
Iterative-Sampling Search for Job Shop Scheduling with Setup Times

Angelo Oddi 1 and Riccardo Rasconi 1 and Amedeo Cesta 1 and Stephen F. Smith 2

1 Institute of Cognitive Science and Technology, CNR, Rome, Italy
{angelo.oddi, riccardo.rasconi, amedeo.cesta}@istc.cnr.it

2 Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
sfs@cs.cmu.edu

Abstract

This paper presents a heuristic algorithm for solving the
job-shop scheduling problem with sequence dependent
setup times (SDST-JSSP). The algorithm relies on a core
constraint-based search procedure, which generates consis-
tent ordering of activities requiring the same resource by in-
crementally imposing precedence constraints on a temporal
feasible solution. Key to the effectiveness of the search pro-
cedure is a conflict sampling method biased toward selection
of most critical conflict and coupled with a non-deterministic
choice heuristic to guide the base conflict resolution process.
This constraint-based search is then embedded within a larger
iterative-sampling search framework to broaden search space
coverage and promote solution optimization. The efficacy of
the overall heuristic algorithm is demonstrated empirically on
a set of previously studied job-shop scheduling benchmark
problems with sequence dependent setup times.

Introduction
This paper considers a variant of the job-shop scheduling
problem with ready times, deadlines and sequence depen-
dent setup times (SDST-JSSP), a common problem in semi-
conductor manufacturing (Ovacik and Uzsoy 1994; 1997).
The work proposes a heuristic algorithm which relies on a
core constraint-based search procedure, which generates a
consistent ordering of activities requiring the same resource
by incrementally imposing precedence constraints between
pair of activities on a temporal feasible solution. Such algo-
rithm is an extension to the case of scheduling problems with
setup times of the stochastic version of the SP-PCP procedure
proposed in (Oddi and Smith 1997). This constraint-based
search is then embedded within a larger iterative-sampling
search framework (Cesta, Oddi, and Smith 2002) to broaden
search space coverage and promote solution optimization.

We observe within the current literature there are other ex-
amples of procedures for solving scheduling problems with
setup times, which are extension of them counterpart proce-
dures targeted on the same (or similar) scheduling problem
without setup times. This is the case of the work (Brucker
and Thiele 1996), which relies on the results of the papers
(Brucker, Jurisch, and Sievers 1994) or the recent paper
(Vela, Varela, and González 2009), which proposes a hybrid

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

approach based on genetic algorithms and local search. The
local search procedure extends to the setup times case a pro-
cedure proposed in the previous paper (Nowicki and Smut-
nicki 2005) for the classical job-shop scheduling problem.
We can also consider the paper (Balas, Simonetti, and Vaza-
copoulos 2008), which extends the well-know shifting bot-
tleneck procedure (Adams, Balas, and Zawack 1988) to the
SDST-JSSP case. The paper (Balas, Simonetti, and Vaza-
copoulos 2008) is relevant for this work, because it presents
the current best results for a previously studied benchmark
set of SDST-JSSP problems (Ovacik and Uzsoy 1994) used
for direct comparison in the experimental section of the pa-
per. The proposed procedure is not the only one which relies
on the constraint-solving paradigm, another example is de-
scribed in (Focacci, Laborie, and Nuijten 2000), which pro-
poses an more elaborate procedure based on the integration
of two different models for the problem. A strength of the
proposed procedure is its simplicity in spite of its effective-
ness in solving a set of difficult instances of SDST-JSSPs.

The paper is organized as follows. An introductory sec-
tion defines the reference SDST-JSSP problem and its rep-
resentation. A central section describes the core constraint-
based procedure and the related iterative sampling search
strategy. An experimental section describes the performance
of our algorithm and the most interesting results are ex-
plained. Some conclusions and a discussion on the future
work end the paper.

The Scheduling Problem
The job-shop scheduling problem with sequence dependent
setup times (SDST-JSSP) involves synchronizing the use of
a set of resources R = {r1, . . . , rm} to perform a set of n
activities A = {a1, . . . , an} over time. The set of activities
is partitioned in set of nj jobs J = {J1, . . . , Jnj}. The
processing of a job Jk requires the execution of a strict se-
quence of m activities ai ∈ Jk, and the execution of each
activity ai is subject to the following constraints:

• resource availability - each ai requires the exclusive use
of a single resource rai for its entire duration; no preemp-
tion is allowed and all the activities included in a job Jk

require distinct resources.

• processing time constraints - each ai has a fixed process-
ing time pi such that ei − si = pi, where the variables si

27



and ei represent the start and end times of ai.
• separation constraints - for each pair of successive activ-

ities aij and aij+1 , j = 1, . . . ,m − 1, in job Jk, there
is a separation (ordering) constraints sij+1 − eij ≥ 0,
j = 1, . . . ,m− 1.

• sequence dependent setup times - for each resource r, the
value strij represents the setup time between two generic
activities ai and aj requiring the same resource r, such
that ei + strij ≤ sj . The setup times strij satisfies the
so-called triangular inequality (Brucker and Thiele 1996;
Artigues and Feillet 2008), that is, for each three activi-
ties ai, aj , ak requiring the same resource, the inequality
strij ≤ strik + strkj holds.

• job release and due dates - every job Jk has a release date
rdk, which specifies the earliest time that any activity in
Jk can be started, and a due date dk, which designates the
time by which all activities in Jk must be completed. The
due date is not a mandatory constraint and can be violated
(see below).
Let Ck the completion time for the job Jk, the objective

is to minimize the maximum lateness of the problem, that is
the value Lmax = max1≤k≤nj{Ck − dk}.

As introduced above, the problem is relevant in semicon-
ductor manufacturing and in general, as observed in the re-
cent work (Allahverdi et al. 2008), in the last ten years there
has been an increasing interest in solving scheduling prob-
lems with setup time. This fact stems mainly from the ob-
servation that in various real-word industry or service envi-
ronments there are tremendous savings when setup times are
explicitly considered in scheduling decisions.

A CSP Representation
There are different ways to formulate this problem as a Con-
straint Satisfaction Problem (CSP) (Montanari 1974). In
analogous way to (Cheng and Smith 1994; Oddi and Smith
1997), the problem is treated as one of establishing prece-
dence constraints between pairs of activities that require the
same resource, so as to eliminate all possible conflicts in
resource use. Such representation is close to the idea of dis-
junctive graph initially used for the classical job shop sched-
uling without setup times and also used in the extended case
of setup times (Brucker and Thiele 1996; Balas, Simonetti,
and Vazacopoulos 2008; Vela, Varela, and González 2009;
Artigues and Feillet 2008).

Let G(AG, J,X) be a graph where the set of vertices
AG contains all the activities of the problem together two
dummy activities representing the beginning (reference) and
the end (horizon) of the schedule. J is a set of directed edges
(ai, aj) representing the precedence constraints among the
activities (job precedences constraints) and are weighted
with the processing time pi of the origin activity ai of the
edge. The set of undirected edges X represents the disjunc-
tive constraints among the activities requiring the same re-
source r, there is an edge for each pair of activities ai and aj

requiring the same resource r and the label represents the set
of possible ordering between ai and aj : ai ¹ aj or aj ¹ ai.

Hence, in CSP terms, a decision variable xijr is defined
for each pair of activities ai and aj requiring resource r,

which can take one of two values: ai ¹ aj or aj ¹ ai. It
is worth noting in the current case we have to take in to ac-
count the presence of sequence dependent setup time, which
must be included when an activity ai is executed on the same
resource before another activity aj . Previous decisions on
the xijr can be represented as the two temporal constraints:
ei + strij ≤ sj (ai ¹ aj) or ej + strji ≤ si (aj ¹ ai).

Temporal Constraints
To support the search for a consistent assignment to the set
of decision variables xijr, we can define for any SDST-
JSSP a directed graph Gd(V,E) which is an extended ver-
sion of the disjunctive graph G. The set of nodes V rep-
resents time points (i.e., the origin point and the start and
end time points, si and ei, of each activity ai) and the
set of edges E represents all the imposed temporal con-
straints (i.e., precedences, durations and setup times). For
every constraint of the form a ≤ tpj − tpi ≤ b speci-
fied in SDST-JSSP, there are two weighted edges in the
graph Gd(V, E). The first one is directed from tpi to tpj

with weight b and the second one is directed from tpj to
tpi with weight −a. The graph Gd(V, E) corresponds to a
Simple Temporal Problem (Dechter, Meiri, and Pearl 1991)
and its consistency can be efficiently determined via short-
est path computations. Thus, a search for a solution to
SDST-JSSP can proceed by repeatedly adding new prece-
dence constraints into Gd(V, E) and recomputing shortest
path lengths to confirm that Gd(V, E) remains consistent
(i.e., no negative weight cycles). Let d(tpi, tpj) (d(tpj , tpi))
designate the shortest path length in graph Gd(V, E) from
node tpi to node tpj (node tpj to node tpi), the following
constraint −d(tpj , tpi) ≤ tpj − tpi ≤ d(tpi, tpj) holds
(Dechter, Meiri, and Pearl 1991). Hence, the minimal al-
lowed distance between tpj and tpi is −d(tpj , tpi) and the
maximal distance is d(tpi, tpj). This information will be
used in the following section.

A Precedence Constraint Posting Procedure
The proposed procedure for solving instances of SDST-
JSSP is an extension of the SP-PCP scheduling procedure
(Shortest Path-based Precedence Constraint Posting) pro-
posed in (Oddi and Smith 1997) which utilizes shortest path
information in Gd(V,E) for guiding the search process. In
similar way to the case of SP-PCP, shortest path information
can be used in two ways to enhance the search process. First,
it is possible to define new dominance conditions, which
propagate problem constraints and identify unconditional
decisions for promoting early pruning of alternatives. For
any pair of activities ai and aj that are competing for the
same resource r, four possible cases of conflict are defined:
1. d(ei, sj) < strij ∧ d(ej , si) < strji

2. d(ei, sj) < strij ∧ d(ej , si) ≥ strji ∧ −d(si, ej) < strji

3. d(ei, sj) ≥ strij ∧ d(ej , si) < strji ∧ −d(sj , ei) < strij
4. d(ei, sj) ≥ strij ∧ d(ej , si) ≥ strji

Condition 1 represents an unresolvable conflict. There is no
no way to order ai and aj (including the setup times strij and
strji) without inducing a negative cycle in graph Gd(V,E),
and the search has reached an inconsistent state.

28



Conditions 2, and 3, alternatively, distinguish uniquely re-
solvable conflicts. Here, there is only one feasible ordering
of ai and aj and the decision of which constraint to post is
thus unconditional. In the case of Condition 2, only aj ¹ ai

leaves Gd(V, E) consistent. It is worth noting the presence
of the condition −d(si, ej) < strji, which states the mini-
mal distance between the end time ej and the start time ai

is lesser than the required setup time strji. Hence, we still
need to impose the constraint ej + strji ≤ si. Condition 3
is similar and only ai ¹ aj is feasible. Finally, Condition
4 designates a class of resolvable conflict. In this case, both
orderings of ai and aj remain feasible and it is necessary to
make a choice.

The second way in which shortest path information is
exploited is in the definition of variable and value order-
ing heuristics for selecting and resolving conflicts in the set
characterized by Condition 4. In this context, flex(ei, sj) =
d(ei, sj) − strij and flex(ej , si) = d(ej , si) − strji pro-
vide measures of the degree of sequencing flexibility that
remains with respect to ai and aj . The variable order-
ing heuristic attempts to focus first on the conflict with
the least amount of sequencing flexibility (i.e., the order-
ing decision that is closest to being forced). More pre-
cisely, the conflict (ai, aj) with the overall minimum value
of V arEval(ai, aj) = min{bdij , bdji} is always selected
for resolution, where:

bdij = flex(ei,sj)√
S

, bdji = flex(ej ,si)√
S

and

S =
min{flex(ei, sj), f lex(ej , si)}
max{flex(ei, sj), f lex(ej , si)}

The
√

S bias is introduced to hedge when the conflict with
the overall min{flex(ei, sj), f lex(ej , si)} has a very large
max{flex(ei, sj), f lex(ej , si)}, and a second conflict has
two shortest path values just slightly larger than this overall
minimum. In such situations, it is not clear which conflict
has the least sequencing flexibility.

The value ordering heuristic used within SP-PCP to re-
solve a selected conflict (ai, aj) simply chooses the prece-
dence constraint that retains the most sequencing flexibility.
Specifically, ai ¹ aj is selected if bdij > bdji and aj ¹ ai

otherwise.
Figure 1 gives the basic overall PCP solution procedure,

which starting from an empty solution (Step 1), where for
each job Jk, it is imposed a completion time Ck = dk +
Lmax. The procedure interleaves the application of dom-
inance conditions (Steps 3 and 6) with variable and value
ordering (Steps 9 and 13 respectively) and incremental up-
dating of the solution graph Gd(V, E) (Steps 7 and 14) to
conduct a single pass through the search tree. The pro-
posed PCP procedure is able to generate feasible solutions
to SDST-JSSP instances, such that, when exits with suc-
cess, no one of the four dominance conditions holds and the
set of imposed precedence constraints induces a total order-
ing on each subset of activities requiring the same resource,
and all the problem constraints are satisfied, in particular the
setup constraints. This fact can be easily proved by contra-
diction. In fact, let us suppose that the PCP procedure exits

PCP(Problem, Lmax)
1. S ← EmptySolution(Problem, Lmax)
2. loop
3. if UnresolvableConflict(S)
4. then return(nil)
5. else
6. if UniquelyResolvableConflict(S)
7. then PostUnconditionalConstraints(S)
8. else begin
9. C ←ChooseResolvableConflict(S)
10. if (C = nil)
11. then return(S)
12. else begin
13. Prec ← ChoosePrecConstraint(S, C)
14. PostConstraint(S, Prec)
15. end
16. end
17. end-loop
18. return(S)

Figure 1: Basic PCP algorithm

with success and exists at least two activities ai and aj , re-
quiring the same resource, which can overlap or not satisfy
the setup constraints ei + strij ≤ sj or ej + strji ≤ si. In this
case, at least one of the dominance conditions holds and the
procedure cannot exit with success.

It is worth noting among the constraints imposed on the
SDST-JSSP problem there is the so-called triangular in-
equality, an hypothesis generally assumed in the literature
(Brucker and Thiele 1996; Artigues and Feillet 2008), that
is, for each three activities ai, aj , ak requiring the same re-
source, the following inequality strij ≤ strik + strkj holds.
Previous condition guarantees that the duration of the direct
transition ai ¹ aj between two generic activities ai and aj is
the shortest one and there is not possible to find an indirect
transition (a sequence of activities ai ; ak ; aj) which
has a shorter duration. This fact is relevant for the PCP pro-
cedure, in fact given the resolution procedure, for each pair
of activities ai, aj , either the constraint ei + strij ≤ sj or
ej + strji ≤ si is still imposed or checked. Hence, in the
case the triangular inequality does not hold, the procedure
could overcommit the partial solution with the consequence
of rejecting a valid solution (see a specific example in the
experimental section).

An Iterative Sampling Procedure
The PCP resolution procedure, as defined above, is a deter-
ministic (partial) solution procedure with no recourse in the
event that an unresolved conflict is encountered. To provide
a capability for expanding the search in such cases with-
out incurring the combinatorial overhead of a conventional
backtracking search, in the following two sections we de-
fine:

1. a random counterpart of our conflict selection heuristic
(in the style of (Oddi and Smith 1997)), providing both

29



stochastic variable and value ordering heuristics;
2. an iterative sampling search framework for optimization

embedding the stochastic procedure.
This choice is motivated by the observation that in many
cases systematic backtracking search can explore large sub-
trees without finding any solution. On the other hand, if
we compare the whole search tree created by a systematic
search algorithm with the non systematic tree explored by
repeatedly restarting a randomized search algorithm, we see
that the randomized procedure is able to reach “different and
distant” leaves in the search tree. This latter property could
be an advantage when problem solutions are uniformly dis-
tributed within the set of search tree leaves interleaved with
large sub-trees which do not contain any problem solution.

Stochastic Variable and Value Ordering
Our design of stochastic versions of PCP’s variable and value
ordering heuristics follows from the simple intuition that
makes more sense to follow a heuristic’s advice when it
clearly distinguishes one alternative as superior and it makes
less sense to follow its advice when several choices are
judged to be equally good.

Let us consider first the case of variable ordering. As
previously discussed, PCP’s variable ordering heuristic se-
lects the conflict (ai, aj) with the overall minimum value of
V arEval(ai, aj) = min{bdij , bdji}. If V arEval(ai, aj)
is << than V arEval(ak, al) for all other pending conflicts
(ak, al), then the selected conflict (ai, aj) is clearly distin-
guished. However, if other V arEval(ak, al) values are in-
stead quite “close” to V arEval(ai, aj), then the preferred
choice is not clear and selection of any of these conflicts
may be reasonable. We formalize this notion by defining an
acceptance band β with respect to the set of pending resolv-
able conflicts and expanding the ChooseResolvable-Conflict
step of PCP to:
1. Calculate the overall minimum value ω =

min{V arEval(ai, aj)} as before
2. Determine the subset of resolvable conflicts SC =
{(ai, aj) : ω ≤ V arEval((ai, aj)) ≤ ω(1 + β)}

3. Randomly select a conflict (ai, aj) in the set SC.
Thus, β defines a range around the minimum heuristic eval-
uation within which any differences in evaluations are as-
sumed to be insignificant and non-informative. The smaller
the value of β, the higher the assumed discriminatory power
of the heuristic.

A similar approach can be taken for value ordering de-
cisions. Let pc(ai, aj) be the deterministic value ordering
heuristic used by PCP. As previously noted, pc(ai, aj) =
ai ¹ aj when bdij > bdji and aj ¹ ai other-
wise. Recalling the definition of bd, in cases where S =
min{flex(ei,sj),flex(ej ,si)}
max{flex(ei,sj),flex(ej ,si)} is ≈ 1, and hence bdij and bdji

are ≈ equal, pc(ai, aj) does not give clear guidance (both
choices appear equally good). Accordingly, we define the
following randomized version of ChoosePrecConstraint:

rpc(ai, aj) =
{

pc(ai, aj) : U [0, 1] + α < S
pc(ai, aj) : otherwise

ISP(Problem, L
(0)
max, MaxRestart)

1. S ← EmptySolution(Problem, L
(0)
max)

2. Sbest ← S

3. Lbest
max ← L

(0)
max

4. count ← 0
5. while (count ≤ MaxRestart) do begin
6. S ← PCP(Problem, Lbest

max)
7. if (Lmax(S) < Lbest

max)
8. then begin
9. Sbest ← S
10. Lbest

max ← Lmax(S)
11. end
12. count ← count + 1
13. end-while
14. return(Sbest)

Figure 2: Iterative sampling algorithm

where α represents a threshold parameter, U [0, 1] repre-
sents a random value in the interval [0, 1] with uniform dis-
tribution function and pc(ai, aj) is the complement of the
choice advocated by pc(ai, aj). Under this random selec-
tion method, it is simple to demonstrate that probability of
deviating from the choice of PCP’s original value ordering
heuristic pc is (S − α) when S ≥ α and 0 otherwise. If
α is set at 0.5, then each ordering choice can be seen to be
equally likely in the case where S = 1 (i.e., the case where
the heuristic gives the least information).

The Optimization Algorithm
Figure 2 depicts the complete iterative sampling algorithm
for generating a near-optimal solutions to SDST-JSSP
instances. It is designed simply to invoke the random
version of the PCP resolution procedure a fixed number
(MaxRestart) of times, such that each restart provides a
new opportunity to produce a different feasible solution with
lower Lmax. Similar to other CSP procedures for makespan
minimization (e.g., (Cesta, Oddi, and Smith 2002)), we
adopt a multi-pass approach; the current best value Lbest

max
of the feasible solution generator is repeatedly applied to
solve problems with increasingly tighter constraint on the
deadlines on the jobs (Steps 5-13). Analogously to the pa-
per (Cesta, Oddi, and Smith 2002), during an initial tun-
ing phase of the algorithm this “dynamic backward”, multi-
pass approach was found to outperform alternative schemes
where the horizon parameter for successive calls was uni-
formly varied between established lower and upper bound
values.

Experimental Analysis
The SDST-JSSP benchmark we have tack-
led in our experiments are proposed in (Ovacik
and Uzsoy 1994), and are available at
http://cobweb.ecn.purdue.edu/∼uzsoy/Res-
earchGroup. In order to comprehensively interpret the

30



experimental results, it is necessary to provide a brief
description of how such benchmarks have been produced.

In all benchmark instances, the setup times strij and the
processing times pi at each machine are values randomly
computed in the interval [1, 200]. The job due dates di are
assumed to be uniformly distributed on an interval I char-
acterized by the following two parameters: (1) the mean
value µ = (1 − τ)E[Cmax], where τ denotes the percent-
age of jobs that are expected to be tardy, and E[Cmax]
is the expected makespan1, and (2) the R value, which
determines the range of I , whose bounds are defined by:
[µ − R/2, µ + R/2]. All the benchmark instances used in
the present work are calculated using the τ values of 0.3 and
0.6, corresponding to loose and tight due dates respectively,
and the R values of 0.5, 1.5 and 2.5, respectively modelling
different due date variation levels. The particular combina-
tion of the τ and R values allows to categorize all instances
in six different benchmarks, namely: i305, i315, i325, i605,
i615, i625. Each benchmark contains 160 randomly gener-
ated problem instances, divided in subclasses determined by
the different combinations of the number of machines and
jobs involved; more precisely, all instances are synthesized
by choosing 10 and 20 jobs on 5, 10, 15 and 20 machines,
yielding a total of 8 subclasses for each benchmark.

From what precedes, an important issue worth point-
ing out is that this benchmark do not satisfy the triangu-
lar inequality, i.e., given any three activities ai, aj , ak re-
quiring the same resource, the following inequality strij ≤
strik + strkj is not guaranteed to hold (as all setup times are
computed in the interval [1, 200]) at random. As a conse-
quence, the Iterative Sampling Algorithm (see Figure 2) may
be prone to disregard a number of valid solutions due to con-
straint overcommitment. In order to show this, let us provide
the following example: let us consider three activities a1, a2

and a3 requiring the same resource, with processing times
p1 = p2 = p3 = 1 and setup times st12 = st21 = 15,
st13 = st31 = 3 and st23 = st32 = 3. Let us also suppose
that the available scheduling horizon is equal to 10. In this
example, the triangular inequality is obviously not satisfied;
in fact, our procedure will surely fail despite the solution
a1 ¹ a3 ¹ a2 exists, because the first dominance condition
is verified, which reveals the presence of an unresolvable
conflict.

However, a straightforward probabilistic computation al-
lows to easily determine the probability to have the the trian-
gular inequality unsatisfied; such value is as low as 4.04%,
and this explains the globally good performances of the al-
gorithm (see below). In other words, the triangular inequal-
ity assumption can still remain valid, as such inequality is in
fact satisfied in 96% of the cases.

Going back to the example, even if the horizon were long
enough to accommodate all the activities, there would still
be cases where the triangular inequality issue will steer the
constraint posting mechanism towards bad decisions: se-
quencing a1 directly before a2 (and thus allowing a setup

1Calculated by estimating the total setup and processing time
required by all jobs at all machines and dividing the result by the
number of available machines.

time of 15), however remains a bad choice. For this rea-
son, we have decided to make each new solution undergo a
post-processing procedure similar to Chaining (Policella et
al. 2007) embedded in the PCP algorithm (Figure 1, line 6),
in order to eliminate all the possibly present constraint over-
commitments, and thus improve the solution quality by left-
shifting some of the jobs. This post-processing phase works
as follows: given an input solution S a polynomial trans-
formation method is used to remove the previous pointed
overcommitments. This operation can be accomplished in
two steps: (1) all the previously posted ordering constraints
are removed from the input solution; (2) for each resource
and for each activity ai (according to the increasing order of
the activities using the resource), the unique successor aj is
considered, and the precedence constraints ei + strij ≤ sj

is posted. The last step is iterated until all the activities are
linked by the real sequence dependent setup times.

The choice of these particular benchmarks for the experi-
ments is motivated by the fact that in this preliminary phase
of our investigation we are mainly interested in assessing the
validity of the iterative PCP procedure in tackling problems
it is not strictly designed for. Having assessed its promis-
ing overall performances, next step will be to apply modi-
fications to the same procedure (e.g., by adjusting the dom-
inance conditions) in order to explicitly take into account
the non-verification of the triangular inequality. The main

Table 1: Summary of the main experimental results

Set 800 (secs) 1600 (secs) 3200 (secs)
∆avg [#impr.] ∆avg [#impr.] ∆avg [#impr.]

i305 92.7 [38] 79.0 [35] 74.8 [32]
i315 24.7 [36] 1.5 [51] -7.0 [59]
i325 20.7 [24] 4.1 [37] 0.8 [53]
i605 24.5 [29] 15.3 [28] 11.07 [29]
i615 22.1 [33] 11.3 [37] 6.3 [38]
i625 19.1 [48] 6.1 [60] 1.2 [66]

results of the conducted experiments are shown in Table 1.
For every benchmark set (left column) three complete runs
have been performed, with increasing CPU time limit (and a
common large value for MasRestart = 1000); such limit
is the maximum CPU time that the scheduling procedure
can use to find a solution. In each complete run, we mea-
sure (1) the average percentage deviation from the results
in (Balas, Simonetti, and Vazacopoulos 2008), considered
as the best known results obtained from this benchmark, and
(2) the number of improved instances (in square brackets).
All the experiments have been conducted by selecting the
following PCP parameters values: α = 0.5 and β = 0. All
runs have been performed on a Windows Xp machine with
0.9 Ghz CPU, using Allegro Common Lisp 6.0.

Though this analysis is preliminary, the results are inter-
esting: the employed scheduling procedure finds a consid-
erable amount of improved solutions in all cases. Yet, the
best performance seems to involve the benchmarks associ-
ated to higher values of the R parameter; as the table shows,
the outcomes are much more convincing when R is greater

31



or equal than 1.5, i.e., when the variation level of the due
dates is higher. One possible explanation for this behaviour
is the following. As the value of R increases, the jobs’ due
dates are randomly chosen from a wider set of uniformly
distributed values; this means that, among all the produced
due dates, there will be a subset containing particularly de-
manding deadlines (i.e., the earliest deadlines). As far as the
PCP scheduling procedure is conceived (see Figure 1), each
solution is found by imposing the deadlines of the most “cri-
tical” jobs (i.e., the jobs characterized by the earliest dead-
lines)2. In other words, our procedure naturally proceeds
by accommodating the most critical jobs first, by imposing
“hard” deadline constraints, and secondly proceeds towards
the “easier” task of accommodating the remaining jobs. On
the contrary, when the R values are lower, all the produced
due dates tend to be critical, as all their values are compa-
rable. This circumstance may represent an obstacle to good
performance in the current version of the procedure, as it
cannot always guarantee a low-lateness scheduling for all
the jobs by means of imposing hard constraints.

Conclusions and Future Work
In this paper we have investigated the use of iterative sam-
pling as a means of effectively solving scheduling problems
with sequence dependent setup times. Building from prior
research (Oddi and Smith 1997; Cesta, Oddi, and Smith
2002), the proposed iterative sampling algorithm uses as
core procedure an extended version of the SP-PCP proce-
dure proposed in (Oddi and Smith 1997). Key to the ef-
fectiveness of the core procedure are the new extended dom-
inance conditions for pruning the search space and the new
variable and value ordering heuristics. In an experimental
study on a set of well-studied randomly generated bench-
marks, the stochastic procedure was found to significantly
improve the current best results in a significant set of cases.
We have proposed a first interpretation of the obtained re-
sults and we think that the proposed search framework, de-
spite its simplicity in comparison to other state-of-the-art
strategies, merits further studies and developments. As first
steps for our future work we will explore the use of a larger
set of parameters for our procedure and solve other inter-
esting and difficult benchmarks available in the current lit-
erature. For example the ones proposed in (Brucker and
Thiele 1996), where current best results can be found in
the recent works (Balas, Simonetti, and Vazacopoulos 2008;
Vela, Varela, and González 2009; Artigues and Feillet 2008).
A second step for future work will be the development of
extended iterative sampling strategies. For example, a strat-
egy which uses a core search procedure performing a limited
amount of backtracking.

Acknowledgments. CNR authors are partially supported
by CNR under project RSTL (funds 2007), ESA (European
Space Agency) under the APSI initiative and by EU project
ULISSE (Call “SPA.2007.2.1.01 Space Science”. Contract
FP7.218815).

2Due to the “most constrained first” approach used in the PCP
procedure on conflict selection, line 9.

References
Adams, J.; Balas, E.; and Zawack, D. 1988. The shifting
bottleneck procedure for job shop scheduling. Manage-
ment Science 34(3):391–401.
Allahverdi, A.; Ng, C. T.; Cheng, T. C. E.; and Kovalyov,
M. Y. 2008. A survey of scheduling problems with setup
times or costs. European Journal of Operational Research
187(3):985–1032.
Artigues, C., and Feillet, D. 2008. A branch and bound
method for the job-shop problem with sequence-dependent
setup times. Annals OR 159(1):135–159.
Balas, E.; Simonetti, N.; and Vazacopoulos, A. 2008.
Job shop scheduling with setup times, deadlines and prece-
dence constraints. Journal of Scheduling 11(4):253–262.
Brucker, P., and Thiele, O. 1996. A branch & bound
method for the general-shop problem with sequence depen-
dent setup-times. OR Spectrum 18(3):145–161.
Brucker, P.; Jurisch, B.; and Sievers, B. 1994. A branch
and bound algorithm for the job-shop scheduling problem.
Discrete Applied Mathematics 49(1-3):107–127.
Cesta, A.; Oddi, A.; and Smith, S. F. 2002. A constraint-
based method for project scheduling with time windows. J.
Heuristics 8(1):109–136.
Cheng, C., and Smith, S. 1994. Generating Feasible Sched-
ules under Complex Metric Constraints. In Proceedings
12th National Conference on AI (AAAI-94).
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–95.
Focacci, F.; Laborie, P.; and Nuijten, W. 2000. Solving
scheduling problems with setup times and alternative re-
sources. In AIPS, 92–111.
Montanari, U. 1974. Networks of Constraints: Funda-
mental Properties and Applications to Picture Processing.
Information Sciences 7:95–132.
Nowicki, E., and Smutnicki, C. 2005. An advanced tabu
search algorithm for the job shop problem. Journal of
Scheduling 8(2):145–159.
Oddi, A., and Smith, S. 1997. Stochastic Procedures for
Generating Feasible Schedules. In Proceedings 14th Na-
tional Conference on AI (AAAI-97), 308–314.
Ovacik, I., and Uzsoy, R. 1994. Exploiting shop floor
status information to schedule complex job shops. Journal
of Manufacturing Systems 13(2):73–84.
Ovacik, I., and Uzsoy, R. 1997. Decomposition Methods
for Complex Factory Scheduling Problems. Kluwer Aca-
demic Publishers.
Policella, N.; Cesta, A.; Oddi, A.; and Smith, S. 2007.
From Precedence Constraint Posting to Partial Order
Schedules. AI Communications 20(3):163–180.
Vela, C. R.; Varela, R.; and González, M. A. 2009. Local
search and genetic algorithm for the job shop scheduling
problem with sequence dependent setup times. Journal of
Heuristics.

32




