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Abstract

We present a new approach for finding conditional plans with
loops and branches for planning in situations with uncertainty
in state properties as well as in object quantities. We use a
state abstraction technique from static analysis of programs to
builds such plans incrementally using generalizations of input
example plans generated by classical planners. Preconditions
of the resulting plans with loops are computed by analyzing
the changes in the counts of objects of different types across
each loop. The scope and scalability of this approach are
demonstrated using experimental results on common bench-
mark domains.

Introduction
Over the history of AI Planning, the focus of research has
been on efficiently finding linear sequences of actions that
take a specific problem state to a goal state. Recent work
on more expressive representations like plans with loops
(Levesque 2005; Winner & Veloso 2007) and high level do-
main knowledge (Baier, Fritz, & McIlraith 2007) has shown
the potential of vast improvements in the scope and per-
formance of planning techniques. As an example, con-
sider a recycling robot that must pick up objects from a
set of bins, perform a sensing action to determine recy-
clability, and store them in appropriate containers. Us-
ing tree-structured conditional plans–a common representa-
tion in conditional planning (Hoffmann & Brafman 2005;
Bryce, Kambhampati, & Smith 2006)–makes the solutions
exponential in the number of objects and limits these ap-
proaches to small “toy” problems. In contrast, algorithm-
like plans that may include loops offer a compact solution
to the recycling problem, which consists of a single loop
with conditional branches that depend on the type of ob-
ject. While the benefits of such representations have become
clear, there has been relatively slower progress in finding
such plans and more importantly, in proving their correct-
ness or finding their preconditions.

In this paper, we present approaches for computing
program-like plans that work in multiple situations, and for
determining when such plans will work. This area of re-
search inherently involves problems in both verification and
planning; in particular, the work presented in this paper ad-
dresses two broad problems: (1) Verification of plans with
program-like structure with loops and branches (by deter-
mining their preconditions), and (2) Generation of plans
with such structure for solving multiple problem instances
that could vary in the numbers of objects.

Our approach finds plans with branches and “nested”
loops, and their preconditions by generalizing and combin-
ing multiple, small plans, generated rapidly using a clas-

sical planner. In order to do so, we use state abstraction
techniques developed for a system for static analysis of pro-
grams, TVLA (Sagiv, Reps, & Wilhelm 2002), in the pre-
viously unexplored direction of learning generalized plans
with preconditions. More precisely, we use these tech-
niques to recognize loop invariants while generalizing ex-
ample classical plans, and to determine the right positions
for merging generalizations of different example plans. Fi-
nally, we use a novel algorithm for finding preconditions for
some classes of plans with nested loops and branches. To
our knowledge, this is the first approach for computing and
analyzing plans with such loop and branch structures.

The notion of using abstract states or belief states (Bonet
& Geffner 2000) to represent sets of real world states is
central to our approach. We begin by summarizing the
relevant aspects of the abstraction mechanism we use and
how we adapt it for action application in planning prob-
lems in the following section. The interested reader is
referred to the TVLA system (Sagiv, Reps, & Wilhelm
2002) and the authors’ prior work for further details on the
framework (Srivastava, Immerman, & Zilberstein 2008b;
2008a). We also introduce our mechanism of sensing ac-
tions and observations in the following section. An overview
of the overall approach is presented in the section on find-
ing conditional plans with loops. This section also summa-
rizes an algorithm for generalizing example plans by find-
ing loops (Srivastava, Immerman, & Zilberstein 2008b) and
presents new methods for merging segments of generalized
example plans together. Finally, we present our new ap-
proach for finding preconditions of plans with branches and
loops, and some results from an implementation of the algo-
rithms presented in the paper. A section with proofs of the
main results is included at the end.

Formal Model
We represent states of a domain as traditional (two-valued)
logical structures over a domain-specific vocabulary of pred-
icates. A state thus consists of a universe of objects, and for
every predicate, a set of object-tuples satisfying it. Domains
may include first-order integrity constraints that must be sat-
isfied in all instances of the domain. We use the terms “state”
and “structure” interchangeably.

Each action is specified as a first-order formula defining
its precondition, and a set of update formulas defining the
new value of each predicate. Equation 1 shows the update
formula for predicate pi where ∆+

i (∆−i ) specify when pi(x̄)
will be changed to true (false) by the action.

p′i(x̄) := (¬pi(x̄) ∧∆+
i ) ∨ (pi(x̄) ∧ ¬∆−i ) (1)

This first order representation of planning is very standard
from a logical point of view and can be easily translated to
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frame axioms for actions and to successor state axioms in
the situation calculus. However, instead of using theorem
proving to derive the effects of an action, we use the much
more efficient method of formula evaluation on structures.
Example The recycling problem can be mod-
eled using the following vocabulary: V = {bin1,
visited1, object1, collected1, empty1, container1, forPaper1,
forGlass1, in2, isPaper1, isGlass1, robotAt1}. An ex-
ample structure, S, can be described as follows:
the universe, |S| = {b, o, c1, c2}, binS = {b},
objectS = {o}, containerS = {c1, c2}, forPaperS = {c1},
forGlassS = {c2}, inS = {(o, b)}, isPaperS = {o},
robotAtS = {b}, visitedS = {b}. We omit the predicates
not satisfied by any tuples.

Integrity constraints for the recycling domain would in-
clude among others the formula ∀uvw(in(u, v)∧in(u,w)→
(v = w∧(bin(v)∨container(v)))) meaning that each object
can be in at most one bin or container.

To keep the presentation of the running example very sim-
ple, we assume here the artificial integrity constraint that no
bin contains more than one object. The goal condition is that
all bins are empty: ∀x(bin(x)→ empty(x)).

The precondition and updates for the action collect(o, c)
are:

(isGlass(o) ↔ forGlass(c)) ∧ container(c) ∧
∃b(bin(b) ∧ in(o, b) ∧ robotAt(b))

in′(u, v) := (in(u, v) ∧ u 6= o) ∨
(¬in(u, v) ∧ u = o ∧ v = c)

empty′(u) := empty(u) ∨ in(o, u)
collected′(u) := collected(u) ∨ o = u

State Abstraction Using 3-valued Logic
We represent belief states as in Srivastava, Immerman, &
Zilberstein (2008b), which in turn is based on the abstrac-
tion methodology of TVLA (Three Valued Logic Analyzer),
a system for the static analysis of programs (Sagiv, Reps, &
Wilhelm 2002). We represent potentially infinite sets of sim-
ilar concrete structures using an (abstract) 3-valued struc-
ture, where the truth value of a tuple being in a relation may
be 1 (present), 0 (not present), or 1

2 (perhaps present). The
universe of an abstract structure may include summary el-
ements, each of which denotes an arbitrary non-zero num-
ber of objects. We draw summary elements using double
circles; relations with truth value 1

2 are drawn using dotted
edges, those with truth value 1 are drawn using solid edges
and those with truth value 0 are not drawn.

For example, in Fig. 1 the abstract structure Sa contains
two summary elements, b, p. Intuitively, Sa represents (or
“embeds”)1 any concrete structure that contains one or more
non-empty bins, (since empty is not written it is false), one
or more paper objects, and one glass object. Since concrete

1Formally we say that structure S represents structure T (equiv-
alently, T is embeddable in S), S w T , iff there is an onto function
f from the universe of T onto the universe of S such that for any
relation symbol Rk, and any elements, t1, . . . , tk of T , the truth
value of R(f(t1), . . . , f(tk)) in S, generalizes the truth value of
R(t1, . . . , tk) in T ( 1

2
generalizes anything whereas 0 and 1 only

generalize themselves).

p

Sa

g

b

bin

obj; isGlass

obj; isPaper

in

in

S1

1b

2b

bin obj; isGlass

g
in

1b

obj; isGlass

g

2b

bin

S2

3b

1p
1p

2p

obj; isPaper

2p

obj; isPaper

bin

in

bin

bin

obj; isPaper

in

in

in

obj; isPaper

Figure 1: Abstraction for representing belief states
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Figure 2: Focus and coerce.

structures must satisfy the integrity constrains, we know that
each bin contains exactly one object and no object is in more
than one bin. Two structures represented by Sa are drawn
at the top of Fig. 1. The set of all concrete states repre-
sented by Sa is denoted γ(Sa). Recall that all states of a
domain are required to satisfy the integrity constraints, I.
Thus, γ(Sa) = {S |Sa w S;S concrete; S |= I}.

Given a domain, we choose a set, A, of unary predicates
to be the abstraction predicates. (All the unary predicates in
our examples are abstraction predicates.) We define the role
of an element of a structure to be the set of abstraction pred-
icates it satisfies. In Fig. 1, the role of p is {obj,isPaper}.

The canonical abstraction of a concrete structure, S#, is
the least general abstract structure S that represents S# and
has definite truth values for each abstraction predicate (Sa-
giv, Reps, & Wilhelm 2002). This is computed simply by
collapsing all elements of each role to one element of that
role. The collapsed element is a summary element if there
were multiple elements with that role in S#. Truth values of
tuples involving summary elements in S are the most spe-
cific generalizations of the truth values of tuples they repre-
sent in S#. (In Fig. 1 Sa is the canonical abstraction of S1,
and of S2.) Maintaining a set of abstract structures is an ef-
ficient way to model belief states with uncertainty in object
quantities. Note that even though they typically represent in-
finite collections of concrete states, each canonical abstract
structure contains at most 2a elements where a = |A|, the
number of abstraction predicates.

Action Application on Belief States
Since we represent belief states using three-valued struc-
tures, we can safely apply the (first-order) definitions of the
action operators directly to the current belief state to derive
the new belief state after the action has been applied. For
action, a, and abstract or concrete structure, T , let τa(T )
denote the result of applying action a to T .
Fact 1 If S represents S# then τa(S) represents τa(S#).
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(Sagiv, Reps, & Wilhelm 2002).
Fact 1 should give the reader an idea of the power and gen-

erality of the TVLA abstraction methodology. However, to
make this useful, we have to make sure that the belief states
stay as precise as possible as we repeatedly apply actions,
i.e., we want to maintain definite truth values (0,1) when-
ever possible. We sketch this process here (see Srivastava,
Immerman, & Zilberstein(2008) for details).

While the abstraction is convenient for succinctly repre-
senting a large set of possible concrete structures, the de-
signers of TVLA have observed that before an action is ap-
plied, it is useful to view the arguments of the action in more
detail. They thus introduced the focus operation: given an
abstract structure, S, and a formula, φ, with at most one free
variable, focus(S, φ) produces a set of structures S1, . . . , Sk
that represent the same set of concrete structures as S, i.e.,
γ(S) = γ(S1)∪ · · · ∪ γ(Sk), but such that the truth value of
φ is definite in Si, i = 1, . . . k.

Given an action a, we automatically generate a set of rel-
evant focus formulas, φ1, . . . , φt and focus with respect to
all of these. We then apply τa to the relevant structures,
thus preserving precision. We use the TVLA function co-
erce to refine or remove any structures that do not satisfy
the integrity constraints. Finally, we canonically abstract the
result structures to return to the standard, abstract represen-
tation, no longer focusing on φ1, . . . , φt.

In Fig. 2, a simple example of focus is shown, where we
are focusing on the formula φ(x) whose meaning might be
that x is the unique argument on which action a will be ap-
plied. On the top line, structure S0 is shown consisting of a
single summary element where φ has truth value 1

2 . When
we focus on φ the result is the three structures on the right
representing the situations where φ has definite truth values
and holds for all, some, and none of the elements of the uni-
verse, respectively. In the lower line, in the presence of the
integrity constraint saying that φ must hold for a unique ele-
ment of the universe, coerce removes S3 and refines S1 and
S2. This bottom line shows how we use focus and coerce to
draw-out action arguments from their summary elements.
Observation Model and Sensing Actions Conditional
plans deal with uncertainty in predicates in the agent’s be-
lief state using observation or sensing actions (Bonet &
Geffner 2000; Hoffmann & Brafman 2005). In our formu-
lation, sensing actions consist of preconditions and action
updates like regular actions. However, the action-specific
focus formula for a sensing action is the formula that the
action needs to sense. The action specific focus opera-
tion for sensing actions thus takes an abstract state and re-
turns a set of more precise belief states corresponding to
the different possible definite truth values of the formula
being sensed. For instance, the recycling domain has only
one sensing action applicable on a drawn-out chosen bin
marked with the new (not in the domain’s vocabulary) ab-
straction predicate chosen: senseType(), with the focus for-
mula ∃x(chosen(x)∧in(o, x)). When applied to an abstract
structure Sa, it returns versions of Sa with different possible
combinations of definite truth values for tuples ( , b) being
in the in relation, where b satisfies chosen.

In addition to uncertainty about predicates, we assume

that the agent gets limited information about object quan-
tities after each action: it can only determine whether there
are zero, exactly one, or more than one objects of each role.

Plan Representation and Execution
We represent conditional plans similar to finite state con-
trollers, using directed graphs whose nodes are labeled with
abstract structures and edges are labeled with actions. Edge
labels may also include conditions (with the default condi-
tion True) under which they may be taken. Execution begins
at one of the pre-defined start nodes whose structure embeds
the agent’s initial belief state. At any stage during the plan
execution a program-counter (initialized with the start node)
labels the active node. The labels of outgoing edges from
each node represent the next possible actions. At each step
in plan execution one of these actions (say a) for the active
node (say n) whose preconditions are satisfied is executed.
A neighboring node (connected to n by an edge labeled a)
whose structure embeds the resulting belief state becomes
the new active node. At any stage, if the next action cannot
be carried out, or if a valid node embedding the result state
cannot be found, the plan execution ends. A conditional plan
solves a concrete state S# if every allowed execution of the
plan-steps on S# starting at an allowed start node ends at a
state satisfying the goal; the plan solves a belief state S if it
solves every S# ∈ γ(S) from which the goal is reachable.

Finding Conditional Plans with Loops
Given a set of domain-specific actions, integrity constraints,
a goal formula, and an initial belief state Sinit, our objective
is to find a conditional plan solving the initial belief state
Sinit. Alg. 1 provides an overview of our approach. Its in-
put is an initial set of concrete (linear) example plans, and
for each plan in this set, a concrete member of Sinit that it
solves.

In the recycling problem for instance, an input example
plan could use the sensing actions determining each object’s
type, but may only work when the type is found to be “pa-
per” (Fig. 3(a)). Such example plans can be provided from
prior experience. Alternatively, given an abstract structure
S0 representing initial states, they can be generated by exist-
ing classical planners as follows: (a) create a concrete mem-
ber state S#

0 ∈ γ(S0) with specific truth values for the un-
observed predicates. The number of universe elements in
S#

0 corresponding to a summary element in S0 can vary; in
this paper we used a heuristic process to add at least six ele-
ments in S#

0 for every summary element in S0. (b) make the
appropriate sensing actions for the unobserved predicates as
prerequisites for actions that use those predicates (c) solve
this problem instance using a classical planner like FF (Hoff-
mann & Nebel 2001).

The first while loop in Alg. 1 incrementally processes
example plans from EgPlans. In this loop, each example
plan is first generalized using the technique developed by
(Srivastava, Immerman, & Zilberstein 2008b), resulting in a
generalized trace t, possibly with loops (Fig. 3(a,b,c)). This
process is summarized below. Following generalization, the
Merge algorithm adds segments of the generalized trace t
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Algorithm 1: Generalizing and merging examples
Input: EgPlans = {π1 : S1, π2 : S2, . . .}
Output: Plan Π
Π← ∅
while there is a πi : Si ∈ EgPlans do

Remove πi : Si from EgPlans
tracei ← generalize(πi, Si)
Merge(Π, tracei)
if EgPlans = ∅ and proactiveMode then

looseEnds = getUnhandledStrucs(Π)
while looseEnds 6= ∅ do

Remove S0 ∈ looseEnds
π0 ←invokeClassicalPlanner(S0)
EgPlans← EgPlans ∪(π0 : S0)

return Π

to relevant points in the existing plan Π (initialized with
an empty graph) while minimizing new edges (Fig. 3(d,e)).
When all members of EgPlans have been processed, Alg. 1
can invoke a classical planner to generate new, directed ex-
ample plans under a “proactive” mode. In order to do this,
the domain knowledge should be sufficient to provide possi-
ble effects of actions that were not dealt with in the example
plans. In this mode, Alg. 1 computes abstract structures that
are not solved by Π using getUnhandledStrucs as described
in the following section. Concrete states for each of these
abstract structures are then created, and solved by invoking
a classical planner as described above to create additional
example plans which are added to EgPlans. Partial solu-
tions to these instances are often sufficient (see the results
section).

Generalizing Example Plans
The generalize subroutine finds loops in abstract traces of
sample plans (Srivastava, Immerman, & Zilberstein 2008b).
For clarity, we summarize this process and some key results
about its analysis in this section. We also provide a de-
tailed example incorporating our new sensing actions. The
input to generalize is represented as a pair (π, S#

0 ), where
π = (a1, . . . , an) is a solution plan for the concrete structure
S#

0 . The algorithm proceeds as follows: first, π is modified
to be applicable to abstract states by replacing its actions’ ar-
guments by their roles in the corresponding concrete states,
giving us π′. π′ is then applied to an abstraction S0 of S#

0 ,
keeping only that abstract structure Si at each step which
embeds the state S#

i obtained by π at that step (this is called
“tracing”). Repeated abstract structures in this trace indicate
that certain state properties have recurred. With an appro-
priate abstraction, this means that the same actions can be
applied again, and is taken as a cue for recognizing a loop.
The loop is formed by merging the two abstract structures
in the trace. This process is recursively applied on the re-
mainder of the trace after the loop. Finally, the trace with
multiple loops is returned.

Note that the original tracing process described above re-
jected any structure Si that was not consistent with the result
S#
i in the concrete example. For the purpose of this paper,

these rejected structures are included in the trace as open-
ended nodes with no following actions, and are extracted
by getUnhandledStrucs as a compact representation of situ-
ations that were not handled.
Example Fig. 3(a) shows a plan segment that collects one
object of type paper, moves to the next bin and finds a glass
object. S#

0 is a concrete structure in which more than 2
objects each of type paper and glass have been collected,
and two bins remain to be visited. Two of the actions in
this example, gotoNextBin and senseType, can have multiple
abstract results due to the focus operations described ear-
lier. When applied on an abstract structure with an unknown
number of unvisited bins, the two results of the gotoNextBin
action correspond to whether or not the next bin is the last
unvisited bin, as per the drawing-out operation described
earlier (Fig. 2). The senseType action uses the focus oper-
ation to enumerate the different possibilities for the type of
the object being sensed. Dotted edges in Fig. 3 represent re-
sults of these actions that did not occur in the execution of
the given example plan on S#

0 .
S#

0 ’s canonical abstraction, S0, is identical to S4, the ab-
stract result of collecting another object of type paper. This
is recognized during tracing (Fig. 3(b)) and a loop is formed
by attaching the “collectPaper()” edge to S0 (Fig. 3(c)). The
following action edge (gotoNextBin()) from S#

4 however, is
not merged with the edge between S0 and S1 because S#

5
and its abstraction S5 do not have any elements with the role
of “unvisited bins”, thus differing from S1.

In a fairly general setting (“extended-LL” domains), exact
effects of plans with simple loops are determined by easy-
to-compute linear functions on role-counts, or, the number
of elements with a certain role in a structure. This is done
by determining the conditions because of which a particular
action branch occurs, and then translating these conditions
into conditions on the start structure. For instance, the result
of gotoNextBin on S0 depends on the number of unvisited
bins. Fig. 3(b) shows these conditions, together with auto-
matically computed changes in the counts of various roles
caused due to the actions. Expressions for net change in
the role-count across any loop determines if the loop makes
progress towards the goal state.

Intuitively, extended-LL domains are those where the
unary predicates of a state are sufficient to determine truth
values of predicates of higher arities involving the drawn-out
objects in that state. The exact relationships between unary
and higher-arity predicates may still differ across different
states. This class of domains captures many interesting plan-
ning problems including the ones discussed in this paper.
For completeness, we repeat the definition of extended-LL
domains below. A formula ϕ is role-specific in S if there
exists a role r such that ϕ(x) =⇒ r(x) in S.

Definition 1 (Extended-LL domains) An Extended-LL do-
main with start structure Sstart is a domain-schema such that
every action a with focus formulas {ψa1 , . . . , ψan

} satisfies
the following conditions: if S is reachable via action up-
dates from Sstart then ∀i, j, we have ψai

role-specific and
either ψai

≡ ψaj
or ψai

=⇒ ¬ψaj
in S.
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Figure 3: Generalization and merging process in the recycling domain. Dotted edges represent results that did not occur in the example.

We conclude this section with a summary of the meth-
ods of analysis of plans with loops presented by Srivastava,
Immerman, & Zilberstein (a detailed proof of this fact is in-
cluded in the appendix):
Fact 2 Given a plan with simple loops over an extended-
LL domain, and a structure node S in the plan, we can com-
pute a set of linear inequalities whose solutions are exactly
the achievable role-counts at S. Each of these inequalities
either of the form r0

k+ l ·δk ◦ C, or rfk = l ·δk+C where r0
k

represents the role-count of role rk upon entering the loop;
rfk is the role-count of rk at S; δk is the (automatically de-
termined) net change in rk due to the loop; l is the number
of iterations of the loop; ◦ is < or =; and C is a known
constant.

If initial role-counts and numbers of loop iterations are
left as variables, these inequalities give the preconditions
for reaching a state with a desired role-count, and can be
computed in time linear in the number of actions in the plan.

Further, action branches in these domains are determined
by linear inequalities on role-counts, and the effect of an
action on the role-count of a structure S is determined by
a linear function of the initial role-counts. The effect of a
loop on role-counts indicates whether or not the loop makes
progress towards the goal.

Merging New Segments Using Open Contexts
Merge (Alg. 2) is a greedy algorithm for combining different
example plans with sensing actions using abstract structures
in generalized traces as representations of possible states, or
contexts in plan execution. Given an example trace ti and
an existing plan Π, Merge uses findMergePoint to find the
earliest structure in ti that is embeddable in a structure in

Algorithm 2: Merge
Input: Existing plan Π, eg trace ti
Output: Extension of Π
if Π = ∅ then

Π← ti
return Π

repeat
mpΠ,mpt ← findMergePoint(Π, ti, bpΠ, bpt)
if mpΠ found and not first iteration then

attachEdges(Π, ti, bpt, mpt, mpΠ, bpΠ)
if mpΠ found then

bpΠ, bpt ← findBranchPoint(Π, ti,mpΠ,mpt)

until new bpΠ or mpΠ not found
return Π

Π. In the current implementation, in order to provide accu-
rate expressions of loop effects, structures within loops in
ti are not considered during this search; those within loops
in Π are allowed (see the following section on analysis for
details). If successful, findMergePoint returns mpΠ and mpt,
the nodes on Π and ti corresponding to these structures. A
successful search indicates that the example trace’s actions
can be successfully executed starting at mpΠ .

However, these actions may not be different from those
following mpΠ in Π. In order to to minimize the new edges
added to Π, after finding the merge points, Merge conducts
a search for a branch point using the procedure findBranch-
Point.

findBranchPoint traverses the edges of ti and Π starting
from the last known merge points mpt and mpΠ, and re-
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Figure 4: Simple loops and shortcuts
turns the first pair of subsequent nodes where ti and Π are
not consistent: i.e., either a pair of nodes such that none of
the successor actions in Π match any of the successor ac-
tions in ti, or, a pair of nodes nt, nΠ such that the structure
in Π (at nΠ) does not embed the structure in the trace (at
nt). This gives us a branch point, or a situation where the
trace behaved differently from the existing plan. In general,
the search for subsequent merge points can range over all
nodes in Π. However, we bias this search towards finding
those merge points for which we can find preconditions as
described in the next section. In the current implementation
this is done using a heuristic of first searching in the list of
nodes in Π that were added after the last branch point in
Π, and then searching in the list of all non-ancestors of the
last branch point. The list of non-ancestors is obtained by
running BFS on Π with its edges inverted, and taking the
complement of the obtained set of reachable nodes.

The overall merge algorithm works by attaching nodes
and edges from the branch point to the merge point (bpt,
mpt) in ti between bpΠ and mpΠ in Π. If a branch point
on Π coincides with the next merge point on Π, the Merge
algorithm introduces a new loop (Fig. 3(d,e)).

Given a generalized plan Π with ΠE edges and a new
trace t with tn nodes, the merge algorithm runs in time
O(ΠE · tn).

Analysis of Loop Effects and Preconditions
In this section we illustrate how to find conditions under
which the execution of certain kinds of nested loops can be
guaranteed to end at a given loop node with given values of
role-counts.

We define a simple loop as a cycle of nodes, and a complex
loop as a strongly connected component that is not a simple
loop. A shortcut in a simple loop is a linear sequence of
actions (no branches) starting with a branch caused due to
a sensing action in the loop and ending at any subsequent
node in the loop that is not after a chosen start node. The
start node can be any node, but is common to all of a loop’s
shortcuts (Fig.4).

Simple loops with shortcuts form a very general class–
many cases of “nested” loops can be translated into such
loops without changing their loop variables or their lim-
its. For instance, perhaps the most common “nested”
loop in programming, for i=1 to n do {for j=1
to k do {xyz}}, can be turned into a single loop over
i with an if statement (a branch) resetting j to 1 and incre-
menting i when j = k is reached. Loops of such kind of

any depth, all doubly nested loops and many other so called
“nested” configurations can be translated in this way.

For ease in exposition we require that the start nodes of
all shortcuts in a simple loop occur at the start node, or oth-
erwise, before the end node of any other shortcut, making
shortcuts non-composable in any single iteration of the un-
derlying simple loop. Non-composability allows us to eas-
ily count the simple loops caused due to shortcuts indepen-
dently while computing their overall effects. For instance,
we can view the loop in Fig. 4(b) as consisting of 3 differ-
ent simple loops. Which loop is taken during execution will
depend on the results of sensing actions a3 and a5.

In the recycling problem for example, (Fig. 3(e)), we get
two loops oriented oriented around S1 as the start node.

Let k1 represent the number of times isPaper branch (cor-
responding to S2) is taken, and k2, the number of iterations
of the loop corresponding to the isGlass branch (with S7).

In each of these two loops, except for the branch at S1,
the conditions for Fact 2 hold, allowing us to determine the
effect of this complex loop on any role r as k1δ

r
1 + k2δ

r
2

where δr1 and δr2 are total changes in r’s role-count due
to the two respective loops. For instance, the change in
role-count for non-empty, unvisited bins r1 = {bin} is
k1(−1) + k2(−1) because each loop makes one more el-
ement with the role {bin} visited; the change for r2 =
{object, isPaper, collected} is k1 because this role’s count
is only changed by the isPaper loop which increases it by 1.
Achievable role-counts rf1 and rf2 at the loop’s start structure
S1 after l iterations are thus r0

1−k1−k2 and r0
2 +k1 respec-

tively, where r0
i denote the initial role-counts. However, this

is under the assumption that k1 and k2 iterations of the two
respective loops can be executed completely. Sufficient con-
ditions for ensuring this require that the action branches that
exit from the loop (leading to S12 or S5) are not taken. These
conditions can be found in a manner similar to that for sim-
ple loops used in deriving Fact 2; in the recycling problem
this amounts to having at least one non-empty unvisited bin
at the start of every iteration. Because the count of r1 drops
by 1 in every iteration of these loops and the isGlass loop is
entered only after visiting one bin in the first iteration of the
nested loop, this can be expressed as r0

1 − k1 − k2 > 2. We
formalize this result below; details of the procedure, proofs
of Fact 2 and the results below can be found in the appendix.

Lemma 1 Suppose a simple loop with shortcuts in an
extended-LL domain with sensing actions is entered with the
role-count vector r̄0 at loop node Si. Then sufficient condi-
tions under which the execution of the loop will end via an
action branch from a loop node St with the role-count vector
r̄t can be computed.

The time complexity of determining these conditions is
O(s · ne · m), where m is the number of shortcuts, ne is
the number of edges in the simple loop with shortcuts, and s
is the maximum number of roles in any structure in the loop.

Together with the fact that it is possible to find precondi-
tions for reaching a given vector of role-counts at a given
structure in a linear generalized plan (Srivastava, Immer-
man, & Zilberstein 2008a), Lemma 1 above allows us to find
sufficient conditions for reaching a given node with given
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role-counts in plans that are linear except for multiple sim-
ple loops with shortcuts.

Theorem 1 Let Π be a plan whose loops are simple loops
with shortcuts in an extended-LL domain with sensing ac-
tions. Sufficient conditions determining the achievable role-
counts for any structure in Π can be computed in time linear
in the number of actions in the plan.

Quality of Generalization We measure the quality of
plans computed by our algorithm on the basis of the fraction
of solvable problem instances that they solve. More specif-
ically, we define Dπ(n) = |Sπ(n)|/|T (n)| where T (n) is
the set of solvable problem instances of size at most n, and
Sπ(n) is the subset of those that π solves. For example the
recycling problem of size n must have n/2 each of bins and
bin-contents, yielding a total of 2n/2 instances with different
bin contents.

Implementation and Results
In this section we present the results of some of our experi-
ments with an implementation of Merge. The test problems
were motivated by benchmarks from the international plan-
ning competitions and require solutions with different kinds
of loops and branches. Incremental results for each problem
are shown in Fig. 5, with segments added due to different
examples labeled and drawn with different edge types. The
actual outputs are more detailed, and include one iteration
of the loop learned using the first example prior to the top-
most action shown in the figures. To aid readability, edge la-
bels for results of sensing actions were not drawn and some
action operands were summarized into action names. We
present a summary of these results with their incremental
domain coverages, and provide representative detailed re-
sults and execution times for the recycling problem.
Transport We have a Y-shaped transport map with depots
D1, D2, D3 on the end points. Two trucks, T1 and T2 with
capacities one and two are originally at D1 and D2, respec-
tively. The problem is to deliver server crates (from D1)
and monitor crates (from D2) in pairs with one of each kind
to D3. Location L at the center of the Y can be used to
transfer cargo between the two trucks. There are two non-
deterministic factors in this problem: server crates may be
heavy, in which case the simple load action drops them and
a forkLift action must be used; crates left at L may get lost
if no truck is present.

The first example plan delivered 6 pairs of crates to D3

without experiencing heavy crates or losses. The second ex-
ample found a heavy crate, and delivered it using forkLift
actions instead of load; in the third plan a crate left at L
was found missing when T2 reached L, and another crate
had to be picked up from D1. The plan computed using
these three examples does not handle one case of a server
crate being heavy (Fig. 5). This was detected using the set
of unhandled abstract structures and was handled by exam-
ple plan 4. The final solution has various branches in the
loop that do not qualify as shortcuts described in the sec-
tion on analysis. However, all such branches include only
the forkLift action which does not change the roles r1 =
{server, atD1}, r2 = {monitor, atD2}, r3 = {server, atD3}

and r4 = {monitor, atD3}. Because loop exits only depend
on the number of crates with these roles, the approach de-
scribed in the analysis section can determine the counts of
these roles at the loop start structure after l iterations of the
loop, as r1

0−l−k, r2
0−l, r3

0 +l and r4
0 +l respectively, where

k is the number of times the “crate lost” branch is taken.
Loop conditions require all of these counts to be greater than
1, giving us the sufficient conditions for reaching the goal,
and implying that we will need extra crates with the role r1

0
to make up for the losses.
Recycling This problem was used as the running exam-
ple. The first example plan only encountered paper objects
and collected them. The second plan was created to handle
an instance of the situation where some bins had glass. The
solution example plan handled one bin with a glass object
and collected it in the appropriate container. The Merge al-
gorithm created a new loop by making the branch point for
this example the same as the merge point, illustrating how
small examples can be used to identify powerful loops. Ex-
ample 3 dealt with an unhandled branch caused due to the
drawing out of elements from a summary element (last bin
was reached), and example 4 handled the case where the last
object was of type glass. Analysis of this plan was presented
in the previous section.
Fire Fighting A room in a building may be on fire. Smoke
can be detected from anywhere on a floor iff one of its rooms
is on fire. The agent has smoke and heat sensors; it must use
the smoke detector and goToNextFloor actions to reach the
correct floor, and then use the heat sensors to reach the room
with the fire and use the extinguish action to extinguish the
fire. In this problem, the first plan covered all the floors but
found none to be smoky. The second plan started at a smoky
floor and proceeded to search for the room with fire. The
Merge algorithm found a loop in this example plan, and at-
tached the generalization to a structure in the loop obtained
using example 1. The last two plans covered unhandled,
boundary conditions where the last floor was smoky or the
first room of a floor was on fire. There are no unresolved ac-
tion branches (considering the known possibilities of action
results), indicating that the goal structure is always reached.
Key Observations Results of the proposed approach show
several novel features. The Merge algorithm adds only nec-
essary segments from example plans. For instance, only
edges for the two forkLift actions from the entire second ex-
ample in transport were added. In fire fighting, the result
of senseHeat action in example 4 of the fire fighting prob-
lem was directly merged to a structure that had already been
handled. Merging plan segments within loops is a powerful
technique for increasing the scope of the plan far beyond the
individual examples: in recycling, the plan learned using the
first example solves only n of the 2n+1−1 possible problem
instances of size at most n. The second plan covers a single
specific problem instance. The generalized, merged result
using these two plans solves 2n−1 instances (it assumes that
the last two bins have paper). All the presented solutions
solve problems of unbounded sizes.
Further Details and Comparison We illustrate the incre-
mental increases in domain coverage discussed above with
plots and computation times for the recycling problem in
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Transport

move(T2, L)

unload(T1)

move(T2,L)

load(server, T2)

move(T2, D3)

forkLift(server, T2)

move(T2, D1)

move(T2,L)

load(server,T2)

unload(T2)

forkLift(server, T2)

move(T1,D1) load(monitor, T2)

load(server, T1)

forkLift(server, T1)

move(T1, L)

move(T2, D2)

Recycling

goToNextBin()

senseType()

apply−PaperPreProc(obj)

apply−GlassPreProc(obj)

senseType()

apply−PaperPreProc(obj)

collect−Paper(obj)
collect−Glass(obj)

apply−GlassPreProc(obj)

goToNextBin()

collect−Glass(obj)

collect−Paper(obj)

Fire Fighting

senseSmoke−CurFloor()

goToNextFloor()

go−UnvisitedRoom−CurFloor()

go−UnvisitedRoom−CurFloor()

senseHeat−CurRoom()

extinguishFire−CurRoom()

senseSmoke−CurFloor()
senseHeat−CurRoom()

go−UnvisitedRoom−CurFloor()
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Figure 5: Segments of computed plans. Circled numbers and edge types indicate components added due to different examples.
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Figure 6: Domain coverage of solutions to the recycling problem.
Plan Gen(1) Gen(1..2) Gen(1..3) Gen(1..4) CFF-soln7
Time(s) 110 129 134 144 262

Table 1: Solution Times (see “Further Details and Comparison”)

Fig. 6 and Table 1. For our plans, this includes the com-
plete time taken to generalize and merge the input example
plans. Since no other approach can solve these problems due
to uncertainties in object quantities, comparisons with other
approaches are not possible. However, to put this in per-
spective, we compared these results with the domain cov-
erage and execution time for the largest recycling problem
instance (with 7 bins) that we could solve using contingent-
FF (Hoffmann & Brafman 2005), a well-established contin-
gent planner. Given the four example plans for recycling
described above, the generalization and merging process
produces a near complete solution while taking 45% lesser
time than the time taken by contingent-FF to find a plan
(CFF-soln7) for 7 bins. Solutions to all the other problems
discussed above were generated in under 300 seconds and
showed similar comparative performance with contingent-
FF. These tests were carried out on a machine with a 64-bit
AMD Dual-Core 2.5GHz processor and 2GB RAM.

Related Work
Using loops in plans has been previously proposed and
analyzed. Winner & Veloso (2003; 2007) present meth-
ods for combining example plans into plans with branches
and loops. However, this approach does not provide meth-
ods for determining if loops make progress, and finds only
non-nested loops. Levesque (2005) presents an approach

(KPLANNER) for iteratively solving problems of increasing
sizes and extracting patterns in the solutions to determine
loops that generalize a single given numeric planning pa-
rameter. Levesque notes that “even short iterative programs
can be quite difficult to reason about”. He concludes that
“faced with an intractable reasoning problem, we can look
for compromises... [and] forego the strong guarantees of
correctness”. We present a new approach for addressing
these challenges in a comprehensive manner for a general
class of loops. However, in this paper we focus on problems
without numeric variables.

Cimatti et al. (2003) consider domains where loops are
needed for actions which may have to be repeated for suc-
cess. They also provide methods for determining reachabil-
ity of goal states in this context. However, the loops con-
sidered by this approach are “hard” loops, in the sense that
they return to the exact same problem state. In contrast, our
objective is to find loops that make measurable, incremental
changes. Hansen & Zilberstein (2001) also present a method
for computing policies with hard loops of actions, but in a
setting where probabilities of action outcomes and their re-
wards are used to determine the action which would lead to
the best possible value.

Conclusions and Future Work
We present two fundamental techniques to improve the
scalability of planning systems. The first technique effi-
ciently combines sample plans produced by classical plan-
ners and produces a conditional plan that can solve problems
of unbounded sizes. The second technique automatically
computes–for a rich class of plans with branches and loops–
measures of progress of their loops and the set of problems
solved by a given plan. These contributions address prob-
lems that are generally known to be undecidable, but we
identify an interesting subclass for which we show that they
are efficiently solvable. Experimental results show that the
approach is scalable, efficient in terms of the strength of
generalizations produced and robust in terms of the types
of loops allowed.

This work opens up several directions for future research
and application, including a greater utilization of existing
operator sequences with further analysis of plan segments,
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and studying other methods of implementing the merge al-
gorithm which was implemented using a greedy approach
here. Our approach is also unique in providing a direction
for automatically finding verifiable domain control knowl-
edge, which has been shown to yield significant benefits
in classical planner performance (Baier, Fritz, & McIlraith
2007).
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Proofs of Results
Simple Loops in Extended-LL Domains
For clarity we restate a result first presented by (Srivastava,
Immerman, & Zilberstein 2008b), and its proof in the lan-
guage of the current submission. This result does not work
for sensing actions or complex loops.

Proposition 1 Suppose S1
a1−→ S2

a2−→ . . .
an−1−−−→ Sn

an−−→
S1 is a loop in an extended-LL domain. For any 1 ≤ i ≤
n we can compute a set of linear inequalities C(l) which
determine the role-counts at Si after l iterations of the loop
starting at S1, plus the simple path from S1 to Si.

PROOF Since we are in an extended-LL domain, every ac-
tion changes a structure’s role-counts by a constant amount
((Srivastava, Immerman, & Zilberstein 2008a): Theorem 2
and def. of extended-LL domains). We denote the role-
counts in a structure using vectors. For example, R̄0 = R̄ =
〈#R0

1,#R
0
2, . . . ,#R

0
m〉 denotes the initial counts of roles

R1, . . . Rm at structure S1. LetRbi
be the branch role for ac-

tion ai, i.e., the role whose count determines which branch
is taken at action ai. In extended-LL domains, the action
branch that is taken when an action is applied to an abstract
structure is determined by whether a certain role-count is
greater than 1, or equal to 1 ((Srivastava, Immerman, & Zil-
berstein 2008a)).

We use subscripts on vectors to denote the corresponding
role-counts, so the initial count of the branch-role at action
ai is R̄0

bi
. If there is no branch at action ai, we let bi =

d, some unused dimension. Let ∆i denote the role-count
change vector for action ai. Let ∆1..i = ∆1+∆2+· · ·+∆i.

Before studying the loop conditions, consider the action
a4 in Fig. 4(a). Suppose that the condition that causes us to
stay in the loop after action a4 is that #Rb4 > 1. Then the
loop branch is taken during the first iteration starting with
role-vector R̄0 if (R̄0 + ∆1..4)b4 > 1. This branch will be
taken in l subsequent loop iterations iff R̄0 + k · ∆1..n +
∆1..4
b4

> 1, and similar inequalities hold for every branching
action, for all k ∈ {1, . . . , l − 1}.

More precisely, the conditions for a full execution of the
loop starting with role-count vector R̄0 are:

(R̄0 + ∆1..1)b1 ◦ 1
(R̄0 + ∆1..2)b2 ◦ 1

...
(R̄0 + ∆1..n)bn ◦ 1

◦ is one of {>,=} depending on the branch that lies in the
loop; the entire set of inequalities can be simplified by re-
moving constraints that are subsumed by others. The only
variable term in this set of inequalities is R̄0. Let us call
these inequalities LoopIneq(R̄0). For executing the loop l
times, the condition becomes

LoopIneq(R̄0) ∧ LoopIneq(R̄l−1)

where R̄l−1 = R̄0+(l−1)×∆1..n. These two sets of condi-
tions ensure that the conditions for execution of intermediate
loop iterations hold, because the changes in role-counts due
to actions are constant, and the expression for R̄l−1 is linear
in them.

If F̄ denotes the final role-counts at Si after l iterations,
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we have

LoopIneq(R̄0)
LoopIneq(R̄l−2)

(R̄l−1 + ∆1..1)b1 ◦ 1

(R̄l−1 + ∆1..2)b2 ◦ 1
...

(R̄l−1 + ∆1..i−1)bi−1 ◦ 1

F̄ = R̄l−1 + ∆1..i

These conditions on the role vector R̄0 at S constitute C(l).
Note that in order to compute this set of conditions we only
need to compute at most n different ∆1..i vectors. C(l) can
be computed inO(s·nl) time, where s is the maximum num-
ber of roles in a structure in this loop, and nl is the number
of actions in the loop.

2

Note that final set of inequalities in the proof given above
include the exact role counts for all roles after l iterations of
the loop. Together with the ability to compute changes in
role counts across linear sequences of actions (see (Srivas-
tava, Immerman, & Zilberstein 2008a)), this allows compu-
tation of not only whether a path with simple loops can take
a certain concrete structure to a desired goal structure, but
also the exact number of times we need to go around each
loop in the path, in order to reach the desired structure with
desired role counts.

Preconditions for Simple Loops with Shortcuts
We now state and prove precise versions of Lemma 1 and
Theorem 1.
Lemma 1 Let Π be any plan in the form of a simple
loop with m non-composable, monotone shortcuts. Sup-
pose k1, . . . , km represent the number of times shortcuts
1, . . . ,m are taken during the execution of Π. In extended-
LL domains with sensing actions, sufficient conditions for
the achievable role counts rif at any structure-node Sx are
given by the following system of linear inequalities:

f ix(ri0, k1, k2, . . . , km, l) = rif ;
k1 + . . .+ km ≤ l;

∀j : LLj < r0
j , f

j
x(rj0, k1, k2, . . . km, l) ≤ ULj

where LLj , ULj are the lower and upper limits for role
rj for staying in the loop (the last inequality comes from
Proposition 1 above), and l is the total number of iterations
counted at the start node.
PROOF Suppose we are given a plan with a simple loop with
m shortcuts and a chosen start node Sstart. Because the
shortcuts are constrained to be non-composable and mono-
tone, the idea is to consider the simple loops formed by tak-
ing each of the m shortcuts independently.

In Fig. 4(b), this would give us 3 simple loops:

S1, S2, S3, S4, S5, S6, ..., S1;
S1, S2, S3, S

′
4, ..., S6, ..., S1;

S1, S2, S3, S4, S5, S
′
6, ..., S1.

We denote the loop created by taking the ith shortcut as
loopi, and the original simple loop taken when none of the
shortcuts are taken as loop0.

Within each of these loops, the assumptions used in com-
puting the inequalities C(l) in Proposition 1 hold, because
these loops do not have any branches due to sensing actions.
In other words, the only action branches that have to be con-
strained for completing an execution in any of these loops
come from non-sensing actions in extended-LL domains and
are determined by inequalities between role-counts and con-
stants.

Let ki denote the number of times loopi is executed in
full, with k0 = l −

∑m
i=1 k. Then the final role-counts

can be computed as F̄ = R̄0 +
∑m
i=0 ki∆

loopi obtained
by adding the changes due to each loop using proposition 1,
where ∆loopi is the change vector due to loopi. Finally, in
order to ensure that the loop conditions hold for every inter-
mediate iteration, we include the constraints LoopIneq(R̄0)
and LoopIneq(F̄ ), for every loop. For the partial loop iter-
ation between Sstart and Sx, we add to F̄ the change due
to the linear sequence of actions leading from Sstart to the
structure node Sx to obtain F̄x, and include any conditions
due to the non-sensing actions. For details about computing
constraints for linear sequences of actions, see Theorem 1 of
(Srivastava, Immerman, & Zilberstein 2008a). If Sx is on a
shortcut, then we get an additional constraint that the sens-
ing action result leading to that shortcut should occur in the
last iteration of the loop.

Finally, the desired form of the linear constraints is ob-
tained by setting f jx as the jth component of F̄x. 2

Using Lemma 1, we can compute linear constraints for
achievable role counts at any structure node in a plan con-
sisting of a linear path of actions with simple loops with
shortcuts at multiple positions in the path. Conditions for ex-
iting from a loop through a non-sensing action are enforced
by including the appropriate role-count inequality (similar
to (Srivastava, Immerman, & Zilberstein 2008a)).

While this gives us sufficient conditions to achieve a cer-
tain role-count at a given node if the loop iteration counters
ki’s and initial role-counts are left as variables, this does not
deal with effects caused due to the merging of different paths
of actions.
Theorem 1 Let Π be a plan whose loops are simple loops
with shortcuts in an extended-LL domain with sensing ac-
tions. A disjunction of linear inequalities determining the
achievable role-counts for any structure in Π can be com-
puted in time linear in the number of actions in the plan.

PROOF Consider each linear path having simple-loops-
with-shortcuts at multiple positions in the path. Linear con-
straints for each such path can be determined using the lin-
ear constraints developed explicitly under Lemma 1 and
the methods for computing constraints for linear sequences
of actions ((Srivastava, Immerman, & Zilberstein 2008a)).
Given a reachable node Sn and the set of such paths lead-
ing to it, the disjunction of linear constraints corresponding
to each path gives us linear constraints for achievable role-
counts at Sn due to the union of those paths. 2
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