
Planning with Loops: Some New Results

Yuxiao Hu and Hector J. Levesque
Department of Computer Science

University of Toronto
Toronto, Ontario M5S 3G4, Canada
{yuxiao, hector} @cs.toronto.edu

Abstract

In AI planning, there has been an increasing interest
in solving a class of problems, rather than individual
problems, with a generalized notion of “plan.” One
such generalization is plans with loops, i.e. program-
like plans, whose execution on a specific problem in the
class results in a sequential plan. Levesque’s KPLAN-
NER falls into this paradigm: it generates robot pro-
grams, a type of loopy plan, that solves a range of
parametrized planning problems. In this paper, we
build on that work, and propose another plan repre-
sentation along with a novel planning algorithm. We
show that the new plan representation is more general
than robot programs, and the new planner more effi-
cient than KPLANNER.

Introduction

Much, if not most, of the work in AI planning deals with
single problems with full observability, e.g., in classical
planning. It is, however, possible to have a plan that
solves multiple problems. Depending on the problem’s
assumptions, the generalized plan can be of different
forms.

• If we assume no observability, yet want to achieve the
goal in all contingencies, a sequence of actions called
a conformant plan may work, in which case no matter
what the actual world turns out to be, the sequence
of actions is executable and leads to a state where
the goal condition is satisfied.

• If we have partial observability to differentiate among
finitely many cases in the class of planning problems,
then a conditional plan may suffice, which, based on
the observation which of the finite cases the actual
world is, takes different actions accordingly.

• If we have infinitely many cases in the problem class,
and want to find a solution that achieves the goal in
all cases, then an iterative plan, i.e. a plan with loops
or recursion, may be needed.

The last type of planning problems is particularly
interesting to us, due to the wide applicability of its

Copyright c© 2009, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

solution. For example, the blocks world problem is a
well-known task in classical planning. It requires to
shuffle a number of blocks from one stack shape into
another. This simple problem presents a relatively
big challenge to classical, domain-independent plan-
ners (Bacchus 2001), in that it usually takes a very long
time for them to find a plan to a moderately-sized prob-
lem (e.g. 50 blocks). However, a compact procedure
(loopy plan) exists, which, if one follows the action it
proposes at each step, solves any blocks world problem
in polynomial time (Gupta and Nau 1992). It would
thus be desirable to have an automatic method that
is able to find iterative plans like this for any problem
class where a procedural solution exists. If this is real-
ized, then classical planning in these domains reduces
to the trivial task of instantiating the found loopy plan.

Unfortunately, iterative planning is notoriously dif-
ficult. In the most general form, it is equivalent to
automatic programming which is not even decidable.
Despite its difficulty, many approaches to the prob-
lem have been explored and algorithms proposed. To
avoid undecidability, some of these approaches sacri-
fice automation and allow human interaction, others
restrict the structural form of loopy plans, and yet oth-
ers weaken the correctness guarantee.

In the rest of this paper, we first review some of the
those approaches, with more details on a planner called
KPLANNER (Levesque 2005) that falls into the last
category. Based on KPLANNER, we then present a
new plan representation and a novel algorithm for gen-
erating loopy plans, which lead to FsaPlanner, a new
planner that outperforms its antecedent. Finally, we
discuss some of the potential ways to further improve
FsaPlanner’s performance, and present some prelim-
inary experimental results.

Related Works

Most early work on iterative planning takes a deductive
approach (Biundo 1994), where the plan comes out as a
by-product of theorem proving. For example, (Manna
and Waldinger 1987) proposes a tableau-based sequent
calculus to deductively synthesize recursive plans. They
use sequents to represent the dynamics of a planning
domain, which consist of assertions, goals and outputs.

35



Planning proceeds by applying their deduction rules to
the sequents, until a “false” assertion or a “true” goal
is derived, at which point the associated output in the
sequent is the final plan. Recursion is introduced by a
well-founded induction rule. However, the induction
hypothesis must be provided interactively, and even
with human intervention, planning can be very slow.

Magnusson and Doherty recently proposed a deduc-
tive planning framework for maintenance goals in tem-
poral action logic (Magnusson and Doherty 2008). In
order to get around the invariant identification prob-
lem, they incorporated a regularity heuristic and a syn-
chronization heuristic to help the deductive reasoner
find useful invariants in such temporal domains. An in-
duction rule is then used to automatically form a plan
with loops, after the induction hypotheses as well as
the base cases are identified by the heuristics. Mag-
nusson and Doherty showed that their planner solves a
practical surveillance problem based on this approach.
It remains open whether effective heuristics exists for
solving classes of problems with final-state goals.

Deductive approaches like the above generate plans
that are provably correct. However, they either cannot
be fully automated or work only for a narrow range
of problems. Recently, several non-deductive methods
are proposed, which relax the correctness guarantee in
general, but aim for practicality and automation.

One example is loop-Distill (Winner and Veloso
2007), which generates a loopy “domain-specific plan-
ner” (dsPlanner) that solves a class of ADL problems.
Their algorithm takes as an input a partial order plan to
an instance in the problem class. It then identifies the
largest matching sub-plan, and converts the repeating
occurrences of this sub-plan into a loop. This procedure
is repeated greedily, until no more loops can be found.
Their algorithm leans heavily on the example plan, and
can only generate plans with non-nested loops.

Another method that learns from a single example
plan utilizes role-based abstraction (Srivastava, Immer-
man, and Zilberstein 2007; 2008). In their planner,
Aranda, Srivastava et al. use state aggregation to group
objects of the same role into equivalence classes, and
obtain an abstract state representation, where a role is
the set of unary predicates that an object satisfies. To
obtain a loopy plan, Aranda replaces objects in the ex-
ample plan with their corresponding abstract objects.
At this point, the repeating pattern becomes obvious,
and loops can be obtained by folding the repeating sec-
tions in the abstract plan. Aranda does not guarantee
correctness in general, but they show that it is provably
correct in “extended-LL” domains.

Levesque’s Approach
Another non-deductive planner for generating loopy
plans is KPLANNER designed by Levesque (Levesque
2005). It solves planning problems with a finite num-
ber of ground actions and a finite number of primitive
fluents, with the dynamics (action preconditions and ef-
fects, sensing capabilities, etc.) appropriately specified.

Fluents are functional and range over finite or count-
ably infinite domains. Among all the fluents, there is
a special integer fluent called the planning parameter,
whose value is unbounded and unknown at planning
time. The planning task is to find a plan, possibly with
loops, which can solve the planning problem no matter
what value the planning parameter actually takes.

For example, in a tree-chopping problem, there may
be three fluents: tree may be up or down, axe may be
out or stored, and the parameter chops needed is a
“secret” integer indicating the number of chops needed
to fell the tree.

A look action is always possible, and senses whether
tree is down (chops needed has been reduced to
0) or up (chops needed not 0 yet). When axe is
out, it is additionally possible to chop, which reduces
chops needed by 1, and to store, which makes axe

become stored.
Initially, tree is up and axe is out, and the goal is

to make tree down and axe stored.
The solution to a problem like this is represented by a

program-like structure (e.g. “dsPlanner” (Winner and
Veloso 2007) or “generalized plan” (Srivastava, Immer-
man, and Zilberstein 2008) in existing work). Levesque
formally defined a robot program language, whose syn-
tax and meaning is given by Definition 1.

Definition 1 (Robot program (Levesque 1996; 2005)).
A robot program and its execution is defined as

1. nil is a robot program executed by doing nothing;

2. for any primitive action A and robot program P ,
seq(A,P ) is a robot program executed by first per-
forming A, ignoring any sensing result, and then ex-
ecuting P ;

3. for any primitive action with possible sensing result
R1 to Rk, and for any robot programs P1 to Pk,
case(A, [if(R1, P1), · · · , if(Rk, Pk)]) is a robot pro-
gram executed by first performing A, and then on
obtaining the sensing result Ri, continuing by exe-
cuting Pi;

4. if P and Q are robot programs, and B is the result
of replacing in P some of the occurrences of nil by
exit and the rest by next, then loop(B,Q) is a robot
program executed by repeatedly executing the body
B until the execution terminates with exit (rather
than next), and then going on by executing the con-
tinuation Q.

According to this definition, intuitively, the following
robot program, rtc, is a solution to the tree-chopping
problem:

loop(
case(look,

[ if(down,exit),
if(up,seq(chop,next))

]
),
seq(store,nil)

)

36



The Logical Account for Correctness

In order to formally characterize the semantics of plan-
ning problems and robot programs, Levesque uses a log-
ical language called the situation calculus (Reiter 2001),
with a possible-world extension to handle incomplete
knowledge (Scherl and Levesque 2003). Objects in the
domain of the logic are of three sorts: situations, ac-
tions and objects. S0 is used to denote the initial sit-
uation, and do(a, s) the situation after performing ac-
tion a in situation s. Functions (relations) whose value
may vary from situation to situation are called func-
tional (relational) fluents, and denoted by a function
(relation) whose last argument is a situation term. The
special relation Poss(a, s) states that action a is exe-
cutable in situation s, K(s′, s) means that the agent
may think the world is in situation s′ when the actual
situation is s, and the function sr(a, s) indicates the
sensing result of a when performed in s. See (Scherl
and Levesque 2003) for how actions, including sensing
actions distinguished by sr, affect the K fluent.

The dynamics of a planning problem can be formal-
ized by an action theory Σ consisting of

• facts in the initial situation S0, including initial be-
liefs by K(si, S0);

• action precondition axioms of the form
Poss(a, s) ≡ Πa(s), one for each action a;

• successor state axioms, one for each fluent f , stating
under what condition f(~x, do(a, s)) takes a specific
value as a function of what holds in situation s;

• sensed fluent axioms of the form
sr(a, s) = r ≡ Φa(r, s), one for each sensing action a,
stating under what condition a gets sensing result r
in situation s;

• unique names axioms for actions;

• some domain independent foundational axioms on
situations;

To formally capture the semantics of robot programs,
Levesque defined Rdo(r, s1, s2) in the framework of sit-
uation calculus, to mean that robot program r, when
executed in situation s1, will legally terminate in sit-
uation s2. The precise definition of Rdo(r, s1, s2) can
be found in (Levesque 1996), and omitted here due to
space reasons.

Let φ[s] be the goal formula of the planning problem,
with a single free variable s, then the planning task for
KPLANNER is to find a robot program r, such that

Σ |= ∀s.K(s, S0) ⊃ ∃s′. {Rdo(r, s, s′) ∧ φ[s′]}

This entailment intuitively means that for any pos-
sible initial situation s, the found robot program r will
terminate, and result in a state s′ in which the goal φ
is satisfied.

For example, let Σtc be the action theory of the tree-
chopping domain, then the following entailment can be

proved.

Σtc |= ∀s.K(s, S0) ⊃

∃s′. {Rdo(rtc, s, s
′)∧

tree(s′) = down ∧ axe(s′) = stored}

The planning algorithm

Now the question becomes, “given the planning domain
Σ and a goal φ, is there an algorithm which can auto-
matically find a robot program r that solves it?”1

Considering the difficulty of planning with loops in
general, as discussed in the introduction section above,
KPLANNER sacrifices the strong notion of correctness
for practicality. More specifically, instead of returning
a plan that works provably correctly for all planning
parameter values, it generates one that is guaranteed
to be correct only for two selected integers, namely, a
small generation bound N1 and a larger test bound N2.

Under this simplification, KPLANNER searches for
a plan by alternating between two phases.

• In the generation phase, a conditional plan that solves
the problem when the planning parameter is known
to have value N1 is generated. This is done by a
blind forward search. When such a conditional plan
is found, KPLANNER checks if it is a possible un-
winding of a robot program with loops, and if so, the
loopy plan is forwarded to the test phase.

• In the test phase, the robot program obtained from
the generation phase is tested with respect to a world
where the planning parameter has value N2. If it
works correctly, then it is returned as the solution
to the planning problem; otherwise, KPLANNER re-
sumes the generation phase, and a new robot pro-
gram is enumerated.

Levesque shows that KPLANNER works efficiently
in several domains, including tree-chopping, arithmetic,
omelette and binary tree searching. Moreover, the re-
sulting robot programs, though only with very weak
correctness guarantee, are indeed correct in general.

A New Plan Representation

Levesque claimed that a directed graph representation
exists for robot programs, and hypothesized that the
two representations are equivalent (Levesque 1996). In
this section, we give a formal definition of such a graph-
ical representation called FSA plan, and show that it is
in fact more general than robot programs.

Definition 2 (FSA Plan). An FSA plan is a tuple
〈Q, γ, δ, q0, qF 〉, where

• Q is a set of plan states;

• q0 ∈ Q is an initial plan state;

• qF ∈ Q is a final plan state;

1Note that the input to the planning algorithm does not
include example solutions. In contrast, recall that both
loop-Distill and Aranda learn from an example plan.

37



Figure 1: An FSA plan for the find-topic example

• γ : Q− → A is a function, where Q− = Q \ {qF } and
A is the set of primitive actions;

• δ : Q− × R → Q ∪ {⊥} is a function, where R is the
set of sensing results, satisfying the constraint that r
is a sensing result of γ(q) whenever δ(q, r) 6= ⊥.

FSA plans can be visualized graphically, where nodes
in the graph are plan states in Q, each labelled with its
associated action γ(q) for q ∈ Q−. An edge label-ed
with r exists between q1 and q2 if and only if δ(q1, r) =
q2. The initial plan state q0 is denoted by an arrow
pointing to it, and the final plan state qF by a double
border.

For example, Figure 1 visualizes an FSA plan for a
“find topic” example, where a graduate student wants
to find a research topic under the guidance of his super-
visor. What he can get from the supervisor is either an
instruction or a suggestion. He can follow an instruc-
tion: if he succeeds, then he is good; otherwise he has to
get some advice again. He can think about a suggestion:
if the suggestion is workable, then he is done; if not, he
has to revise it. Depending on the revision result, he
may have to rethink about the (updated) suggestion, or
simply get some other advice from the supervisor.

The execution of an FSA plan 〈Q, γ, δ, q0, qF 〉 starts
from q = q0, and iteratively does the following:

1. if q = qF , then stop;

2. otherwise, execute action a = γ(q);

3. upon getting sensing result r, identify the next plan
state q′ to follow by q′ = δ(q, r);

4. let q = q′ and repeat from Step 1.

Intuitively, an FSA plan is valid for a planning prob-
lem if every action it proposes is legal, and the final
plan state qF is always reached, at which point the goal
condition of the planning problem is satisfied.

To make this intuition precise, we need to formally
define what situation is a final one after executing
the FSA plan P from an initial situation s0. For
this purpose, we define a formula Fdo(P, s1, s2) (simi-
lar to Rdo(r, s1, s2) in (Levesque 1996)) to mean that
P = 〈Q, γ, δ, q0, qF 〉 terminates legally when started
in situation s1, and s2 is the final situation. For-
mally, Fdo(P, s1, s2) is an abbreviation for the following
second-order formula:

Fdo(P, s1, s2)
def
= (∀T ).

{

· · · ⊃ T (q0, s1, qF , s2)
}

where “· · · ” is the conjunction of the universal closure
of the following formulae:

1. T (q, s, q, s);

2. T (q, s, q′′, s′′) ∧ T (q′′, s′′, q′, s′) ⊃ T (q, s, q′, s′);

3.
{

γ(q) = a ∧ Poss(a, s) ∧ SF (a, s) = r ∧ δ(q, r) = q′
}

⊃ T
(

q, s, q′, do(a, s)
)

.

From the discussion above, one may find the close
resemblance of FSA plan to robot programs. Then the
question is: why are we proposing yet another plan
representation? In the rest of this paper, we argue that
FSA plans are more general than robot programs, and
a simple systematic search algorithm exists for finding
FSA plans to Levesque’s planning with loops problems.

To compare the expressiveness between robot pro-
grams and FSA plans, we first need a notion of equiv-
alence.

Definition 3. A robot program r and an an FSA plan
P is equivalent with respect to an action theory Σ if
and only if

Σ |= ∀s1, s2. Rdo(r, s1, s2) ≡ Fdo(P, s1, s2)

Based on Definition 3, we have the following theo-
rems.

Theorem 1. For any robot program r, there exists an
equivalent FSA plan P .

Proof. By structural induction on robot program con-
structs.

This theorem establishes that FSA plans are at least
as expressive as robot programs, in that an equivalent
FSA plan exists for any robot program. As for whether
FSA plans are strictly more expressive, we have:

Theorem 2. There exists an FSA plan that has no
equivalent robot program.

Proof. The find-topic example in Figure 1 is such an
FSA plan.

Theorems 1 and 2 lay the theoretical foundation that
FSA plans are strictly more general that robot pro-
grams given a fixed set of primitive actions, and thus
justifies the use of FSA plans as the plan representa-
tion in our work. Now we are ready to give a formal
definition of the problem of planning with loops in this
setting.

Definition 4 (The Planning Problem). Given an ac-
tion theory Σ and a situation-suppressed goal formula2

φ, the planning task is to find an FSA plan P such that

Σ |= (∀s).K(s, S0) ⊃ ∃s′.
{

Fdo(P, s, s′) ⊃ φ[s′]
}

In other words, the planning problem is to find an
FSA plan P such that from any possible initial situa-
tion, the execution of P will terminate in a situation
where the goal condition is satisfied.

2See (Reiter 2001) for a formal definition of situation-
suppressed formulae.

38



1: FsaPlanner(ΣG,ΣT , φ,N1, N2) {
2: while(true) {
3: P = generate(〈 〉, q0, P0)[ΣG, φ];
4: if (P == fail)
5: return fail;
6: if

(

test(〈 〉, q0, P )[ΣT ,Φ]
)

7: return P ;
8: }
9: }

Figure 2: Main program of FsaPlanner

The FSAPLANNER Algorithm

In this section we present a new planner called Fsa-

Planner for generating FSA plans. Our target prob-
lems are similar to those for KPLANNER, where a spec-
ification includes a list of primitive actions and their
dynamics (preconditions, effects and sensing results),
along with a list of primitive fluents and formulae char-
acterizing the initial state and the goal condition.

However, we generalize the idea of planning parame-
ter in KPLANNER: instead of using an integer param-
eter to range over a class of planning problems, we as-
sume that the initial situation is incompletely specified,
and among all the possibilities, two example situations
are given to the planner, one for generation and the
other for verification. We use ΣG and ΣT to represent
the action theory for the generation and test problem,
respectively. Notice that the treatment with planning
parameters in KPLANNER is a special case, since ΣG

here correspond to Σ ∪ {f = N1} in KPLANNER, and
ΣT to Σ ∪ {f = N2}.

Given ΣG and ΣT , the high-level algorithm of Fsa-

Planner is very similar to that of KPLANNER. Fig-
ure 2 is the pseudocode of the main program, where
P0 = 〈{q0, qF }, {}, {}, q0, qF 〉 is the simplest FSA plan3

to initiate the search, with one initial state q0, one final
state qF , and empty γ and δ functions.

The planner switches between a generation phase
(lines 3–5) and a test phase (lines 6 and 7). In the
generation phase, a new plan P is enumerated, which
achieves the goal φ with respect to the action theory
ΣG. If no such plan exists, then the planner returns fail-
ure; otherwise the planner enters the test phase, where
the generated plan P is tested with respect to ΣT . If P
is valid for ΣT , then it is returned as a solution; other-
wise, the planner resumes the generation phase, and a
new plan is enumerated.

The main novelty of FsaPlanner lies in the plan
generation algorithm. Recall that in KPLANNER,
Levesque first generates a conditional plan P ′ that

3Strictly speaking, P⊥ = 〈{qF }, {}, {}, qF , qF 〉 is the sim-
plest FSA plan, and should be used as the starting FSA in
the search. It is a solution to trivial planning problems
where the goal is always true in the initial state. However,
using P0 instead of P⊥ makes the presentation simpler, and
P⊥ can be treated as a special case.

works for f = N1, and then tries to wind P ′ into a
loopy plan P . A disadvantage of separating searching
and winding is that in some cases, even for a compact
loopy plan P , the unwinding P ′ may be a very large con-
ditional plan, and thus takes prohibitively long time to
find by progressive search. To overcome this problem,
we instead look for a loopy plan directly in the space
of FSA plans. Figure 3 shows the pseudocode for the
generation phase. Note that due to the existence of non-
determinism in the pseudo code, “return” statements
should be understood as backtracking points: when a
returned FSA plan is rejected in the test phase, then
the search in the generation phase resumes from this
point, and a new plan is enumerated after backtracking
from there.

The intuition behind this algorithm is to maintain a
“current” FSA plan, and simulate its execution from
the initial state. During the execution, we always try
to keep the current plan, and only extend it when nec-
essary. Extensions happen when a transition is missing
in δ, in which case we non-deterministically choose a
target plan state to change to, and add this transition
to δ, introducing a new plan state if necessary.

The procedure generate (lines 1–20) revises the cur-
rent plan 〈Q, γ, δ, q0, qF 〉 by simulating its execution
from plan state q and history H.4 It identifies the next
action to perform in the current plan state q. If q is
the final state, then the goal condition must be satis-
fied, in which case the current FSA plan is returned
(lines 1–7). If q is not final, then it tries to execute the
action γ(q) associated with q (lines 9–12 and 18), non-
deterministically choose an executable one if nothing is
associated yet (lines 13–17).

To try an action, the planner must find the correct
progression for each of the action’s sensing results, and
accumulate the transitions, in order to obtain an FSA
plan that works for all cases (lines 22–28).

Finally, to progress with respect to an action with a
specific sensing result, the planner simply identifies the
plan state q′ ∈ Q to transfer to when executing action a
in plan state q obtaining sensing result r (lines 30–54).
If δ(q, a) = q′ 6= ⊥ is already in the current FSA plan,
then follow this transition, and recursively call the gen-
erate procedure from there (lines 34–37). Otherwise,
non-deterministically choose a q′ ∈ Q∪{qnew}, add the
transition to δ in the current FSA plan, and call gen-
erate from this q′ (lines 38–53), where qnew 6∈ Q is a
new plan state. In practice, transfer to existing plan
states (lines 40–45) is tried before one to a new state,
since compact plans (those with fewer plan states) are
preferred. Naturally, if the sensing result is impossi-
ble to obtain, then the current plan is returned directly
without further search (lines 31–33).

4For our purposes, a history is a sequence of performed
actions paired with their sensing results. See (de Giacomo
and Levesque 1999) for details.

39



1: generate(H, q, 〈Q, γ, δ, q0, qF 〉) {
2: if (q = qF ){
3: if (ΣG ∪ {Sensed(H)} |= φ[end(H)])
4: return 〈Q, γ, δ, q0, qF 〉;
5: else
6: return fail;
7: }
8: else {
9: if γ(q) 6= ⊥ {
10: a = γ(q);
11: γ′ = γ;
12: }
13: else {
14: non-deterministically choose a such that
15: ΣG ∪ {Sensed(h)} |= Poss(a, end(H));
16: γ′ = γ ∪ {q → a};
17: }
18: return tryAct(H, q, a, 〈Q, γ′, δ, q0, qF 〉));
19: }
20: }
21:
22: tryAct(H, q, a, P0) {
23: let r1, · · · , rn be all possible sensing results of a;
24: for i = 1, · · · , n {
25: Pi = progress(H, q, a, ri, Pi−1);
26: }
27: return Pn;
28: }
29:
30: progress(H, q, a, r, 〈Q, γ, δ, q0, qF 〉) {
31: if (r is impossible for a in history H) {
32: return 〈Q, γ, δ, q0, qF 〉;
33: }
34: else if (δ(q, r) = q′ 6= ⊥) {
35: return
36: generate(H · 〈a, r〉, q′, 〈Q, γ, δ, q0, qF 〉);
37: }
38: else {
39: non-deterministically
40: either {
41: choose q′ ∈ Q;
42: δ′ = δ ∪ {〈q, r〉 → q′};
43: return
44: generate(H · 〈a, r〉, q′, 〈Q, γ, δ′, q0, qF 〉);
45: }
46: or {
47: choose q′ 6∈ Q;
48: Q′ = Q ∪ {q};
49: δ′ = δ ∪ {〈q, r〉 → q′};
50: return
51: generate(H · 〈a, r〉, q′, 〈Q′, γ, δ′, q0, qF 〉);
52: }
53: }
54: }

Figure 3: The plan generator

Problem KPLANNER FsaPlanner

airport 0.02 0.03
arith 0.8 0.09
bars 0.03 0.24
bintree 0.07 0.1
fact 2.12 0.21
fixedegg (1) 0.0 0.01
fixedegg (2) 0.02 0.01
fixedegg (3) 0.06 0.02
fixedegg (4) 0.31 0.03
fixedegg (5) 7.14 0.06
fixedegg (6) 3051.84 0.09
fixedegg (7) - 0.15
fixedegg (8) - 0.21
fixedegg (9) - 0.32
safe 0.07 0.1
treechop 0.09 0.01
variegg 0.04 0.02
striped+ - 83.26

Figure 4: Comparison between KPLANNER and Fsa-

Planner

Experimental Results

We implemented FsaPlanner in SWI-Prolog based on
the abstract algorithm above, and compared the the
running time with Levesque’s KPLANNER using all of
the KPLANNER example problems and the same hand-
written search-pruning rules.5 Like in KPLANNER, we
assume the optimal depth of search is unknown, and
iterative deepening is used on this parameter.

Figure 4 shows the performance of both planners.
In almost all problems, FsaPlanner behaves bet-
ter than KPLANNER, sometimes even orders of mag-
nitude faster, e.g. in arith, fact, fixedegg and
treechop. Most notably, KPLANNER was unable to
solve fixedegg problem when the number of needed
eggs is greater than 6. In contrast, FsaPlanner

solves 9 eggs within less than half a second! The
last example, striped+, is a new and difficult prob-
lem inspired by (Srivastava, Immerman, and Zilber-
stein 2007) (described in detail below). As we can
see, KPLANNER is unable to solve this problem even
with strong hints, whereas FsaPlanner solves it (with
hand-written pruning rules) within minutes.

Among all the problems, bintree and striped+ re-
quire nested loops. This distinguishes FsaPlanner

from loopDistill and Aranda, since they do not han-
dle arbitrary loop structure.

In the next experiment, we encoded the three bench-
mark problems for Aranda (Srivastava, Immerman, and
Zilberstein 2008) into our language, and fed them to
FsaPlanner. delivery requires to move multiple ob-
jects at the dock to their destinations using a truck;
transport involves delivering pairs of monitors and
servers with two types of vehicles; striped starts with

5www.cs.toronto.edu/˜hector/swi-kplanner-1.2.tar.gz

40



Aranda FsaPlanner

Problem Time Plan Size Time Plan Size
delivery 14 30 4.84 8
striped 13 33 0.99 9

transport 16 43 - 23

Figure 5: Comparison between Aranda and FsaPlan-

ner

a pile of blocks with equally many blues on top of reds,
and the task is to move the blocks via the table, and
build a new tower with interleaving colors.

Again, we use the basic algorithm with a blind depth-
first search, without any hand-coded pruning rules, but
with the optimal depth of search and number of plan
states given to the planner. Figure 5 compares the
performance of FsaPlanner on the three benchmark
problems with that of Aranda.6

As we can see, FsaPlanner solves delivery and
striped very quickly, but transport cannot be solved
fully automatically. With hand-coded pruning rules,
FsaPlanner is able to find a plan with 23 states for
transport. Although the timing statistics look worse
than Aranda in this case, we do not consider it a fun-
damental flaw of FsaPlanner. For one, Aranda uti-
lizes a state-of-the-art planner to generate its example
plans, whereas we use blind forward search at the cur-
rent stage. It is likely that speedup can be obtained
by incorporating a more clever search technique. For
another, our implementation is done in Prolog, an in-
terpretive programming language. We expect that a fu-
ture implementation in C will make our planner more
efficient. Notice that in all cases, the optimal depth and
size is given to the planner. Without this assumption,
a plan can still be found using iterative deepening on
these parameters, but it will take much longer time.

In terms of plan size, the loopy plans found by Fs-

aPlanner are more compact than those by Aranda.
We believe this is due to FsaPlanner’s search policy
which expands the FSA plan only when necessary. We
also notice that plans found by Aranda are not wound
to the greatest extent. If they are further wound by
some post-processing, the resulting plans from the two
planners may become comparable.

Improvements to the Basic Algorithm

As discussed above, the basic FsaPlanner algorithm
in Figure 3 appeals to non-determinism when choosing
the next action to execute and the next plan state to
transfer to. In practice, this is implemented by depth-
first search, which works extremely well when the search
space of the planning problem is small (e.g. treechop,
bintree, variegg), but takes prohibitively long to gen-
erate any plan when the search space is large, e.g.

6Statistics for Aranda are our estimates based on the
figures in (Srivastava, Immerman, and Zilberstein 2008).

transport and striped+, without hand-written prun-
ing rules.

In this section, we discuss two possible improvements
to FsaPlanner: adding heuristic action selection and
randomizing sensing results in the search.

Heuristics for Action Selection

Heuristic search has brought a huge success to classical
planning (Hoffmann and Nebel 2001; Helmert 2006),
and can be applied to our basic algorithm when a non-
deterministic choice has to be made.

One such non-deterministic choice is the selection of
action to associate with a non-final plan state (line 14
in Figure 3). We try a goal-distance based heuristics so
that more promising actions are tried before the appar-
ently less fruitful ones.

To estimate the goal distance from a situation, we
make the simplistic assumption that all fluents are in-
dependent, and each fluent needs to change from its
current value to one that may satisfy the goal condition.
We count the minimum number of action steps needed
to change each fluent, and the sum of steps across all
fluents is used as the distance estimate. This is simi-
lar to the additive heuristics used in HSP (Bonet and
Geffner 2001).

One complication is that fluents may have infinitely
many possible values. As a result, breadth-first search
must be used, instead of the Dijkstra’s algorithm for
shortest path in finite graphs. This renders the calcu-
lation of heuristic value to have exponential complexity
in theory. However, as can be seen from Experimental
Results, this calculation is pretty fast in practice.

Randomization of Sensing Results

For an action with multiple sensing results, we always
analyze them in a predefined order in the basic algo-
rithm (line 24 of Figure 3). This may postpone the
discovery of some bad choices that has been made in
the search, and require many more backtracking steps
before the search returns to the correct branch.

One solution to this problem is to randomize the or-
der of exploration whenever more than one sensing re-
sult is possible. In this way, the probability of repeat-
edly making a same bad choice becomes low, and the
bad choice can be detected earlier in the search.

Some Preliminary Result

We implemented both improvement ideas, and com-
pared the performance of four variants of FsaPlan-

ner on the striped+ example that we designed as a
challenging benchmark problem. It is similar to the
striped benchmark in (Srivastava, Immerman, and Zil-
berstein 2008), except for two differences. For one, we
assume that we have three stacks: A, B and C. Ini-
tially, all blocks are on stack A, and the goal is to use
B as an intermediate stack, and make C a striped stack.
Note that in striped, the table serves as the interme-
diate block holder, and can have infinitely many blocks

41



Problem FPM FP FPH FPHR

striped+ 6.23 6179.05 31.8 28.09

Figure 6: Comparing four variants of FsaPlanner

directly on it. Here in striped+, however, stack B is
the only intermediate holder, so it is much more re-
stricted than striped and thus requires more delicacy
in the solution plan. For the other, we assume that
the color of the blocks in the initial stack is unknown.
Each block can be either red or blue. Without the as-
sumption that we have equally many reds and blues,
one color may have more blocks than the other, so the
goal is to make C a maximal striped tower, and all the
leftovers should be placed on B.

We compare the run time for the striped+ problem
with four variants of FsaPlanner.

• FPM : FsaPlanner with hand-written pruning rule;

• FP : FsaPlanner without pruning rule;

• FPH : FsaPlanner with goal distance based heuris-
tics;

• FPHR: FsaPlanner with goal distance based
heuristics and randomized sensing result.

In all cases, we assume the optimal depth of search and
number of plan states are known.

Figure 6 shows the statistics for all four variants
on the striped+ problem. As we can see, planning
takes an extremely long time if blind depth-first search
(FP ) is used, three orders of magnitude slower than
the version with elaborated hand-written pruning rules
(FPM ). The incorporation of domain-independent,
goal-distance based heuristics (FPH) also speeds up
the search dramatically, but still considerably slower
than with manual control. Finally, using randomiza-
tion of sensing outcomes together with heuristic search
renders the run-time of the algorithm a random num-
ber. In some runs, it takes shorter time (e.g. 28.09 vs.
31.8), but in others, it may also be extremely long. It
is interesting future work to investigate the distribution
of runtime, which in turn may give us some insight on
how to improve the randomized algorithm.

Conclusion

In this paper, we continue our investigation on iterative
planning from a new perspective. The work is closely
related to KPLANNER, but our result here is more gen-
eral in three aspects. First, we formally defined FSA
plan, a type of generalized plan provably more general
than robot programs on which KPLANNER is based.
Second, compared with KPLANNER, we enlarged the
scope of problems that can be formulated and solved
by loosening the restriction that the planning problems
have to be indexed by a planning parameter. Finally,
we presented a new algorithm and its implementation
FsaPlanner, which is shown to be more efficient than

KPLANNER, and highly competitive with other exist-
ing iterative planners like Aranda.

Preliminary experiments have shown that FsaPlan-

ner has potential for further improvements. In particu-
lar, heuristic search methods can be easily incorporated.
It is interesting and promising future work to find an
effective domain-independent heuristics that works for
a broader class of iterative planning problems.

References
Bacchus, F. 2001. AIPS’00 planning competition. AI
Magazine 22(3):47–56.

Biundo, S. 1994. Present-day deductive planning. Cur-
rent Trends in AI Planning 1–5.

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129:5–33.

de Giacomo, G., and Levesque, H. 1999. Projection
using regression and sensors. In Proceedings of the
Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI), 160–165.

Gupta, N., and Nau, D. S. 1992. On the complexity
of blocks-world planning. Artificial Intelligence 56(2–
3):223–254.

Helmert, M. 2006. The fast downward planning
system. Journal of Artificial Intelligence Research
26:191–246.

Hoffmann, J., and Nebel, B. 2001. The FF planning
system: Fast plan generation through heuristic search.
Journal of Artificial Intelligence Research 14:253–302.

Levesque, H. 1996. What is planning in the presence
of sensing. In Proceedings of National Conference on
Artificial Intelligence.

Levesque, H. 2005. Planning with loops. In Proceed-
ings of International Joint Conference on Artificial In-
telligence.

Magnusson, M., and Doherty, P. 2008. Deductive
planning with inductive loops. In AAAI-08.

Manna, Z., and Waldinger, R. 1987. How to clear a
block: a theory of plans. Journal of Automated Rea-
soning 3(4):343–377.

Reiter, R. 2001. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Sys-
tems. MIT Press.

Scherl, R., and Levesque, H. 2003. Knowledge, action,
and the frame problem. Artificial Intelligence 144.

Srivastava, S.; Immerman, N.; and Zilberstein, S.
2007. Using abstraction for generalized planning.
Technical report, Department of computer science,
University of Massachusette.

Srivastava, S.; Immerman, N.; and Zilberstein, S.
2008. Learning generalized plans using abstract count-
ing. In AAAI-08.

Winner, E., and Veloso, M. 2007. LoopDIS-
TILL: Learning domain-specific planners from exam-
ple plans. In Proceedings of ICAPS-07 Workshop on
AI Planning and Learning.

42




