
Toward Using Plan Recognition for Intrusion Detection

Christopher W. Geib

University of Edinburgh School of Informatics
10 Crichton Street,

Edinburgh, EH8 9AB, Scotland
cgeib@inf.ed.ac.uk

Abstract
This paper identifies some of the assumptions that
prevent the effective application of existing plan
recognition technology to intrusion detection in
computer systems. It then presents a new algorithm
for plan recognition that does not have these limi-
tations.

2 Introduction
Given a plan library and a set of observations, the problem
of identifying an agent’s plans and goals on the basis of their
observed actions is called plan recognition (PR), and is a well
studied problem in AI. Previous work [Harp and Geib, 2003;
Geib and Goldman, 2002] has suggested using PR both for
1) recognizing the high level plans of someone that is attack-
ing or misusing a computer system as well as well as 2) lower
level intrusion detection (to identify exploits). However, there
are two issues that make a straight forward application of
most prior PR research infeasible.

1. Multiple concurrent goals: Much of the prior work in PR
has assumed that an agent is engaged in a single goal at
any given time.1 However this assumption is simply not
supported in computer security domains. Any given net-
worked system will more often than not be under attack
from multiple, possibly cooperating, possibly competi-
tive sources. Each source may have a single or multiple
goals. We can easily imagine a collection of “hackers”
that are all using a set of scanning tools to attempt to
identify machines to host their software or just for brag-
ging rights. They may very well be scanning, attempt-
ing exploits, and other activities at the same time in an
effort to achieve different instances of the same goals.
Thus, not only can we not assume that a PR system’s
observations all form a single goal, but worse yet we
can imagine multiple instances of exactly the same goal
(for different attackers or from different sources.)

2. Low diagnosticity of individual action observations:
Many if not all of the actions that are part of com-

1Obvious exceptions to this are the early work by [Kautz and
Allen, 1986] and much of the probabilistic work of [Charniak and
Goldman, 1990]

promising a computer’s security have multiple legiti-
mate uses. In fact, often almost all of the actions
taken to compromise a computer system are individu-
ally completely legal and acceptable. It is only within
the context of the collection of actions that they be-
come problematic. This means that individual actions
are not highly diagnostic of malicious intent. It is
only collections of actions within specific contexts that
are diagnostic. This in itself is not problematic, how-
ever, much prior research on PR [Bui et al., 2002;
Avrahami-Zilberbrand and Kaminka, 2005; Geib, 2006;
Kautz, 1991] use algorithms that make early commit-
ments to hypothesized root goals and sub-plans. [Geib,
2004] has shown, such early commitment can result
in maintaining an exponential number of hypotheses.
Many, of these hypotheses will be discarded later as be-
ing impossible. Thus, early commitment to hypotheses
in domains with low diagnosticity of individual observa-
tions can needlessly increase runtime.

To address these problem, we have formulated PR based
on Combinatory Categorial Grammars (CCGs)[Steedman,
2000], a grammatical formalism developed for use in natu-
ral language parsing(NLP). Using CCGs to represent plan li-
braries will require us to introduce the new idea of plan heads.
We will show that making the correct choices about plan
heads enables a least commitment approach to plan recog-
nition and reduces runtimes.

In the rest of this paper, we will outline our approach
to plan recognition. We then show how to represent
plans in CCGs and define plan heads. We will then
present a new, probabilistic plan recognition algorithm called
ELEXIR(Engine for LEXicalized Intent Recognition) based
on these ideas. We will discuss its theoretical complexity,
and an empirical evaluation of its performance. These exper-
iments will show that correct choices for plan heads enable
significant computational saving.

3 Intuitions and an Example
We are interested in probabilistic plan recognition, and will
use weighted model counting to solve it. We assume as given
a set of observations and a CCG specification of a plan lexi-
con defining the plans to be recognized. To perform PR, we
advocate parsing the observations into the complete and cov-

23

ering set of explanations that organize the observations into
one or more plan structures meeting the requirements defined
in the plan lexicon. We then establish a probability distri-
bution over the explanations to reason about the most likely
goals and plans. To do this, we must encode the plans in
CCGs. An example will help show how to do this.

Consider the simple abstract hierarchical plan drawn as a
partially ordered AND-TREE shown in Figure 1. To execute

 G

 A B C D

a b c d

Figure 1: An abstract plan with partial order causal structure

action G the agent must perform actions A, B, C, and D. A
and B must be executed before C but are unordered with re-
spect to each other, and finally D must be performed after C.

4 Representing Plans in CCG
To represent the example plan in a CCG, each observable ac-
tion is associated with a set of categories.

Definition 4.1 We define a set of categories, C, recursively:

Atomic categories : A finite set of basic action categories.
C = {A, B, ...}.

Complex categories : If Z ∈ C and {W, X, ...} , ∅ ⊂ C, then
Z\{W, X, ...} ∈ C and Z/{W, X, ...} ∈ C.

Intuitively, complex categories can be thought of as functor
categories that can take a set of arguments ({W, X, ...}) and
produce a result (Z). The direction of the slash indicates
where the functor looks for its arguments. We require the
argument(s) to a complex category be observed after the cat-
egory for forward slash, or before it for backslash.

Thus, an action with the category A\{B} is a function that
results in performing action A in contexts where an action
with category B has already been performed. Likewise A/{B}
is a function that results in performing A if an action with
category B is executed later.

We are now in a position to define a plan lexicon.

Definition 4.2 We define a plan lexicon as a tuple PL =
〈Σ,C, f 〉 where, Σ is a finite set of observable action types,
C is a set of possible CCG categories, and f is a function
such that ∀σ ∈ Σ, f (σ)→ Cσ ⊆ C.

Cσ is the set of categories an observation of type σ can be as-
signed. As a short hand, we will often provide just the func-
tion that maps observable action types to categories to define
a plan lexicon. For example,

a := A, b := B, c := (G/{D})\{A, B}, d := D.

defines one plan lexicon for our example plan. The following
definitions will also be helpful:

Definition 4.3 We define a category R as being the root or
root-result of a category G if it is the leftmost atomic result
category in G. For a category C we denote this root(C)

Thus G is the root-result of (G/{D})\{A, B}. Further,

Definition 4.4 we say that observable action type a is a pos-
sible head of a plan for C just in the case that the lexicon
assigns to a at least one category whose root-result is C.

In our lexicon c is the head for G.
This formulation of CCGs is closely related that of

[Baldridge, 2002] in allowing sets of arguments to categories.
Sets of arguments are critical for our treatment of partial or-
dering in the plan. For example, the first argument to c’s cate-
gory is the leftward looking set {A, B} representing the partial
ordering of these actions before C. This definition also allows
multiple categories to be associated with an observed action
type. However, for ease of exposition, we will suppress nota-
tion for this if an observation only has a single category.

Next we must show how CCG categories are combined into
higher level plan structures. In CCGs combinators [Curry,
1977] are used to combine the categories of the individual
observations. We will only use three combinators defined on
pairs of categories:

rightward application: X/α ∪ {Y}, Y ⇒ X/α
leftward application: Y, X\α ∪ {Y} ⇒ X\α
rightward composition: X/α ∪ {Y}, Y/β ⇒ X/α ∪ β

where X and Y are categories, and α and β are possibly empty
sets of categories. Other Combinatory rules are sometimes
used in NLP[Steedman, 2000], however, we leave the use of
these combinators in the PR context for future work.

To see how a lexicon and combinators parse observations
into high level plans, consider the derivation in Figure 2 that
parses the sequence of observations: a, b, c.

a b c
A B (G/{D})\{A,B}

<
(G/{D})\{A}

<
G/{D}

Figure 2: Parsing Observations with CCGs

As each observation is encountered, it is assigned a cate-
gory on the basis of the lexicon. Combinators then are used
to combine the categories. First, a is observed and assigned
A and no combinators can be applied. Next we observe b,
and it is assigned B. Again, none of the combinators can be
applied. Notice however, all the hierarchical structure from
the original plan for achieving G is included in c’s category.
Therefore, once c is observed and assigned its category, we
can use leftward application twice to combine both the A and
B categories with c’s initial category to produce G/{D}.

4.1 Designing Plan Lexicons
In the preceding discussion, we have avoided some of the rep-
resentational questions in designing a plan lexicon. The crit-
ical choice made during lexicon construction is which action

24

types will be the plan heads. Different choices for heads re-
sult in different lexicons. For example, the following is an
alternative lexicon for G where d is the head rather than c.

a := A, b := B, c := C, d := (G\{A, B})\{C}.

We can also represent the plan for G with the following lexi-
con where a has two possible head categories for G:

a := { ((G/{D})/{C})/{B},
((G/{D})/{C})\{B} },

b := B, c := C, d := D.

There are also a number of still more complex lexicons where
other choices are made for the heads.

Modeling issues that are similar to choosing heads for
CCGs occur in traditional hierarchical task network (HTN)
representations[Ghallab et al., 2004] in the form of choos-
ing the sub-goal decomposition. With their long tradition in
planning, decisions about what is and isn’t a sub-goal in a sin-
gle level of an HTN may seem quite intuitive. However, like
choosing heads for a CCG this is a design decision for HTNs
and can have serious impact on PR and planning algorithms.
We will say more about how to choose CCG heads later in
this paper.

Keep in mind, we want to use parsing of CCGs to build ex-
planations for the observed actions. However, we don’t want
to make early commitments to goals. In contrast to tradi-
tional HTNs, CCG categories function as a tree and/or sub-
tree spine crossing multiple levels of plan decomposition. We
can use the “vertical slicing” of plans by categories to define
the scope of our commitments in building goal and plan hy-
potheses. We state the following principle:
Principle of minimal lexically justified explanation: In

building explanations we never hypothesize any plan
structure beyond that provided by the categories of the
observed actions in the plan lexicon.

This principle clearly defines when, how much, and what kind
of plan structures and hypothesis we can build. It enables a
least commitment approach in that it limits plan hypothesis to
those for which we have observed the head of the plan. The
choice of heads for plans will now allow us to determine when
commitments are made about goals, sub-goals, and plans. As
we will see next, it also enables a simple algorithm for gener-
ating explanations for observations.

5 Building Explanations in ELEXIR
While we would like to use NLP parsing algorithms for expla-
nation construction, there are differences between these prob-
lems that prevent this. In the case of PR, we can’t bound a-
priori how many observations there will be. Further, we can’t
assume that all of the observations must contribute to a single
goal. We can’t even assume that we have seen all of the obser-
vations associated with the plan. Many well known parsing
algorithms like CKY, even when modified for CCGs [Steed-
man, 2000], leverage some or all of these assumptions and
are therefore unusable.

Further, most probabilistic NL parsing algorithms do not
produce the complete set of parses. They often only consider

assigning the highest probability categories to each observa-
tion. While in principle we have no objection to this, it is an
area for future work to determine if this would result in a sig-
nificant loss of accuracy in a PR system. Therefore we must
provide our own algorithm for parsing action categories into
explanations.

For ease of computation we will restrict our action gram-
mars to only leftward applicable categories.

Definition 5.1 We define a set of categories CL as leftward
applicable if and only if

1. CL = CA ∪CC and

2. CA is a set of atomic categories and

3. CC is a set of complex categories of the form
X{/Yi}

∗{\Z j}
∗ such that X ∈ CA and ∀i,Yi ⊆ CA and

∀ j,Z j ⊆ CA.

Intuitively all of the leftward looking arguments in a category
must precede (be “outside”) all of the rightward looking argu-
ments. Thus (((A/{B})/{C})\{D})\{E} is a leftward applicable
category but(((A/{B})\{C})/{D})/{E} is not. We will return
shortly to discuss the reasons for this limitation.

Definition 5.2 We next define an explanation for a sequence
of observation instances for each time instanceσt1...σtn given
a plan lexicon PL = 〈Σ,CL, f 〉 as a sequence of categories
[c1...ci] that result from parsing the input stream on the basis
of the plan lexicon.

We can now provide the intuitions behind a simple algo-
rithm to generate all the explanations for a set of observations
as follows. For each explanation and for each category that
the current observation could be assigned, check that all of
its leftward looking arguments are present in the current ex-
planation. If so, we clone the current explanation, add the
category to the explanation, and use application to remove all
of its leftward looking arguments. Then for each category
in the explanation that could combine with the new category
using rightward composition or application, duplicate the ex-
planation and execute the composition in the new copy. Add
the new explanation to the set of explanations and repeat for
the next observation.

To remain consistent with the plan lexicon, the algorithm
cannot assign a category to an observation unless all of the
category’s leftward arguments have been observed. To do so
would hypothesize explanations that violate the ordering con-
straints specified in the plan lexicon. Restricting our gram-
mars to leftward applicable categories simplifies this test.

Thus, the algorithm incrementally creates the set of all
explanations by assigning categories, discharging leftward
looking arguments, and then applying each possible right-
ward looking combinator between the existing categories and
the categories introduced by the current observation.

For example, given the original lexicon and the observa-
tions: a, b, c, d the algorithm produces [G] and [G / {D}, D]
as the explanations. Note, the second explanation is included
to account for the case where the D category will be used
in some other, as yet unseen, plan. Under the assumption
that a given category can only contribute to a single plan, if
these categories are consumed at the earliest opportunity they

25

will be unavailable for later use. Since all leftward arguments
are discharged when assigning an observation a category, and
each possible combinator is applied as later categories are
added, this algorithm is complete and will produce all of pos-
sible explanations for the observations.

6 Computing Probabilities in ELEXIR
The above algorithm computes the exclusive and exhaustive
set of explanations. Given this, if we can compute the con-
ditional probability of each explanation, then the conditional
probability for any particular goal is just the sum of the prob-
ability mass associated with those explanations that contain
it. More formally:

Definition 6.1

P(goal|obs) =
∑

{expi |goal∈expi}

P(expi|obs)

where P(expi|obs) is the conditional probability of explana-
tion expi. Therefore, we need to define how to compute the
conditional probability for an explanation.

There are a number of different probability models used to
compute the probability of a CCG parse in the NLP litera-
ture [Hockenmaier, 2003; Clark and Curran, 2004]. We will
extend one described in [Hockenmaier, 2003]. For an expla-
nation, exp, of a sequence of observations, σ1...σn, that re-
sults in m categories, c1, ..., cm, in the explanation, we define
the probability of the explanation as:

Definition 6.2

P(exp|{σ1...σn}) =

n∏
i=1

P(ciniti|σi)
m∏

j=1

P(root(c j))K

Where ciniti represents the category initially assigned in this
explanation to observation σi. Thus, the first product rep-
resents the probability of each observation having their as-
signed initial CCG categories. This is standard in NLP and
assumes the availability of a probability distribution over the
observation’s set of categories.

The second term captures the probability that each category
will not be combined into a larger plan but itself represents a
separate plan. This is not part of traditional NLP models. In
NLP it makes no sense to consider the probability of multiple
interleaved sentences or fragments. However, this assumption
does not hold for PR. It is more than possible for a given se-
quence of observations to contain multiple interleaved plans
or to only cover fragments of multiple plans being executed
(consider multi-day plans). Therefore, our system must be
given a prior probability for each category that occurs as a
root-result in the lexicon. The role of these priors in Defini-
tion 6.2 requires some discussion.

We will denote the multiset of all values of root(c j) for a
given explanation, as expGoals, and the probability of this par-
ticular multiset of root-result categories being adopted as top-
level goals as P(expGoals). Keep in mind, in ELEXIR we want
to allow for multiple instances of a given result in expGoals (it
is acceptable for root(ci) = root(c j) where i , j).

We denote the set of categories in expGoals as Goals. Fi-
nally, we represent the assumed probability of an agent adopt-
ing a particular root-result c as a goal as P(c) with each in-
stance of c in expgoals being chosen (or rejected) indepen-
dently. This means the probability that there will be exactly n
instances of category c in expGoals is given by P(c)n(1−P(c)).

This is almost certainly incorrect – intuitively the probabil-
ity of multiple instances of a single goal decreases far more
rapidly than this, making this an over estimate of the likeli-
hood of the goals. The algorithm supports more sophisticated
probability models, and this is an area for future work.

If we let |Goalsc| represent the number of instances of cat-
egory c in expGoals:

P(expGoals) =
∏

c∈Goals

P(c)|Goalsc |(1 − P(c))
∏

c<Goals

(1 − P(c)).

Collecting all of the 1 − P(c) terms produces a product over
all the categories in the lexicon and is therefore a constant:

P(expGoals) =
∏

c∈Goals

P(c)|Goalsc |K

Rewriting in terms of the instances in the explanation yields
the second term seen in Definition 6.2.

P(expGoals) =

m∏
j=1

P(root(c j)K

7 Empirical Analysis of ELEXIR
To verify the correctness of our system and to test our hypoth-
esis about the efficacy of headedness we have developed a
testing harness that allows us to systematically vary a number
of parameters that define the plans in the CCG plan lexicon.
These parameters include:
• order: How many and what type of ordering constraints

exist between the actions in the plans. This parameter
can take on the following values:

– Total: actions in a sub-plan are totally ordered.
– First: each sub-plan has a designated first action.

All other actions in the plan are ordered after it but
are unordered with respect to each other.

– Last: each sub-plan has a designated last action.
All other actions in the sub-plan are ordered before
it, but are unordered with respect to each other.

• depth: The depth of each plan.
• num-roots: The number of plans in the lexicon.
• and-bf: The number of children for each sub-plan.
• headedness: Determines which sub-plan step will be the

head. This ranges between 0.0 (leftmost/”first”) and 1.0
(rightmost/”last”).

To create these plans, num-roots complete hierarchical
plans based on AND-trees obeying depth and and-bf were
generated and ordering constraints were established over each
sub-tree. These plans were then converted to a CCG lexicon
by starting at the root of the plan and recursively descend-
ing the tree following the actions with the indices given by

26

d (headedness * and-bf) e collecting siblings that are to the
left and the right of the action. When a leaf is reached a CCG
category is built maintaining the ordering constraints of the
original plan. This process is repeated for all sub-plans not
covered by the initial category.

Given a CCG plan library we generated observations to test
the system by randomly selecting a root-result category and
producing a plan instance for it based on the plan library. (For
test cases with multiple plans this process was repeated and
the resulting plan instances were interleaved, maintaining the
ordering constraints in the individual plans.) ELEXIR is then
timed computing the conditional probability of all the root-
results found by the algorithm given CCG plan library and
the sequence of observations.

All of our experiments on our C++ implementation of
ELEXIR were conducted on a MacBook with 4Gb of main
memory and 2 2.2-GHz CPUs.

As a first exploratory test of the system we set roots to
twenty, and-bf to three, and depth to two. We then ran a
full factorial experiment on all values of the order factor and
headedness at values of 0.001, 0.5, and 1.0. Each data-point
had two interleaved plans resulting in a total of eighteen ob-
servations. ELEXIR achieved one hundred percent accuracy
verifying the algorithms correctness and accuracy in the case
of no noise or ambiguity.

7.1 Reducing Runtimes by Choosing Plan Heads
The central claim of this paper is that using CCGs and the cor-
rect choice of plan heads can delay commitment to plan and
goal hypothesis and thereby reduce runtimes for PR systems.
To validate these claims, we need to compare the system’s
runtimes varying the headedness of the plans. Synthetic data
provide the perfect means for us to vary headedness of plans
while controlling for other variables.

Notice that previous work in PR that make early commit-
ments to plans and goals are effectively always operating with
plans libraries that have a headedness value fixed at zero. If
we fix headedness at zero, then each category is effectively
a left most depth first tree with no leftward arguments. Thus
when the first action of a plan is seen the whole left spine of
the tree is introduced with the category, and all subsequent
observations are also left most depth first trees. Thus, headi-
ness values very close to zero make the same early commit-
ment that we argued against in other PR systems.

This means we can use very low headedness values as the
baseline for our experiments. If we see a drop in runtime
as headedness is increased, this confirms our hypothesis that
moving the head later in the plan delays commitments to the
goal hypothesis and reduces the algorithm’s runtime.

Figure 3 displays the results for a full factorial experiment
where each test case was taken from a plan lexicon with num-
roots set to fifty, and andbf set to four. The tested factors
were order and headedness, and they varied between total,
first,last and 0.001, 0.333, 0.666, and 1.0 respectively. All
other factors were held constant at their previous values. By
setting headedness to these values each of the children of
each AND-node is, in turn, treated as the head of the plan.
The steady drop in runtime across all values of order as the

Figure 3: Upper solid line: early commitment runtime base-
line, Descending solid line: Average runtime across all or-
dering cases, Descending dotted lines: Average runtimes for
each ordering case. Each point solid point represents the av-
erage of 150 tests. Each dotted point an average of 50 tests.

head of the plan is moved to the right provides very convinc-
ing evidence for our claims.

We see a significant decrease in runtime for all ordering
cases as the head is moved later in the plan and commitment
to plan structure is delayed. We note all of the gains for the
order first case are almost immediate while the gains for the
last case do not occur until much later. Considering the or-
dering constraints in the respective plans will explain this.

In the order last case, we do not see improvement in the
runtime until the head of the plan is assigned to the last ac-
tion. In this case, since all the leading actions are unordered
with respect to each other, any commitment to the structure of
the plan before the last action is equivalent in runtime, but de-
laying commitment to the plan structure until the final action
results in significant savings.

In the case of the order first, a value of 0.001 for headed-
ness aligns the head of the plan with the causally first action
of the plan. As we move the head later in the plan we get
an initial drop in runtime as one of the unordered actions is
selected, but no significant later savings since the ambiguity
associated with the unorded actions is being moved from one
side to the other of the head action.

We did run test on completely unordered plans. We did
not identify headedness as having a significant effect in com-
pletely unordered plans. The lack of structure in these plans
means that whenever an action in one of these plans is ob-
served ELEXIR is required to consider an exceptionally large
number of hypotheses, but moving the head does not restrict
the number of hypotheses. This should not be seen as a sig-
nificant limitation. We believe completely unordered plans
are unlikely in the real world.

7.2 Discussion and Limitations
These experiments show that a PR algorithm based on CCGs
and headedness is viable and provides a principled way to
control early commitment. However, we have not provided an
answer for how to choose plan heads during lexicon design.

27

These decisions have to be made by considering three key
factors:

1. Criticality of early recognition: In cases where early
recognition is critical, choosing a head that is early in the
plan is better. Earlier heads allow earlier recognition and
must be weighed against the runtime. We can certainly
imagine domains where the need for early recognition
outweighs the runtime costs.

2. Runtime: In general, as we have shown, to minimize
runtime, choosing actions that fall later in the plan as
heads is better.

3. Causal structure: We can see in these experiments align-
ing choices of plan heads with the causal structure pro-
duces the greatest computational wins.

Thus, all three of these features must be considered by the
system builder when encoding a PR domain.

While we have spent considerable time describing the way
in which ELEXIRaddresses the issue of delaying commit-
ment to root goal hypothesis, we have spent comparatively
little time talking about its handling of multiple root goals.
This actually falls naturally out of the algorithm that we have
outlined here.

Since nothing about the algorithm or the probability model
requires that an explanation only contain a single category, it
is perfectly acceptable for any or all of the hypotheses to have
multiple root goals. Since we are producing the complete set
of such explanations, hypotheses with multiple root goals nat-
urally fall out of the explanation generation algorithm given
here. However, the probability model does have a bias against
unnecessarily complex explanations by considering the root
priors.

Since each root goal’s prior is included within the proba-
bility of the explanation, an explanation that has multiple root
goals will (depending on the specific priors) usually be less
likely than an explanation that uses fewer root goals. Creating
the natural bias for probabilistically “simpler” explanations of
the observed actions. However, when required, the algorithm
does correctly consider the less likely explanations.

8 Conclusions
In this paper, we have defined ELEXIR, a probabilistic plan
recognition algorithm using CCGs to encode plans. We have
described its empirical evaluation. We have also shown that
CCGs provide a formal way to enable multiple possible root
goals within a plan hypothesis and to control the early com-
mitment problem faced by other plan recognition systems.
Thus, systems like ELEXIR will be appropriate for and have
the runtimes necessary for computer security applications.

Acknowledgments
The work described in this paper was conducted within the
EU Cognitive Systems project PACO-PLUS (FP6-2004-IST-
4-027657) funded by the European Commission.

References
[Avrahami-Zilberbrand and Kaminka, 2005] Dorit

Avrahami-Zilberbrand and Gal A. Kaminka. Fast

and complete symbolic plan recognition. In Proceed-
ings of the International Joint Conference on Artificial
Intelligence, 2005.

[Baldridge, 2002] Jason Baldridge. Lexically Specified
Derivational Control in Combinatory Categorial Gram-
mar. PhD thesis, University of Edinburgh, 2002.

[Bui et al., 2002] Hung H. Bui, Svetha Venkatesh, and Ge-
off West. Policy recognition in the Abstract Hidden
Markov Model. Journal of Artificial Intelligence Re-
search, 17:451–499, 2002.

[Charniak and Goldman, 1990] Eugene Charniak and
Robert P. Goldman. Plan recognition in stories and in life.
In M. Henrion, R.D. Schachter, and J.F. Lemmer, editors,
Uncertainty in Artificial Intelligence 5, pages 343–351.
1990.

[Clark and Curran, 2004] Stephen Clark and James Curran.
Parsing the wsj using ccg and log-linear models. In ACL
’04: Proceedings of the 42th Meeting of the Association
for Computational Linguistics, pages 104–111, 2004.

[Curry, 1977] Haskell Curry. Foundations of Mathematical
Logic. Dover Publications Inc., 1977.

[Geib and Goldman, 2002] Christopher W. Geib and
Robert P. Goldman. Recient advances in intrusion
detection (raid) conference, 2002, 2002.

[Geib, 2004] Christopher Geib. Assessing the complexity
of plan recognition. In Proceedings of AAAI-2004, pages
507–512, 2004.

[Geib, 2006] Christopher Geib. Plan recognition. In Alexan-
der Kott and William McEneaney, editors, Adversarial
Reasoning, pages 77–100. Chapman and Hall/CRC, 2006.

[Ghallab et al., 2004] Malik Ghallab, Dana Nau, and Paolo
Traverso. Automated Planning: Theory and Practice.
Morgan Kaufmann, 2004.

[Harp and Geib, 2003] Steven A. Harp and Christopher W.
Geib. Principles of skeptical systems. In Proceedings
of the AAAI 2003 Spring Symposium on Human Interac-
tion with Autonomous Systems in Complex Environments,
2003.

[Hockenmaier, 2003] Julia Hockenmaier. Data and Mod-
els for Statistical Parsing with Combinatory Catagorial
Grammar. PhD thesis, University of Edinburgh, 2003.

[Kautz and Allen, 1986] Henry Kautz and James F. Allen.
Generalized plan recognition. In Proceedings of the Con-
ference of the American Association of Artificial Intelli-
gence (AAAI-86), pages 32–38, 1986.

[Kautz, 1991] Henry A. Kautz. A formal theory of plan
recognition and its implementation. In James F. Allen,
Henry A. Kautz, Richard N. Pelavin, and Josh D. Tenen-
berg, editors, Reasoning About Plans, chapter 2. Morgan
Kaufmann, 1991.

[Steedman, 2000] Mark Steedman. The Syntactic Process.
MIT Press, 2000.

28

