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Abstract

To improve anomaly detection in fast computer networks we
analyze the usage of Graphics Processing Units (GPU) to de-
tect attacks and threats. We operate on statistical network
data to protect privacy rights and to reduce the amount of col-
lected data. Because of the statistical nature of the data we
use an anomaly detection based method to detect threats and
attacks.To get a detailed overview of the network we moni-
tor a large number of network parameters at many different
sensor locations. To achieve this we propose a solution us-
ing GPU’s. For the implementation we focus on probabilistic
neural networks which can be massively parallelized. This
short paper presents ideas and first results of this approach.

1. Introduction

Since the birth of the internet the bandwidth has grown from
year to year. Also the number of attacks and threats has
grown so that network monitoring and intrusion detection
has become more important and challenging. For this rea-
son the process of detecting threats and attacks consumes
more computational power to analyze the data. One ap-
proach to deal with this problem is mentioned in (Hesse and
Pohlmann 2008). It describes a method collecting statistical
network data concerning privacy rights and the growth of
network speed. Although the amount of data was reduced,
there is still a huge number of network parameters to mon-
itor in real-time at many different sensor locations to get a
detailed overview. In this paper we analyze the usage of
Graphic Processing Units (GPU) to improve the detection
process.

Because of the statistical nature of the data we use an
anomaly detection based method to detect threats and at-
tacks. For the implementation on the GPU we focus on
probabilistic neural networks which can be massively par-
allelized.

The remainder of this paper is organized as follows: Sec-
tion 2. gives an overview of related work. After this the
used sensor technology is introduced. Section 4. describes
the statistical method used for the anomaly detection. Then
in section 5. the implementation on the GPU is discussed.
The last two sections provide first results, a conclusion and
further work.
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2. Related Work

The computational power of GPUs is used in serveral do-
mains. One example in the field of network monitoring is
speeding up the misuse detection process for observing fast
networks as mentioned in (Vasiliadis et al. 2008), (Smith et
al. 2009) and (Huang et al. 2008). Similar works concerning
GPUs and anomaly detection is not known to us so far.

There are many different methods for anomaly detection
in network traffic. The use of neural networks is described
in (Ryan, Lin, and Miikkulainen 1998) and (Zanero ). Time
series approaches were shown in (Throttan and Ji 1998) and
(Basu, Klivansky, and Mukherjee 1996). An approach that
uses Support Vector Machines can be found in (Mukkamala,
Janoski, and Sung ).

A solution that works on data similar to ours is imple-
mented in the open source project rrd to detect anomalies
in network parameters like bandwidth measured by the tool
ntop. This approach called “Abberrant Behaviour Detec-
tion” and is described in (Brutlag 2000) .

Two papers that discuss the implementation of neural net-
works on GPUs are (Luo, Liu, and Wu 2005) and (Jang,
Park, and Jung 2008).

3. Internet-Analysis-System Sensors

The sensor-technology of the Internet-Analysis-System (see
(Hesse and Pohlmann 2008) ), called IAS-Probe, is able to
provide a continuous view of the traffic behaviour at the sen-
sor location. It can be placed in all IP-based communication
infrastructures ranging from local home networks over cor-
porate networks up to the level of autonomous systems. It
uses a statistical approach to describe the complete network
behaviour. Figure 1 shows how this is done.

The figure is divided up into three sections. (i) The In-
ternet is represented on the left. In this example packets of
three different application sessions are shown: a HTTP ses-
sion, a FTP session and a SMTP session. (ii) The probe is lo-
cated in the middle of Fig. 1. The packets of the three appli-
cations are evaluated by the probe one after another in their
random order. They are channelled through several analy-
sis modules, which are responsible for different protocols.
These evaluate strictly defined communication parameters
in the protocol header at the various communication levels,
which are not concerned by data protection laws. (iii) The
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Figure 1: Raw data packet capturing

counters, in the Internet- Analysis-System called descriptors,
allocated in the counting system are incremented according
the header information of the packet. The frequency of cer-
tain header information is recorded in the same way as on a
tally sheet. Let us take a look at the following example: In
Fig. 1 we see the analysis of a FTP packet, which results
in an incrementation of the FTP descriptor by one. The raw
data is an aggregation of counters, i.e. counters of commu-
nication parameters that have appeared at the various com-
munication levels over a defined period. The packet - in Fig.
1 a FTP packet - is immediately deleted physically, i.e. ir-
reversibly and without trace, by the probe (Pohlmann 2007)
. Protocols monitored by the sensors are for instance : IP,
ICMP, TCP, UDP, HTTP, SMTP, FTP, DNS, EMULE, IRC,
RTP, SIP, Skype, etc (Ricci 2008) . For each protocol a dif-
ferent number of monitored parameters is implemented in
the sensor technology and observed by it. For example we
count 1,624 for SMTP, 1,123 for HTTP, more than 9,000
for DNS, only 47 for RTP and more than 500,000 different
parameters for TCP. The number for TCP is that high, be-
cause it includes the observation of various ports as well.
These counters sum up to a total of about 1,300,000 differ-
ent parameters, occurrence is registered by the sensor (Ricci
2008). Another way to explain the collection process more
formal is a finite state machine (see (Bastke 2009) ).

A:(E7S75780,F) (1)

) is the input alphabet. In case of the IAS-Probe it is the
set of all possible packets which could be sent over a net-
work. The set of the possible states of the machine is char-
acterized by S. Figure 2 shows a subset of states. Every state
represents one possible assignment of counters. That means
that one state s; is described by s; = (dy,da,...,d,). In
which d; represents a descriptor. Every packet analyzed
by the probe causes a transition to another state. The state-
transition function 9 tells to which state a transition occurs,
based on the actual state and input value . This specifies the
counting functionality of the probe. The initial state for one
sample interval is so = (0,0,...,0). F is the set of final
states.

Figure 2: Subset of states

At the end of every sample interval the probe sends the
actual state to the raw data transfer system and resets the
state to sg again.

4. Approach to anomaly detection

Anomaly detection tries to describe the normal behaviour of
a network and to identify attacks or failures of the network
based on divergences from this normal behaviour, which is
described by a model. The predictions taken from the model
will be compared to the real behaviour of the network. If di-
vergences are found, an anomaly is detected. Let M be the
model of the network behaviour and R be the real network
behaviour. If the difference between model M and real be-
haviour R exceeds an threshold €, an anomaly is detected.
This is expressed in equation 2.
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Based on the description of the data which is collected by
the IAS sensor technology (see section 3), we can identify
two methods for anomaly detection !.

Time Series modelling The descriptor data over the time
can be viewed as time series. This can be modelled with
methods from the field of time series analysis. One ex-
ample is an ARIMA model respectively AR model that is
used in (Throttan and Ji 1998) and (Basu, Klivansky, and
Mukherjee 1996).

Feature Vector based Detection This approach is based
on the use of feature vectors. Similar to pattern recog-
nition, a feature vector ¥ = {dy,ds, - ,d,} composed
of descriptors d; is used. One example for analysing this
feature vectors is to estimate the distribution p(¢). Based

"More methods can be identified, but they are less important for
this work.



on the estimated probability distribution, anomalous val-
ues can be identified. Examples for the use of this kind
of methods are given in (Nguyen 2002) and (Mukkamala,
Janoski, and Sung ).

In the remainder of this work we use a statistical ap-
proach for anomaly detection. For this we estimate the prob-
ability distribution of the parameters. In the literature dif-
ferent approaches for estimation of probability density are
known. They can be divided in parametric and non para-
metric approaches. In case of an parametric approach the
form of density is known and only the specific parameter
for this density function must be estimated. An example is
the assumption of a normal distribution and the estimation
of the parameters for mean and variance. If no assump-
tion about the form of density can be made, a non para-
metric approach must be used so that the structure can be
estimated. One example is the parzen window method (see
(Duda, Hart, and Stork 2000)). This method uses a set of
example data to estimate the probability density by superim-
posing kernel functions, which are adjusted at the example
data. Let X = {z1,22, - ,2N} be a set of independent
and identical-distributed samples. Then the approximation
of density is given by equation 3:

) = 7 oK)

In this equation K is the kernel function which is used
for approximation. Often a standard gaussian function with
zero mean and unit variance is used. The parameter h is a
smoothing parameter called bandwith. An example for an
approximation of a density function is shown in figure 3.

This method can be used for anomaly detection on the
collected data. For this we combine descriptors to feature
vectors of the form X = {d1,da,- - ,di}. Which descrip-
tors should be combined is out of scope of this article.

Let E; be a specific feature vector configuration. For
every configuration F; a set of training data 7T; =
{X’}, Xo, o, XN} must be collected which reflects the be-
haviour of the data. Based on this training data we can use
equation 3 to approximate the density function.

The approximated density is the model of data that can
be used for the decision whether the actual data point X ,
measured by the sensor, is normal or anomalous. The actual
data point is used as input to equation 3. If the result value
is high, we can guess with high probability that the actual
point is normal. The closer the result value tends to zero,
the higher the probability that the actual measured value is
anomalous. To get a decision boundary we must define a
threshold value T'H. This value can be given by a user or
determined automatically.

3)
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The distribution of data can change over time. For this
reason it is important to update the training data for the com-
putation of density function regularly. We can use a time
window, from which we take the training data. Let ¢ be the
actual point in time, then the interval from which we take
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Figure 3: Density estimation for two overlapped normal dis-
tributions.

the training data is defined by (¢t — L, t — 1). It follows that
the interval is moved one step forward each time, so that the
data for model identification is up to date. In this case the
parameter L is important, which defines the length of the
interval. If this parameter is too small, the data is not repre-
sentative. if L is too large, the model adopts very slowly to
changes.

Finally a simple method for identifying the threshold T'H
should be described. Let G = {g1,92, - ,gv} be a set
of result values calculated with equation 3. A value for the
threshold T'H can than be calculated by equation 5. This is
the rule for identifying outliers based on boxplots. For this
we must calculate the quantiles Q25 and Q75 of G.

TH = Q25 — 1.5[Q75 — Qa5 4)

5. Using GPU computation power through
Probabilistic Neural Networks

The approach shown in the last section allows a detailed sta-
tistical description of data which is collected by sensors, but
it is relatively expensive because of the high computational
power needed. The usage of modern Graphics Processing
Units (GPU), that can reach up to one Teraflop, seems to be
a way to deal with this problem. The usage of this GPUs
should allow an efficient implementation of analysis meth-
ods at relative low cost that can work effectively even in fast
computer networks.

Today’s Graphic Processing Units (GPU) work massive
parallel based on a SIMD-Model (Single Instruction Multi-
ple Data). They execute tha same commands on thousands
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Figure 4: Probabilistic Neural Network

of datasets in parallel. This description discard many details.
You should only become an idea.

To use the computational power of the GPU we must par-
allelize the approach shown in section 4. A parallelization
of this approach is Probabilistic Neural Network (see (Duda,
Hart, and Stork 2000)) which is describe in detail in the re-
mainder of this section.

A Probabilistic Neural Network (PNN) consists of four
layers. One is the input layer where the actual input vector
is given. The second one is the pattern layer with one neuron
for every training example. Input layer and pattern layer are
fully connected. The next one is the summation layer, where
the results of the pattern layer will be added . In this layer
we have one neuron for each class we want to distinguish.
The neurons of the pattern layer are connected to the neu-
rons of the summation layer based on the class of the neuron
in the pattern layer. So every neuron in the pattern layer of
the same class is connected to the same neuron in the sum-
mation layer. The last layer is the output layer where the
estimated class of the input data is shown. This is realized
by an argmax operator over the outputs of the summation
layer. For the use in this article we have no output layer and
only one neuron in the summation layer. This structure is
shown in figure 4.

The training process of a PNN is very easy. For each train-
ing vector in the training data set we create a neuron in the
pattern layer. The weights w; of this neuron are set to the
values of the training vector. After this the PNN is trained
and can be used. The processing of an input vector & can be
described as follows:

e The input vector & is given to the input layer and then pro-
cessed by the neurons of the pattern layer. Every neuron
does the calculation in equation 6 to calculate the output
value ;.
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e The output values y; will be transferred to the summation

layer and the output value c;, will be calculated by equa-
tion 7.

Summation Layer
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The expression |K}| is the cardinality of the training set.
This is the equivalent of N from equation 3. The values
of the neurons of the pattern layer are averaged.

e In the last step we identify the maximum value of cg, so
we know the class of the input vector?.

argmax cy, )

This structure can be implemented in parallel on the GPU.
A simple approach is to execute every neuron in the pattern
layer in a thread. These threads execute in parallel and the
results must be put together. In pseudo code this is:

1. Load the training set of cardinality N to GPU memory.
Load the input vector to GPU memory

Execute calculation of equation 6 N times parallel
Execute the calculation of equation 7

Copy back result to CPU memory

Compare result to threshold T'H

A

Another approach for the parallelization is to process a set
of PNNs in parallel on the GPU. Instead of executing only
one PNN on the GPU we can execute Z in parallel. The
value of Z is only limited by the memory of the GPU.

6. Some Results

The algorithms, explained in section 4, are able to reveal
a number of attacks, which are common for the internet.
Some examples of these attacks are scans, dictionary attacks
against different services, internet worms and spam waves.
Especially the execution and impact of distributed denial-
of-service attacks (DDoS attacks) which are subject of the
following example are easy to detect. The data of this ex-
ample was collected during a real DDoS attack towards a
network, monitored by an IAS-Probe. The attack started
with a significant increase of the amount of TCP-SYN pack-
ets and ICMP-Echo-Requests. This led to the conclusion,
that the attack was a ping flood combined with a syn flood.
The increase in the measurands of the monitored descrip-
tors resulted into a value of zero for ¢, of the PNN, in a
time frame of one sample interval. Therefore the algorithms
provided a warning with a reaction interval of at least five
minutes which could be used for counteractive measures be-
fore the the attacked systems wouldn’t have been reachable
any more. This decrease generated another series of anoma-
lies which allowed to trace the impacts of the DDoS-attack.
Figure 5 shows the measurands in logarithmic scale during
the attack and provides a list with anomalies which occurred
in the different intervals for the set of the most important
descriptors or descriptor vectors in this example.

Another example acts as a demonstration for the moni-
toring of company policies with the introduced algorithms

Not used in this application.
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Figure 5: DDoS events

and probes. An anomaly in the total amount of measured
network packets was led back by the involved analysts to a
traffic-increase on port 15000 of the UDP-protocol. With the
help of descriptors, describing the udp-length-field, the vol-
ume of the traffic increase was approximated to 4.2 GByte
which is nearly the size of a DVD-5. In further investiga-
tions we found out that this port is used by the P2P file-
sharing client Thunder Network prevalently used in china
and combined with malware in many cases. Figure 6 shows
the increase of the involved descriptor measurands for the
probes monitoring the inbound and outbound traffic.
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Figure 6: UDP events

7. Conclusions and Further Work

Many tests demonstrated that the introduced methods can
be used to detect anomalies and problems in network traf-
fic at different probe locations for the domains of network
management and network security. In combination with ex-
pert knowledge in these domains the anomalies provide use-
ful hints to running attacks, compromised systems in local-
networks, invalidly configured services, other general net-
work problems or violations of policies. The combination
of statistical network data, selflearning algorithms and com-
putational power of GPUs causes the system to adapt inde-
pendently to different environments and enables it to reveal
problems which are not detected by current intrusion detec-
tion or network monitoring systems.

In further work we are going to analyze the strengths and
weaknesses of the collected data and detection algorithm for
different kinds of threats and attacks. To achieve this we will
develop a set of tagged test data containing common attacks
and threats to local networks. To achieve a highly realistic
result and to measure the false-positive rate it is necessary
to include normal network traffic. First results have revealed
two problems. The first problem is related to the sample
interval of five minutes which turned out to be too long be-
cause even global botnet actions can be completed within
minutes (Li et al. 2005) . The decrease of the sample in-
terval with simultaneous increase of computation capacity
of the system through the usage of GPUs or the deployment
of the algorithms on the probes for realtime monitoring are
only two of many possible approaches. The second prob-
lem results from the current circumstance that the probe does
not analyze the payload of the application layer because of
anonymization reasons. Especially for the detectoion of ex-
ploits this is a problem, because in most cases they are con-
tained in this part of the packet. An extension of the probe
which is able to model the normal structure of different ap-
plication layer payloads with methods like the one described
in (shan Zhao et al. 2008) could help to fill this gap.

Another remaining aspect is the usage of the GPU to im-
prove the detection process. For this different questions
must be answered. First we must analyse how we can port
the detection algorithm to the GPU in an efficient way. If
there are different ways, what kind of advantages and dis-
advanteges can be identified for them. By imlementing the
code there could be discovered different issues like a slow
transfer between graphics card memory and host memory.
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