctions. Acta Cybernetica 15:601–620.

Levesque, H.; Pirri, F.; and Reiter, R. 1998. Foundations for
a calculus of situations. Linkoping Electronic Articles in
Computer and Information Science 3(18).

Lincoln, P.; Mitchell, J. C.; Scedrov, A.; and Shankar, N.
1992. Decision problems for propositional linear logic.
Ann. Pure Appl. Logic 56(1-3):239–311.

López, P., and Polakow, J. 2004. Implementing efficient
resource management for linear logic programming. In
LPAR, volume 3452 of LNCS, 528–543. Springer.

Masseron, M. 1993. Generating plans in linear logic II:
A geometry of conjunctive actions. Theor. Comput. Sci.
113:371–375.

Nareyek, A.; Freuder, E. C.; Fourer, R.; Giunchiglia, E.;
Goldman, R. P.; Kautz, H.; Rintanen, J.; and Tate, A.
2005. Constraints and ai planning. IEEE Intelligent Sys-
tems 20(2):62–72.

Paulson, L. C. 1994. Isabelle: A Generic Theorem Prover.
LNCS 828.

Steedman, M. 2002. Plans, affordances, and combinatory
grammar. Linguistics and Philosophy 25(5-6):723–753.

Urban, C., and Tasson, C. 2005. Nominal techniques in
Isabelle/HOL. In CADE, volume 3632 of LNCS, 38–53.
Springer.

Zimmer, J.; Meier, A.; Sutcliffe, G.; and Zhang, Y. 2004. In-
tegrated proof transformation services. Technical report,
RISC.

64

