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Abstract

Abduction is a backward inference process for generating and
narrowing hypotheses. It has been applied for plan recogni-
tion and diagnosis and is crucial for detecting attack plans
security applications. Cost-optimal abduction drives the se-
lection of hypotheses towards the ones with minimal costs.
Abduction is inherently complex. In this paper, we describe
solutions for overcoming the computational burden by ex-
ploiting a symbolic representation of state sets that has suc-
cessfully been exploited in AI planning systems. Given a
model specified in PDDL-like syntax, we infer a discrete en-
coding of the domain and study symbolic algorithms to com-
pute cost-optimal hypotheses and according explanations.

Introduction
The ability to recognize plans is a fundamental tasks for a
wide range of applications ranging from coordinated actions
in dynamic multi-agent systems to infer attack plans in net-
work security applications.

The problem has been addressed with different tech-
niques. Probabilistic approaches like dynamic Baysian net-
works (Albrecht et al. 1997) have been applied in multi-user
scenarios, while relational Markov models (RMM) (Ander-
son & Weld 2002) have been applied for the recognition
of user actions in adaptive web interfaces. Although these
approaches have been successful even in the face of noisy
observations, their use is limited to specific areas of appli-
cation. While Bayesian models support the representation
of complex structural dependencies they lack the ability to
represent relation properties in terms of a RMM and vice
versa. Otherwise, more expressive probabilistic representa-
tions naturally result in a significant decrease in efficiency.
In contrast, classification-based approaches (Intille & Bo-
bick 1999) allow more expressive/flexible representations,
but are limited to domains with precisely given sets of pos-
sible plans/intentions like, e.g., in American football.

One expressive and flexible approach that has been ap-
plied to plan recognition is abduction. According to Peirce
(1955) abduction is the process of finding the cause for a
set of assumptions and a theory provided. Its philosophi-
cal roots go back to Aristotle, while for AI (Pople 1973)
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abduction is commonly viewed as a form of reasoning, al-
lowing one to find explanations1 for certain symptoms (Ng
& Mooney 1990).

Our core interest is the abductive inference of intended
plans. Different to the plan synthesis problem, in such plan
recognition problems (Kautz, Pelavin, & Tenenberg 1991),
the recognizer is given a fragmented description of the prob-
lem and expected to refine it. We concentrate on plan hy-
potheses generation wrt. a fixed domain theory, a set of ob-
servations and a set of assumptions. To deal with the inher-
ent complexity, we apply symbolic abduction, where sym-
bolic refers to the use of efficient data sturctures for repre-
senting and operating on Boolean functions.

Our research is motivated by a daunting application do-
main, where we consider inferences on top of an intrusion
detection system for an improved level of security. Abduc-
tion can be used to reason about the attackers’ plans subject
to the incidents established. Short attack plans correspond
to more plausible ones, and uncertainty centers around the
attacker’s initial states.

The paper is structured as follows. Firstly, we reflect pre-
vious work on symbolic AI such as validating knowledge
databases, model-based diagnosis, and BDD-based plan-
ning. The core of the exposition is devoted to modeling and
designing algorithms for the abuctive inference in planning
problems. We address the issues of computing all valid hy-
potheses, the uni- and bi-directional inferences of uniform-
cost abductions, a setting that is then extended to cover cost-
based abductive inferences. User supervision to manually
drive the selection of plan hypotheses is discussed next. As
the set of abductive inference problems usually addressed in
literature is small, in the experiments we address modified
planning benchmarks.

Symbolic Inference in AI
Binary decision diagrams (BDDs) together with efficient
operations on them have been proposed by Bryant (1985).
Minato, Ishiura, & Yajima (1990) have illustrated how to
store several BDDs in a joint structure. One of the most

1In literature as well as in this text, the terms explanation and
hypothesis are often used interchangeably. However, we prefer the
explanation to refer to the plan generated, and the hypothesis to
refer to the possible extensions for the assumptions made.
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widely used BDD libraries (CUDD) is maintained by Fabio
Somenzi. Many aspects to the theory of decision diagrams
have been given by Wegener (2000). BDDs are less com-
pact than other structures like d-DNNFs (Darwiche 1999),
but provide a unique representation of Boolean functions.

Validating Knowledge Bases
Especially when applied to business settings, checking for
anomalies in a given knowledge-base becomes a very im-
portant task. The efficiency of labeling clearly depends on
the compactness of the generated labels. As these may re-
quire exponential size, with the exponent being in the depth
of the rule sets, more efficient representations like BDDs are
needed (Torasso & Torta 2003; Mues & Vanthienen 2004).
Such symbolic approaches encode the system’s input in bi-
nary form and traverse the rule base, thereby constructing
the BDDs instead of labels that describe the in- and output
dependencies of the system, checking BDDs against each
other and reporting any observed anomaly. Alternative com-
pilations of knowledge bases are possible (Darwiche 1999).

Action Planning
Symbolic planning has been pioneered by Cimatti et al.
(1997). It extends to adversarial planning (Cimatti, Roveri,
& Traverso 1998), partial observable planning (Bertoli et al.
2001), and conformant planning (Bertoli, Cimatti, & Roveri
2001). Symbolic heuristic search invented by Edelkamp &
Reffel (1998) has been applied to domain-independent plan-
ning (Edelkamp & Helmert 2001). Jensen, Bryant, & Veloso
(2002) have introduced branching partitions, while Jensen et
al. (2006) have proposed memory-limited symbolic branch-
and-bound search. Symbolic heuristic search planning with
penalties and rewards formulated in logic using DNNFs has
been considered by Bonet & Geffner (2008).

In the propositional STRIPS formalism (Fikes & Nilsson
1971) for describing planning domains the initial state is to-
tal, while the goal state is partial. For abduction, however,
both states are partial. The partially given initial state de-
notes the assumptions, one possible completion is a hypoth-
esis. The partially given goal state denotes the observations;
a completion is a prediction.

Symbolic Diagnosis
In diagnosis, we are not only concerned with detecting er-
rors, but additionally with explaining them. This is done by
propagating the error in the model and probing on more and
more specific issues. Since a diagnosis task is a search in a
space of different hypotheses on the values of variables, it
deals with uncertainties in background knowledge.

By explicitly modeling possible system flaws, the single-
fault diagnosis problem can be transformed into an infer-
ence problem, for which the uncertainty is contained in the
limited set of assumptions. For multiple faults, assumption-
based truth maintenance systems (ATMSs) have been sug-
gested (Forbus & de Kleer 1993). Their model is an undi-
rected network with the edges labeled with discrete vari-
ables, whose values are of a certain range. Devices in the
network to be diagnosed manipulate and propagate the in-
formation found at incident edges. Assignments to edges

represent the knowledge about and the influence the vari-
ables have on each other.

BDDs have been used for covering the amount of
uncertainty through compactly representing all possible
worlds (Bertoli, Bozzano, & Cimatti 2006). Assignments
to variables are often restricted to small ranges. Probing an
edge is an assignment to a variable.

Abduction
Abduction has taken on fundamental importance in AI (Mor-
gan 1971) including planning (Bäckström & Nebel 1988),
database updates (Kakas & Mancarella 1990), text under-
standing (Norvig 1987), and others. In abduction, for a logi-
cal theory T and some manifestationM of a set of individual
hypotheses, we are interested in ∆ such that T ∪∆ |= M .

For logic-based abduction, Eiter & Gottlob (1995) classi-
fied many problems to be located on the second or third level
of the polynomial hierarchy, while Bylander et al. (1991)
proved the NP-hardness for pure propositional problems to
explain a set of data best. There is a balance between the
flexibility in the modeling language and the inferences that
can be drawn. The problem of generating abductive expla-
nations is usually divided into two subproblems that can be
addressed separately:

1. generating the set of all possible explanations, and

2. selecting the most appropriate hypothesis among the set
of possible explanations

Efficient approaches to abduction are limited. A tractable
solution to the generation problem has been proposed by
Eiter & Makino (1992) that is limited to Horn theories and
positive observation literals.

The second problem has been addressed in very different
ways. The most widely used selection criteria is Occam’s ra-
zor (Thorburn 1918). It states that for two explanations, the
simpler one is preferable. A different domain-independent
criterion has been applied by Ng & Mooney (1990) in the
domain of text understanding, the coherence metric. In addi-
tion different domain-specific solutions have been proposed
(Appelt & Pollack 1992; Hobbs et al. 1990).

An inherent weakness of the logic-based approach to ab-
duction2 is the very specific interpretation of the logical im-
plications. Abductive inference assumes that logical im-
plication encodes causal knowledge (relations). Although
this property may hold in some scenarios3 it is clearly not
valid in general. As a consequence, abductive inference of-
ten leads to non-causal explanations. We claim to overcome
this problem. Instead of Horn or first-order logic programs
as the basis for backward inference, we chose PDDL as the
modeling language, which is automatically converted to a
plan model with discrete state variables. Thereby, we ob-
tain access to a wealth of planning benchmarks to be ex-
ploited for abductive reasoning. In contrast to many other
approaches to logical abduction we do not address the prob-
lem of hypothesis generation and hypothesis selection inde-

2Abductive inference is not necessarily limited to logical repre-
sentations. For an overview see (Paul 1993).

3E.g., in diagnostic domains.
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pendently. Instead of calculating the set of all possible ex-
planations we directly calculate the best hypothesis. In this
paper we apply Occam’s razor in form of cost-optimal expla-
nation as the fundamental selection criterion. Nevertheless,
we claim that our approach extends to domain specific crite-
ria in terms of weighted abduction (Appelt & Pollack 1992;
Hobbs et al. 1990).

Symbolic Abduction
Driven by the success of recent BDD-based planning sys-
tems on international planning competitions the large BDD
compression ratios for many planning benchmarks obtained
by Ball & Holte (2008), we aim at solving the abduction
problem with BDDs by embedding it into the planning do-
main definition language PDDL.

PDDL problems can be grounded by instantiating predi-
cates, actions and fluents with all possible instantiations of
domain objects, yielding a (usually fully instantiated) ini-
tial state I ⊆ AP , a set of operators O = (P,A,D) with
P,A,D ⊆ AP , and a goal description G ⊆ AO. Despite
its binary representation for symbolic search, it is best to
consider all states and operators as sets. For example, set in-
tersection matches Boolean conjunction, set complementa-
tion matches Boolean negation, and set unification matches
Boolean disjunction.

For the sake of simplicity, we assume a propositional do-
main theory T over a set of atomic proposition AP to be en-
coded in STRIPS planning operators O with o = (P,A,D)
and P,A,D ⊆ AP . In BDD terminology, we construct a
transition relation To, encoding all (predecessor, successor)
state pairs valid under operator o ∈ O. This yields the do-
main theory T =

∨
o∈O To. Logical subsumption φ |=T ψ

inherits the semantics that there is a sequence of operators
applied to φ ⊆ AP , which entails ψ ⊆ AP .

For abductive inferences we may assume an SAS+ en-
coding of a propositional planning problem (Bäckström
& Nebel 1995) that is induced by static analyzers. The
SAS+ formalism uses multi-valued state variables instead
of propositional atoms. An SAS+ stucture M = (V, S,O)
is over a set of state variables V = (v1, . . . , vm) defines a
space S = S1 × . . .× Sm of all possible states, where Sj is
the domain Domain(vj) of mutually exclusive values for the
jth variable, j = 1, . . . ,m. Operators change assignments
to states according to their pre- and postconditions. Precon-
ditions are Boolean formulas over variable assignments and
postconditions are updates of variables to new values. Par-
tial states are states with some variables being undefined.

Starting from PDDL, for the process of partition propo-
sitions into mutually exclusive fact groups the initial state
does not have to be total (Helmert 2008). The information
on mutual exclusion that is encoded in the finite domain vari-
able description belongs to the set of consistency conditions
provided to the abductive inference module. In propositional
terms, we assume the manifestation to be separated in the set
of observations G ⊆ AP in form of a partial description of
the goal state, and the set of assumptions A ⊆ AP in form
of a partial description of the initial state. We are interested
in some hypothesis ∆ ⊆ AP , such that A ∪∆ |=T G.

Any aductive inference process partitions in two stages:
(1) generating all, a subset of them, or only one hypothesis,
and (2) selecting the hypothesis that is best, which can either
be automated wrt. some optimality criterion, or interactive
by modifying the assumptions or the observations, in which
case the abductive inference iterates.

Computing all Valid Hypotheses
The ultimate goal is to compute all valid hypotheses. Eiter
& Makino (1992) give an algorithm that generates all non-
trivial explanations of a Horn CNF wrt. some positive letter.
For each generated hypothesis the algorithm is polynomial,
but the number of hypotheses can be exponential.

To compute all possible hypotheses ∆ ⊆ AP , we first
define the preimage of a state set States (on variable set x′)
as

PreImg(States) =
∨
o∈O

(∃x′.To(x, x′) ∧ States(x′)) [x↔ x′].

The suffix [x ↔ x′] denotes that the state variable set is
swapped after the operation. If Statesi denotes the repre-
sentation of the set of states in some backward breadth-
first search (BFS) level i (minimal goal distance i), then
PreImg(Statesi) denotes the set of states in backward BFS
level i+ 1. Moreover, the set of all states that are reachable
via pre-image is defined as

BackReach(States) = µX.PreImg(X) ∨ States(x′),

where µ denotes the fixpoint operator induced by repeated
pre-image application. When initializing States with goal
condition G, with the above equation we compute all pos-
sible states that reach G, i.e., BackReach is partitioned
in BFS levels BackReachi, with BackReach0 = G and
BackReachi+1 being computed from BackReachi. To guar-
antee termination of the exploration, it is recomended to sub-
tract BackReachj from BackReachi+1 for 0 ≤ j ≤ i.

For a set of assumptions encoded as a formula A(x) the
set of all valid hypotheses is now computed as

BackReach(G(x)) ∧A(x),

i.e., the set of all possible states that can reach the observa-
tions and that satisfy the assumptions.

Uniform-Cost Abductive Inference
In the case of uniform-cost abductive inference, we follow
the principle of Occam’s razor to compute the step-minimal
explanation. As an example, we take the case of John being
depressed under the condition that his girl-friend Mary has
had a heart attack. The step-minimal explanation for him
being depressed is that John is a pessimistic person, but this
is commonly interpreted as the unlikely explanation, given
the evidence of Mary’s illness.

An algorithm for backward uniform-cost abduction is
shown in Figure 1. It repeatedly applies preimages until
the assumptions A are hit, inducing a plan to be generated4.

4For the sake of simplicity, the test of termination for inconsis-
tent assumptions is not shown. It requires a closed list and a full
backward exploration of the state space.
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Procedure Backward BDD-Abduction
Input: Uniform cost planning problem with theory

T =
∨

o∈O To, set of assumptions A ⊆ AP ,
and set of observations G

Output: Step-optimal explanation ∆ that is
consistent with A ∧∆ |=T G

BackReach0(x)← G(x)
for each i = 0, 1, . . .

Min(x)← BackReachi(x)
if (Min(x) ∧ A(x) 6= false)

return ConstructExplanation(Min(x) ∧ A(x))
Predl(x′)←

∨
o∈O(∃x′(Min(x′) ∧ To(x, x′)))[x↔ x′]

BackReachi+1(x)← BackReachi+1(x) ∨ Predl(x)

Figure 1: Backward Abduction on Uniform Cost Problems.

Procedure Forward BDD-Abduction
Input: Uniform cost planning problem with theory

T =
∨

o∈O To, set of assumptions A ⊆ AP ,
and set of observations G

Output: Step-optimal explanation ∆ that is
consistent with A ∧∆ |=T G

ForwReach0(x)← A(x)
for each i = 0, 1, . . .

Min(x)← ForwReachi(x)
if (Min(x) ∧ G(x) 6= false)

return ConstructExplanation(Min(x) ∧ G(x))
Succl(x)←

∨
o∈O(∃x(Min(x) ∧ To(x, x′)))[x↔ x′]

ForwReachi+1(x)← ForwReachi+1(x) ∨ Succl(x)

Figure 2: Forward Abduction on Uniform Cost Problems.

In Min ∧ A there might be several valid minimum-step hy-
potheses. If A′ is one, then ∆ is the completion to the set of
assumptions already made.

As a feature of the algorithm, a prediction Γ to the set of
observations can also be returned, by completing the partial
goal G to the complete one G′ as found through the con-
struction of the explanation.

The advantage of BDD inference is that it is easy to invert
the direction of chaining and compute the image of some
state set States as follows

Image(States) =
∨
o∈O

(∃x.To(x, x′) ∧ States(x))[x′ ↔ x].

For abductive ineference the same (or an equivalent)
minimal-cost plan can be obtained by chaining forward from
the set of assumptions to the observations. An according im-
plementation is shown in Figure 2.

The problem here is that the hypothesis ∆ is not computed
directly from the last set of states that has been reached, as
it was inferred in backward search. However, after having
extracted the step-minimal explanation, besides the set of

(:action r1 :parameters (?X ?Y - person)
:precondition (and (like ?X ?Y) (ill ?Y)

(irreplacable ?Y))
:effect (and (depressed ?X)

(increase(total-cost) 3)))
(:action r2 :parameters (?X - person)
:precondition (and (pessimist ?X))
:effect (and (depressed ?X)

(increase (total-cost) 10)))
(:action r3 :parameters (?X - person ?O - organ)
:precondition (and (has ?X ?O) (illness ?O))
:effect (and (ill ?X)

(increase (total-cost) 1)))
(:action r4 :parameters (?O - organ)
:precondition (and (heart-attack ?O))
:effect (and (illness ?O)

(increase (total-cost) 3))))

Figure 3: PDDL Actions for Example Domain.

actions, the set of states in the plan and especially the com-
pletion to A is also computed.

Having forward and backward inferences, it is also pos-
sible to operate bi-directional, reducing the complexity of
finding the smallest explanation drastically. A coarse argu-
mentation is that bi-directional breadth-first search with a
goal distance d in a graph with uniform branching factor b
(and no duplicate elimination) looks at 2bd/2 states, a num-
ber being exponentially smaller than bd, the efforts for uni-
directional breadth-first search.

Cost-Optimal Abductive Inference
In many cases, the principle of Occam’s razor to compute
the step-minimal explanation in abductive reasoning is in-
sufficient. In other words, the relevance of operators for the
inference process is not uniform. We assign costs cost(o),
o ∈ O, denoting how important individual actions are (the
higher the cost, the less important the operator).

As an example we once again take the case of John be-
ing depressed. Fragments of the PDDL model are shown in
Figure 3. If we assign costs to inference operators such as
cost(r1) = 3, cost(r2) = 10, cost(r3) = 1, and cost(r4) = 3
we get the cost-minimal explanation that John is depressed
because of Mary’s heart attack.

A pseudo-code implementation of the algorithm is shown
in Figure 4. The core difference to uniform cost abduction
is that the preimages of the transition relation are computed
for each cost value l in 1, . . . , C. Zero-cost actions can be
included by computing a transitive closure wrt. all such ac-
tions before expanding a bucket.

Similar to the uniform case, forward and backward induc-
tion work similar by simulating Dijkstra’s algorithm (1959).
Bidirectional search now faces the problem that the first in-
tersection of the search frontiers does not necessarily yield
the minimum-cost solution. For such case, symbolic perime-
ter search is applied as follows. In a first phase we construct
a perimeter database, storing the backward layers up to some
depth. This database then serves as a heuristic for guiding
the search in forward direction.
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Procedure Backward Cost-based BDD-Abduction
Input: Cost-based planning problem with theory

T =
∨

o∈O To, set of assumptions A ⊆ AP ,
and set of observations G

Output: Cost-optimal explanation ∆ that is
consistent with A ∧∆ |=T G

BackReach0(x)← G(x)
for each i = 0, 1, . . .

Min(x)← BackReachi(x)
if (Min(x) ∧ A(x) 6= false)

return ConstructExplanation(Min(x) ∧ A(x))
for all l = 1 . . . , C

Predl(x′)←∨
o∈O,cost(o)=l(∃x′(Min(x′) ∧ To(x, x′))[x↔ x′]

BackReachi+l(x)← BackReachi+l(x) ∨ Predl(x)

Figure 4: Algorithm for Cost-based Backward Abduction.

Manual Selection Strategies
Having computed at least one valid hypothesis, it is concep-
tually easy to generate the corresponding plan. The sim-
plest solution is to chain the sequence BackReachi down
to BackReach0 backwards starting with a state in the in-
tersection and computing forward images of one selected
state in BackReachj that is intersected with the next state
set BackReachj+1.

This explanation can be returned to the user who refines
the result by either strengthening or weakening the assump-
tion A. Alternatively, he can simply reject the plan, giving
rise to a Taboo list D that is subtracted from the goal, i.e.
setting G to G \ D. Last but not least, we may allow to
eliminate the impact of certain operators from the plan by
rescaling their influence.

Finding Critical Query Variables
For an interactive fault diagnosis with a small number of
queries, it is important to reduce the uncertainty in the do-
main of the variables. One promising aspect is to query the
variable that reduces the set of possible worlds by the largest
margin, by means that the set of satisfying assignments to
the variables is minimal.

For the problem of finding the critical variables in the
valid hypothesis we exploit the fact that model counting (the
process of determining the number of satisfying assignments
to a Boolean formula) in a BDD is efficient. Hence for each
SAS+ variable v and each possible assignment i in the do-
main Domain(v) of v we determine∑

i∈Domain(v)

ModelCount(ValidHypothesis ∧ (v = i))

and take the variable for which this quantity is the smallest.

Experiments
For executing abductive reasoning, we adapted the plan-
ner GAMER that won the sequential optimal and optimal

Procedure Bidirectional Cost-based BDD-Abduction
Input: Cost-based planning problem with theory

T =
∨

o∈O To, set of assumptions A ⊆ AP ,
and set of observations G, backward layers BackReachi

Output: Cost-optimal explanation ∆ that is
consistent with A ∧∆ |=T G

for all h ∈ {0, . . . ,maxh}
Open[0, h](x)← A(x) ∧ BackReachh(x)

for all f ∈ {0, 1, 2, . . .}, g ∈ {0, . . . , f}
Min(x)← Open[g, f − g](x)
if (Min(x) ∧G(x) 6= false)

return ConstructExplanation(Min(x) ∧ G(x))
for all i ∈ {1, . . . , C}

Succi(x′)←∨
o∈O,cost(o)=i ∃x. Min(x) ∧ Transo(x, x′)[x↔ x′]

for all h ∈ {0, . . . ,maxh}
Open[g + i, h](x)← Open[g + i, h](x)∨

Succi(x) ∧ BackReachh(x)

Figure 5: Bidirectional Abduction with Perimeter Database.

net-benefit track in the international planning competition
IPC-2008. We ran the experiments on a machine with two
Opteron 250 processors with 2.4 GHz (only one is used for
computation) and limited the memory to 2 GB RAM.

There is initial work by Boddy et al. (2005) and Bhat-
tacharya & Ghosh (2008) in modeling security problems as
planning problems, we do not have sufficiently many se-
curity benchmarks to evaluate our approach. Hence, we
adopted planning competition benchmarks for abductive
reasoning tasks.

Grounding the planning domains yields an SAS+ encod-
ing of the problems. The original results of fully specified
benchmark problems under closed world assumption (cwa),
meaning that the parts not mentioned in the intial state are
false, are compared to an open world (no cwa), meaning that
the parts not mentioned in the intial state are unknown. Then
we omit every second fact in the initial state (half init), i.e.,
we eliminate parts of the initial state (in an open world) in
order to reconstruct it.

The abduction algorithm we chose was bidirectional cost-
based BDD abstraction (Figure 5). The total time bound
was set to 5 minutes, from which we took at most 150s for
backward perimeter construction and the remaining time for
forward search. In some domains (ParcPrinter, PegSolitaire,
and Sokoban) dropping the closed world assumption leads to
empty plans (the intersection of the initial state with the goal
states is not empty), such that we dropped these examples
from the presentation.

Table 1 shows the results in the Elevator domain. Here,
we see that dropping the closed world assumption has no
effect. This is an immediate consequence of the fact that the
initial state is fully specified with positive literals. For a half-
way specified initial state we see some advances. In some
cases new problems could be solved, in others the abductive
inference is harder (Problems 24 and 25) than the original
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Table 1: Results in Elevator.
cwa no cwa half init

cost steps back. forw. total cost steps backw. forw. total cost steps backw. forw. total
1 42 14 2:31 0:06 2:38 42 14 2:30 0:08 2:40 15 6 2:29 0:07 2:38
2 26 9 2:30 0:05 2:37 26 9 2:29 0:05 2:37 19 6 2:29 0:05 2:37
3 55 18 2:30 0:06 2:38 55 18 2:30 0:06 2:37 27 10 2:29 0:05 2:37
4 40 18 2:29 0:09 2:40 40 18 2:29 0:09 2:41 20 9 2:29 0:08 2:40
5 55 22 2:30 0:09 2:40 55 22 2:29 0:09 2:40 43 16 2:29 0:13 2:45
6 53 26 2:29 0:57 3:28 53 26 2:29 0:57 3:29 25 14 2:29 0:07 2:38
7 62 27 2:29 0:42 3:14 62 27 2:29 0:37 3:08 27 12 2:30 0:04 2:36
8 53 25 2:28 2:14 4:46 53 25 2:29 2:16 4:48 30 12 2:29 0:33 3:05
11 56 17 2:29 0:05 2:36 56 17 2:30 0:05 2:36 34 10 2:30 0:05 2:36
12 54 16 2:29 0:06 2:38 54 16 2:30 0:06 2:38 37 11 2:29 0:09 2:41
13 59 17 2:30 0:07 2:38 59 17 2:30 0:07 2:38 40 10 2:30 0:06 2:37
14 63 22 2:29 0:21 2:53 63 22 2:30 0:20 2:52 39 11 2:29 0:12 2:44
15 66 24 2:30 0:12 2:44 66 24 2:30 0:13 2:44 40 14 2:30 0:08 2:40
16 − − − − − − − − − − 43 15 2:28 2:16 4:48
17 − − − − − − − − − − 42 13 2:28 0:14 2:47
21 48 17 2:30 0:07 2:39 48 17 2:30 0:07 2:39 31 10 2:30 0:06 2:38
22 54 19 2:29 0:37 3:09 54 19 2:29 0:38 3:10 36 12 2:30 0:46 3:17
23 − − − − − − − − − − 39 15 2:29 0:18 2:49
24 56 24 2:29 2:10 4:42 56 24 2:29 2:12 4:44 − − − − −
25 63 27 2:29 0:57 3:29 63 27 2:29 1:00 3:32 43 20 2:30 2:28 5:00
26 − − − − − − − − − − 29 12 2:29 1:33 4:06

plan finding process.
Table 2 depicts the results in the Openstacks domain.

Here we see that abduction gets harder. This is due to
the fact that cost-based backward induction to construct the
perimeter database does not provide any information, as cost
zero results in no information. The forward abduction phase
thus degrades to uniform cost search.

Table 3 shows the results in the Transport domain. Here
we have considerably larger costs than in the previous ones.
Table 4 gives the results in the Woodworking domain, show-
ing a similar trend as the results in the Transport domain.

Conclusion and Discussion
Abductive reasoning selects hypotheses that explain the ev-
idences best. It is of high relevance for AI, but – due to its
large complexity demands – received limit attention in the
last decade. As computational power on modern CPUs and
planner technology have improved substantially, we showed
a promising technique to compute valid hypotheses time-
and space-efficiently. Our main focus is the hypothesis gen-
eration problem in the context of SAS+ planning. More-
over, we discussed different options for interaction to over-
come the limitations of Occam’s razor, including interaction
based modified operator costs, altering the set of assump-
tions, maintaining Taboo lists for goals and applying model-
counting. They all help to reduce the amount of uncertainty.

One question that may arise is how much symbolic ab-
ductive planning differs from ordinary symbolic planning
as, besides the initial state being partial, there is not much
change in the exploration algorithms. This is true, but it also
highlights the advantage symbolic search approaches have
with respect to explicit-state ones, which would have to enu-
merate all possible completions either for the initial state in

order to perform the inference process. Moreover, most ex-
isting explicit-state planning systems are not cost-optimal.

One difference between abduction and ATMS inference is
that the latter logs justifications to assignments to allow mul-
tiple fault analyses. From a logical perspective, abduction
chains backwards in time, from the set of observation to-
wards the set of assumptions, while the inference in ATMS
is multi-directional, depending on the update to the set of
assignments to an incident variable of a device, while prop-
agating the effects through the network.

Note that there is precursing work on cost-based abdution
using binary decision diagrams (Kato et al. 1999). In the
logical context of propositional Horn clauses, the authors
compile a BDD for the theory, such that each BDD variable
corresponds to a different hypothesis. BDD edges are asso-
ciated with costs and additional consistency criteria lead to
pruning of edges in the BDD. Satisfying paths in the BDDs
correspond to the set of possible hypotheses (0-Edges are
neglected). As the BDD for the entire theory may be too
large, alternative data structures are proposed that handle in-
ference rules lazily. (Cost-annotated) Horn inferences are
much more restricted than (cost-annotated) SAS+ planning
inferences that are considered here. While the former can
be solved by variable substitution in the BDD, the latter re-
quires exploration with BDDs.
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