
Model-based Verification and Validation for Procedure Authoring
Guillaume Brat and Dimitra Giannakopoulou

Carnegie Mellon University - Silicon Valley
guillaume.p.brat@nasa.gov

dimitra.giannakopoulou@nasa.gov

Michel Izygon and Emmy Alex
Tietronix

michel.izygon@tietronix.com
emmy.alex@tietronix.com

Lui Wang
NASA Johnson Space Center
lui.wang-1@nasa.gov

Jeremy Frank
NASA Ames Research Center

jeremy.d.frank@nasa.gov

Arthur Molin
S&K Aerospace

amolin@ska-corp.com

1. Introduction

The ”Apollo 13” movie was a great account of how danger-
ous human space flight is. It clearly showed that there is a
fine line between mission success and catastrophic failures.
Besides being a great thriller (we all wanted the astronauts
to make it back safely, even though things look really bad
for a while), it also offered a great look at how things are ran
at NASA. The movie clearly showed that all activities are
planned in the most minute details and described in proce-
dures. It was true then, and, it is still true now for the Space
Shuttle and the International Space Station (ISS).

Procedures are plans for crew (i.e. astronauts) and flight
controllers (which provides guidance from the ground).
There are literally thousands of them for the ISS and the
Shuttle; they will also be used on the new vehicle, called
Orion, being developed for NASA. Procedures are written
to be very general; hence they may have to be adapted for
different situations. The movie actually showed a dramatic
example in which a power-up procedure had to be adapted
so that the power load stayed under a certain amperage. That
procedure was tried and (sort of) validated in a flight simula-
tor before being given to the crew. The interactions between
sub-systems were so subtle that the procedure could not get
worked out on-board by the crew. It needed to be carefully
adapted and validated on the ground. While technology has
evolved since the Apollo area, system complexity has cer-
tainly not decreased. Therefore, procedure authoring, vali-
dation and verification are still highly critical activities.

This paper describes our effort in improving procedure
authoring, and more specifically, what can be done to speed-
up and improve their verification and validation (V&V). We
start by justifying the need for better procedure V&V. We
describe our illustrative example, the power system for the
ISS. We then present the A4O (Autonomy for Operations)
project, under which these technologies have been devel-
oped. Then we describe our analysis and the challenges we
encountered during the analysis. Finally, we conclude with
some lessons learned and present our future work.

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2. Procedures for human space flight
Procedures for human space flight are different from soft-
ware. Many procedures describe inherently manual activi-
ties performed by people. The Space Shuttle was an almost
completely mechanical vehicle. However, the ISS is com-
mandable from computers. In fact about 100K of commands
are sent from ground to the ISS every year. The effect of ex-
ecuting each command is shown by telemetry that is sent
back to ground. Controllers are responsible for checking
that the telemetry matches the intent of the command. Pro-
cedures have thus grown more like software, and this trend is
expected to continue. One of our objectives is to see if pro-
cedures can benefit from Software Engineering processes,
and in particular, from a formal automated V&V process.

2.1 Procedure authoring process
Procedures have traditionally been written as plain english
(somewhat abrupt as in a list of actions). They are now au-
thored using MS Word; so, in that sense, they are in some
electronic format. They also follow some strict guidelines
on their format and content, but they are not formal per se.
They are meant to be read by humans and interpreted. Some
of the semantics is captured in the writing styles (such as
tabulations), but they do not follow any common formal lan-
guage. Moreover, there is a disconnect between the proce-
dure semantics and the command and telemetry semantics;
for instance, you can tell if an identifier (for a command or
telemetry data) has changed, but not if the meaning (of the
command or telemetry) has changed. Therefore, a procedure
is understandable only in the context of a given dictionary of
commands and telemetry.

Unlike software programs, procedures are meant to be
fairly general. The intent is to capture as many cases as pos-
sible and specialize them at execution time given the current
context. For example, operation of the same class of hard-
ware, e.g. a power distribution unit, may differ depending
on what is connected downstream. If there are critical loads,
these must be switched over to some other power source
prior to powering off the distribution unit. So, procedures
are authored as generic procedures, but they must be veri-
fied as specific instances of some specific execution context.

Figure 1 shows the current procedure authoring process
for the ISS or the Space Shuttle. Once the procedure has
been changed, it goes through several review steps, all of

11



them performed by humans, or groups of humans. It is quite
clear that it is a lengthy process. The multiple review steps
should in principle prevent human error. However, most of
the validation relies on the experience of the reviewers. Note
that the final products are human readable, but most of them
are formatted for the International Procedure Viewer.

Figure 1: Authoring process for procedures.

2.2 State of the practice of Procedure V&V
Similarly to software, procedures need to be verified and
validated. Procedures are tested not only at their inception,
but also for each revision, and due to their generality, for
each instantiation. Procedures are revised frequently be-
cause commands and telemetry change frequently. More-
over for the ISS, as buildup continues, procedures change
and new ones. In-flight experience and hardware degrada-
tion also result in new or changed procedures.

As shown in Figure 1, procedure V&V is currently done
through human reviews; high-fidelity testbeds are also used.
Human reviews have the usual disadvantages of taking a
long time and being error prone. Similarly, the problem
with testbeds is that they are expensive (to create and main-
tain), which makes them a scarce resource. They usually are
forward simulations, which are hard to reverse; initial con-
ditions are also difficult to set up. Finally, generating test
cases can be a problem.

2.3 Our Vision of Procedure V&V
Our vision is to improve on this current state of the prac-
tice by taking the best Software Engineering has to offer and
bringing it to the world of procedure verification. Clearly,
our V&V drivers are as follows.

1. Procedures are general, but they need to be verified for
many possible executions

2. Procedures are somewhat informal; they need to be grad-
ually formalized.

3. There can be mismatches between procedures and the dic-
tionary of commands and telemetry.

4. Procedures change; they need to be tested not only at their
inception, but also for each revision due to error correc-
tion or new hardware specification.

In previous work, Connors et al. have shown how how
mismatches between procedures and dictionary of com-
mands and telemetry can be addressed through static check-
ing (Connors et al. 2009) if procedures are authored in a
formal language, in this case, the PRL language described
in 4.1. Brat et al. have also shown how to verify plans and
procedures using various model checkers (Brat et al. 2008).
However, the mismatch between the procedure language and
the modeling language used by the model checkers was a big
limitation of their approach. In this work, we are demon-
strating the use of the Java Path Finder (JPF) model checker
and its integration in the PRIDE environment, described in
4.3.

Now, to enable the type of formal V&V we are envision-
ing (i.e. model checking), there needs to be formal models
of the procedure, the system being commanded, and the pos-
sible execution contexts. Unfortunately, formal models are
rarely available at NASA, or at least, they are rarely created
as part of the software development process during, say, the
design phase. This is particularly true for the ISS code base,
which is an international effort and has been growing sig-
nificantly over the years. The only available models are the
ones used for the high-fidelity testbeds. They are derived
from the real ISS flight software, but they are very complex
and difficult to use stand-alone. Until recently, these models
have been only available in highly contended testing facility,
and, they were unsuitable for automated verification.

3. A Specific Example
3.1 ISS EPS Powerdown
As most modern spacecrafts, the electrical system (EPS)
on the ISS relies on solar power. For the ISS, it is pro-
duced by (currently eight) large solar arrays. Each solar
array wing consists of two retractable ”blankets” of (approx-
imately 33000) solar cells with a mast between them. The
solar arrays track the Sun using gimbals to follow the Sun
as the space station moves around the Earth and to adjust
for the angle of the space station’s orbit to the ecliptic. The
rotation to track the Sun is provided by a mechanism called
the solar alpha rotary joint (SARJ).

In our work, we focused on EPS powerdown procedures,
and more specifically, the ones for powering down all loads

12



powered by the DC-to-DC converters (DDCU). For exam-
ple, the Powerdown (1.252) procedure, which is used to
powerdown S0 DDCU S01A converters, is a 12-page doc-
ument, which calls 17 other procedures that are nested as
many as three procedure calls deep. There are 47 commands
to execute and 63 telemetry items need to be verified (i.e.,
controllers need to check that the returned telemetry values
are the expected ones) during execution by the controllers.
There are also seven conditional execution steps. If you put
all the documents together, it might be as many as 50 pages
of text. Given the size, it is preferable to automate the V&V
process rather than relying on humans. To illustrate V&V is-
sues, we focused on the commands involved in configuring
the SARJs and chose to demonstrate a subtle timing bug.

3.2 The SARJ commanding bug
In this section, we describe the commands involved in com-
manding the Port SARJ and under which conditions these
commands might fail. For that, we focus our attention to the
step that commands the SARJ to checkout (i.e., to stop rotat-
ing). The commands are listed under Step 9.1 of the 1.252
procedure as shown in Figure 2. These steps are interesting

Figure 2: Steps for commanding the Port SRAJ to checkout.

(from a V&V point of view) for several reasons. First, ”cmd
Check Out” is followed by two ”Verify” instructions, which
are there to ensure that what is described in the note section
is true; i.e., that the SARJ has stopped rotating (hence the
Busy flag is set to blank) and the telemetry indicates that the
SARJ is now in Checkout mode. If the second Verify com-
mand (i.e., ”Verify SARJ busy”) was not present, controllers
could be tempted to send other commands, which would fail
silently (see next paragraph for more details) if the SARJ

was still rotating. So, the second Verify command tells the
controller to verify that the SARJ has indeed stopped com-
pletely before they proceed with the rest of the procedure.
Note that ”Verify” instructions are usually performed by the
controller, whose only feedback is provided by the telemetry
coming back from the ISS. The controller does not see the
SARJ, and therefore, the SARJ busy flag is the only indica-
tor that the SARJ has indeed stopped.

Now, Procedure 1.252 has already been verified and val-
idated. Therefore, it does not contain any error. To illus-
trate our V&V technique we decided to modify Procedure
1.252 and introduce an error by omitting the ”Verify SARJ
Busy - blank” instruction. This could make the controller to
send the next command (i.e., ”cmd Select - None”) without
being aware that the SARJ is still rotating since Note 2 in
Figure 2 indicates that it may take several minutes for the
SARJ to stop rotating. The note also says that any command
sent while the SARJ is rotating would be rejected by the
SARJ, which means that it would be received but ignored
and then dropped by the SARJ. Therefore, by omitting the
”Verify SARJ Busy - blank” instruction, we have introduced
the possibility of issuing and dropping (silently) commands.

It is fairly obvious that this bug may not be caught during
testing. In order to test for this problem, the SARJ must
be correctly simulated, and possible mismatches between
the procedure and actual behavior must be covered during
testing. If the delay used to simulate the time needed for
the SARJ to stop rotating is too short, no command will be
dropped. However, if the delay is long, then commands may
get dropped. Furthermore, testing such a problem as this
is cumbersome with forward simulation. This points to the
fact that procedure V&V should not rely exclusively on sim-
ulation or testing, but also include techniques such as model
checking as we will describe in a subsequent section.

3.3 The ISIS system
International Space Station Systems Integrated Simulation
(ISIS) is a desktop high fidelity training simulator for the
International Space Station program. ISIS runs the actual
unmodified ISS flight software, system models and the as-
tronaut command and control interface in an open system
design architecture that can be programmed to integrate with
other software models.

The United Space Alliance (USA) Advanced Technology
group develops ISIS. Since it was originally envisioned, the
ISIS usage has evolved to include ground operator system
and display training, flight software modification testing and
a realistic test bed for exploration automation technology re-
search and development.

The configuration of the ISIS that we use for our project
consists of two high-end HP workstation class machines,
one ISS Portable Computer System (PCS) laptop and one
A4O development laptop. All four computers are connected
on a separate network. Figure 3 shows the configuration lay-
out of ISIS system for the project. The two high-end HP
workstations are the basic workhorses to simulate the ISS
vehicle and ISS flight software. The first HP workstation’s
primary function of this workstation is to execute the Ada
Space Station Training Facility (SSTF) Host Partitions soft-

13



ware, which models the ISS environment and systems. The
other function is to run the ISIS Information Sharing Pro-
tocol (ISP) server for distributing telemetry data to the ISIS
network via ISP client software. The second HP workstation
executes the ISS MDM Development Environment (MADE)
application, which in term runs the unmodified version of
the MDM Flight Software Configuration Software Configu-
ration Items (CSCI). The MDM flight software is integrated
with SSTF Host via Space Station Training Facility (SSTF)
Portal application environment and system models. Also,
a Virtual Command Server (VCS) runs on the server to al-
low external applications to connect and command the ISS
MDM flight software. Next, the PCS laptop, which is the ac-
tual command and control workstation for the onboard crew,
is used to monitor telemetry and issue commands to the ISS
vehicle. Finally, the A4O development laptop is used to run
our dynamic verification software to verify the validity of
the procedures.

ISIS provides a key functionality to verify and validate
software changes and procedures. A key design decision
was made to reuse the existing software such as the MADE
and SSTF Models from the ISS development program and
re-package the software for operational use. As a conse-
quence of this decision, ISIS is very difficult to install, con-
figure and run. Furthermore, it is intended to replicate the
ISS for training a person, not as a fully reversible model of
the software suitable for model checking.

Figure 3: The ISIS system.

4. A4O Technology Development
The Automation for Operations Project (A4O) develops ad-
vanced technology to enable the operation of Constellation
Program mission elements such as the Orion spacecraft, the

International Space Station (ISS), and robotic assets that
will support human exploration of the Moon (Frank 2008a;
2008b). The projects technology developments include:

• Languages for specifying standard operating procedures
in electronic form, which allows fine grained and gradual
procedure automation (PRL and PLEXIL, see below).

• A software infrastructure that enables seamless tool inter-
operability among all mission operations software com-
ponents

4.1 PRL
PRL (Kortenkamp, Bonasso, and Schreckenghost 2008) is
an electronic procedure representation language, which en-
ables the authoring of human-understandable procedures,
e.g., procedures involving astronauts on the ISS. The goal of
PRL is to build upon a user-friendly display format and ex-
tend it with the following elements needed for autonomous
systems.

• Meta data provides names, context, version, etc. for pro-
cedure

• Control data provides logical control and safety condi-
tions

• Steps and nodes structure procedure for human readability

• Instructions specify instructions, commands, etc

PRL is a modular language which allows for a compositional
approach to procedure authoring. Thus small procedures,
specific to some sub-activities, can be composed into a larger
procedure which describes a full activity. PRL is based on
an XML-schema. PRL procedures can be executed by trans-
lating them into PLEXIL plans and using any executive ac-
cepting PLEXIL. Figure 4 shows an example of the XML
representation of a PRL if-then statement.

An innovation of PRL is to tightly integrate commands
and telemetry into the procedure description (which is not
done today). Note that this is important for automated V&V
since commands and telemetry will correspond to events in
the models used for model checking. Having this informa-
tion integrated with the procedure simplifies the creation of
these models.

4.2 PLEXIL
Space mission operations require flexible, efficient and re-
liable plan execution. In typical operations command se-
quences (which are a simple subset of general executable
plans) are generated on the ground, either manually or with
assistance from automated planning, and sent to the space-
craft. For more advanced operations more expressive ex-
ecutable plans may be used; the plans might also be gen-
erated automatically on board the spacecraft. In all these
cases, the executable plans are received by a software system
that executes the plan. This software system, often called an
executive, must ensure that the execution of the commands
and response of the fault protection system conforms to pre-
planned behavior. PLEXIL is designed specifically for flex-
ible and reliable command execution. It is designed to be
portable, lightweight, predictable, and verifiable, and at the

14



Figure 4: PRL example: a simple if-them statement.

same time, the language does not sacrifice expressiveness
(Verma et al. 2005; 2007).

In order for the PLEXIL language to be useable, an exe-
cution system is required to interpret it. The Universal Exec-
utive is an execution system designed to facilitate reuse and
inter-operability of execution and planning frameworks. As
part of this project, we have developed an automatic transla-
tion from PRL to PLEXIL. PRL is used for authoring and
PLEXIL for executing the procedure. Figure 5 shows a
PLEXIL example for an ISS procedure.

4.3 PRIDE
The Procedure Integrated Development Environment
(PRIDE) is a procedure authoring tool being developed in
the A4O project to make developing PRL easier for flight
controllers. PRIDE has a graphical interface (developed
with Eclipse) that offers the following services:

• A connection to a database containing information about
available commands and telemetry for a given spacecraft

• Automatic expansion into PRL instructions

• Static checks of PRL files for assessing PRL’s syntacti-
cal and semantical validity, ensuring that procedures are
invoked correctly, consulting the system-representation
database to validate usage constraints, and, verifying the
consistency of logical conditions using a constraint solver.

PRIDE also offers a sub-menu that triggers the use of the
Java PathFinder model checker and to a finite-state machine
simulator.

Figure 5: PLEXIL example: extract of an ISS powerdown
procedure.

4.4 FSM
FSM is a simulation (of the controlled system, e.g., the ISS
flight software) tool based on finite-state machines (hence,
the name FSM). The goal is to enable a manual walkthrough
when editing a procedure. The FSM runs a finite-state ma-
chine (following Harel’s state chart formalism and seman-
tics (Harel 1987)) description of the ISS flight software and
interacts with a human posing as a potential controller. In
essence, FSM can be seen as a low-fidelity simulator that can
be used during procedure authoring (as opposed to highly-
contended high-fidelity testbeds). The first and most basic
V&V intended use of FSM is to check that all necessary
started conditions are specified in a procedure. If some of
these conditions are missing, the simulation will block or
follow an obviously wrong path.

Note that FSM is a simulation environment. Each simula-
tion is the equivalent of a test run. It follows one particular
path amongst the system transitions and do not attempt to
explore all possible paths. A full and exhaustive exploration
can only be done using a technique such as model checking.

FSMs are created manually using the Unimod tool (Uni-
mod ). We used some of the engineering documents used
for training the flight controllers; they describe the behavior
of the EPS devices. We also validated our models by care-

15



ful discussion with the flight controllers. The models do not
represent the dynamics of the system, but the perceived (by
controllers) states and transitions that can be taken by the
system. So, if a procedure is also modeled as a finite-state
machine, it can be coupled with the FSM and fed to a model
checker such as Java PathFinder (JPF) to verify properties.

4.5 JPF
The original JPF is a model checker for Java software (Brat
et al. 2000a; 2000b). Since its creation it has been extended
a number of ways, one of which allows the model check-
ing of finite-state machines (such as UML State Charts)
(Mehlitz 2008). JPF state chart framework is a combination
of (state chart) libraries that are based on a unique trans-
lation scheme for UML state charts, together with generic
applications (test drivers) to execute these state charts. The
framework supports both testing and model checking, using
the same scripting language for environment specification.

Our goal in using model checking is as follows:
• overcome the limitations of testing (simulation) by en-

abling exploration of the full state space,
• enable the verification of complex properties (which

could come from formal requirements or from flight
rules),

• automate the V&V process.
It is clear that we can achieve this goal only by having mod-
els of all the interacting components, i.e., the controlled sys-
tem, the procedure, and the execution context.

5. Running the Analysis
This section describes how we integrated the different A4O
element to implement model checking of PRL procedure
and made it available in the PRIDE authoring environment.
Figure 6 shows how the PRL procedure is first translated
into a PLEXIL plan, which is then translated into a (Java-
represented) state chart model that can be understood by JPF.
Moreover, the figure shows how Unimod models (which are
UML state charts models) are used to build the FSM sim-
ulator and are also translated into JPF-understandable mod-
els. These two models are then fed to JPF with some safety
property for analysis. When it finds a property violation,
JPF spits out an error trace, which (after some massaging)
can be re-played in the FSM simulator.

The next sub-sections describe some of the results we
have obtained and challenges we have faced in the course
of our experiment.

5.1 Building the FSM
Our first big challenge is to create the FSM. Some NASA
projects, like Orion, mandate a model-based development
process, which can possibly produce the sort of models we
need for model checking. However, it is not the case for
the ISS. Given that access to the ISS flight software is im-
possible and reverse-engineering the system is very difficult
and costly, we did the next best thing. Our FSM was created
by inferring system behavior from the training manuals used
by the controllers and focusing on the parts that are relevant

Figure 6: The set-up for model checking in A4O.

to procedure 1.252: we validated the models by sitting with
ISIS and executing commands in the procedure as specified
to determine what system state was. Note that this process
was only able to give us nominal and a subset of the offnom-
inal behavior. For example, as we can see in Figure 2, the
note in step 9.1 of Procedure 1.252 indicates the behavior
of the SARJ when commands are sent while the SARJ is
busy, but not what other outcomes of the Check Out com-
mand might be. We also validated our FSM by asking flight
controllers for help.

Obviously, this is problematic from a V&V point of view,
but we deemed it acceptable since our goal was to create a
proof of concept. Moreover, if our technique is to be de-
ployed, it will be on one of the new systems (e.g., Orion)
and we would insist on the necessity to develop the FSMs in
parallel with the software (and update the FSMs each time
the software is updated). An alternative way is to develop
the FSM at the time high-fidelity simulators are developed.

5.2 Verifying the FSM and the procedure
As described above, the procedure and the FSM are not in
the right format for JPF. They first have to be translated into
the State Chart extension of JPF (i.e. Java programs corre-
sponding to the finite-state machines).

PLEXIL translation to JPF statecharts In A4O, we as-
sume that the starting point is not a procedure written in
an MS Word document, but a PRL procedure authored with
PRIDE. This procedure goes through two translation passes
before being amenable for model checking.

1. The first translation transforms a PRL procedure into a

16



PLEXIL plan. The translator was designed by the de-
veloper of PLEXIL to represent the PRL procedure faith-
fully. Care is taken to keep track of the correspondence
between the PRL instructions and the PLEXIL instruc-
tions, which means that if can produce a counter-example
(or trace) in PLEXIL we can translate it back into a PRL
trace.

2. The second translation transforms a PLEXIL plan into a
finite-state machine expressed as a Java program. This
two-pass translation scheme allows to re-use our frame-
work for PLEXIL programs, even if they have not been
created from PRL procedures.

Figure 7: An example of a Plexil semantics model.

Now, PLEXIL was designed with verification in mind.
So, formal behavioral semantics were developed for every
PLEXIL instructions (or more specifically node) (Dowek,
Muñoz, and Păsăreanu 2007; 2008). These semantics are
represented in the form of finite-state machines (see Fig-
ure 7). This allowed us to develop faithful models of
PLEXIL plans by instantiating the behavioral models of ev-
ery PLEXIL node according to its use in the PLEXIL plan
to be translated. Figure 7 describes the behavioral model
for a node is status waiting. The finite-state models for the
generic PLEXIL nodes are hardcoded in a Java library. This
allows the act of translating to be reduced to generating the
transitions between the nodes and describing the characteri-
zation of each node used in the plan.

This technique has several advantages. First, we produce
easily readable models and keep the PLEXIL models fairly
close to their original PLEXIL plans. Second, if the seman-
tics of PLEXIL are updated, we do not need to change our
translator; we just need to update the Java representation of
the semantics in our Java library. We therefore achieve a sep-
aration of concerns between the language used to represent
the plan and the plan itself.

FSM translation to JPF statecharts The FSM is created
using Unimod, which follows the semantics of UML state-
charts. They are therefore directly amenable to a translation
into JPF statecharts. The translation is pretty simple, and,

we therefore describe only the challenging parts.
States and transitions are preserved in the translation, but

we do not preserve any specialization code added to the
finite-state machine. Thus, we are not able to translate parts
related to timing (since they are not strictly speaking part of
standard statecharts). Unfortunately, models for the SARJ
need to include some timing information to represent for ex-
ample the time needed by the SARJ to stop rotating once a
”stop SARJ” command has been issued. This timing infor-
mation had to be added by hand in our JPF model.

Scalability As with all model checking exercises, scalabil-
ity is an issue. On one hand, procedures are relatively small
and sequential. They may have a few branching conditions,
and in some cases, loops; but, by far and large, they are rel-
atively simple. Therefore the procedure model is essentially
one state machine with lots of states. Its size corresponds
to the product of the number of PLEXIL nodes (somewhat
equivalent to the number of procedure instructions) and the
average number of states in the semantic models for each
PLEXIL node. On the other hand, the FSM (the model for
the EPS) generates a fairly large state space. The FSM con-
sists of many (more than eighty in our case) parallel state
machines which synchronize on internal and external events.
The composition of the procedure model and the FSM result
in a large state space.

Our JPF-based verifier is coded as an Eclipse plugin. Our
first intention was to keep the translations passes and the
model checking activity on one process (the plugin process)
by calling JPF through a direct method call. Unfortunately,
we were not able to associate enough memory (we need at
least 800 MB) with the plugin to allow model checking to
complete. Therefore, JPF is called on a separate process,
which allows us to control exactly how much memory we
make available to the model checker.

For our experiments, we chose a MacBook Pro laptop
with a 2.4 GHz Intel Core 2 Duo processor and 4 GB of
memory. It took JPF one or two minutes to find the bug we
planted in the procedure model. Full exploration of the state
space of models without any bug took about 45 minutes.

Bugs in the JPF code We also encountered problems
defining the FSM. In our first attempt, the FSM was not able
to update the ”previous cmd” variable before the next com-
mand was sent. This bug in the FSM led to a hitmiss situa-
tion in showing the bug targeted by JPF. When the checkout
command was received by the model, it should have imme-
diately set the ”SARJ to busy” flag indicating that other com-
mands should be ignored until the flag becomes ”not busy”
again. On receiving a checkout command the FSM would
schedule the SARJ to get busy on a separate thread, which
resulted in a window of opportunity for the next command
to sneak in before the SARJ got to the busy mode.

The transitions showing the bug are as follows:

• Checkout command: schedule busy command and returns

• The next command comes in. But the SARJ may not be
busy (since it was scheduled) so the transition gets done.

• Now busy to SARJ mode kicks in, and after some time,
transitions to not busy

17



The fix consisted of, on receiving a checkout command,
returning back to the caller only after the SARJ is set to busy
so that there is no chance for the next command to sneak in.
It resulted in the following transitions:

• Check out command returns after SARJ set to busy

• The next command comes in, but cannot transition be-
cause SARJ mode is busy.

The details of this problem and its fix may seem opaque to
the reader, but it shows that building the FSM is not a trivial
exercise. It is at least as difficult as designing the synchro-
nization of the real system, which points to the usefulness of
these models in a design phase. They allow to catch tricky
synchronization bugs when designing complex systems con-
sisting of interacting components.

6. Lessons learned and Future Work
We have presented a verification technique for a complete
authoring framework for procedures at NASA. Our frame-
work allows for the authoring of PRL procedures, their
translation into PLEXIL plans for execution, and their ver-
ification using simulation (FSM) and model checking (via
Java Path Finder) in the PRIDE Eclipse plugin. In this
paper we insist on the verification part, especially the one
using model checking; PRL procedures are translated into
finite-state machine amenable to model checking when cou-
pled with a finite-state machine for the controlled system.
We have described how we demonstrated this technology to
flight controllers for the International Space Station.

We have been able to learn several lessons from this ex-
perience. The model checking approach to V&V of pro-
cedures imposes significant costs in the development of the
models/simulations as well as the development of the model
checking software. The expected benefits are in reduction
of time to verify procedures, reduction in costs due to con-
tention of big expensive facilities, and reduction in errors
in flight (with their attendant costs). Finally, our process
includes several translation passes. In practice, before any
deployment, each translator should be validated.

Our example shows that model checking can find subtle
synchronization bugs which can be easily missed by test-
ing or simulations. When we show our work to flight con-
trollers, they all concur that it is a useful technology which
deserves to be explored further. They also pointed out the
fact that it needs to be hardened before it can be deployed.

Our future work will focus on the scalability aspects. We
plan to investigate how we can use compositional verifica-
tion to fight scalability. It is fairly easy to identify the dif-
ferent components in the models of the controlled systems.
Moreover, not all of these components are involved in the
verification of a property. Therefore, we should be able to
take advantage of the assumption learning algorithm devel-
oped in to reduce the size of the model checking problem
(Barringer, Giannakopoulou, and Pasareanu 2004).

References
Barringer, H.; Giannakopoulou, D.; and Pasareanu, C.
2004. Component verification with automatically gener-

ated assumptions. Journal of Automated Software Engi-
neering 11:93–98.
Brat, G.; Havelund, K.; Park, S.; and Visser, W. 2000a.
Model checking programs. In Proceedings of ASE’00: 15th
IEEE Int’l Conf. on Automated Software Engineering, 3–
11.
Brat, G.; Park, S.; Havelund, K.; and Visser, W. 2000b.
Java pathfinder-second generation of a java model checker.
In Post-CAV Workshop on Advances in Verification.
Brat, G.; Gheorghiu, M.; Giannakopoulou, D.; and Pasare-
anu, C. 2008. Verification of plans and procedures. In
Proceedings of IEEE Aerospace 2008.
Connors, E.; Muñoz, C.; Schnur, C.; and Siminiceanu,
R. 2009. Static verification of spacecraft procedures. In
Proceedings of the AIAA Infotech@Aerospace Conference
2009, AIAA 2009-2033.
Dowek, G.; Muñoz, C.; and Păsăreanu. 2007. A formal
analysis framework for PLEXIL. In Proceedings of 3rd
Workshop on Planning and Plan Execution for Real-World
Systems.
Dowek, G.; Muñoz, C.; and Păsăreanu, C. 2008. A small-
step semantics of PLEXIL. Technical Report 2008-11, Na-
tional Institute of Aerospace, Hampton, VA.
Frank, J. 2008a. Automation for operations. In Proceed-
ings of the AIAA Space 2008 Conference and Exposition.
Frank, J. 2008b. Costs and benefits of automation for lunar
surface operations: Preliminary results. In Proceedings of
the AIAA Space 2008 Conference and Exposition.
Harel, D. 1987. Statecharts: A visual formalism for
complex systems. Science of Computer Programming
8(3):231274.
Kortenkamp, D.; Bonasso, R. P.; and Schreckenghost, D.
2008. A procedure representation language for human
spaceflight operations. In Proceedings of the 9th Interna-
tional Symposium on Artificial Intelligence, Robotics and
Automation in Space (i-SAIRAS-08).
Mehlitz, P. C. 2008. Trust your model - verifying aerospace
system models with javał pathfinder. In Proceedings of
IEEE Aerospace Conf. ’08.
Unimod. http://unimod.sourceforge.net/.
Verma, V.; Estlin, T.; Jnsson, A.; Pasareanu, C.; Sim-
mons, R.; and Tso, K. 2005. Plan execution interchange
language (plexil) for executable plans and command se-
quences. In International Symposium on Artificial Intel-
ligence, Robotics and Automation in Space (iSAIRAS).
Verma, V.; Baskaran, V.; Utz, H.; and Fry, C. 2007.
Demonstration of robust execution on a nasa lunar rover
testbed. In International Symposium on Artificial Intelli-
gence, Robotics and Automation in Space (iSAIRAS).

18




