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Abstract

Formal verification of hardware and software systems in-
volves proving or disproving the correctness of the intended
behaviour of the system with respect to a formal specifica-
tion of the system. An effective means of automating this
process is by representing properties to be verified in a tem-
poral logic and exploiting model checking or theorem prov-
ing. In this paper we examine the use of planning techniques
to perform automated verification. In particular, we exploit
recent advances in heuristic search-based planning for tem-
porally extended goals. We translate a specification of the
behaviour of our system into planning domains and spec-
ify safety, liveness, and fairness properties and constraints in
linear temporal logic (LTL). Verification of these properties
and constraints can then be achieved by some form of plan-
ning where LTL formulae are treated as temporally extended
goals. To illustrate our approach, we translate models from
SMV to planning domains and problems in PDDL. Our ini-
tial experimental results comparing our planning approach to
NuSMV and SPIN show that planners can provide significant
time improvements when checking safety and liveness prop-
erties compared to state-of-the-art model checkers.

Introduction
Automated verification of hardware and software systems
has become increasingly prevalent, particularly in the design
and development of safety-critical systems. Formal verifica-
tion is the act of proving or disproving designated properties
of a system with respect to an abstract mathematical model
of the system. Properties are often expressed in a temporal
logic such as linear temporal logic (LTL) or computational
tree logic (CTL). The mathematical model of the system is
typically expressed as automata, a labelled transition system,
a Petri net, or for programming languages, in terms of the
operational, denotational, or axiomatic semantics of the lan-
guage. Automation of the verification process is commonly
done via model checking or theorem proving. In the case of
theorem proving, the automation is often only partial.

In this paper we explore the hypothesis that state-of-the-
art planning techniques can improve the efficiency of a num-
ber of automated verification tasks. To this end, we propose
to encode verification problems as planning problems and to
apply state-of-the-art planning techniques to construct for-
mal proofs.

We are not the first to explore the application of planning
techniques to automated verification. Edelkamp, Lafuente,
and Leue (2001) explored the use of directed search algo-
rithms in explicit state model checking – so-called directed
model checking. They applied this idea to Promela, the input
language of the SPIN model checker (Holzmann 1997), ver-
ifying safety properties and general temporal properties in
LTL. In 2003, Edelkamp showed how model checking prob-
lems in a subset of Promela can be converted to the Planning
Domain Definition Language (version 2.1) PDDL2.1 (Fox
and Long 2003). He then showed how simple safety proper-
ties of these models can be checked using existing heuristic
search planners. He showed that the Metric-FF planner was
competitive with directed model checkers and superior to
standard model checkers for checking simple safety proper-
ties.

Here we explore three broad classes of verification prob-
lems: safety properties, liveness properties, and fairness
constraints. As demonstrated by Edelkamp, it is straightfor-
ward for a planner to check simple safety properties by view-
ing the plan as a finite counterexample of a safety invari-
ant. Thus the main open challenges lie in checking complex
safety properties, liveness properties, and in the application
of fairness constraints. While typical safety properties yield
finite counterexamples, liveness properties necessitate infi-
nite counterexamples, but standard planners are incapable of
producing corresponding infinite plans, in the general case.

Central to our approach is the exploitation of techniques
for planning with temporally extended goals (TEGs). In par-
ticular, we exploit a technique proposed by Baier and McIl-
raith (2006) which enables the use of fast heuristic search
planners for planning with TEGs, often leading to orders-
of-magnitude improvements over approaches that do not ex-
ploit heuristics. We formally establish the relationship be-
tween our three verification tasks and planning with TEGs.
From this characterization, we are able to use TEGs to find
plans that act as counterexamples of safety properties. In the
case of liveness properties and fairness constraints, we em-
ploy techniques introduced by Schuppan and Biere (2004)
to reduce liveness checking to safety checking.

We demonstrate our proposed approach by translating a
subset of the SMV modeling language used by model check-
ers such as NuSMV (Cimatti et al. 2002) to the Planning
Domain Definition Language (PDDL) (McDermott 1998),
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and comparing the performance of NuSMV against the
heuristic search planner Fast Forward (FF) (Hoffmann and
Nebel 2001) using our TEG planning domain encoding. We
checked safety and liveness properties for various instances
of the dining philosophers problem, increasing the number
of philosophers. In the case of safety checking, FF signif-
icantly outperformed NuSMV on the verification of false
properties solving far more problems, while NuSMV min-
imally outperformed FF on the verification of true proper-
ties. In the case of liveness, FF significantly outperformed
NuSMV on the verification of a false liveness property, scal-
ing well as the number of philosophers increased. We re-
cently extended our experimental analysis to include exper-
iments using the SPIN explicit state model checker. Pre-
liminary results showed SPIN outperforming FF on small
problems, irrespective of the property. However, as prob-
lems grew in size, SPIN showed an exponential increase in
time and memory usage and was unable to find counterex-
amples for false properties. While our experimental analysis
is preliminary, it is sufficient to demonstrate the strong po-
tential of our approach, particularly for large problems, and
supports the hypothesis that state-of-the-art planning tech-
niques can improve the efficiency of a number of automated
verification tasks.

In the next section we provide background on verification
and planning. We follow by describing our translation from
Kripke models, used to model systems by model checkers,
to planning domains and problems. Then, we introduce our
approach to checking safety properties along with experi-
mental results. We follow by describing our reduction from
liveness properties and fairness constraints to reachability
properties accompanied by experimental results. This is fol-
lowed by a summary of our contributions and a discussion
of future work.

Background
In this section we review verification and classical planning.

Verification
In the general case, the formal specification of a system to
be verified is described in terms of a potentially infinite state
space. However, many approaches to automated verifica-
tion construct a system model that is finite or for which infi-
nite sets of states can be effectively represented finitely. We
do likewise here, following the model checking literature,
and represent systems to be verified as Kripke structures.
This restriction to finite state spaces will enable us to exploit
state-of-the-art propositional planners.

Following Clarke, Grumberg, and Peled’s notation
(2000), we define a Kripke structure M as a four tuple
M = (S, I,R, L) where S is a finite set of states compris-
ing the model; I is a set of initial states where I ⊆ S; and R
is a transition relation R ⊆ S × S, where for every s ∈ S,
there exists s′ ∈ S such that R(s, s′) holds. L : S → 2AP
is an injective labeling function from states to atomic propo-
sitions, where AP is a set of atomic propositions. For a
state s ∈ S, L(s) is the set of atomic propositions true in s.
R(s, s′) holds iff there is a transition from state s to state s′.

In the rest of the paper, we use the notation s to refer to a
state in a Kripke structure and s to refer to a planning state,
which includes states of the form L(s).

An LTL formula is comprised of atomic propositions, log-
ical operators, and temporal operators. LTL formulae can be
one of the following:

1. An atomic proposition p.

2. ¬φ, φ ∨ ψ, φ ∧ ψ,Fφ,Gφ,Xφ, φUψ, where φ and ψ are
LTL formulae.

The semantics of LTL formulae are defined over paths. A
path π is a possibly infinite sequence of states s0s1s2 · · · ,
where (si, si+1) ∈ R for all i < |π|. |π| denotes the number
of states in the path. Moreover, π(i) denotes the i-th state
in π, and πi denotes the suffix of π that starts from the i-th
state. We use the notation π |= φ to express that formula φ
is satisfied by a path π. The |= relation is defined as follows.

1. π |= p iff p ∈ L(π(0))

2. π |= ¬φ iff π 6|= φ

3. π |= φ ∧ ψ iff π |= φ and π |= ψ

4. π |= Fφ iff ∃i < |π|.πi |= φ

5. π |= Xφ iff |π| > 1 and π1 |= φ

6. π |= Gφ iff ∀i < |π|.πi |= φ

7. π |= φUψ iff ∃i < |π|.πi |= ψ ∧ ∀j < i.πj |= φ

When checking if a Kripke structure M satisfies an LTL
formula φ (written M |= φ), we check if the formula holds
on all maximally expanded paths starting from all initial
states. If there is a maximally expanded path where the for-
mula does not hold, then that path is a counterexample to
the satisfiability of the formula in the Kripke structure under
consideration.

Fairness constraints are a set of subsets of states
{F1, ..., Fn}, where Fi ⊆ S. Let

inf(π) = {s | s ∈ S and s occurs infinitely often on π}

A path π is considered fair if it is of infinite length and for
every Fi, Fi ∩ inf(π) 6= ∅. In the presence of fairness
constraints, we only check maximally expanded paths that
are fair.

A Büchi automaton is a finite state automaton extended
to infinite inputs. Given an infinite input, the automaton ac-
cepts it iff at least one accepting state is visited infinitely
often. We use Büchi automata to represent LTL properties.

Safety properties specify that “something bad will never
happen” while liveness properties specify that “something
good will eventually happen” (Lamport 1977). Deadlock-
freeness and invariants (e.g. Gp) are examples of safety
properties. Termination and request-response (e.g. G(p →
Fq)) are examples of liveness properties. A formal def-
inition of safety and liveness is presented by Alpern and
Schneider (1987) where they show how a safety or liveness
property can be identified by examining the Büchi automa-
ton representing the property. A counterexample of a safety
property is a finite path where an irremediable “bad thing”
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happens. A counterexample of a liveness property is an in-
finite path where a “good thing” never happens. When ver-
ifying non-safety properties, we will be looking for lasso-
shaped counterexamples following the approach by Schup-
pan and Biere (2004). A lasso-shaped path is an infinite path
that can be represented as abω , where a and b are finite paths.
a is called the stem and b is the loop.

We define a verification task V to be a tuple V =
(M,φ, {F1, ..., Fn}). M is a Kripke structure describing the
system. φ is the LTL property to be verified. F1, ..., Fn are
fairness constraints. φ is satisfied by M under the fairness
constraints F1, ..., Fn iff there does not exist a maximally
expanded fair path π in M such that π |= ¬φ and π starts
from an initial state in M .

Classical Planning
Essentially following Ghallab, Nau, and Traverso (2004),
we define a planning problem to be a tuple (S0, F,A,G)
where F is a finite set of atomic facts, S0 ⊆ F is
the initial state, and A is a finite set of determinis-
tic actions. Each action a ∈ A is itself described by
a tuple (pre(a), add(a), del(a)) where pre(a) is a pair
(pre+(a), pre−(a)) of disjoint subsets of F that define, re-
spectively, the positive and negative preconditions of action
a. On the other hand, add(a) and del(a) are disjoint subsets
of F that define, respectively, the positive and negative ef-
fects of action a. A planning state is a subset of elements in
F . Classical planning assumes complete information about
the planning state. As such, every f ∈ F that is not ex-
plicitly mentioned in a planning state, including the initial
state, is assumed to be false in that state. An action a is
applicable in a planning state s ⊆ F iff pre+(a) ⊆ s and
pre−(a)∩s = ∅. The state resulting from applying an action
a in a state s is succ(a, s) = (s \ del(a)) ∪ add(a). Finally,
the goal G corresponds to a set of planning states satisfying
a propositional property specifying the final state of a plan.

A plan, ~a, is a finite sequence of actions a0, ..., an such
that the application of ~a in S0 yields a state s in G.
TEGs Extensions of the classical planning paradigm in-
clude planning for TEGs (e.g. Bacchus and Kabanza 1998).
A TEG is a goal defined by a temporal logic formula, usually
expressed in LTL. TEGs describe properties or constraints
that must hold on the sequence of states traversed by the
plan’s execution, not just in the final state. For example, the
TEG pUq specifies that the goal of the system is to reach
a state where q is true, but on all states of the plan before
achieving q, the fact p must hold.

In this paper we exploit Baier and McIlraith’s approach to
planning with TEGs (2006). The approach maps a planning
instance with a TEG into a classical planning instance. It
does so by first representing the LTL formula as a nonde-
terministic, parametrized finite state automaton. Then this
automaton is modeled within the planning domain. To this
end, auxiliary predicates are added to the planning instance
that represent the states of the automaton. In particular, a
subset of those predicates – the so-called accepting predi-
cates – are such that they are true in a state s iff the sequence
of states that lead to s satisfies the TEG. Baier and McIl-
raith’s approach has the advantage that it can be used with

heuristic search planners, which usually results in orders-of-
magnitude improvements over approaches that do not use
heuristic search (e.g., TLPLan).
PDDL The Planning Domain Definition Language (PDDL)
(McDermott 1998) is the de facto standard language for rep-
resenting classical planning problems. Planning actions can
be described as schemas, allowing a compact representation
for families of actions that have similar preconditions and
effects. For example, drive(v, loc1, loc2) may be used as
an action schema to represent a family of actions that move
some vehicle v from one location loc1 to some other loca-
tion loc2. Thus, a PDDL description of a planning problem
may be more compact than an explicit representation of all
the actions in A.

From System Models to Planning Problems
Our goal in this paper is to view verification as planning. As
such, there are two key challenges that we need to address:
(1) how to model the system dynamics using a planning lan-
guage, (2) and how to model safety/liveness properties and
fairness constraints using a planning language so that we can
check them with a planner.

In this section we deal with the first of these challenges.
We show how a system, modeled by a Kripke structure, can
be represented via planning actions and a particular initial
state. First we justify theoretically that it is possible to con-
struct a correspondence between Kripke structures and par-
tial planning problems (for which we do not define a goal).
In the rest of the section we describe a specific translation of
a subset of SMV programs into PDDL.

System Models Are Partial Planning Problems
Below, we describe two simple translations of Kripke struc-
tures into partial planning problems. Formally, a partial
planning problem is a tuple (S0, F,A), where S0, F , and
A are defined as in classical planning problems.

Our first translation is used to establish a full correspon-
dence between planning and verification. The translation we
propose, however, is not practical in most cases, since its
size is proportional to the cardinality of the transition func-
tion R. In the next subsection, we propose a more efficient
translation for a subset of the pragmatic SMV language that
is much more compact.

Given a Kripke structure M , we first define the facts of
the planning problem. We define F := AP , i.e., the facts
of the planning problem correspond to the propositions of
the Kripke structure. For every transition in (s, s′) ∈ R, we
add an action a to A by setting the set of preconditions of a
to L(s) and its effects to L(s′). That is to say, pre+(a) =
L(s), pre−(a) = AP \ L(s), add(a) = L(s′) \ L(s), and
del(a) = L(s) \ L(s′).

Now we turn our attention to the definition of the initial
state. As opposed to Kripke structures, classical planning
problems consider a unique initial state. We now present
two alternative mappings of Kripke structures into classical
planning. The first one maps a Kripke structure into a family
of partial planning problems; the second maps it into a single
planning instance. In the rest of the paper we use our first
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formulation to establish formal connections between plan-
ning and verification, whereas the second translation is used
as a foundation for the method used to compile SMV into
PDDL.

Kripke Structures to Families of Partial Problems The
intuition of this translation is that for a given Kripke struc-
ture we generate one partial problem for each initial state.
Formally,
Definition 1 Given a Kripke structure M = (S, I,R, L),
the family of partial planning problems associated with M
is

PM = {P |P = (L(i), F,A) for each i ∈ I},

where F and A are respectively the facts and actions as de-
fined above.

There is a correspondence between paths of a Kripke
structure and plans found for problems in this family. The
following theorem establishes such a relation.
Theorem 1 (Correctness) Given a Kripke structureM and
the corresponding family of planning problems PM , then:
π is a finite path starting from an initial state in M iff there
exists a partial planning problem P ∈ PM that has a plan ~a
for the goalL(π(|π|−1)), such that S0 of P equalsL(π(0)),
|~a| = |π| − 1, and for all 1 ≤ i < |π|, L(π(i)) equals the
result of applying the plan ~a[0..i− 1] to S0 in P .
Proof sketch: The proof follows from the translation de-
fined above, (s, s′) ∈ R iff there exists an action a such that
succ(a, L(s)) = L(s′), and from Definition 1 which states
that for every initial state in the Kripke structure, there is a
partial planning problem P ∈ PM that has a corresponding
initial planning state. �

Kripke Structures to a Single Partial Problem To gen-
erate a single classical planning problem we need to rep-
resent the fact that we can “choose” the initial state from
which we wish to start. This can be simulated by having
a unique initial state, in which one can perform |I| actions,
each of which leads to a different state in I . To this end, we
augment our planning domain as follows:

1. Add the fact init to the set of facts F .
2. Let S0 = ∩i∈IL(i)
3. Add init to the positive precondition of all actions in A.

I.e., for all actions a ∈ A set pre(a) := pre(a) ∪ {init}.
4. For each L(i) of i ∈ I , the initial states of M , add an

action ai to A such that:

pre+(ai) = {}
pre−(ai) = {init}
add(ai) = (L(i) \ S0) ∪ {init}
del(ai) = ∅

This procedure creates an initial state with only the facts that
all initial states agree on. After that it adds the predicate
init to the precondition of every action. For every initial
Kripke state i ∈ I , we add a new action to transition from

the planning problem’s initial state, S0 to L(i). We call the
resulting problem PM .

Theorem 2 establishes the correspondence between plans
in PM and plans in the family of partial planning problems,
represented by the set PM .
Theorem 2 Let M be a Kripke structure with PM and PM
as defined above. Furthermore, let G be a set of facts drawn
from F that does not mention init. Then, a plan exists for
the partial planning problem PM with the goal G iff there
exists a plan for some P ∈ PM with goal G.
Proof sketch: (⇒) Let a0, · · · , an be a plan for PM with
goal G. succ(a0, S0), where S0 is the initial state of PM ,
will be the initial state of some P ∈ PM . The rest of the
plan a1, · · · , an will be a plan for P with goal G.
(⇐) Let a0, · · · , an be a plan for some P ∈ PM with goal
G. By the algorithm above, there exists an action a in PM ,
such that succ(a, S0), where S0 is the initial state of PM , is
the initial state of P . The plan a, a0, · · · , an will then be a
plan for PM with goal G. �

Later, we will show that in checking liveness and safety
properties using planners, we will be looking for a coun-
terexample (plan) that starts from any initial state in I and
ends in a state violating the property. Therefore, the initial
state formulation defined above creates a separate path go-
ing through every initial state in I . Even though the number
of initial actions increases exponentially with the increase
in the number of undefined predicates, most of the time un-
known predicates specify which thread or process has con-
trol. When this is the case, we add n actions to specify which
of the n processes runs first. Also, In cases like explicit state
model checking (e.g. SPIN (Holzmann 1997)), there can
only be one initial state.

The goalG depends on the property we want to check and
this will be addressed in the following sections.

From SMV to PDDL
We now show the source-to-source translation from a subset
of SMV to PDDL. SMV is an input language for a fam-
ily of model checkers. Originally it was used in the SMV
model checker (McMillan 1992). The SMV language al-
lows for compact representations of systems as state spaces.
The language allows declaring variables of different types.
Here we restrict our translation to models with variables of
Boolean types, enumerated types, subrange types, and ar-
rays. We disregard set operations, vectors, and construc-
tor loops. To simplify the conversion to PDDL, we use the
build Boolean model feature provided by NuSMV to
convert all variables to Boolean type.

The constructs used to define the values a variable can
have are init and next. init defines the value a vari-
able has in the initial state. For example, init(x)= true
specifies that the variable x has the value true in the initial
state. next defines the value a variable holds in subsequent
states. For example, next(x)=!x means that in the next
state x holds a value opposite to the current state. next
declarations can be made more complex by using switch-
case statements, referring to other variables in the model,
and using non-deterministic assignments.
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MODULE main
VAR

x : {s0,s1};
ASSIGN

init(x) := s0;
next(x) := case

x=s0 : s1;
x=s1 : s0;

esac;

Figure 1: A simple SMV model

(define (domain main)
(:predicates (s0)

(s1))
(:action move1

:precondition (s0)
:effect (and (s1) (not (s0)))

(:action move2
:precondition (s1)
:effect (and (s0) (not (s1))))

Figure 2: PDDL domain

In our translation, we add init definitions to the PDDL
problem file as this is where initial state information is
placed. On the other hand, we translate next definitions
into actions that change the values of predicates. The exam-
ples presented in this section give an overview of how we
perform this translation.

SMV models can include more than one module
which usually refer to processes where each process
gets chance to execute in an interleaving concurrency
model. For an SMV model with more than one mod-
ule, we transform it into an equivalent single module
SMV model using the flatten hierarchy feature in
the NuSMV model checker. This transformation and the
build Boolean model break down the hierarchy and
change the names of state variables, therefore, the property
to be checked is also transformed.

Figure 1 represents a simple SMV model consisting of
two possible states, x = s0 and x = s1. The SMV model
specifies that the variable x initially holds the value s0. The
case statement specifies that if in the current state x =
s0, then x will be set to s1 in the following state. And if
x = s1 in the current state, it will be set to s0 in the next
state. The only possible path in this model is x = s0, x =
s1, x = s0, x = s1, .... Figure 2 shows an equivalent PDDL
domain description with two predicates describing the two
possible states. The two conditions of the case statement are
handled by the preconditions of the of the actions move1
and move2 in PDDL. state and the goal are defined in the
PDDL problem definition, which is not shown here. In the
case of Figure 1, the initial state is x = s0 and the goal
depends on the property to be verified.

Non-deterministic Transitions To handle non-
determinism, we add more than one action to capture
the different possible transitions. Figure 3 specifies an SMV
model that starts at state x = s0 with every subsequent state
non-deterministically set to either x = s0 or x = s1. In
PDDL, Figure 4, this is modeled by the two actions move1
and move2 which can be executed from any state (i.e. no

MODULE main
VAR

x : {s0,s1};
ASSIGN

init(x) := s0;
next(x) := {s0,s1};

Figure 3: A simple SMV model with non-determinism

(define (domain main)
(:predicates (s0)

(s1))
(:action move1

:effect (and (s1) (not (s0)))
(:action move2

:effect (and (s0) (not (s1))))

Figure 4: PDDL domain emulating non-determinism

preconditions). The initial state definition for PDDL is not
shown here.

Handling Multiple Initial States If the SMV model in
Figure 1 did not have the line init(x) := s0, this
would create two initial states, x = s0 and x = s1, since
x will be non-deterministically set initially. To convert this
to PDDL, we use the procedure we define above. The re-
sulting PDDL code is shown in Figure 5. In the initial state,
all predicates are set to false, and the only applicable ac-
tions are init1 and init2 which act as transitions from
the new initial state to the two possible initial states (x = s0
and x = s1).

Handling Multiple Variables The previous examples
showed models with only one variable: x. Suppose the
model in Figure 1 included another variable y which has
the same type as x and the same definitions of init and
next. The equivalent PDDL domain has to handle the dif-
ferent combinations of conditions for both variables. The
translation is shown in Figure 6.

Safety Checking
In this section, we describe the approach we adopt for check-
ing arbitrary LTL safety properties by attempting to generate
a finite counterexample. We finish by presenting a prelimi-
nary evaluation of our approach.

Approach
Given a verification task V = (M,φ, ∅), where the formula
φ is a safety property, we look for a finite path π in M start-

(define (domain main)
(:predicates (s0) (s1) (init))
(:action move1

:precondition (and (s0) (init))
:effect (and (s1) (not (s0)))

(:action move2
:precondition (and (s1) (init))
:effect (and (s0) (not (s1))))

(:action init1
:precondition (not (init))
:effect (and (s0) (init)))

(:action init2
:precondition (not (init))
:effect (and (s1) (init))))

Figure 5: PDDL domain to handle incomplete initial state

40



(define (domain main)
(:predicates (xs0) (ys0)

(xs1) (ys1))
(:action move1
:precondition (and (xs0) (ys0))
:effect (and (xs1) (ys1) (not (xs0)) (not (ys0)))

(:action move2
:precondition (and (xs1) (ys1))
:effect (and (xs0) (ys0) (not (xs1)) (not (ys1)))

(:action move3
:precondition (and (xs1) (ys0))
:effect (and (xs0) (not (xs1)) (ys1) (not (ys0))))

(:action move4
:precondition (and (xs0) (ys1))
:effect (and (xs1) (not (xs0)) (ys0) (not (ys1))))

Figure 6: PDDL domain for SMV model with more than one
variable

ing in an initial state that is a counterexample for the prop-
erty (i.e., π 6|= φ). There is thus a clear analogy between
searching for a plan and searching for a finite path, since
both of them encode a finite trajectory of states.

Our approach builds on previous work by
Edelkamp (2003) and by Baier and McIlraith (2006).
Edelkamp (2003) casts the verification of simple safety
properties Gψ, where ψ is a propositional formula, as a
planning task. The planning task is formulated as one in
which the objective is to find a plan for the negation of the
property: F¬ψ. The achievement of F¬ψ is encoded as a
classical, final state goal ¬ψ, and a planner simply plans for
¬ψ. Any plan for the goal ¬ψ eventually achieves ¬ψ and
thus is a counterexample for the original property.

Our approach coincides with Edelkamp’s in that we trans-
late the model of the system into a partial planning problem
in PDDL, and then consider as a goal the negation of the
safety property. However, as opposed to Edelkamp’s ap-
proach, ours can handle any LTL safety property.

Given a partial planning problem PM for a system de-
scription M , as described in previous section, we define the
goal for PM as ¬φ, where φ is an arbitrary LTL safety prop-
erty. Unlike Edelkmap, the resulting planning problem is
not a classical planning problem, and thus we require an ad-
ditional step to generate a classical task. To that end, we
use Baier and McIlraith’s approach (2006) to transform the
problem into an equivalent classical problem (i.e., one in
which the goal is represented as a property of the final state).

Theorem 3 and Proposition 1 establish the connection be-
tween verifying a safety property φ in a Kripke structure M
and finding a plan to the classical planning problem gener-
ated by Baier and McIlraith’s approach (2006) as described
above.
Proposition 1 Given a partial planning problem PM and a
TEG φ, there exists a plan for PM and φ iff there exists a
plan for the classical planning problem P cM obtained from
PM and φ using Baier and McIlraith’s translation (2006).
(This follows trivially from (Baier and McIlraith 2006))
Theorem 3 Let V = (M,φ, ∅) be a verification task, where
φ is a safety property, and PM be the family of partial plan-
ning problems corresponding to M . Then property φ holds
in model M (i.e., M |= φ) iff there doesn’t exist P ∈ PM
that can yield a plan for the TEG ¬φ.
Proof sketch: Following (Alpern and Schneider 1987),

Figure 7: Safety checking via temporally extended goals

since φ is a safety property, it has a finite counterexample.
So if M |= φ, then there does not exist a finite path π in M
starting from an initial state such that π 2 ¬φ. From Theo-
rem 1, this means that there is no plan in the family of partial
planning problems that corresponds to such a path. �

Consider the example in Figure 7. It represents a Kripke
structure with the propositions p, q, and r. In the initial state,
marked with double circles, only p is true. To check if the
safety property XGp holds on this model, we convert the
model to a planning problem and find a plan satisfying the
negation of the property. So we will plan for the TEG XF¬p.
In this case, the planner returns a plan from the initial state
p to the state labeled r. So a counterexample of XGp is the
path p, pq, r.

Results
Figure 8 shows experimental results of checking safety prop-
erties using the FF planner (Hoffmann and Nebel 2001) and
the NuSMV model checker (Cimatti et al. 2002) in BDD
mode. We translated the dining philosophers problem man-
ually from SMV to PDDL and verified 3 properties. We
performed our experiments under Mac OS X running on
a 1.83GHz Core Duo processor with 2GB of RAM. We
checked the deadlock-freeness properties p1 and p3, and the
property p2 = G(all philosophers done→ Xtoken 6= 0). p1

and p3 are the same property, but p1 was verified on a model
with a deadlock and p3 on a deadlock free one. We defined
the deadlock to be when each philosopher is holding a fork
in their right hand or when each philosopher is holding a
fork in their left hand. The token signals which philosopher
can perform an action. When token = 0, the token is not
with any philosopher.

FF performed significantly better when the properties
were false. It was able to find counterexamples even for
the 30 philosophers instance in less than the 250 seconds
upper bound on execution time. In the case of the true prop-
erty p3, NuSMV solves more instances than FF. This is due
to the fact that FF is biased towards finding a counterexam-
ple (plan). Initially it starts with the Enforced Hill Climb-
ing (EHC) algorithm (Hoffmann and Nebel 2001) and once
EHC fails, it resorts to the exhaustive best first search. This
two stage search and the explicit representation of the state
space leads FF to be less efficient at checking true properties
than NuSMV that represents the state space symbolically.

In our preliminary results comparing FF to SPIN (Holz-
mann 1997), we observe that as the problem grows in size
– and therefore the counterexample also grows – SPIN runs
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Property p1 p2 p3

#Phils NuSMV FF NuSMV FF NuSMV FF
2 0.033 0.01 0.054 0.01 0.027 0.01
3 0.105 0.01 0.138 0.02 0.30 0.09
4 0.668 0.02 1.011 0.04 0.0649 0.85
5 5.172 0.04 8.846 0.07 0.382 7.60
6 25.224 0.07 60.853 0.12 1.600 162.06
7 146.810 0.12 248.358 0.20 8.998 -
8 - 0.19 - 0.30 42.164 -
9 - 0.31 - 0.43 167.649 -

10 - 0.45 - 0.59 - -
11 - 0.67 - 0.84 - -
12 - 0.97 - 1.12 - -
13 - 1.36 - 1.46 - -
14 - 1.88 - 1.94 - -
15 - 2.57 - 2.48 - -
16 - 3.35 - 3.18 - -
17 - 4.47 - 3.89 - -
18 - 5.91 4.81 - -
19 - 7.61 - 5.79 - -
20 - 9,76 - 7.20 - -
21 - 12.44 - 8.57 - -
22 - 15.55 - 10.72 - -
23 - 19.43 - 11.97 - -
24 - 24.03 - 14.15 - -
25 - 29.60 - 16.57 - -
26 - 37.23 - 19.43 - -
27 - 45.06 - 24.00 - -
28 - 54.21 - 27.87 - -
29 - 64.65 - 33.63 - -
30 - 83.96 - 41.33 - -

Figure 8: Time in seconds for using NuSMV and FF to
check 3 safety properties. ‘-’ means that the planner or
model checker did not return a result during the 250 second
allotted execution time.

out of memory and time resources quickly, while FF main-
tains an almost linear increase in the time it takes to find
a counterexample. A similar behavior was observed in
(Edelkamp 2003).

Liveness Checking and Fairness Constraints
In the previous section we proposed a method for finding
finite-length counterexamples of arbitrary LTL safety prop-
erties using planning. In this section, we address the more
challenging problem of finding counterexamples of infinite
length using planning. As previously noted, infinite coun-
terexamples are needed when falsifying liveness properties
and when fairness constraints are present.

The planning problems we generate with the approach we
developed above for finite counterexamples is not suitable
for finding infinite counterexamples. Since in such prob-
lems we cannot aim at finding an infinite plan that represents
an infinite counterexample, we are bound to aim at finding
“lasso-shaped plans”; i.e., plans whose execution will visit
some state twice. The goal condition for finding such a plan
cannot be expressed as a TEG however. Even worse, such a
goal is not expressible in terms of the predicates of the do-
main. Indeed, such a goal requires to refer to the existence of
a loop in the states visited by the plan – a condition that can-
not be expressed in terms of state predicates. This second
alternative has another problem: planners explicitly prune
from the search space those plans that visit a state twice.
The reason for this is efficiency, as visiting a state twice al-
ways implies that the plan can be made shorter by removing
the chunk of actions that produce the state repetition.

Below we present an approach that can be used to find in-

finite counterexamples by finding finite plans. We achieve
this by considering an enhanced planning problem contain-
ing additional predicates which allow to address the issues
that we have sketched above. Building upon Schuppan and
Biere’s approach (2004), we construct an enhanced plan-
ning problem that allows referring to the existence of a loop
and the existence of a counterexample as a classical plan-
ning goal. The approach works for ω-regular properties, and
therefore arbitrary LTL properties.

From Liveness to Safety
Schuppan and Biere (2004) showed how liveness properties
can be reduced to safety properties in finite state systems.
Their approach modifies the Kripke structure by adding
“temporary stores” for the state variables and additional state
transitions to find lasso-shaped paths. For simplicity, we
view atomic propositions as state variables that hold a value
of true or false.

The following gives a general overview of the state
recording translation. The approach uses the negation of the
Büchi automaton B¬φ of the LTL property φ to be checked
and takes the product of the Kripke structure andB¬φ (Vardi
and Wolper 1986).

1. For each state variable v we consider an additional vari-
able vs, intended to save the value of v.

2. The value of all variables is saved by a special save event,
which corresponds to a nondeterministic transition that
saves the values of the state variables in the current state
in the copies of state variables. Once a save event occurs,
no further saves are allowed and we assume that we are on
the loop of a lasso-shaped path. (Nondeterministic save)

3. The product of the modified Kripke structure (with
temporary-stores and non-deterministic save) and B¬φ is
taken. (Property observation)

4. The loop closes once the current state is equal to the saved
state. (Loop detection)

5. If the loop closes and at least one accepting state of B¬φ
occurs on the loop then the path is considered a counterex-
ample.
Note that items 1 to 3 define the encoding of a new Kripke

structure Msb in which we want to find a counter example
that is a lasso-shaped path that visits an accepting state of
B¬φ. Schuppan and Biere (2004) showed that there exists a
safety property for this new Kripke structure whose counter
examples have precisely this form. Specifically, they con-
struct an LTL safety property φsb such that φsb is violated
by Msb iff φ is violated by M . As such, we can use the
method described in the previous section to use planning for
checking this new property in this new Kripke structure.
Theorem 4 Let V = (M,φ, ∅) be a verification task, where
φ is an arbitrary LTL property. Let Vsb = (Msb, φsb, ∅) be
the translation of V using Schuppan and Biere’s approach
(2004) to safety checking, where φsb is a safety property.
Let PMsb

be the family of partial planning problems corre-
sponding to Msb. Then:
Property φ holds in model M (i.e., M |= φ) iff there does
not exist a P ∈ PMsb

that has a plan for the TEG ¬φsb
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Proof sketch: We can establish that M |= φ iff Msb |=
φsb from Theorem 5 in (Schuppan 2006) and the fair loop
detection they borrow from (Vardi and Wolper 1986). The
rest follows from Theorem 3. �

Our theorem is stated in terms of a translation to PMsb

which can be exponential in the number of propositions.
Nevertheless, given a pragmatically constructed PDDL do-
main description, one can efficiently generate another com-
pact PDDL description that models Schuppan and Biere’s
translation (2004). In fact, the save event can be modeled
by a new action, and the copies of the variables as new
predicates. Finally, the Büchi automaton for ¬φ can be
modeled within the planning domain following either of the
methods proposed by Edelkamp (2006) or Baier and McIl-
raith (2006). This way we can represent the goal condition
(which talks about visiting states of B¬φ) using the predi-
cates of the planning domain.

The Planning Problem in PDDL We adopt an approach
similar to Schuppan and Biere’s by adding loop detection
and property observation directly to the PDDL domain and
problem files.

Consider the finite state machine in Figure 9. It represents
the SMV model in Figure 1 and the PDDL domain in Fig-
ure 2. Suppose we want to check the property GFs0. In
the Büchi automaton of GFs0, any occurrence of s0 takes
the automaton to an accepting state, and any occurrence of
s1 takes it to an unaccepting state. Therefore, we will be
looking for a lasso-shaped counterexample where s0 never
occurs on the loop so as not to visit an accepting state in-
finitely many times. The following shows how we encode
this in PDDL:

1. Add predicates ts0 and ts1. (Copies of state variables)
2. Add a save action that takes values of s1 and s2 and places

them in ts0 and ts1 respectively. This action is such that it
can at most be performed once in every legal plan. (Non-
deterministic save)

3. Add predicates loop, save, and live.
4. Modify actions to check whether live is falsified on the

loop. live becomes false if there’s a state with s0 false on
the loop. (Property observation)

5. Loop closure is added as the goal. (Loop detection)
The resulting domain and problem files are shown in Fig-

ures 10 and 11. save signals the beginning of the loop and
then loop signals the rest of the loop. The safety property to
be verified becomes in this case G(looped → live), where
looped is a propositional formula referring to the loop clos-
ing condition (the saved predicates are equal to the current
predicates). So the planning problem will have the goal
looped∧¬live that indicates that we are looking for a lasso-
shaped path where the s0 does not occur on the loop.

The loop detection part is always the same regardless of
the liveness property being verified. The property observa-
tion part changes depending on the property. For instance, in
the case of GFp, the counterexample should have p false on
the loop states, whereas for Fp the counterexample should
have p false in all states of the lasso shaped counterexample.

Figure 9: Liveness to safety reduction

(define (domain example)
(:predicates (s0) (s1)

; Added predicates
(ts0) (ts1)
(live) (save) (loop))

(:action move1
:precondition (s0)
:effect (and (s1) (not (s0))
; Property Observation
(when (and (loop) (not (s0))) (not (live)))
(when (and (save) (not (s0))) (not (live)))
(when (save) (and (loop) (not (save)))))

(:action move2
:precondition (s1)
:effect (and (s0) (not (s1)))
; Property Observation
(when (and (loop) (not (s0))) (not (live)))
(when (and (save) (not (s0))) (not (live)))
(when (save) (and (loop) (not (save)))))

(:action save
:precondition (and (not (loop)) (not (save)))
:effect (and (save)
(when (s0) (ts0))
(when (s1) (ts1))))

Figure 10: PDDL domain for checking FGs0

(define (problem prob)
(:domain (example))
(:init (s0) (live))
(:goal (and (not (live)) (loop)

; Loop detection
(or (and (s0) (ts0)) (and (not (s0)) (not (ts0))))
(or (and (s1) (ts1)) (and (not (s1)) (not (ts1))))))

Figure 11: PDDL problem for checking FGs0. Loop detec-
tion is stated as part of the problem

Fairness Constraints Fairness constraints are properties
that must hold infinitely often on a path. For example, in
Figure 9 any infinite path will pass through s0 infinitely of-
ten. Therefore, if s0 was a fairness constraint, it would hold
on any infinite path in Figure 9. To apply a fairness con-
straint f , where f is a propositional formula representing a
set of states, we only consider infinite paths satisfying the
property GFf (i.e., in lasso-shaped paths, there is at least
one state on the loop where f holds).

To add the fairness constraint s1 to the example in Fig-
ures 10 and 11, we have to check if s1 occurs on the loop
of a counterexample for it to be considered valid. The re-
sulting PDDL domain and problem descriptions are shown
in the Appendix. If more than one fairness constraint was
included, each one of them has to occur on the loop of a
lasso-shaped counterexample.
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Results
We verified the false liveness property GF(token = 0)
on the dining philosophers problem with the fairness con-
straints that each philosopher executes. The results are
shown in Figure 12. For checking liveness properties,
we used a version of FF that supports derived predicates,
namely FFχ (Thiébaux, Hoffmann, and Nebel 2005). De-
rived predicates allow us to specify the loop closing con-
dition in a more compact form, saving the planner a lot of
preprocessing time. FFχ showed a significant improvement
over NuSMV running in BDD mode, taking 2.5 seconds to
find a counterexample in the 30 philosophers instance.

Comparing our liveness checking with SPIN, our prelim-
inary results show a similar trend to the one observed when
checking safety properties with SPIN. SPIN and FF perform
almost equally well on smaller problems, but SPIN gets ex-
ponentially slower on larger problems, eventually running
out of memory.

#Phils NuSMV FFχ #Phils NuSMV FFχ
2 0.01 0.01 15 - 0.38
3 0.05 0.01 16 - 0.48
4 0.23 0.02 17 - 0.55
5 2.07 0.03 18 - 0.64
6 20.19 0.04 19 - 0.74
7 153.94 0.06 20 - 0.85
8 - 0.08 21 - 0.95
9 - 0.10 22 - 1.09

10 - 0.14 23 - 1.21
11 - 0.17 24 - 1.37
12 - 0.20 25 - 1.52
13 - 0.26 26 - 1.70
14 - 0.34 27 - 1.89
15 - 0.38 28 - 2.08
16 - 0.48 29 - 2.29
17 - 0.55 30 - 2.52

Figure 12: Time in seconds for using NuSMV and FF to
check the liveness property. GF(token = 0) with fairness
constraints. ‘-’ means that the planner or model checker did
not return a result during the 250 seconds allotted execution
time.

Summary and Future Work
In this paper, we demonstrated that heuristic search planning
techniques have the potential to outperform model checkers
with respect to a diversity of automated verification tasks.
A key enabler of our work, and one that distinguishes it
from previous related work by Edelkamp, is the ability to
exploit heuristic search planning for goals expressed as ar-
bitrary LTL formulae – TEGs. We do so by appealing to a
translation proposed by Baier and McIlraith that transforms
an LTL formula into a NFSA whose accepting condition is
the satisfaction of the LTL formula. This NFSA is then en-
coded in the planning domain, creating a classical planning
problem for which heuristic search techniques can be ap-
plied.

Although this work is still in its preliminary stages, the
contributions of this paper are both theoretical and experi-
mental in nature. In particular, we show how to character-
ize finite-state verification problems as planning problems,
providing a translation from a subset of SMV to PDDL. To

check arbitrary safety properties we search for finite coun-
terexamples by attempting to construct a plan for the nega-
tion of the property. Since safety properties are expressed in
LTL, a property’s negation is also an LTL formula, which we
characterize as a TEG. The Baier-McIlraith translation then
allows us to translate this to a classical planning problem
for which highly-efficient heuristic search can be applied. If
no counterexample is found, then there is no state violating
the invariant that is reachable from the initial state(s), and
therefore the property holds.

The verification of liveness properties and fairness con-
ditions proved more challenging because they necessitated
finding an infinite counterexample. To address these tasks,
we appealed to an approach proposed by Schuppan and
Biere (2004) to reduce liveness checking to safety check-
ing. The approach non-deterministically chooses a state to
be the start of a loop, and then tries to find a path that would
return to that state while not satisfying the liveness property.
For example, to verify if the property Fp holds on a model,
we check if there is a path where p never occurs on any state
and the path ends in a loop (i.e. an infinite path).

To evaluate the effectiveness of our proposed approaches,
we performed experiments with a parametrized instance of
the dining philosophers problem. Each verification prob-
lem was translated to a classical planning problem following
the proposed approach and we compared the performance
of the FF planner to the performance of both the NuSMV
symbolic model checker and the SPIN explicit state model
checker on the same problem. FF performed significantly
better than NuSMV, finding deadlocks in problems with 30
philosophers while NuSMV was only able to find counterex-
amples for up to and including 7 philosophers. With respect
to verification of safety properties, FF again significantly
outperformed NuSMV on false properties, solving all 30 in-
stances to NuSMV’s 7, with respect to two different proper-
ties. However, NuSMV performed slightly better with true
properties, solving 3 more instances than FF. Preliminary
results showed SPIN outperforming FF on small problems,
irrespective of the property. However, as problems grew in
size, SPIN showed an exponential increase in time and mem-
ory usage and was unable to find counterexamples for false
properties.

Our experimental evaluation illustrates the promise of
our approach to verification, particularly for large prob-
lems. In the near future, we plan to perform more exper-
imental evaluation. In particular, we hope to experiment
with several other verification domains, and to further ex-
amine performance on larger problems. Due to the non-
deterministic save when verifying liveness, the planner is
essentially guessing where a loop might start. This leads
heuristic search to be ineffective when choosing the state
to save. We are working on modifying search heuristics to
guide the planner towards finding loops. We are also work-
ing on better pruning strategies to more efficiently prove true
properties.
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Appendix: PDDL Domain and Problem with
Fairness Constraints

Figures 13 and 14 show the PDDL domain and problem
files, respectively, for checking the property FGs0 with the
fairness constraint s1 for the state machine shown in figure
9.

(define (domain example)
(:predicates (s0) (s1) (ts0) (ts1)

; Added predicates
(save) (live) (loop) (fair))

(:action move1
:precondition (s0)
:effect (and (s1) (not (s0))
; Fairness constraints
(when (and (loop) (s1)) (fair))
(when (and (save) (s1)) (fair))

; Property observation
(when (and (loop) (not (s0))) (not (live)))
(when (and (save) (not (s0))) (not (live)))
(when (save) (and (loop) (not (save)))))

(:action move2
:precondition (s1)
:effect (and (s0) (not (s1)))
; Fairness Constraints
(when (and (loop) (s1)) (fair))
(when (and (save) (s1)) (fair))

; Property observation
(when (and (loop) (not (s0))) (not (live)))
(when (and (save) (not (s0))) (not (live)))
(when (save) (and (loop) (not (save)))))

(:action save
:precondition (and (not (loop)) (not (save)))
:effect (and (save)
(when (s0) (ts0))
(when (s1) (ts1))))

Figure 13: PDDL domain for checking FGs0 with fairness
constraint s1

(define (problem prob)
(:domain (example))
(:init (s0) (live))
(:goal (and (not (live)) (loop) (fair)

; Loop detection
(or (and (s0) (ts0)) (and (not (s0)) (not (ts0))))
(or (and (s1) (ts1)) (and (not (s1)) (not (ts1))))))

Figure 14: PDDL problem for checking FGs0. Loop de-
tection is stated as part of the problem. fair is the fairness
constraint that has to hold on the counterexample (plan)
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