
PDVer, a Tool to Verify PDDL Planning Domains

Franco Raimondi
Department of Computer Science, UCL

London, UK
f.raimondi@cs.ucl.ac.uk

Charles Pecheur
Université catholique de Louvain

Louvain la Neuve, Belgium
charles.pecheur@uclouvain.be

Guillaume Brat
RIACS - NASA Ames

Mountain View (CA), USA
guillaume.p.brat@nasa.gov

Abstract
We present a methodology and a tool for the problem of test-
ing and verifying that a PDDL planning domain satisfies a set
of requirements, a need that arises for instance in space mis-
sions. We first review and analyse coverage conditions for
requirement-based testing, and present how test cases can be
derived automatically from requirements. Additionally, we
show how test cases can be translated into additional plan-
ning goals. To automate this process, we introduce PDVer, an
Eclipse plug-in for the automatic generation of PDDL code
from requirements expressed in LTL. We evaluate the effec-
tiveness of our approach and the usability of our tool against
the Rovers domain from the fifth International Planning Com-
petition (IPC-5).

1 Introduction
A number of complex systems currently deployed present a
significant amount of autonomy, as in the case of the NASA
rovers Spirit and Opportunity (S. W. Squyres et al. 2004a;
2004b) exploring the surface of Mars since January 2004.
Typically, these system include some kind of planning in-
frastructure to take appropriate actions autonomously. How-
ever, the complexity of these systems make them prone to
errors and there is a growing interest in tools and method-
ologies to perform formal verification of these systems in
order to avoid safety issues, economical losses, and mission
failures.

For instance, in the case of the rovers, a number of safety
conditions can be imposed to avoid damages and to mini-
mize the risk of failures, such as “all scientific instruments
must be appropriately stored when the rover is moving” or
“if the rover is at a given rock, then it must send a picture
of the rock”. These kind of conditions are called flight rules
and affect various stages of system development, from de-
sign to deployment, including the verification that planning
domains do not violate such requirements.

The aim of this paper is to investigate the problem of ver-
ifying planning domains written in the Planning Domain
Definition Language (PDDL (Gerevini and Long 1997)).
More in detail, we investigate the use of testing meth-
ods for the verification of flight rules. We first consider
MC/DC coverage (Hayhurst et al. 2001), a metric well

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

known to mission engineers, then we review our own ex-
tension (Pecheur et al. 2009) of MC/DC to temporal pat-
terns. Our extension provides a formal background to the
notion of coverage for requirements-based testing, extend-
ing the work of (Whalen et al. 2006; Tan et al. 2004;
Hong et al. 2002). Our choice is motivated by the fact that
actual developers are familiar with MC/DC and are inter-
ested in the possibility of stressing particular conditions in
a given requirement. We consider testing methodologies in-
stead of trying to encode directly a PDDL domain into the
language of a model checker for a number of reasons:

• the size of the state space may be too large to be analysed
exhaustively with a model checker, but it may be still ex-
plorable partially by a planner;

• the PDDL model of the system could include features
(such as durations and costs) that are hard to encode in the
input language of a model checker (see, for instance, the
problem of translating planning models into an adequate
input for a model checker presented in (Penix et al. 1998;
Khatib et al. 2001));
• consider the formula “if the rover is moving, then all

instruments are stored”: this formula could be true be-
cause the rover never moves, which is something a model
checker cannot capture directly, reporting the formula
true. In some cases, planning engineers are interested in
“stressing” a particular atomic proposition in a formula,
and make a formula true because of that particular propo-
sition.

This paper makes two contributions:
1. we illustrate how to encode test cases using PDDL,

thereby enabling the use of the planner itself to perform
verification: essentially, the verification step is reduced to
a planning problem with additional constraints.

2. We introduce PDVer, a tool that allows the automatic gen-
eration of test cases from LTL specifications and produces
PDDL output, thus providing a concrete solution for the
verification problem of planning domains. PDVer makes
use of the coverage of requirements mentioned above to
provide a complete set of test cases.
Verification of planning domains has been investigated in

the past, for instance in (Khatib et al. 2001; Penix et al.
1998). The solutions proposed by these authors consist in

76

the translation of the planning domain into the input lan-
guage of some model checker. The main limitation of these
approaches is the limited size of the domains that can be
translated and the problematic correspondence between lan-
guages for planners and languages for model checkers. In
this paper we suggest a different approach: we propose to
translate the problem of verification of planning domains
into a planning problem. Such an approach has the advan-
tage that no external tools are required, because the actual
planner can be used to perform verification.

The rest of the paper is organised as follows: we review
MC/DC coverage and PDDL in Section and we introduce
coverage metrics for temporal specification in Section 2 ;
we present the PDVer tool in Section 3 , and we provide a
concrete example in Section 4.

2 Background
MC/DC coverage and requirement-based testing
Various metrics exist to quantify the coverage of test suites
(Beizer 1990), particularly for structural testing. In this
section we briefly review MC/DC (structural) coverage.
MC/DC coverage is required for the most critical cate-
gories of avionic software (RTCA 1992) and it is defined
in terms of the Boolean decisions in the program, such
as test expressions in if and while statements, and the
elementary conditions (i.e. Boolean terms) that compose
them. A test suite is said to achieve MC/DC if its execu-
tion ensures that: (1) Every basic condition in any deci-
sion has taken on all possible outcomes at least once. (2)
Each basic condition has been shown to independently af-
fect the decision’s outcome. As an example, the program
fragment if (a || b) { ... } contains the decision
c ≡ (a ∨ b) with conditions a and b. MC/DC is achieved
if this decision is exercised with the following three valua-
tions:

a b a ∨ b
> ⊥ >
⊥ > >
⊥ ⊥ ⊥

Indeed, evaluations 1 and 3 only differ in a, showing cases
where a independently affects the outcome of c, respectively
in a positive and negative way. The same argument applies
to evaluations 2 and 3 for b. In particular, if a = >, then a
positively affect ϕ, and if a = ⊥, then a negatively affect ϕ.

There is some flexibility in how “independently affect”
is to be interpreted, see (Chilenski and Miller 1994; Hay-
hurst et al. 2001; Chilenski 2001). The original definition
in (RTCA 1992) requires that each occurrence of a Boolean
atom be treated as a distinct condition, and that indepen-
dent effect be demonstrated by varying that condition only
while keeping all others constant. This makes it difficult or
impossible to achieve MC/DC if there is a coupling between
conditions in the same decision, and in particular if the same
atom occurs several times (e.g. a in (a∧ b)∨ (¬a∧ c)). Sev-
eral variants have been proposed and defined to address that
problem. The original definition is known as unique cause
MC/DC, while (Hayhurst et al. 2001) defines a weaker ver-
sion based on logic gate networks, called masking MC/DC.

The MC/DC requirements for each condition can be cap-
tured by a pair of Boolean formulae, called trap formulae,
capturing those valuations in which the condition is shown
to positively and negatively affect the decision in which it
occurs (also called the positive and the negative test cases).
Coverage is achieved by building test cases that exercise the
condition in states which satisfy each trap formula. In the
example above, the trap formulae for condition a are a∧¬b
and ¬a ∧ ¬b.

The Planning Domain Definition Language
PDDL (Gerevini and Long 1997) is a language for the defi-
nition of planning domains and problems, developed by the
model-based planning community as a standard language
for planning competitions. PDDL supports the definition
of domain models and problems, where a problem is a set
of goals and constraints that define one planning problem
with respect to a given model. The latest version, PDDL
3.0, supports a limited form of temporal logic constraints as
part of the problem. The following temporal primitives are
supported:
<GD> ::= (at-end <GD>) |

(always <GD>) |
(sometime <GD>) |
(within <num> <GD>) |
(at-most-once <GD>) |
(sometime-after <GD>) |
(sometime-before <GD>) |
(always-within <num> <GD> <GD>) |
(hold-during <num> <num> <GD>) |
(hold-after <num> <GD>)

where <num> is a numeric literal denoting time constraints.
Constraints are interpreted over finite sequences of states la-
belled with time (PDDL semantics is formalised in (Gerevini
and Long 1997)). The timing aspects are not used in this pa-
per. We are interested in the following PDDL constraints op-
erators, with the corresponding translation into Linear Tem-
poral Logic (LTL, we refer to (Clarke et al. 1999) for more
details):

”always”(ϕ) = G ϕ

”sometime”(ϕ) = F ϕ

”sometime− before”(ϕ,ψ) = (¬ϕ ∧ ¬ψ) W (ψ ∧ ¬ϕ)
= ¬ϕW (ψ ∧ ¬ϕ)

where ϕ1 W ϕ2 (“ϕ1 unless ϕ2”) is true iff ϕ1 holds at least
as long as ϕ2 does not hold . Let ϕ = ¬ϕ1 ∧ ¬ϕ2 and ψ =
ϕ2, then ”sometime−before”(ϕ,ψ) = (ϕ1∨ϕ2)Wϕ2 =
ϕ1 W ϕ2 and thus

ϕ1 W ϕ2 = ”sometime− before”(¬ϕ1 ∧ ¬ϕ2, ϕ2)

Given the above, we have all the expressivity needed to
translate LTL to PDDL constraints. The current PDDL def-
inition does not allow nested temporal modalities in con-
straints: that is planned as a future extension, although using
this feature is likely to limit the set of planners that will be
able to support the corresponding verification.

77

Coverage of requirements
In this section we define what is an “adequate” test case for a
condition (i.e., an atomic proposition) a in a LTL formula ϕ.
We give here only the key concepts and we refer to (Pecheur
et al. 2009) for further details.

Consider a LTL formula ϕ, interpreted over (finite or infi-
nite) paths π, built from a set of states S. Let AC(ϕ) be the
set of atomic conditions in a formula ϕ, and a ∈ AC(ϕ) one
such condition. We write s(a) for the truth value of condi-
tion a in state s, and π(a) for the sequence of truth values of
a along states of a path π.
Definition 1 Given a ∈ AC(ϕ), a path π′ is an a-variant of
a path π, denoted π a↔ π′, iff

π(AC(ϕ)− {a}) = π′(AC(ϕ)− {a})
Intuitively, an a-variant of a path π is another path π′ such

that the evaluation of all the conditions does not change,
with the exception of the only condition a. The following
definition provides a formal characterisation of adequate test
cases:
Definition 2 An execution path π is an adequate test case
for an atom a occurring in a formula ϕ iff π |= ϕ and there
exists an a-variant π′ of π such that π′ 6|= ϕ. We denote with
FLIP(ϕ, a) the set of all such paths.

The intuition here is that a good test case for a condition a
in a formula ϕ is a execution path π such that ϕ is true along
that path and there exists (at least) another path π′ where
“everything is the same” with the exception of a, and ϕ is
false on π′: this means that a can flip the value of ϕ (on π),
i.e., ϕ is true because of a.

Similarly to MC/DC, it is possible to characterise test
cases by means of a trap formula. Given a LTL formula
ϕ and a condition a ∈ AC(ϕ), we denote by [ϕ]a the trap
formula encoding adequate test cases in the sense of Defini-
tion 2.
Definition 3 Syntactic characterisation of trap formulae

[ϕ′]a = F where a does not occur in ϕ′

[a]a = a

[¬a]a = ¬a
[ϕa ∧ ϕ′]a = [ϕa]a ∧ ϕ′

[ϕa ∨ ϕ′]a = [ϕa]a ∧ ¬ϕ′

[X ϕa]a = X [ϕa]a
[ϕ′ U ϕa]a = (ϕ′ U ϕa) ∧ (¬ϕ′ R (ϕa ⇒ [ϕa]a))
[ϕa U ϕ′]a = (ϕa U ϕ′) ∧ (¬ϕ′ U ([ϕa]a ∧ ¬ϕ′))

[F ϕa]a = F ϕa ∧ G (ϕa ⇒ [ϕa]a)
[G ϕa]a = G ϕa ∧ F [ϕa]a

[ϕa R ϕ′]a = (ϕa R ϕ′) ∧ ((ϕa ⇒ [ϕa]a) U ¬ϕ′)
[ϕ′ R ϕa]a = (ϕ′ R ϕa) ∧ (¬ϕ′ U [ϕa]a)

(where R is the standard “release” operator). Other cases are
obtained by syntactic derivation:

[ϕ′ W ϕa]a = (ϕ′ W ϕa) ∧ ((ϕa ⇒ [ϕa]a)
U (¬ϕ′ ∧ (ϕa ⇒ [ϕa]a)))

[ϕa W ϕ′]a = (ϕa W ϕ′) ∧ (¬ϕ′ U (¬ϕ′ ∧ [ϕa]a))

These derivations for fixed point modalities are all of the
form [ϕ]a = ϕ ∧ ϕ′′, where the recursive step occurs only
in ϕ′′. If required, and to avoid nesting of temporal oper-
ators for the PDDL translation, they can be rewritten into
equivalent forms [ϕ]a = ϕ1 U ([ϕa]a ∧ ϕ2):

[ϕ′ U ϕa]a = (ϕ′ ∧ ¬ϕa) U ([ϕa]a ∧ (¬ϕ′ R (ϕa ⇒ [ϕa]a))
[ϕa U ϕ′]a = (ϕa ∧ ¬ϕ′) U ([ϕa]a ∧ ¬ϕ′ ∧ (ϕa U ϕ′))
[ϕa R ϕ′]a = (¬ϕa ∧ ϕ′) U ([ϕa]a ∧ ϕ′ ∧

(ϕa ⇒ [ϕa]a) U ¬ϕ′))
[ϕ′ R ϕa]a = (¬ϕ′ ∧ ϕa) U ([ϕa]a ∧ (ϕ′ R ϕa))

[F ϕa]a = ¬ϕa U ([ϕa]a ∧ G (ϕa ⇒ [ϕa]a))
[G ϕa]a = ϕa U ([ϕa]a ∧ G ϕa)

It is shown in (Pecheur et al. 2009) that π |= [ϕ]a if
and only if π ∈ FLIP(ϕ, a). As an example, consider the
formula F (a ∨ b). Following our derivation rules, the trap
formula for atom a is given by:

[F (a ∨ b)]a = F (a ∨ b) ∧ G ((a ∨ b)⇒ [a ∨ b]a)

Given that [a ∨ b]a = (a ∧ ¬b) and that (a ∨ b)⇒ (a ∧ ¬b)
is equivalent to ¬b, we have that

[F (a ∨ b)]a = F (a ∨ b) ∧ (G (¬b))

Intuitively, this formula says that an adequate test case for
F(a∨b) because of atom a is a path where eventually (a∨b)
holds, but nowhere b holds. Indeed, if b were true anywhere
in the path, then it would not be possible to flip the value of
the original formula because of a.

3 From trap formulae to planning goals
As mentioned in Section 1, it is often necessary to verify
planning domains against a set of requirements. Based on
our observations at NASA Ames, the process of verifying
that planning domains satisfy a set of flight rules is currently
performed by engineers “manually”, without coverage guar-
antees but based solely on engineers’ expertise about the do-
main.

In this section we introduce PDVer, a tool that makes
it possible to edit PDDL domains in a graphical ed-
itor and to derive test cases (in the form of new
planning goals) from flight rules. PDVer is avail-
able from http://www.cs.ucl.ac.uk/staff/f.
raimondi/pddleditor_1.0.0.jar and it has been
developed as a plug-in for Eclipse 3.3. A single .jar file is
available to download and it is installed by simply dropping
the file in the plugin/ directory of Eclipse. PDVer uses
the ANTLR parser to generate lexers and parsers for LTL
and PDDL, and a tree grammar for PDDL. The source code
can be found in the src/ directory. It is divided into various
packages:

• An LTL parser, syntax analyser, and AST (Abstract Syn-
tax Tree) manipulator for LTL. In particular, this compo-
nent implements the algorithms to compute the trap for-
mulae as described in Section 2.

78

Figure 3: Summary of coverage cases for positive and nega-
tive test cases

• A PDDL parser. This parser is used to obtain the AST
representation of the domain, in order to perform checks
on the LTL formulae provided, to translate the trap formu-
lae from LTL to PDDL, and to appropriately quantify free
variables (see below); furthermore, it is used to perform
syntax highlighting.

• A plug-in specific component that contains the Eclipse-
specific Java code for plug-in generation. The plug-in is
activated when clicking on a .pddl file in the navigator or
package explorer. The plug-in is implemented as a graph-
ical editor.

The editor window is depicted in Figure 1. By selecting
the “Generate tests” tab (see red circle in the figure above) it
is possible to access the section for test generation (see Fig-
ure 2). As an example, consider the formula:
"(at_place rover0 ?x)" ->
F("(have_rock_analysis rover0 ?x)"). The
new PDDL goals encoding the various test cases are gen-
erated by typing this formula in the appropriate text box and
by selecting the “Generate PDDL” button. The generated
PDDL code is displayed in the text window (Figure 2), from
where it can be selected and pasted back in the domain defi-
nition in the editor tab and then passed to the planner. In this
way, the planner itself can be used to perform verification.

Discussion
PDver enables the generation of new planning goals from
flight rules, which can then be used in conjunction with the
original domain and passed a planner. However, care must
be taken to interpret the results of this process that can be
seen as “testing as planning”.

For a “positive” test (i.e., when it is expected that the
tested property holds), the planner should be able to pro-
duce a plan with the additional constraints. Alternatively,
for a negative test the planner should not be able to produce
a test. However, these results are not necessary and a num-
ber of possibilities exists, as reported in Figure 3.

A first issue to consider is the completeness of the plan-
ner. We assume that planners are sound (i.e. they will not

produce a plan which is invalid wrt the PDDL input), but
planners may not be complete, i.e., they may fail to produce
a plan when in fact it exists. The failure to produce a plan
can result in non-termination errors such as in timeouts or
out-of-memory errors or, in the worst case, with termina-
tion without a plan. Therefore, the behaviour of the planner
should be investigated and understood to validate testing re-
sults. In Figure 3 we denote the non-completeness of the
planner by means of two circles: the external circle M de-
notes the set of plans that are consistent with a given PDDL
domain description. The internal circle M’ denotes the set
of plans that can be potentially generated by the planner. Let
the boxes denote the set of plans that are compatible with a
given set of constraints. Six situations can occur:

(a) corresponds to a positive test case that has no intersection
with the domain. For instance, a test case in this category
could impose constraints on variables that are not allowed
by the domain. In the case of FLIP, this means that it is
not possible to exercise the effect of an atom on a given
formula.

(b) corresponds to a positive test cases that, in theory, should
result in a valid plan. However, as a consequence of the
fact that the planner is not complete, the planner fails to
find a valid plan.

(c) corresponds to a positive test case that can successfully be
covered by the planner.

(d) corresponds to a negative test case. If the planner termi-
nates without a valid plan it confirms, as expected, that
the negative test case cannot be covered.

(e) corresponds to a negative test case that should be covered
by the planner (i.e., the test should fail by showing that
an un-expected plan exists). This is potentially the most
critical situation: if the planner does not terminate, then it
is not possible to guarantee that the domain does not allow
unwanted behaviours. On the other hand, if the planner
does terminate, then the situation could be misunderstood
for case (d) above.

(f) corresponds to a negative test case that can be covered by
the planner. In this case, the existence of a plan reveals an
error in the definition of the domain.

4 A concrete example
In this section we introduce an example of verification
for some simple properties of a domain from the fifth
International Planning Competition (IPC-5): a rover per-
forming autonomous scientific exploration. The domain
is characterised by various classes of objects, including
rovers, waypoints, and a number of scientific instruments.
Predicates are included to describe the various conditions,
such as
(at_place ?x - rover ?y - waypoint)
to denote that a rover is at a given location, and
(have_rock_analysis ?x - rover ?y - waypoint)
to denote that a rover has analysed the rock at a way-
point. The full code for this domain is available from
http://zeus.ing.unibs.it/ipc-5/. We employ

79

Figure 1: PDVer: editor window

Figure 2: PDVer: test generation window

80

the MIPS-XXL planner (Edelkamp and Helmert 2001) to
run our experiments for its support for PDDL 3.0.
• As a first example, consider the LTL formula
"(at_place rover0 ?x)" ->
F("(have_rock_analysis rover0 ?x)")

meaning that, if rover0 is at a certain place, then eventu-
ally in the future rover0 will have rock analysis for that
place. PDVer generates various test cases from the LTL
specification, including the following temporal goal1:
; Test case for atom "(at_place rover0 ?x)":
(:constraints

(forall (?x - waypoint)
(and (not (at_place rover0 ?x))

(not (sometime
(have_rock_analysis rover0 ?x))))

))

The original formula has the form a ⇒ F b; the cor-
responding trap formula for atom a is (see Section 2)
¬a ∧ ¬F (b), which is translated into the PDDL code
reported above. Intuitively, this goal tries to exercise
the atom "(at_place rover0 ?x)" in the LTL for-
mula presented above, and the only way to do so is by
requiring b to be always false. Adding this constraint
to the original domain results in MIPS-XXL failing to
find a valid plan thus indicating that the test does not
succeed (notice: as mentioned above this fact does not
mean that there is an error in the original domain, but it
simply means that it is not possible to exercise the atom
(at_place rover0 ?x), for all waypoints x, be-
cause the original problem does not allow the rover to be
placed at all waypoints).

• However, if the free variable is removed and an actually
visited waypoint is used:
"(at_place rover0 waypoint1)" ->
F("(have_rock_analysis rover0 waypoint1)")

then the planner succeeds in producing a plan with the
additional generated constraint because for this particular
waypoint the domain allows the rover to be there.

• As a third example, consider the formula
"(have_soil_analysis rover0 ?w)" ->

F("(communicated_soil_data ?w)")

Meaning that if rover0 has the analysis of soil at a
waypoint, then at some point that data will be com-
municated. The automatically generated test case for
(communicated_soil_data ?w) fails in this case
because there is no soil analysis for waypoint1 defined in
the domain.
It is worth noting that the additional goals presented above

do not change in a noticeable way the time required to gen-
erate a plan as constraints are added to the original domain.
Moreover, no knowledge of coverage metrics is required to
generate these tests, and the results can be easily interpreted
with the use of Figure 3.

1PDVer accepts “free” variables, such as x in the following for-
mula. When such a variable appears, the generated test case (i.e.,
the new goal) includes an universal quantifier).

5 Discussion and conclusion
Verification of planning domains has been investigated in the
past mostly by reducing the verification problem to model
checking. This process involves the translation of planning
domains into a suitable input for model checkers (see (Penix
et al. 1998; Khatib et al. 2001) and references therein), but
it is often limited to simple examples with a limited state
space.

In (Howe et al. 1997) the use of planning techniques is
suggested for the generation of tests cases. This work differs
from ours in that, first of all, the aim is not the verification
of planning domains, but only the generation of test cases
for other kind of domains. Additionally, different coverage
conditions are considered, and tests are not generated from
temporal specifications.

In this paper we have presented a different approach to
the verification of planning domains: first we have illus-
trated how testing can be regarded as a planning problem,
by translating LTL properties into new goals. Then, we have
presented PDVer, a tool that automatically produces plan-
ning goals from requirements, with coverage guarantees. As
an example, we have shown how to verify the property of a
domain that can be solved by a state-of-the-art planner. To
the best of our knowledge, PDVer is the first tool to sup-
port this verification methodology, with the additional ben-
efit that the original domain does not need to be modified
nor instrumented (new goals being added at the end of the
original files), and scientists do not need to be familiar with
the details of coverage metrics for requirements. Instead,
test generation is automatic and results can be interpreted by
means of Figure 3.

We are currently working on extensions of PDVer: PDDL
3 does not support nested temporal operators, and therefore
only flight rules without nested temporal modalities can be
translated into valid planning goals. To overcome this is-
sue, we are building equivalent, non-nested expression for a
number of requirements. Our final aim is to deliver PDVer
to scientists developing plans for various missions, such as
autonomous rovers, in-flight controllers, etc.

References
B. Beizer. Software testing techniques (2nd ed.). Van Nos-
trand Reinhold Co., New York, NY, USA, 1990.
John Joseph Chilenski and Steven P. Miller. Applicability
of modified condition/decision coverage to software test-
ing. Software Engineering Journal, pages 193–200, 1994.
John Joseph Chilenski. An investigation of three
forms of the modified condition decision coverage
(MCDC) criterion. Technical report DOT/FAA/AR-
01/18DOT/FAA/AR-01/18, Federal Aviation Administra-
tion, 2001.
E. M. Clarke, O. Grumberg, and D. A. Peled. Model Check-
ing. The MIT Press, Cambridge, Massachusetts, 1999.
Stefan Edelkamp and Malte Helmert. Mips: The model-
checking integrated planning system. AI Magazine,
22(3):67–72, 2001.

81

A. Gerevini and D. Long. Plan constraints and preferences
in PDDL3: The language of the fifth international planning
competition, August 1997. Technical Report.
K. J. Hayhurst, D. S. Veerhusen, J.J Chilenski, and L. K.
Riersn. A practical tutorial on modified condition/decision
coverage. Technical Report TM-2001-210876, NASA Lan-
gley Research Center, 2001.
Hyoung Seok Hong, Insup Lee, Oleg Sokolsky, and Hasan
Ural. A temporal logic based theory of test coverage and
generation. In TACAS 02, pages 327–341, London, UK,
2002.
A.E. Howe, A. von Mayrhauser, and R.T. Mraz. Test case
generation as an ai planning problem. Journal of Auto-
mated Software Engineering, 4:77–106, 1997.
L. Khatib, N. Muscettola, and K. Havelund. Verification of
plan models using UPPAAL. Lecture Notes in Computer
Science, 1871, 2001.
C. Pecheur, F. Raimondi, and G. Brat. A formal analysis of
requirements-based testing. In Proceedings of ISSTA 2009.
ACM press, 2009.
J. Penix, C. Pecheur, and K. Havelund. Using Model
Checking to Validate AI Planner Domains. In Proceed-
ings of the 23rd Annual Software Engineering Workshop.
NASA Goddard, 1998.
RTCA. Software Considerations in Airborne Systems and
Equipment Certification, 1992.
S. W. Squyres et al. The Opportunity Rover’s Athena Sci-
ence Investigation at Meridiani Planum, Mars. Science,
306:1698–1703, 2004.
S. W. Squyres et al. The Spirit Rover’s Athena Science In-
vestigation at Gusev Crater, Mars. Science, 305:794–799,
2004.
L. Tan, O. Sokolsky, and I. Lee. Specification-based test-
ing with linear temporal logic. In Proceedings of the IEEE
International Conference on Information Reuse and Inte-
gration (IRI04). IEEE Society, 2004.
M. W. Whalen, A. Rajan, M. P. E. Heimdahl, and S. P.
Miller. Coverage metrics for requirements-based testing. In
ISSTA06, pages 25–36, New York, NY, USA, 2006. ACM
Press.

82

