
Planning Domains and Plans: Validation, Verification and Analysis

Derek Long and Maria Fox
{first.last@cis.strath.ac.uk}

University of Strathclyde, UK

Richard Howey
{richard.howey@ed.ac.uk }

University of Edinburgh, UK

Abstract

In this paper we discuss the nature of the verification and val-
idation problems as they apply to planning domain specifica-
tion, construction and use. We consider the extent to which it
is a real problem and highlight a few examples of problems in
simple domains as evidence of the ways that bugs can appear
in domain models. We then proceed to examine tools that can
be used to help in resolving the problem of domain specifica-
tion validation and verification, before illustrating the verifi-
cation of a model of a battery domain.

1 Introduction
A considerable part of the research in AI Planning is fo-
cussed on finding and improving heuristics that can guide
domain-independent planners through a search space, re-
gardless of the domain the search space represents. One con-
sequence of this focus is that there are many benchmark do-
mains that have been used by a wide part of the community
for testing and evaluation, but which have not been closely
inspected by very many more people than the original devel-
opers. Furthermore, it is common for evaluation to consist of
timing the process of production of a plan, without necessar-
ily confirming the validity of the plan — it is often assumed
that a planner is producing valid plans, since the planner is
believed to be sound. This is interesting from a validation
point of view, since it means that domains are frequently
subject only to the inspection of the original designers, often
with supposed plans for problem instances associated with
the domains being accepted without formal validation.

In this paper we examine some of the problems that can
arise in planning domains, problem instances and plans and
the role of automated tools, static analysis and planners
themselves in the process of validating and verifying do-
mains and plans.

2 Verification of Formal Specifications
Verification involves comparing two (or more) separate
specifications of a target in order to confirm that they de-
scribe the same thing. To do this assumes that the specifica-
tions can be given a common semantics, so that the meaning
of the different specifications can be usefully compared. It

Copyright c© 2009, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

also assumes that the specifications describe the target in the
same way (same level of abstraction, same granularity and
so on). In case one specification is more abstract than the
other it can be possible to identify an abstraction mapping
that can be applied to the more detailed specification to raise
its level of abstraction to match that of the other specifica-
tion. In this case, the comparison can, of course, only com-
pare the specifications at the higher level of abstraction, so
the separate question of whether the realisation of the more
concrete specification is valid cannot be addressed directly
by this comparison. A challenge that faces most efforts at
verification is to acquire two or more specifications of a tar-
get written in languages with sufficiently precisely defined
semantics to allow a direct comparison. In planning, for ex-
ample, it is common to have a formal specification of the
domain written in a language such asPDDL (Fox & Long
2003), but very unusual to have any other formal specifica-
tion to compare it with.

If it is hard to find multiple formal specifications of the
same target, what other options are open? A common ap-
proach is to use a formal specification to infer consequences,
often adopting additional hypotheses describing initial con-
ditions, in order to compare these consequences with those
expected. This can be easier that constructing multiple for-
mal specifications, since the expected inferences can fre-
quently be characterised far more compactly and efficiently.
In the case of software verification, this approach includes
testing, where unit tests, for example, specify particular in-
put contexts and the expected output of the program unit
for each test. More complex software tests can specify con-
ditions that must be satisfied by the output, rather than the
value of the output itself. The output of a test run can then
be checked to confirm it meets these tests. In essence, the
comparison of two formal specifications of outputs corre-
sponding to a particular input becomes a surrogate for the
comparison of two formal specifications of the target soft-
ware module. More generally, this approach to verification
can be seen illustrated in figure 1: a single formal specifica-
tion of a model combined with the much simpler specifica-
tion of a test context allow the automatic construction of an
implied result that can be checked against formally specified
properties of the expected result.

In the case of planning, a domain model might be tested
by verifying that plans generated by a planner using the

29



Inference System

Inferred properties
Formal Spec. of
expected properties

Formal Spec.

Contextual Spec.

Comparison to confirm

consistency

Figure 1: Verification against a formal specification of prop-
erties.

model satisfy specified properties. This process rests on an
assumption that the planner itself is sound. It is important to
observe that this plan testing process is not the same as vali-
dating plans, since a sound planner will generate valid plans
for the domain model it has been given, even if the model
is an inadequate image of the intended target. Therefore,
the verification-by-testing process can only be automated for
planning domain models if there is an additional specifica-
tion of the properties of plans that solve a particular problem
instance.

As an aside, we observe that verification-by-testing is al-
ways limited, since the inference process can be seen as
analogous to an abstraction, so that many different mod-
els could lead to the same inferred results, despite dis-
agreeing about the details from which the inferences are
drawn. Systems can agree on a collection of inferences
drawn from different specifications, despite the specifica-
tions describing entirely different targets. However, the most
sophisticated verification techniques infer complex proper-
ties of specifications, such as termination guarantees and
correctness of outputs for a wide range of inputs, so that
the details that these techniques leave abstracted can be
reasonably described as implementation choices. Tech-
niques used to check properties such as termination include
well-known model-checking approaches (Holzmann 2004;
Behrmann, David, & Larsen 2004; Cimattiet al. 2002). The
key to being able to apply these techniques for such sys-
tems is that the desirable properties, such as termination, can
be specified in concise formal statements. A challenge for
planning domain modelling is to find similarly concise for-
mal statements that can express the desirable properties of
planning domains.

3 Verification of Planning Domain Models
Although planners are finding increasing application, the
methodology supporting the development of domain models
is still in its infancy. Despite the efforts in the International

Competition for Knowledge Engineering for Planning Sys-
tems (ICKEPS) (Bart́ak & McCluskey 2007), there are few
tools providing engineering support and even fewer that at-
tempt to provide any kind of validation or verification func-
tionality. In section 5 we will consider some of the tools and
techniques that can provide support in the verification pro-
cess, but here we review the precise nature of the range of
verification tasks that are of interest in planning.

Planning is traditionally taken to be a generic problem
solving problem, in which the input to a planning system
specifies a domain model, an initial state and a goal. A plan-
ner is then expected to deliver a solution plan that would
coerce the initial state into one that satisfies the goal if ex-
ecuted in the domain the model describes. The verification
tasks of interest include determining that a planning system
itself is sound or complete with respect to arbitrary plan-
ning tasks (termination on unsolvable problems can also be
of interest). This is actually a standard software verification
task, since a planner is simply an algorithm for solving the
planning problem.

A further validation task is to confirm that a domain model
describes the domain dynamics it is intended to capture.
Closely related to this (and possibly not even separable from
it) is the task of confirming that a given initial state is a con-
sistent state for the domain model and one that conforms to
the target being modelled. Finally, there is the task of vali-
dating or verifying solution plans for a given domain and ini-
tial state (and confirming that they satisfy specified goals).
This last task is clearly redundant if the plans are produced
by a planner that has been proved sound. Unfortunately, in
planners we see the same gap between formally specified
algorithms (whether or not they are proved sound) and the
details of an implementation that undermines the power of
verification in other areas of software development. In fact,
a further separation between proofs of soundness and the
production of sound plans lies in the fact that there are often
differences (usually only minor) between the semantics of
domains assumed in the determination of planner soundness
and the semantics assumed in validating plans. Such dis-
crepancies lie in subtle corners of the modelling language,
affecting such things as the precise constraints on when ac-
tions can be executed simultaneously or by how much inter-
fering actions must be separated.

Of these tasks, validating domain models remains the
most challenging. The source of the challenge is that, as
with software systems, it is almost impossible to find re-
sources to support separate development of independent for-
mal specifications of the same target. In practice, planning is
still at a stage where a single domain model is constructed,
iteratively, by a planning expert, perhaps consulting with a
domain expert (where relevant). The equivalent of unit test-
ing for planning domains is the creation of test scenarios and
plan inspection to confirm the outputs meet the expected cri-
teria, although this merges validation and verification.

Although this seems rather a weak position, a natural
question is, given that planning domain models are often
declarative in style (although this ignores HTN planning
domain models and models that depend on control rules),
might it be the case that domain bugs are relatively uncom-

30



mon compared with software bugs? We now offer some ex-
amples of simple benchmark domains, developed by vari-
ous planning experts, that contain bugs that have remained
undiscovered for years. One of the reasons for this long lag
before bugs are uncovered is that most planning researchers
treat benchmarks as evaluation material, assuming that since
the domain has been used for evaluation in many cases in the
past, it must be valid.

3.1 Related work
The problem of planning domain validation and verifica-
tion is one that has been confronted by several researchers,
particularly those working in domains with safety-critical
requirements. For example, Bedrax-Weisset al (Bedrax-
Weiss et al. 2005), Khatib et al (Khatib, Muscettola,
& Havelund 2001) and Penixet al (Penix, Pecheur, &
Havelund 1998) are all examples of work examining the
problem of planning domain model verification in the space
domain. This work includes attempts to compile domain
models into forms where model checkers can be used to ver-
ify formal properties and other work exploring techniques
for supporting inspection-based approaches to model vali-
dation.

McCluskey and co-authors (McCluskey & Porteous 1997;
McCluskey & Simpson 2004) are amongst a group of re-
searchers who have considered the process of engineering
domains and ways in which tools can be used to support the
construction of valid domains. This strand of work mirrors
the efforts in software development to automate aspects of
code-production in order to reduce the scope for error. In the
most recent work, this research has led to the development
of a tool to support the construction of planning domains,
providing some visualisation and state-based modelling of
finite-state machines for the capture of domains. Edelkamp
et al (Edelkamp & Mehler 2003) have also explored a simi-
lar tool design.

Although automated approaches are sought by many re-
searchers, in practical application much of the validation and
verification of real systems remains a largely manual pro-
cess, exploiting aid from simulations and physical models.
Cichy et al (Cichy et al. 2005) describe this process as it
applied in the validation of the EO-1 Science Agent.

Despite the efforts of researchers such as these, the val-
idation of planning domains remains limited and underex-
plored.

4 War Stories: Simple Examples of Flawed
Domains

The first domain we examine is the Settlers domain from
IPC3 (Long & Fox 2003a). This domain models an infras-
tructure development and production problem, based on an
computer game of the same name. The actions allow ba-
sic resources (wood and stone) to be collected and used to
develop more complex production buildings which can al-
low access to more refined or advanced resources (iron, cut
timber and coal). Finally, housing and transportation infras-
tructure can be built. The last of this includes carts, trains
and railway networks and also ships.

This domain is rich in numeric fluents which are used to
record quantities of stock at different locations, making it
very challenging for most planners and few researchers have
experimented very far with the domain. Nevertheless, it has
been available since 2002 and has been examined and used
for testing since then. It serves to highlight a weakness of
PDDL, which is that the closed collection of object names
and lack of functions makes it necessary to decide in ad-
vance of solving an instance, just how many vehicles of each
type might be needed for construction. The interest in the
domain encoding for this work lies in actions that manage
coastal development.

Examination of the domain reveals that the development
process at a coastal location begins with construction of a
dock and then with a wharf (which would have been more
appropriately named a shipyard). However, the build ship
action is very strange: it requiresonly that sufficient iron be
available and as a consequence itcreates a wharfand a ship
at a location that might not even be coastal! Clearly, the ef-
fect of creating a wharf was intended to be a precondition
that should have ensured that a ship could only be built on
the coast at appropriately equipped locations. Further, the
action of moving a ship requires only that locations be con-
nected by sea, whereas it seems more reasonable that the
destination should have a dock (the start would always have
a dock if ships could only be built at wharfs and only sail to
docks). This strange behaviour passed apparently unnoticed
and unchallenged for 6 years, despite planners having been
used on the domain.

There are other features of the Settlers domain that are
less errors than oddities. The resource cost to construct
trains is very significant, because of the need to build up
rail links in order to use them. Furthermore, a train must
carry coal to fuel its own movement, using its own storage
space to hold it. Since the capacity of a train is only 5, it is
almost impossible to imagine circumstances in which build-
ing a train to transport materials will be more efficient than
using carts. Similarly, ships have a capacity of only 10 but
demand a great deal of infrastructure to support them, so
that it is unlikely that ships will be a wise investment unless
materials have to be transported to locations that are other-
wise inaccessible. The fact that these oddities have not been
observed seems to be linked to the fact that planners can
currently solve only small instances where it is unsurpris-
ing that significant infrastructure is needed. This serves to
emphasise that inspection-based debugging of planning do-
main models depends on the creation of problem instances
that exercise all of the actions in the domain.

A second example can be seen in the MPrime domain,
originally designed by Drew McDermott for the 1st IPC.
This domain was a deliberately disguised version of a trans-
portation problem using vehicles that consume fuel from
stores at the locations they travel from. The domain included
an action that allowed fuel to be transferred from one loca-
tion to another, consuming two fuel units from the source to
generate one at the destination. However, the transfer action
could be instantiated to transfer fuel from a location to itself
which, combined with the fact that the domain used propo-
sitional encodings of the fuel counts, made it possible for a

31



location to end up simultaneously having one fewer and one
greater fuel units than it started with. While the domain was
disguised it was not apparent that this was a mistake: the
model describes a behaviour that is syntactically valid, even
if inconsistent with the intended interpretation.

Two final examples serve to illustrate the greater difficul-
ties that arise in capturing temporal domains. Firstly, Match-
Lifts, a domain created by Keith Halsey for the original tests
on the CRIKEY planner (Coleset al. 2009), represents an
extended version of the fuse fixing domain designed by Fox
and Long for testingLPGP(Long & Fox 2003b). The exten-
sion has multiple electricians moving between floors on lifts
to fix fuses at different places in the building. The problem
with this domain is that the action that allows an electrician
to leave a lift is a durative action, requiring the electrician to
be in the lift at the start of the action, but deleting this fact
only at the end of the action when the new location of the
electrician is asserted. This is a problem because the same
electrician can start to move from the lift to a different room
on the same floor after starting a first move, but before fin-
ishing it. The result is that when the second move completes
the electrician is no longer in the lift, but deleting a false
condition is not an error, so the electrician can end up being
in multiple locations at the same time. A clever planner can
exploit this to have the same electrician fixing fuses in many
rooms using the light of the same match!

The second temporal example is the Timed Rovers do-
main from IPC3. In this domain there is a recharging action
that allows a rover to increase its energy. The effect of the
action is to increase the charge at the end of the action by
the recharge rate multiplied by the duration of recharging,
which is fixed at the outset of the action to be exactly long
enough to raise the charge level back to maximum capac-
ity. Unfortunately, the planner can apply multiple recharge
activities in parallel with one another, allowing the rover to
charge far beyond its maximum capacity. This bug looks as
though it might be fixed by simply asserting at the end of the
action that the rover has its maximum charge, but things are
not so simple: the reason why the effect was described as an
increase effect is that the rover might consume charge while
it is recharging, so that after recharging for enough time to
completely recharge based on its charge level at thestart
of the action would not in fact be sufficient to completely
recharge it at the end.

5 Tools and Techniques for Verification and
Validation

Having seen that existing benchmark planning domains can
contain bugs, despite being exposed to a relatively wide au-
dience and being models of lower complexity than we might
expect in real applications, we now turn to the question of
what can we actually do about this. First, it is worth consid-
ering the source of complexity in the structure of planning
domain specifications. It is interesting to observe that plan-
ning domain descriptions are very small by software engi-
neering standards. A domain description of a few thousand
lines would be considered huge — more typical is a few hun-
dred lines or less, certainly for benchmark domains — com-

pared with the multi-million lines of source code in large
modern software systems or thousands of lines for small in-
dividual projects. The source of complexity in the planning
descriptions arises from the highly declarative form they
take combined with the complex interactions between the
behaviours of different component subsystems within a do-
main: where modern software engineering approaches pur-
sue modularity and reduction of interaction between compo-
nents, planning domains decompose behaviours, but depend
on interaction between components. Thus, where software
engineers can attempt to tackle the complexity of verifica-
tion by exploiting the decomposition of software into func-
tionally independent units, planning domain engineers must
confront the opposite requirement, considering exactly the
most complex interactions between multiple components.
Interestingly, the most similar verification tasks in software
engineering appear to be those involving multithreaded and
parallel systems, where deadlock and race conditions are
notoriously difficult to find and eliminate (eg (Eytaniet al.
2007)).

Although it is often too much to expect that multiple spec-
ifications be constructed for the same target domain, it can
nevertheless be a powerful technique for supporting verifi-
cation by inspection if a specification for a target is pre-
sented back to its writer in different forms. This process
enhances inspection by requiring the reader to go through a
process of mental evaluation. The familiar problem of read-
ing what is expected rather than what has been written can
be tackled by the process of translation into new formalisms.
There are several possible formalisms that can act as can-
didates for the expression of specification of planning do-
mains: an action-centred representation such asPDDL (Mc-
Dermott 2000), a constrained-timeline-based representation
such asDDL (Muscettola 1994), or one of its variants, and an
object-centred representation such asSAS+ (Bäckstr̈om &
Nebel 1995) orOCL (McCluskey & Porteous 1997). These
differ as follows:

1. An action-based representation focuses on the mecha-
nisms of change within a domain, providing pre- and post-
condition specifications for each possible state transition
that can be enacted within the domain. In this case, state
is treated holistically, viewed as the entire configuration
of the world. This representation emphasises the causal
relationships within a domain (which actionscausepar-
ticular changes and what do they depend on?), also high-
lighting the relationships between objects that enable the
transitions between states.

2. A constrained-timeline-based representation focuses on
the temporal relationships that govern the intervals over
which individual objects are in particular states, placing
constraints on the ways in which these intervals inter-
act, sequencing, overlapping or enveloping one another
to support the behaviours of the individual objects.

3. An object-centred representation focuses on the individ-
ual objects of the domain, emphasising the values of prop-
erties of these objects, including states that they may be in
and the transitions that are possible between these states
or changes in associated property values. The roles of

32



supporting objects are denoted as constraints on the tran-
sitions made by the dependent objects.

Other formalisms are used to define planning domains, such
as temporal logic (Bacchus & Kabanza 2000) or hierarchi-
cal task networks (Nauet al. 2003), but these languages are
not used to capture planning domains in the same ways as
those listed above, so translations between specifications in
these languages and those written in any of the other lan-
guages (or vice versa) are either currently impossible or else
create highly artificial compiled forms that are not useful for
the manual inspection process. The artificial form of com-
piled representations makes pure constraint formalisations
of planning domains and SAT representations equally inap-
propriate as media to support manual inspection.

The three formalisms listed above are very similar in
terms of their expressive power and in the content of the
domain specifications they each support. Automatic trans-
lations between them have been explored in various differ-
ent pieces of work, sometimes directly with the intention of
providing a translation between formalisms and sometimes
because one or other perspective on a domain offers an op-
portunity to exploit different heuristic planning techniques.
Examples of these are Helmert’sPDDL-to-SAS+ transla-
tor (Helmert 2006), aPDDL-to-DDL translator (Bernardini &
Smith 2008) (which also exploits thePDDL-to-SAS+ transla-
tion), a (partially completed)DDL-to-PDDL translator1 and
an OCL-to-PDDL translator inGIPO (McCluskey & Simp-
son 2004; Simpson, Kitchin, & T.L.McCluskey 2007). Sev-
eral of these translators are either under development or are
only partially complete, but they still provide useful tools
to support the revisualisation of specifications by translating
from one formalism to another and show how these tech-
niques could be developed into fully fledged domain engi-
neering support tools. The key to using these translations is
to present specifications to their writer in new ways, forcing
the writer to reconsider what has been specified and to de-
cide whether it captures the intended aspects of the domain
behaviour.

Another family of tools that can be used to help in refor-
mulating elements of the behaviour of a planning domain is
that of invariant synthesisers such asTIM (Fox & Long 1998)
andDISCOPLAN which analyse planning domains to extract
invariant constraints on the behaviours of objects. This pro-
cess is a precursor to reformulating domains in other forms
(SAS+ or DDL) but presenting the invariants explicitly to
a domain engineer can offer a new perspective on the be-
haviours the domain describes that can highlight domain er-
rors that are less easy to identify once the domain has been
translated and the invariants become implicit.

TIM proved to be useful in analysing the MPrime do-
main and allowed us to discover the bug in the behaviour
described in it.

5.1 Temporal and Metric Domains
The translation approaches outlined above are generally less
capable when confronting domains describing richer tempo-

1Unpublished work pursued by M. Fox and D. Long during a
visit to NASA Ames in 2000.

ral and metric behaviours. In this level of expressiveness
for modelling the planning community has both fewer well-
developed tools (including planners) and less collective ex-
perience in engineering and debugging domains. However,
the challenges in managing these domains are more daunt-
ing than those that we face in handling propositional do-
mains, since the forms of interactions are both more subtle
and can fail in more complex ways. TIM has been extended
to find invariants in temporal domains expressed inPDDL,
while consideration of rich temporal domains as timed au-
tomata (Fox & Long 2006) might offer new ways to present
the formalisations of temporal domains. Metric behaviours
have been explored very little. One possibility that might
offer ways to analyse these behaviours for verification pur-
poses is to borrow from program analysis techniques, ex-
ploiting ideas such as abstract interpretation and resource
profiling.

TIM could have offered a clue about the unintended
behaviour in the Rovers domain, since it shows that the
recharge action is not self-mutex. The MatchLifts domain
revealed its bug when we applied CRIKEY3 (Coleset al.
2008) to it and it exhibited a strange behaviour. This, of
course, is a less-than-ideal way to find the bug! The Settlers
domain bug became apparent after a prolonged inspection
in order to remodel the problem in a constraint formulation.
This process was carried out manually, but it hints at the pos-
sibility that translation of this kind of domain could lead to
discovery of bugs such as lay dormant in Settlers.

6 Plan Validation
The problem of confirming a plan is correct with respect to
a formal domain model has traditionally been calledplan
validation, although it might be seen as a verification task,
since it is not concerned with whether the formal model cor-
rectly captures the target domain. The most well-developed
tool for PDDL domain encodings is the Validator (Howey,
Long, & Fox 2004), which can check the executability of a
plan and whether it achieves the appropriate goals. It evalu-
ates the plan according to the indicated plan metric and can
also test plans against trajectory constraints and preferences.
It will give advice about what might be wrong with a plan
when a plan fails and can report on many other features of
a plan, such as its robustness to temporal or metric variabil-
ity, its precise use of resources and the profile of this use
over time. It can also handle continuous change, using an-
alytic techniques to find roots of polynomials and numeric
techniques for some other functions such as exponential and
logarithmic functions.

As an illustration of the power of the Validator in provid-
ing insight into the behaviour of a domain encoding, we have
used it to explore the behaviour of a simple model of batter-
ies under load. We took as the starting point for our model a
two-charge-well model described in (Jongerdenet al. 2009)
(illustrated in figure 3). In that paper the model was devel-
oped for use with a model checker (UPPAAL), using discre-
tised time. The idea behind the model is that a battery deliv-
ers charge from its free charge well, according to the demand
of a load placed on the battery, while charge passes from the
bound-charge well of the battery into the free-charge well,

33



δ

γTotal charge

Bound
charge

Free
charge Load draws

chargeCharge flow

Figure 2: The kinetic battery model.

flowing like a liquid to equalise the heights of the two wells.
Properties of the battery determine the relative widths of the
two wells, the flow rate between the wells and the initial
charge levels. The model offers a simple explanation for the
observed phenomenon that a battery regains charge if it is al-
lowed to rest between loads. More sophisticated models are
possible, but the two-well model offers a reliable first order
approximation of battery behaviour in practice.

This system illustrates an important aspect of the process
of modelling a physical system: the first stage in building a
model is to arrive at a conceptualisation of the physical sys-
tem that is sufficiently precise that it can be captured in a
formal specification. The question that verification and val-
idation seeks to address is how well the specification cap-
tures the conceptualisation. The broader question of how
well the conceptualisation captures the physical system can-
not be addressed by verification, but only by empirical study
of the physical system itself.

In our PDDL model of batteries we usedPDDL+ (Fox &
Long 2006), creating a process modelling the flow of charge
from the bound-well to the free-well and a process of dis-
charging under load initiated by turning on the battery load
and ended by turning it off. The model includes an event
triggered by the free-charge well becoming empty, which
is that the battery is dead (even though it might contain re-
maining charge in the bound-charge well). The most com-
plex element of this model is the interaction of the processes:
discharging is a linear process, proportional to the load, but
the rate of flow of charge from the bound-charge to the free-
charge well is proportional to the difference in the heights
of the charge in each of the two wells (not quite the same
as the charge, since the height is dependent on the width of
the well as well as the total charge). The combination of the
these behaviours yields a function that includes a negative
exponential decay in the height difference.

It general, the problem of interest is to determine how
long one or more batteries can be made to last using dif-
ferent policies. Using the Validator we can determine the
time at which the batteries become dead within the model
and compare it with the behaviour of the specification used
in (Jongerdenet al. 2009) with UPPAAL-Cora. The figures
for a selection of scenarios (loads and policies) are shown in

Figure 3: Plots of the differences in well heights for two bat-
teries operating under different loads. These plots are gen-
erated automatically by the Validator.

Scenario Lifetime Lifetime Lifetime
KiBaM (min) U-C Model PDDL+ model

CL 250 4.53 4.56 4.526
CL 500 2.02 2.04 2.017
CL alt 2.58 2.60 2.580
ILs 500 4.30 4.32 4.304
ILl 500 6.53 6.56 6.532

Table 1: Comparison of results from the mathematical ki-
netic battery model (KiBaM), the UPPAAL-Cora model and
thePDDL+ model.

table 1. It is worth acknowledging that this problem is an op-
timisation problem rather than a natural planning problem,
but the evaluation of policies is a necessary precursor to con-
struction of policies and the use of the Validator to compare
the behaviour of the specification inPDDL with that of the
UPPAAL-Cora specification is an indication of the way that
the Validator can be used as a tool to support the validation
of domain models.

7 Conclusion
Validation and verification of planning domain models is
still an poorly developed area of research. The construction
of planning domain models is still the preserve of a rela-
tively tiny group of researchers, limiting our experience of
the problems that are typically encountered in the develop-
ment of domain models and the kinds of errors that arise.
The tools that software engineers use to help in the verifica-

34



tion of software models can provide some insights into the
areas that are likely to help in the verification of planning do-
main models. The software engineer still depends heavily on
inspection-based techniques, but these can be enhanced by
automatic analysis and translation into different formalisms.
A further support for verification is to verify plans for do-
mains, where the plans have been built by hand. This can be
compared directly with performing unit tests in software en-
gineering. The Validator provides a powerful profiler for de-
termining the behaviour of plans and resources in domains.
The Validator is probably the onlyPDDL-based tool that of-
fers such comprehensive coverage of the metric and tempo-
ral elements of the language and can give deep insights into
the behaviour of these aspects of a domain encoding.

References
Bacchus, F., and Kabanza, F. 2000. Using temporal logic to
express search control knowledge for planning.Artificial Intelli-
gence116(1-2):123–191.

Bäckstr̈om, C., and Nebel, B. 1995. Complexity results for SAS+
planning.Computational Intelligence11(4):625–655.

Bart́ak, R., and McCluskey, L. 2007. Introduction to the special
issue on knowledge engineering tools and techniques for auto-
mated planning and scheduling systems.Knowledge Eng. Review
22(2):115–116.

Bedrax-Weiss, T.; Frank, J.; Iatauro, M.; and McGann, C. 2005.
Inspection and Verification of Domain Models with PlanWorks
and Aver. InProceedings of ICAPS’05 Workshop on Verification
and Validation meets Planning and Scheduling.

Behrmann, G.; David, A.; and Larsen, K. G. 2004. A tutorial
on UPPAAL. In Bernardo, M., and Corradini, F., eds.,Formal
Methods for the Design of Real-Time Systems: 4th International
School on Formal Methods for the Design of Computer, Commu-
nication, and Software Systems, SFM-RT 2004, number 3185 in
LNCS, 200–236. Springer–Verlag.

Bernardini, S., and Smith, D. 2008. Translating PDDL2.2. into
a Constraint-based Variable/Value Language. InProceedings of
ICAPS Workshop on Knowledge Engineering for Planning and
Scheduling.

Cichy, B.; Chien, S.; Schaffer, S.; Tran, D.; Rapideau, G.; and
Sherwood, R. 2005. Validating the Autonomous EO-1 Science
Agent. InProceedings of ICAPS’05 Workshop on Verification and
Validation meets Planning and Scheduling.

Cimatti, A.; Clarke, E. M.; Giunchiglia, E.; Giunchiglia, F.; Pi-
store, M.; Roveri, M.; Sebastiani, R.; and Tacchella, A. 2002.
NuSMV 2: An OpenSource Tool for Symbolic Model Checking.
In Proceeding of International Conference on Computer-Aided
Verification (CAV 2002).

Coles, A. I.; Fox, M.; Long, D.; and Smith, A. J. 2008. Planning
with problems requiring temporal coordination. InProceedings
of the Twenty-Third AAAI Conference on Artificial Intelligence
(AAAI 08).

Coles, A. I.; Fox, M.; Halsey, K.; Long, D.; and Smith, A. J.
2009. Managing concurrency in temporal planning using planner-
scheduler interaction.Artificial Intelligence173(1):1–44. Avali-
able online August 2008.

Edelkamp, S., and Mehler, T. 2003. Knowledge acquisition and
knowledge engineering in the modplan workbench. InProceed-
ings of Workshop on Knowledge Engineering for Planning (ICK-
EPS), 22–29.

Eytani, Y.; Havelund, K.; Stoller, S. D.; and Ur, S. 2007. Towards
a framework and a benchmark for testing tools for multi-threaded
programs.Concurrency and Computation: Practice and Experi-
ence19(3):267–279.

Fox, M., and Long, D. 1998. The Automatic Inference of State
Invariants in TIM. Journal of Artificial Intelligence Research
9:376–421.

Fox, M., and Long, D. 2003. PDDL2.1: An Extension of PDDL
for expressing Temporal Planning Domains.Journal of Artificial
Intelligence Research20:61–124.

Fox, M., and Long, D. 2006. Modelling mixed discrete-
continuous domains for planning.J. Art. Int. Research27:235–
297.

Helmert, M. 2006. The Fast Downward Planning System.Journal
of Artificial Intelligence Research26:191–246.

Holzmann, G. 2004.The SPIN Model Checker: Primer and
Reference Manual. Addison-Wesley.

Howey, R.; Long, D.; and Fox, M. 2004.VAL : Automatic plan
validation, continuous effects and mixed initiative planning using
PDDL. In Proceedings of 16th IEEE International Conference on
Tools with Artificial Intelligence.

Jongerden, M. R.; Haverkort, B.; Bohnenkamp, H.; and Katoen,
J.-P. 2009. Maximizing system lifetime by battery scheduling. In
Proc. DSN 2009, IEEE Computer Society.

Khatib, L.; Muscettola, N.; and Havelund, K. 2001. Verification
of Plan Models Using UPPAAL. InFormal Approaches to Agent-
Based Systems, volume 1871/2001 ofLecture Notes in Computer
Science. Springer. 114–122.

Long, D., and Fox, M. 2003a. The 3rd International Planning
Competition: Results and analysis.Journal of AI Research20.

Long, D., and Fox, M. 2003b. Exploiting a graphplan framework
in temporal planning. InProceedings of ICAPS’03, 51–62.

McCluskey, T. L., and Porteous, J. M. 1997. Engineering and
compiling planning domain models to promote validity and effi-
ciency.Artificial Intelligence95(1):1–65.

McCluskey, T. L., and Simpson, R. 2004. Knowledge formulation
for ai planning. InProc of EKAW’04: Engineering Knowledge in
the Age of the Semantic Web, 449–465.

McDermott, D. 2000. The 1998 AI planning systems competi-
tion. AI Magazine21(2):35–56.

Muscettola, N. 1994. HSTS: Integrating planning and scheduling.
In Zweben, M., and Fox, M., eds.,Intelligent Scheduling. San
Mateo, CA: Morgan Kaufmann. 169–212.

Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdoch, J.; Wu, D.;
and Yaman, F. 2003. An HTN planning environment.J. AI Res.
20.

Penix, J.; Pecheur, C.; and Havelund, K. 1998. Using Model
Checking to Validate AI Planner Domain Models. InProceedings
of the 23rd Annual Software Engineering Workshop.

Simpson, R.; Kitchin, D.; and T.L.McCluskey. 2007. Planning
domain definition using GIPO.The Knowledge Engineering Re-
view22:117–134.

35




