
Solving scheduling problems using parallel message-passing based constraint
programming

Feng Xie
Department of Computing and Software,

McMaster University, 280 Main Street West,
Hamilton, L8S 4K1, Ontario, Canada

xief@mcmaster.ca

Andrew Davenport
Department of Business Analytics and Mathematical Science,

IBM T. J. Watson Research Center,
P.O. Box 218, Yorktown Heights, NY, 10598, USA

davenport@us.ibm.com

Abstract
We discuss some of the engineering challenges in imple-
menting a constraint programming based scheduling engine
to scale well on massively parallel computer hardware. In
particular, we have been targeting our solvers to work in high
performance computer environments such as the IBM Blue-
Gene/P supercomputer. On such hardware parallelism is en-
abled at the software level using message passing, based on
the MPI standard. We investigate a parallelization scheme
based on a dynamic decomposition and reallocation of the
search space during search. We present initial results of
our research showing good scaling behaviour on challenging
resource-constrained project scheduling problems up to 1024
processors on the IBM BlueGene/P supercomputer.

Introduction
Recent progress in computer processor design has seen a
transition from improvements in clock speed to the use of
parallel architectures. Whereas single core CPU speed re-
mains within the 2-4 GHz range, multi-core architectures
are giving us more computational power through more cores
in a single computer: four core processors are now com-
monplace, eight core processors have recently been released
and eighty core prototype processors are currently in devel-
opment by Intel. In addition, developments in supercomput-
ing are resulting in massively parallel distributed architec-
tures, for example with up 65,536 processors on IBM’s first
generation BlueGene/L supercomputer and up to 1,048,576
cores on IBM’s second generation BlueGene/P supercom-
puter (IBM 2006).

The effective exploitation of multi-core and parallel hard-
ware architectures is critical for the next generation of com-
binatorial optimization based software. We identify two po-
tential areas where parallel solvers can have a significant im-
pact in the scheduling area:
• Using parallelism to solve very large-scale scheduling

problems through (static or dynamic) problem decompos-
tion. Modern constraint programming solvers are able to
handle up to a few thousand activities. We have regularly
encountered problems with tens or even hundreds of thou-
sands of activities which cannot be solved using constraint
programming.

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• Using parallelism to control variability in solver run-time.
End-users of scheduling systems based on mixed-integer
programming or constraint programming technology of-
ten do not understand or appreciate the potentially high
variability in run times, exhibited by “heavy tails” in the
run time distribution (Gomes et al. 2000) and a con-
sequence of many practical scheduling problems being
NP-hard. Distributed computing environments, where
computing capacity can be allocated on-demand, offer a
potential solution for reducing this variability on an as-
needed basis.

There has been significant research into designing con-
straint programming solvers for shared memory multi-
core architectures (Perron 1999; Michel, See, and Van-
Hentenryck 2007). There has been less work on devel-
oping solvers to work in distributed, message-passing en-
vironments (see (Michel, See, and Van-Hentenryck 2008;
Duan, Gabrielsson, and Beck 2007) for some examples).
The focus of the research presented in this paper is on de-
signing constraint programming solvers for massively paral-
lel distributed environments, where coordination of solvers
is achieved through message passing. In particular, we
investigate parallelizing tree search over a larger number
of processors than is typically found in today’s consumer
multi-core hardware. The goal of our research is to develop
scalable parallel constraint programming solvers for mas-
sively parallel computer environments.

In the sections which we follow we present an overview of
BlueGene, the target hardware architecture of the research in
this paper, and investigate a dynamic decomposition scheme
for parallelizing search. We present some experimental re-
sults on BlueGene.

BlueGene
Blue Gene is an IBM Research project dedicated to explor-
ing the frontiers in supercomputing: in computer architec-
ture, in the software required to program and control mas-
sively parallel systems, and in the use of computation to ad-
vance our understanding of important biological processes
such as protein folding. The Blue Gene/L supercomputer is
unique in the following aspects:

• Trading the speed of processors for lower power con-
sumption.

53

• Dual processors per node with two working modes: co-
processor (1 user process/node: computation and com-
munication work is shared by two processors) and virtual
node (2 user processes/node)

• A large number of nodes (scalable in increments of 1024
up to at least 65,536)

• Three-dimensional torus interconnect with auxiliary net-
works for global communications, I/O, and management

• Lightweight OS per node for minimum system overhead.

Blue Gene/P, the second generation of the Blue Gene su-
percomputer, is designed to run continuously at 1 PFLOPS
(petaFLOPS) and it can be configured to reach speeds in ex-
cess of 3 PFLOPS. It is at least seven times more energy
efficient than any other supercomputer, accomplished by us-
ing many small, low-power chips connected through five
specialized networks. Four 850 MHz PowerPC 450 pro-
cessors are integrated on each Blue Gene/P chip. The 1-
PFLOPS Blue Gene/P configuration is a 294,912-processor,
72-rack system harnessed to a high-speed, optical network.
Blue Gene/P can be scaled to an 884,736-processor, 216-
rack cluster to achieve 3-PFLOPS performance.

Parallelism in software targetted at BlueGene is achieved
through message-passing, based on the open standards MPI
library (Forum 1997). While message passing based com-
munication is designed to be fast on BlueGene, it is still sig-
nificantly slower than communication through shared mem-
ory. It is faster than in communication in distributed net-
works of computers (often two orders of magnitude faster).

Figure 1: IBM’s BlueGene/P supercomputer

Overview of constraint programming
environment

We have developed a parallel solver based on a constraint
programming based scheduling library developed at IBM
Research (currently named the Watson Scheduling Library).
Scheduling problems are solved using tree search combined
with constraint propagation at each node of the search tree.

The focus of the research presented in this paper is how to al-
locate parts of the search tree to different processors in a par-
allel tree search. We parallelize a limited discrepancy search
(Harvey and Ginsberg 1995), using the SetTimes branching
heuristic and timetable and edge-finding resource constraint
propagation (Baptiste, Pape, and Nuijten 2001). We evaluate
the parallelization schemes on resource constrained project
scheduling problems from PSPLIB (Kolisch and Sprecher
1996).

A dynamic parallelization scheme
Parallelization of search algorithms over a small number
of processors or cores can often be achieved by statically
decomposing the problem into a number of disjoint sub-
problems as a preprocessing step, prior to search. This
might be achieved by fixing some variables to different val-
ues in each sub-problem. This is the strategy used by some
commercial mixed-integer programming and constraint pro-
gramming solvers. The advantage of such a static decompo-
sition scheme is that each processor can work independently
on its assigned part of the search space and communication
is only needed to terminate the solve. When scaling this
static decomposition scheme to large numbers of processors,
we have observed that the resulting computational effort re-
quired to explore each sub-problem can be very unbalanced,
resulting in poor load-balancing and processor idle time. In
a good load balancing scheme, we want to minimize proces-
sor idle time.

Dynamic work allocation schemes partition the search
space among processors in response to the evolving search
tree, for example by reassigning among processors during
problem solving. As a result, processors are less likely to be-
come idle for long periods of time, compared to a static de-
composition scheme. Work-stealing is an example of a dy-
namic decomposition scheme that has been used in program-
ming languages such as CILK (Blumofe et al. 1995), and in
constraint programming (Michel, See, and Van-Hentenryck
2007) on shared memory architectures. We have developed
a simple dynamic load balancing scheme for constraint pro-
gramming based tree search, using message-passing based
parallelism in distributed computing architectures. One of
the goals of our scheme is to achieve linear scaling as much
as possible by exploring nodes in the parallel scheme in as
close as possible the same order that the serial algorithm
would use. The basic idea of our approach is the following:

• The processors are divided into master and worker pro-
cesses.

• Each worker processor is given a particular sub-tree to
explore.

• A worker processor requests a sub-tree from a master pro-
cessor.

• The master processors are responsible for coordinating
the worker processors. A master process has a global view
of the search tree and acts as a sub-problem dispatcher by
assigning available sub-problems to worker processors. It
keeps track of which sub-trees have been explored and
which are to be explored.

54

There are a number of challenges in implementing such a
dynamic problem decomposition scheme, each of which can
have a major impact on performance:

• how to represent the pool of assigned and unassigned sub-
problems at the master processors;

• how to communicate sub-problem information between
the master and worker processes;

• how to initialize worker processors with new assigned
sub-problems;

• how to generate enough work to keep all the workers oc-
cupied.

Master-worker communication
Given an initial model M of a constraint programming prob-
lem, a sub-problem of this model consists of the model itself
augmented with some constraints C. These constraints cor-
respond to a path from the root of the search tree to the root
of the sub-problem search tree. In the context of schedul-
ing, the constraints in C might be precedence constraints
between activities with a demand for some shared resource
(Cheng and Smith 1997).

Each worker processor is a constraint programming solver
which implements a tree-based search algorithm on the con-
straint programming model M . Each worker is assigned a
unique master processor. Typically a single master processor
is coordinating many worker processors. The master pro-
cessor assigns sub-problems of the model M to the worker,
where each sub-problem is specified by a set of constraints
C. These constraints are communicated in a serialized form
using message-passing. A worker may receive a new sub-
problem from its assigned master processor either at the be-
ginning of problem solving, or during problem solving af-
ter exhausting tree search on its previously assigned sub-
problem. On receiving a message from its master specify-
ing a sub-problem as a set of constraints, a worker processor
will establish an initial state to start tree search by creating
and posting constraints to its constraint store based on this
message.

Problem pool representation
A problem pool is used by the master to keep track of which
parts of the search space have been explored by the worker
processors, which parts are being explored and which parts
are remaining to be explored.

Each master processor maintains a job tree to keep track
of this information (see Figure 2). A job tree is a repre-
sentation of the tree explored by the tree search algorithm
generated by the worker processors. A node n in the job tree
represents the state of exploration of the node, with respect
to the master’s worker processors. Each node can be in one
of three states: explored, exploring and unexplored. Let T
be the subtree rooted at n. Then the states are defined as:

• explored: T has been exhausted;

• exploring: a subtree of T or T itself is assigned to a
worker, and no result is received;

• unexplored: neither a subtree of T nor T itself is assigned
to a worker.

An edge in a job tree is labelled with a representation of a
constraint posted at the corresponding branch in the search
tree generated by the tree search algorithm executed by the
worker processors. The set of constraints on the edges from
the root node of the job tree to some child node represents a
sub-problem.

A job tree is dynamic structure that indicates how the
whole search tree is partitioned among the workers at a cer-
tain time point in problem solving. An unexplored node in
the job tree corresponds to a unit of job that can be assigned
to a worker process who will search the subtree rooted at the
node. In order to minimize the memory use and shorten the
search time for new jobs, a job tree is expanded and shrunk
dynamically in response to communications with the worker
processors.

unexplored

exploring

exploredr

u

Figure 2: An illustration of a job tree

When a worker processor become idle (or at their initial-
ization) they request work from their master processor. In
response to such a request, a master processor will look up
a node N in its job tree which is in an unexplored state, and
send a message to the worker processor consisting of the
sub-problem composed of the serialized set of constraints
on the edges from the root node of the job tree to the node
N .

Work generation
Work generation refers to creating and maintaining the job
tree of the master processors so that new work can be as-
signed in response to requests from the worker processors.
Work generation is an important issue: if there are not
enough available unexplored nodes (work) on the job tree
when a worker processor makes a job request of a master,
then this worker must remain idle until new work is gen-
erated. In general, we want to minimize idle time of the
worker processors. As we scale to larger numbers of worker
processors, work generation can become an increasingly im-
portant issue.

55

Work generation occurs firstly during an initialization
phase of the solve, and then dynamically during the solve
itself. The initial phase of work generation involves cre-
ating the initial job tree for each of the master processors.
The master processor creates its initial job tree by exploring
some part of the search space of the problem, up to some
(small) bound on the number of nodes to exlore. If during
this initial search a solution is found, the master can termi-
nate. Otherwise, the master initializes its job tree from the
search tree explored during this phase. The master processor
then enters into a job dispatching loop where it responds to
requests for job assignments from the worker processors.

The second phase of work generation occurs as workers
themselves explore the search space of their assigned sub-
problems and detect that they are exploring a large search
tree which requires further parallelization. Job expansion
is a mechanism for a worker to release free jobs if it de-
tects that it is working on a large subtree. We use a simple
scheme based on a threshold of searched nodes as a rough
indicator of the “largeness” of the job subtree. If the number
of nodes searched by a worker exceeds this threshold with-
out exhausting the subtree or finding a solution, the worker
will send a job expansion request to its master and pick a
smaller part of the job to keep working on. Meanwhile, the
master updates the job tree using the information offered by
the worker, eventually dispatching the remaining parts of the
original search tree to other worker processors.

In particular, suppose the tree is explored using depth-first
search and a worker has reached the job expansion threshold
and it is currently exploring node u (see Figure 2). Let P be
the path from the root r of the job subtree to u, which can be
built from the backtrack stack. It can be observed that all the
nodes to left of P have been explored, and those to the right
of P are to be explored. The worker can find out the num-
ber of branches of each node on the path, and forward this
information to its master. Upon receiving the information,
the master renders the nodes to the left of P as explored,
and those to right as unexplored. After job expansion, the
worker’s current job is changed to the subtree rooted at u.

Job expansion has two side effects. First, it introduces
communication overhead because the job expansion infor-
mation needs to be sent from the worker processor to the
master processor. Secondly, the size of the job tree may be-
come large, slowing down the search for unexplored nodes
in response to worker job requests. The job tree can be
pruned when all siblings of some explored node n are ex-
plored. In this case, the parent of node n can be rendered as
explored and the siblings can be removed from the job tree.

Job dispatching
A master process employs a tree search algorithm to look for
unexplored nodes in its job tree in response to job requests
from the workers. The search algorithm used by the master
to dispatch unexplored nodes in the job tree is customizable.
It partially determines how the search tree is traversed as a
whole. If a worker makes a job request and no unexplored
nodes are available, the state of the worker is changed to
idle. Once new jobs become available, the idle workers are
woken up and dispatched these jobs.

MPI offers two types of communication: blocking and
non-blocking. The process that initiates a blocking send or
receive busy-waits for the communication to finish. Non-
blocking operations enables a process to use the waiting time
during communication for computation. The worker process
benefits little from this feature because it cannot start work-
ing before finishing receiving all the information about the
assigned job. However, applying non-blocking communica-
tion to the master process side can improve its throughput
by using the waiting time for housekeeping and job caching.
Our current implementation uses non-blocking communica-
tion only for termination signal receiving.

Multiple master processes
The parallelization scheme has been implemented on top of
a constraint based scheduling system implemented at IBM
Research. The results presented in this section are from ex-
ecution runs on BlueGene/L and BlueGene/P (IBMBlueGe-
neSystemSolution) on resource constrained project schedul-
ing problems from PSPLIB (Kolisch and Sprecher 1996).
The job expansion threshold is set at 200.

Figure 3 shows the scaling performance of the paralleliza-
tion scheme with a single master process, as we vary the
number of processors from 64 to 1024 (on the 120 activity
RCPSP instance 1-2 from PSPLIB). We manage to achieve
good linear scaling up to 256 processors. However the single
master process becomes a bottleneck when we have more
than 256 worker processors, where we see overall execution
time actually slow down as we increase the number of pro-
cessor beyond 256.

Figure 3: Scaling with one master process

The master processor can be a bottleneck as the number
of workers assigned to it increases. In this case, multiple
masters can be used to improve the scalability. In the multi-
master mode, the search tree is divided among the masters in
a static way. Each worker is associated with only one master.

We present here a static decomposition scheme to allo-
cate sub-problems to each master process. The goal of the
scheme is to partition the search space as evenly as possible
so that each master processor is allocated a significant part

56

of the search space and we minimize the number of proces-
sors that finish work early. In order to partition the search
space, we consider possible branchings that can be made in
the search tree. For example, in the context of resource con-
strained project scheduling, these could be possible sequenc-
ings of pairs of unsequenced activities sharing a common re-
source. In order to choose which branches to select in order
to partition the search space as equally as possible between
two processes, we evaluate a number of possible branchings
by posting the corresponding constraints and evaluating the
consequent reduction in search space size.

Algorithm 1 describes how we partition the space space
between processors. The inputs to Algorithm 1 are the set
of activities in the scheduling problem and a set processors.
The output of the algorithm assigns to each processor a set
of activity orderings. These orderings constitute sequencing
constraints betwen activities that will be added by each pro-
cessor to the constraint store as a preprocessing step before
beginning tree search. Each processor is assigned a unique
set of sequencings, such that the resulting search space as-
signed to each processor is disjoint from that assigned to all
other processors.

Experimental investigation
Figure 4 plots the scaling performance of the scheduler (on
the 120 activity RCPSP instance 1-2 from PSPLIB) with
multiple master processes, as we vary the number of proces-
sors from 64 to 1024. With multiple master processors, we
can achieve linear scaling up to 1024 processors. However
the decomposition scheme used to distribute sub-problems
over multiple masters can impact scaling. In our experi-
ments we have not managed to achieve linear scaling with
greater than 1024 processors and multiple masters. We be-
lieve that to scale well beyond 1024 processors requires de-
veloping techniques to dynamically allocate job trees be-
tween multiple masters.

Figure 4: Scaling with multiple master processes

We present results showing execution time scaling for
solving infeasible and feasible problems in Tables 1, 2 and
3 respectively. The number of processors ranges from 16 to

Algorithm 1: Static decomposition algorithm
input : a set of n activities A = {A1, . . . , An} with

corresponding start time domains
{minAi , . . . ,maxAi}, a set of m processors
P = {P1, . . . , Pm}

output: an assignment of a set of orderings
orderings(i) of activities to each processor i

procedure static-decompose(A, P)1

begin2
minEval = 1.0;3
minPair = ();4
sz =

∏
Ai∈A |maxAi

−minAi
+ 1|;5

foreach Ai and Aj which may be sequenced on a6
shared resource do

foreach sequencing X → Y of Ai and Aj do7
post-constraint (X → Y);8
szX→Y =

∏
Ai∈A |maxAi

−minAi
+ 1|9

after posting X → Y ;
retract-constraint (X → Y);10

end11

evalX,Y = abs(szX→Y −szY→X

sz);12

if evalX,Y < minEval then13
minEval = evalX,Y ;14
minPair = (X, Y);15

end16

end17
if minPair 6= () then18

for i = 1 to m/2 do19
orderings(i).append(minPair.first→20
minPair.second)

end21
static-decompose (A, {P1, . . . , Pm/2});22

for i = m/2 + 1 to m do23
orderings(i).append(minPair.second→24
minPair.first)

end25
static-decompose (A,26
{Pm/2+1, . . . , Pm})

end27

end28

57

512. Note that a single master is used for all the test cases
except for 256 and 512 processes, in which a single master
will become the bottleneck. The test results for 256 and 512
processes are obtained using two and four masters respec-
tively.

Problem np=16 32 64 128 256
5-9 20 9.1 5.0 3.0 2.0

14-1 78 38 18 9.0 5.0
14-4 65 31 15 8.0 5.0

14-10 91 43 21 11 6.0
26-3 69 33 16 9.1 4.1
26-6 24 11 5.1 3.0 2.1
30-5 204 98 48 26 13
30-2 98 47 23 12 6.0

Table 1: Scaling of execution time (in seconds) with vary-
ing number of processors for finding a proof of infeasibility
for PSPLIB resource-constrained project scheduling prob-
lems with 60 activities. The infeasbility proof is when the
makespan of the schedule is constrained to be 1 unit of time
less than the optimal makespan.

Problem np=16 32 64 128 256 512
14-4 (65) 30 14 7.0 3.1 2.1 2.0
26-3 (76) >600 >600 90 75 24 10
26-6 (74) 63 18 8.1 5.0 2.0 1.0
30-10 (86) >600 >600 >600 >600 216 88
42-3 (78) >600 >600 >600 >600 256 81
46-3 (79) 148 27 13 6.0 3.1 2.0
46-4 (74) >600 >600 >600 >600 104 77
46-6 (90) >600 >600 477 419 275 122

Table 2: Execution time (in seconds) for solving feasible
problems for PSPLIB resource-constrained project schedul-
ing problems with 60 activities.

Problem 16 32 64 128 256 512
14-6 (76) >600 371 218 142 48 25
26-2 (85) 294 142 86 35 16 9.0
22-3 (83) 50 24 12 5 3.0 0.07

Table 3: Execution time (in seconds) for solving feasible
problems for PSPLIB resource-constrained project schedul-
ing problems with 90 activities.

The experimental results show a good scaling for up to
512 processes, however the scaling deteriorates as the num-
ber of processes goes above that. This is mainly caused by
the static load sharing among the masters, which is increas-
ingly unbalanced as the number of masters increases.

Conclusions
We have presented a dynamic, message-passing based paral-
lelization scheme for massively parallel constraint program-

ming search. In experiments we have observed almost lin-
ear scaling on BlueGene up to 1024 processors on resource-
constrained project scheduling problems. We have not man-
aged to achieve linear scaling with greater than 1024 proces-
sors using multiple masters, where work is allocated stati-
cally to each master. We believe that to scale beyond 1024
processors we need to develop techniques to dynamically al-
locate sub-problems between masters.

References
Baptiste, P.; Pape, C. L.; and Nuijten, W. 2001. Constraint-
Based Scheduling - Applying Constraint Programming to
Scheduling Problems. International Series in Operations
Research and Management Science. Springer.
Blumofe, R. D.; Joerg, C. F.; Kuszmaul, B. C.; Leiserson,
C. E.; Randall, K. H.; and Zhou, Y. 1995. Cilk: An efficient
multithreaded runtime system. In Proceedings of the Fifth
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), 207–216.
Cheng, C., and Smith, S. 1997. Applying constraint satis-
faction techniques to job-shop scheduling. Annals of Oper-
ations Research, Special Issue on Scheduling: Theory and
Practice 70.
Duan, L.; Gabrielsson, S.; and Beck, J. 2007. Solving
combinatorial problems with parallel cooperative solvers.
In Ninth International Workshop on Distributed Constraint
Reasoning.
Forum, M. P. I. 1997. MPI: A message-passing interface
standard. Technical report.
Gomes, C. P.; Selman, B.; Crato, N.; and Kautz, H. A.
2000. Heavy-tailed phenomena in satisfiability and con-
straint satisfaction problems. Journal of Automated Rea-
soning 24(1/2):67–100.
Harvey, W. D., and Ginsberg, M. L. 1995. Limited dis-
crepancy search. In 14th International Joint Conference
on Artificial Intelligence.
2006. IBM Journal of Research and Development: Special
Issue on BlueGene, volume 49 (2/3).
IBM System Blue Gene Solution: Application Develop-
ment. IBM.
Kolisch, R., and Sprecher, A. 1996. Psplib - a project
scheduling library. European Journal of Operational Re-
search 96:205–216.
Michel, L.; See, A.; and Van-Hentenryck, P. 2007. Par-
allelizing constraint programs transparently. In Proceed-
ings of the 13th International Conference on Principles and
Practice of Constraint Programming.
Michel, L.; See, A.; and Van-Hentenryck, P. 2008. Trans-
parent parallelization of constraint programs on computer
clusters.
Perron, L. 1999. Search procedures and parallelism in
constraint programming. In International Conference on
the Principles and Practice of Constraint Programming.

58

