An Intelligent Technique for Generating Minimal Attack Graph

Nirnay Ghosh, S. K. Ghosh
School of Information Technology
Indian Institute of Technology, Kharagpur-721302, India
nirnay.ghosh@gmail.com, skg@iitkgp.ac.in

August 6, 2009

Abstract

Attack graph is a tool to analyze multi-stage, multi-host attack scenarios in a network. It is a complete graph
where each attack scenario is depicted by an attack path which is essentially a series of exploits. Each exploit
in the series satisfies the pre-conditions for subsequent ezploits and makes a casual relationship among them.
One of the intrinsic problem with the generation of such a full attack graph is its scalability. In this work, an
approach based on planner has been proposed for time-efficient scalable representation of the attack graphs. A
planner is a special purpose search algorithm from artificial intelligence domain, used for finding out solutions
within a large state space without suffering state space explosion. A case study has also been presented and
the proposed methodology is found to be efficient than some of the earlier reported works.

1 Introduction

In today’s enterprise, with increasing dependency on IT infrastructure most of the activities rely on services
that are provided by the organizational networks. Therefore, primary objective of a network administrator is
to maintain a stable and secure network infrastructure. Present day security technologies include some efficient
network scanners such as Nessus !, Retina 2, Nmap 2, CyberCop % and so on. These scanning tools are useful
as far as detecting vulnerabilities local to a system but do not identify all conditions for a complete attack to
take place, or how different vulnerabilities existing in different systems are correlated to produce attacks poten-
tially more harmful than individual attacks. One such tool that gives description about the correlated attacks
in a network is the attack graph. It shows the network administrators all possible sequences of attacker ac-
tions that eventually lead to the desired level of privilege on the target. In some literatures, attack graph is
also termed as the exploit dependency graph [Noel et al.2003]. Therefore, a complete attack graph quickly be-
comes unmanageably large as the network complexity grows past a few machines. Analysis show that such
an attack graph has exponential complexity. To improve the complexity of graph generation, some of the ap-
proaches [Ammann, Wijesekera, and Kaushik2002] [Noel et al.2003] rely on explicit assumption of monotonicity.
This means once an attacker has gained certain level of privileges on a particular host, he does not have to regain
the same at some later stages of the attack. This removes the concept of back-tracking from the attack graphs and
the complexity is improved from exponential to polynomial one. However, the attack graph which is generated
based on monotonic assumptions are still not scalable and also contains a number of redundant paths. This
creates problem in terms of visual representation. But it is desirable to present the network administrator with
attack graphs that are understandable so that appropriate network hardening measures may be adopted. The
proposed approach deals with the generation of minimal attack graph where all the the attack paths terminate to
a particular goal node [Pamula et al.2006]. In the proposed approach, SGPlan, a variant of Planner has been used
to generate minimal attack paths, which are eventually collapsed to form a minimal attack graph in polynomial
time.

One of the earliest work in the field of attack graph was done by Moskowitz et. al. in [Moskowithz and Kangl1997].
The authors have used a graph to represent insecurity flow to identify the possible loop-holes in a network.

Lhttp://www.nesssus.org
2http://www.eeye.com/html/products/Retina
3http://www.insecure.org/nmap/index.html
4http://www.nai.com

42

ioannis
Rectangle

Swiler et. al. have formally defined attack graph [Phillips and Swiler1998] as a tool which can identify the set
of attack paths based on probability of success. Ritchey and Ammann [Ritchey and Ammann2000] have used
SMYV model-checkers to determine if a final goal state is reachable from an attacker starting with limited priv-
ileges. Swiler et. al. [Swiler et al.2001] eliminates redundant nodes and finds a set of near-optimal shortest
path from a given attack graph. An automated technique for generating and analyzing exhaustive and suc-
cinct attack graphs using symbolic model checking algorithm is presented in [Sheynar et al.2002]. Ammann et.
al. [Ammann, Wijesekera, and Kaushik2002] proposed an algorithm for more compact and scalable representation
of attack graphs. This approach relies on an explicit assumption of monotonicity which reduces the complexity
of generation from exponential to polynomial. In [Ammann et al.2005], the authors have presented an intuitive,
polynomially efficient, and scalable vulnerability analysis approach, from a penetration tester’s perspective, that
generates suboptimal attack paths rather than the complete graph. Various literature survey and previously re-
ported works have depicted the various difficulties related to the generation and representation of attack graphs
namely, scalability and exponential time complexity, presence of redundant nodes and edges, model checkers used
for generation of minimal attack graph suffers from state space explosion problem.

In this work, an intelligent approach is proposed for generation of minimal attack graph using SGPlan, a variant
of Planner from artificial intelligence domain. Therefore, the aim of the work is time efficient generation of a
minimal attack graph using a model-checker that removes visualization problems and avoids state-space explosion.
The organization of the rest of the papers is as follows. Section 2 gives a brief overview of planner. Section 3
describes the proposed methodology along with a case study. The conclusion is drawn in section 4.

2 Planner

Planner [Blum and Furst1997] is a special purpose search algorithm in artificial intelligence domain for finding out
solution within a large state space. In this work, a variant of Planner, called SGPlan, is used for finding the attack
paths. Initial state, goal state and the state transition operators are provided as input to the Planner. The input
specifications are written in PDDL [Fox and Long2003](Planning Domain Definition Language) in two files viz.
domain.pddl and fact.pddl. The domain.pddl contains un-instantiated predicates and state transition operators.
These un-instantiated predicates are initialized by real world entities using a number of objects and STRIPS
operators [Fox and Long2003] to represent initial state and goal state in the fact.pddl. Appropriate changes in the
fact.pddl allows the Planner to discard the previous plan and search for the new plan.

The Planner begins its execution from the initial state with a graph based representation called plangraph. The
plangraph is generated starting from the initial state and successive application of state transition operators. The
generation of plangraph consumes the major amount of time in the entire attack path identification process. With
n number of objects, m number of STRIPS-like operators each having maximum k number of constant formal
parameters, the generation time for a t-level plangraph will be polynomial as maximum generated nodes in any
action level will be O(mn*) [Blum and Furst1997]. The motivation behind selecting planner as a technique for
generating attack paths are as follows:

It prunes unnecessary actions from the system and finds the shortest path.

It allows addition of actions to the plan where ever and whenever they are required.

It uses richer input language, PDDL, to express complex state space domains relatively easier than custom-
built analysis engines.

e It does not suffer from state space explosion problem.

3 Generation of Minimal Attack Graph Using Planner

In this section, an approach to generate minimal attack graph using Planner has been proposed. The objective
for preferring generation of minimal attack graph to complete attack graphs are as follows:

e Minimal attack graph consists of only those attack paths which terminate to a particular goal node. There-
fore, it does not contain redundant nodes or edges, and enables a network administrator to have a better
visualization and apprehension of different attack scenarios for a network.

43

ioannis
Rectangle

e It is based on explicit assumption of monotonicity, which removes the concept of backtracking from attack
graphs and reduces the generation time from exponential to polynomial.

e As planner generates acyclic paths, collapsing them will always result in a minimal attack graph.

The overall mechanism is shown in figure 1. It starts with the assumption that the initial network configurations
and the vulnerability analysis has been done apriori and are input to the Planner engine i.e. the domain.pddl
and the fact.pddl files written in PDDL [Fox and Long2003]. With the initial network configurations, connectivity
relationships, vulnerability analysis, a minimal attack path is generated. To generate other minimal attack paths,
the fact.pddl file is modified. If all the attack paths are generated, they are collapsed to form the minimal attack
graph. The proposed methodology has been explained with the help of a case study in the following section.

INITIAL NETWORK VULNERABILITY
CONFIGURATION ANALYSIS

h ; L

> PLANNER

GENERATED
ATTACK PATH

COLLAPSE
PATHS INTO
ATTACK GRAPH

MODIFY fact.pdd| Gul

Zz
=l
- -
<
m
w

Figure 1: Flow Chart showing Planner actions

3.1 Case Study

A network similar to [Sheynar2004] has been considered (refer figure 2(a)) as the test network. The network consists
of four hosts viz. HostO(HO0), Host1(H1), Host2(H2), and Host3(H3). H3 is taken as the target machine or goal
and the MySQL ® database running on that machine is the critical resource. The system characteristics of the hosts
in the network are composed in the table 1. These data are available in Nessus, NVD 6, Bugtraq 7. Each generic

Table 1: System Characteristics

Host Services Ports | Vulnerabilities CVE — IDs OperatingSystem

HO IIS Web Ser- | 80 IIS buffer overflow CVE-2002-0364 Windows NT 4.0
vice

H1 ftp 21 ftp rhost overwrite CVE-2008-1396
ssh 22 ssh buffer overflow CVE-1999-1455 Windows 2000 SP1
rsh 514 rsh login CVE-1999-0180

H2 Netbios-ssn 139 Netbios-ssn nullsession | CVE-2003-0661 Windows XP SP2
rsh 514 rsh login CVE-1999-0180

H3 LICQ 5190 LICQ-remote-to-user CVE-2001-0439
Squid Proxy 80 squid-port-scan CVE-2001-1030 Red Hat Linux 7.0
Mysql DB 3306 local-setuid-bof CVE-2006-3368

vulnerability present in table 1 has a set of preconditions and effects [Sheynar2004] [Sheynar and Wing2004]. The
preconditions and effects of one of the gemeric vulnerabilities viz. IIS buffer overflow is given below:

Shttp://www.mysql.com
Shttp://nvd.nist.gov/
"http:/ /www.securityfocus.com/archive/

44

ioannis
Rectangle

User(0)

11S_bof (0.0)
A

ftp(0,1) Root(0)

netbios-
ssn(0,2)
ftp_rhost(0,1) ssh(0,1)
B
ne u

11S(0)

Attack
seser squid proxy ftp(2,1)
0,3)
Internet
scan

Trust(2,1)
FIREWALL
squid proxy User(1
LICQ_port(0,3) (1.3)

User(1)

netbios-
ssn(1,2)

Windows NT LiCcQ (0,3)
4.0

IS Web |
e I voso
-

LICQ_port(1,3)
LicaQ (1,3)

Lica (2,3)

HOST 1 | HOST 2 HOST 3
Wind - Wind X-P =
indows indows
dow Red Hat

2000 SP2 s Linux 7.0
Ftp Netbios_ssn Lica
ssh Squid

Mysql
Database

(a) Test network (b) Attack graph

Figure 2: Test network and Attack graph

e Preconditions (1) IIS Web Service running on target (2) IIS buffer overflow vulnerability exists (3) At-
tacker’s privilege on target >= user (4) Transport layer connectivity exists between attacker and target

e Effects (1) IIS Web Service is disabled on target (2) Attacker gains root level privilege on target

The firewall in the test network (refer figure 2(a)) allows external hosts to connect to IIS web service running on
port 80 on H(O. But connection to all other ports are blocked. The internal hosts are allowed to connect on any
port within the network. The connectivity limiting firewall policy are presented in table 2. In table 2, All indicates

Table 2: Connectivity-Limiting Firewall Policies

Host Attacker HO H1 H2 H3
Attacker | All Yes None None None
HO None All All All All
H1 None Yes All All All
H2 None Yes All All All
H3 None Yes All All All

that a source host may connect to any port on a destination host and None signifies that the source machine is
prevented from accessing any port on the destination machine. Depending upon connectivity limiting firewall
policies, each generic exploit has some instantiated exploits [Ammann, Wijesekera, and Kaushik2002]. Some of
the instantiated exploits are as follows:-

o IIS_bof(0,0)- 1IS buffer overflow exploited from Host0 on HostO0.
o ftp_rhosts (0,1)- rsh trust from Host0 to Hostl.

e squid_port_scan (1,3)- squid port scan done from Hostl on Host3.

45

ioannis
Rectangle

3.2 Identification of Attack Path Using GraphPlan

GraphPlan, a variant of Planner, is a search algorithm which finds out solution within a large state space. Initial
network configuration, attacker’s objective, and exploits are considered as inputs to the GraphPlan. In this work,
SGPlan 5.2.2 8 [Chen, Hsu, and B.Wah2006], a variant of GraphPlan, is used as an attack path identification
component. SGPlan has been preferred to other variants of GraphPlan viz. LPG-td °, Metric-FF 1°, as it
supports numeric predicates or fluents, derivative predicates, and durative predicates.

3.2.1 domain and fact files

As mentioned in section 2, Planner requires two files viz. domain.pddl and fact.pddl to realize network configuration
and the vulnerabilities existing in it. An instance of domain.pddl is given in table 3 (read left column, then right
column). The domain.pddl (refer table 3) encodes the following:

Table 3: domain.pddl

define(domain attackgraph) (IIS-apps-connectivity 7S 77T)
:requirements :strips :fluents :equality) | (ftp_apps_connectivity 7S ?T)
:predicates (IIS_web_service 7H) (ssh_port_connectivity 7S 7T)
ftp 7H) (squid_port_connectivity ?S ?T)
ssh 7H) (LICQ_-apps_connectivity?S?T)
rsh 7H) (rsh_apps_connectivity 7S?T)
netbios_ssn 7H) (netbios_apps_connectivity?S?T))
LICQ_chat_service 7H) (:functions (has_priv 7A 7H)
squid_proxy 7H) (root_priv)
IIS_bof 7H) (user_priv)
ftp_rhost_overwrite 7H) (none_priv))
rsh_login 7H) (:functions
ssh_bof 7H) (port_scan 7A 7H)
netbios_ssn_nullsession 7H) (none_priv))
LICQ_remote_to_user 7H) (port_scan_done)

(:action IIS-buffovilw

IIS_port_connectivity 7S 7T) :parameters
ftp_port_connectivity 7S 7T) (?7A
ssh_port_connectivity 7S ?T) 7S
squid_port_connectivity 7S ?T) 7T)
LICQ_port_connectivity 7S ?T) :precondition

rsh_port_connectivity 7S ?T)
netbios_port_connectivity ?S7T)

(and (>=(has_priv ?A?S)(user_priv))(IIS_web_service?T)
(IIS_port_connectivity 7S ?T) (IIS_bof?T (< (has_priv 7A?T)

IIS_apps_connectivity 7S ?T (root_priv))))

ftp_apps_connectivity 7S ?T) :effect

ssh_apps_connectivity 7S?T) (and (not(IIS_bof ?T)) (assign (has_priv ?A?T)(root_priv))
squid_apps_connectivity ?S?T) (not (IIS_web_service 7T)))

LICQ-apps-connectivity?S?T))
rsh_apps_connectivity?S ?7T)
netbios_apps_connectivity 7S?T))

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(local_setuid_bof 7H)
(
(
(
(
(
(
(
(
(
(
(
(
(
(

e Domain name - given as attackgraph
e Requirements - specifies the type of operators required viz. strips, fluents, equality etc.

e Predicates - depicting the services running on hosts, for e.g. ftp ?H etc., and the type of vulnerabilities
present, for e.g. ftp_rhost_overwrite ?H etc.

e Functions - e.g. has_priv to assign privilege levels.

e Actions - describe state transition operators in terms of action rule specification that has four components:
intruder precondition, intruder effect, network preconditions, and network effects, for e.g. IIS_buffovflw

8http://manip.crhc.uiuc.edu/programs/SGPlan/sgplan5.html
9http://www.zeus.ing.unibs.it/lpg/
Ohttp://www.members.deri.at/ joergh/metric-ff.html

46

ioannis
Rectangle

e Parameters- contains the constant formal parameters (for e.g. A, S, T') used to realize the actions

The fact.pddl encodes various network objects that includes the hosts, the attacker, the firewall etc. An instance
of the fact.pddl is given in table 4 (refer left column then right column). The fact.pddl (refer table 4) encodes the

Table 4: fact.pddl

(define (problem Attack)
(:domain attackgraph)
(:objects

Host0

Host1

Host2

Host3

Attacker

nit
= (has_priv Attacker Attacker) 3)
(has_priv Attacker Host0) 1)
(has_priv Attacker Host1) 1)
(has_priv Attacker Host2) 1)
(has_priv Attacker Host3) 1)
(root_priv) 3)

(user_priv) 2)

(none_priv) 1)

(port_scan Attacker Host3) 0)
(port_scan_not_done) 0)
(port_scan_done) 1)
IIS_web_service Host0)

ssh Host1)

ftp Host1)

rsh Host1)

netbios_ssn Host2)

squid_proxy Host3)
LICQ_chat_service Host3)

)
(s
(
(=
(=
(=
(=
(=
(=
(=
(=
(=
(=
(
(
(
(
(
(
(

(IIS_bof Host0)

(ssh_bof Host1)

(ftp_rhost_overwrite Host1)
(rsh-login Host1)
(netbios_ssn_nullsession Host2)
(LICQ-remote_to_user Host3)
(local_setuid_bof Host3)
(IIS_port_connectivity Attacker Host0)
(ssh_port_connectivity Host0 Host1)
(ssh_apps_connectivity Host0 Host1)
(ssh_port_connectivity Host2 Host1)
(ssh_apps_connectivity Host2 Host1)
(ssh_port_connectivity Host3 Host1)
(ssh_apps_connectivity Host3 Host1)
(ftp-port_connectivity Host0 Host1)
(ftp_apps_connectivity Host0 Host1)
(ftp_port_connectivity Host2 Host1)
(ftp-apps-connectivity Host2 Host1)
(ftp_port_connectivity Host3 Host1)
(ftp_apps_connectivity Host3 Host1)
(netbios_port_connectivity Host0 Host2)
(netbios_apps_connectivity Host0 Host2)
(netbios_port_connectivity Host1 Host2)
(netbios_port_connectivity Hostl Host2)
(netbios_port_connectivity Host1 Host2)
(squid_port_connectivity Host0 Host3)
(squid_port_connectivity Host1l Host3)
(squid_port_connectivity Host2 Host3)
(LICQ_port_connectivity Host0 Host3)
(LICQ-port_connectivity Host1l Host3)
(LICQ_port_connectivity Host2 Host3))
(

goal (and(= (has_priv Attacker Host3) 3))))

following attributes:

Problem name - given as Attack.

Domain name - same as the one specified in domain file i.e., attackgraph.

Objects - includes different network objects viz. hosts, firewall etc.

Numerical predicates - with respect to the functions defined in domain.pddl for e.g. (=(root_priv) 3)

which means root privilege has been assigned a value of 3.

Initial network configuration - includes services running on hosts ((IIS-web_service Host0), transport
layer connectivities (ssh_port_connectivity Host2 Host1), and application layer connectivities (netbios_apps_connectivity

Host1 Host2)

Goal condition - given as (:goal (and (= (has_priv Attacker Host3) 3))).

SGPlan uses domain.pddl and fact.pddl to generate single shortest attack path. Systematic invalidation of the
identified path enables SGPlan to identify alternate shortest attack path. It depends on the administrator’s
discretion about which network configurations should be changed to invalidate the paths. Invalidation is done in
fact.pddl by disabling a service running in one of the hosts, or a connectivity between a pair of hosts by placing a
double-semicolon (;;) before that predicate. From the given domain.pddl and fact.pddl, the shortest attack path
generated by SGPlan is as follows.

47

ioannis
Rectangle

; Time 0.00

; ParsingTime 0.00

; NrActions 4

; MakeSpan

; MetricValue

; PlanningTechnique Modified-FF(enforced hill-climbing search) as
the subplanner

0.001: (IIS-BUFFOVFLW ATTACKER ATTACKER HOSTO) [1]
1.002: (SQUID-PORT-SCAN ATTACKER HOSTO HOST3) [1]
2.003: (LICQ-REMOTE-TO-USER ATTACKER HOSTO HOST3) [1]
3.004: (LOCAL-SETUID-BUFFOVRFLW ATTACKER HOST3) [1]

SGPlan generated attack path may be re-written in the following way:
Attacker — 118 bof(Att, HO) — squid_port_scan(HO0, H3) — LICQ_remote_to_user(HO0, H3) — local _setuid_bof(H3, H3).

If an alternate attack path is to be generated, the fact.pddl needs to be modified. If the transport layer connectivity

between Host0 and Host3 on Squid_prozy and LICQ) services are disabled, SGPlan will generate an alternative
shortest attack path. The modified fact.pddl is given in table 5.

Table 5: Modified fact.pddl

(define (problem Attack) (IIS_bof Host0)

(:domain attackgraph) (ssh-bof Host1)

(:objects (ftp_rhost_overwrite Host1)

Host0 (rsh_login Host1)

Host1 (netbios_ssn_nullsession Host2)

Host2 (LICQ-remote_to_user Host3)

Host3 (local_setuid_bof Host3)

Attacker (IIS_port_connectivity Attacker Host0)

) (ssh_port_connectivity Host0 Host1)

(:init (ssh_apps_connectivity Host0 Host1)

(= (has_priv Attacker Attacker) 3) | (ssh_port_connectivity Host2 Host1)

(= (has_priv Attacker Host0) 1) (ssh_apps_connectivity Host2 Host1)

(= (has_priv Attacker Host1) 1) (ssh_port_connectivity Host3 Host1)

(= (has_priv Attacker Host2) 1) (ssh_apps_connectivity Host3 Host1)

(= (has_priv Attacker Host3) 1) (ftp_port_connectivity Host0 Host1)

(= (root_priv) 3) (ftp-apps_connectivity Host0 Host1)

(= (user_priv) 2) (ftp-port_connectivity Host2 Host1)

(= (none_priv) 1) (ftp-apps-connectivity Host2 Host1)

(= (port_scan Attacker Host3) 0) (ftp-port_connectivity Host3 Host1)

(= (port_scan_not_done) 0) (ftp-apps-connectivity Host3 Host1)

(= (port_scan_done) 1) (netbios_port_connectivity Host0 Host2)

(IIS_web_service Host0) (netbios_apps_connectivity Host0 Host2)

(ssh Host1) (netbios_port_connectivity Host1 Host2)

(ftp Host1) (netbios_port_connectivity Host1 Host2)

(rsh Host1) (netbios_port_connectivity Host1 Host2)

(netbios_ssn Host2) ;;(squid_port_connectivity Host0 Host3)

(squid-proxy Host3) (squid_port_connectivity Host1l Host3)

(LICQ_chat_service Host3) (squid_port_connectivity Host2 Host3)
;;(LICQ-port_connectivity Host0 Host3)
(LICQ-port_connectivity Host1 Host3)
(LICQ_port_connectivity Host2 Host3))
(:goal (and(= (has_priv Attacker Host3) 3))))

The shortest attack path generated by planner using modified fact.pddl is given as:

; Time 0.00

; ParsingTime 0.00
; NrActions 5

; MakeSpan

48

ioannis
Rectangle

;MetricValue
; PlanningTechnique Modified-FF(enforced hill-climbing search) as
the subplanner

0.001: (IIS-BUFFOVFLW ATTACKER ATTACKER HOSTO) [1]
1.002: (SSH-BUFFOVFLW ATTACKER HOSTO HOST1) [1]
2.003: (SQUID-PORT-SCAN ATTACKER HOST1 HOST3) [1]
3.004: (LICQ-REMOTE-TO-USER ATTACKER HOST1 HOST3) [1]
4.005: (LOCAL-SETUID-BUFFOVRFLW ATTACKER HOST3) [1]

SGPlan generated attack path may be represented in the following way:

Attacker — 115 bof(Att, HO) — ssh_bof(HO, H1) — squid_port_scan(H1, H3) — LICQ_remote_to_user(H1, H3) —

local_setuid_bof(H3, H3).

Modifying the fact.pddl in similar way six different attack paths are generated by SGPlan. These attack paths
are as follows:

1. Attacker — II1S_bof(Att, HO) — netbios_ssn_nullsession(H0, H2) — squid_port_scan(H2, H3) —
LICQ remote_to_user(H2, H3) — local_setuid_bof(H3, H3)

2. Attacker — I1S bof(Att, HO) — ftp_rhost_overwrite(HO0, H1) — rsh_login(H0, H1) —
squid_port_scan(H1, H3) — LICQ_remote_to_user(H1, H3) — local_setuid_bof(H3, H3)

3. Attacker — I1S_ bof(Att, HO) — ssh_bof(HO, H1) — netbios_ssn_nullsession(H1, H2) —
LICQ_remote_to_user(H2, H3) — local_setuid_bof(H3, H3)

4. Attacker — I1S bof(Att, HO) — ftp_rhost_overwrite(HO, H1) — rsh_login(HO0, H1) —
netbios_ssn_nullsession(H1, H2) — squid_port_scan(H2, H3) — LICQ_remote_to_user(H2, H3) —
local _setuid_bof(H3, H3)

5. Attacker — I1S bof(Att, HO) — netbios_ssn_nullsession(HO0, H2) — ssh_bof(H2, H1) —
squid_port_scan(H1, H3) — LICQ_remote_to_user(H1, H3) — local_setuid_bof(H3, H3)

6. Attacker — IIS_bof(Att, HO) — netbios_ssn_nullsession(H0, H2) — ftp_rhost_overwrite(H2,Hl) —

rsh-login(H2, H1) — squid_port_scan(H1, H3) — LICQ_remote_to_user(H1, H3) — local_setuid_bof(H3, H3)

These attack paths are input to the customized attack graph building algorithm that builds the attack graph by
collapsing these paths. The algorithm will be discussed the following section.

3.3 Attack Graph Building Algorithm

The minimal attack paths obtained from SGPlan are collapsed to form the minimal attack graph. The at-
tack graph building algorithm takes as input a set of attack paths generated by SGPlan, a set of nodes that
constitute the paths, and a two-dimensional matriz. The attack graph building algorithm is presented below.
Input: A set of attack paths P, a set of nodes N, a 2-D matrix arr[p|[p]
Output: An attack graph
Initialize arr(p][p] = {0} ;
Enumerate each node in N ;
foreach Path in P do
foreach wvalid directed path from node i to node j do
| Set arr[i][j] = 1;
end
end
foreach i = 1 to p do
foreach j = 1 to p do
if arri][j] = 1 then
| Draw a directed edge from i to j;
end

end

end
Algorithm 1: Attack Graph Building Algorithm

49

ioannis
Rectangle

Using algorithm 1, the attack graph is shown in figure 2(b). The circles represents the nodes in the attack graph
that contain the exploits which the attacker has utilized in different stages of the attack. The texts in the attack
graph represent the conditions obtained by utilizing exploits or viceversa.

3.3.1 Complexity Analysis

In section 2, it has been stated that the time complexity for generating a t—level plangraph at any action—level is
O(mnF¥) where the notations have their usual meanings. In the domain.pddl, it may be noted that we have used
only three formal parameters viz. A, S, and T to represent an attacker, a source, and a destination respectively.
These three parameters are sufficient to realize any action. So k in this case is a constant. Again, the number
of STRIP operators that have been used for generating the attack paths is bounded by the number of generic
vulnerabilities existing in the network. Therefore, the time complexity to generate attack paths in any action—level
is O(mn?), where n is the number of objects used in the fact.pddl i.e., mainly the number of hosts in the network
and m is the number of generic vulnerabilities present in the hosts of the network.

The algorithm for generating the attack graph (refer algorithm 1) is dependent upon the number of nodes that
constitutes the set of generated attack paths. Again, each node in the attack graph represents an instantiated
exploit. Therefore, the running time of attack graph building algorithm is always bounded by O(e?), where e is the
total number of instantiated exploits. Hence, the worst-case complexity of generating attack paths and collapsing
them into attack graph is given as O(mn? + €2).

3.4 Performance Evaluation

The proposed Planner based approach for finding the shortest attack path and then collapsing these paths
to form a minimal attack graph has been found to be more efficient than some of the earlier reported works
[Ammann, Wijesekera, and Kaushik2002] [Sheynar et al.2002]. In [Ammann, Wijesekera, and Kaushik2002], com-
putation in the initial marking phase of the algorithm grows as nSe, where n is the number of hosts and e is the
number of exploits. In [Sheynar et al.2002], the complexity of the graph generation algorithm is N P-complete.
However, in the proposed approach, the worst-case complexity for finding the shortest attack path and then com-
bining these paths to generate minimal attack graph take place in O(mn? + e2). For majority of networks, having
large number of hosts, this generation of minimal attack graph will always be upper-bounded by O(n?®). This
is due to the fact that in a real-world network, vulnerabilities on most of the hosts are patched and the attack
graph of a well-protected network is usually small and sparse [Wang, Noel, and Jajodia2006]. Therefore, barring
exceptional cases, the relation e < n and m < n will always remain valid. Hence, in terms of time-efficiency, the
proposed approach gives better performance than [Ammann, Wijesekera, and Kaushik2002].

4 Conclusion

In this work, a method for finding shortest attack paths and then collapsing these paths to form a minimal attack
graph has been proposed. For this purpose, an artificial intelligence technique, called Planner, has been deployed.
It has been shown that the methodology is time efficient in terms of finding the attack paths and building the attack
graph than some of the already reported works [Ammann, Wijesekera, and Kaushik2002] [Sheynar et al.2002].
The proposed approach may be extended to wireless network where generation of attack paths in timely efficient
manner is of utmost importance due to its dynamic nature.

References

[Ammann et al.2005] Ammann, P.; Pamula, J.; Ritchey, R.; and Street, J. 2005. A host-based approach to
network attack chaining analysis. In Proceedings of the 21st Annual Computer Security Applications Conference

(ACSAC 2005).

[Ammann, Wijesekera, and Kaushik2002] Ammann, P.; Wijesekera, D.; and Kaushik, S. 2002. Scalable, graph-
based network vulnerability analysis. In Proceedings of CCS 2002: 9" ACM Conference on Computer and
Communications Security, 217-224. ACM Press.

50

ioannis
Rectangle

[Blum and Furst1997] Blum, A. L., and Furst, M. L. 1997. Fast planning through planning graph analysis. In
Journal of Artificial Intelligence, 281-300.

[Chen, Hsu, and B.Wah2006] Chen, Y.; Hsu, C.; and B.Wah. 2006. Temporal planning using subgoal partitioning
and resolution in sgplan. In Journal of Artificial Intelligence Research, 323-369.

[Fox and Long2003] Fox, M., and Long, D. 2003. Pddl 2.1: An extension to pddl for expression temporal planning
domains. In Journal of Artificial Intelligence Research, 61-124.

[Moskowithz and Kang1997] Moskowithz, I. S., and Kang, M. H. 1997. An insecurity flow model. In Proceedings
of the 6" New Security Paradigms Workshop, 61-74.

[Noel et al.2003] Noel, S.; Jajodia, S.; O’Berry, B.; and Jacobs, M. 2003. Efficient minimum-cost network hard-
ening via exploit dependency graph. In Proceedings of 19" Annual Computer Security Applications Conference
(ACSAC 2003).

[Pamula et al.2006] Pamula, J.; Jajodia, S.; Ammann, P.; and Swarup, V. 2006. A weakest-adversary secu-
rity metric for network configuration secuirty analysis. In Proceedings of 2nd ACM Workshop on Quality of
Protection, 31-38. ACM Press.

[Phillips and Swiler1998] Phillips, C., and Swiler, L. P. 1998. A graph-based system for network-vulnerability
analysis. In Proceedings of the Workshop on New Security Paradigms (NSPW), 71-79.

[Ritchey and Ammann2000] Ritchey, R. W.; and Ammann, P. 2000. Using model checking to analyze network
vulnerabilities. In Proceedings of the 2000 IEEE Symposium on Security and Privacy, 156-165.

[Sheynar and Wing2004] Sheynar, O., and Wing, J. M. 2004. Tools for generating and analyzing attack graphs.
In Proceedings of the Workshop on Formal Methods for Components and Objects (FMCO), 344-371.

[Sheynar et al.2002] Sheynar, O.; Jha, S.; Wing, J. M.; Lippmann, R. P.; and Haines, J. 2002. Automated
generation and analysis of attack graphs. In Proceedings of the 2002 IEEE Symposium on Security and Privacy,
273-284.

[Sheynar2004] Sheynar, O. 2004. Scenario Graphs and Attack Graphs. Ph.D. Dissertation, Carnegei Mellon
University, USA.

[Swiler et al.2001] Swiler, L. P.; Phillips, C.; Ellis, D.; and Chakerian, S. 2001. Computer-attack graph generation
tool. In Proceedings of the 2nd DARPA Information Survivability Conference & Exposition (DISCEX II),
volume II, 307-321. IEEE Computer Society.

[Wang, Noel, and Jajodia2006] Wang, L.; Noel, S.; and Jajodia, S. 2006. Minimum cost-network hardening using
attack graphs. Computer Communications, 29(18) 3812-3824.

51

ioannis
Rectangle

