
Web Service Composition via the Customization of Golog Programs with User
Preferences

Shirin Sohrabi and Nataliya Prokoshyna and Sheila A. McIlraith
Department of Computer Science, University of Toronto, Toronto, Canada.

{shirin,nataliya,sheila}@cs.toronto.edu

Abstract
We claim that user preferences are a key component of effective

Web service composition, and one that has largely been ignored. In
this paper we propose a means of specifying and intergrating user
preferences into Web service composition. To this end, we propose
a means of performing automated Web service composition by ex-
ploiting a flexible template of the composition in the form of a
generic procedure. This template is augmented by a rich specifica-
tion of user preferences that guide the instantiation of the template.
We exploit the agent programming language Golog to represent
our templates as Golog generic procedures and we exploit a first-
order preference language to represent rich qualitative temporally-
extended user preferences. From these we generate Web service
compositions that realize a given generic procedure, satisfying the
user’s hard constraints and optimizing for the user’s preferences.
We prove our approach is sound and optimal. Our system, Golog-
Pref, is implemented and interacting with services on the Web. The
language and techniques proposed in this paper can be integrated
into a variety of approaches to Web or Grid service composition.

Preamble
The work that follows first appeared in the proceedings
of the 5th International Semantic Web Conference (ISWC
2006) [26] and was recently reprinted in [27]. These archival
publications are the appropriate references for this work.
The text that follows has been shortened to address length re-
strictions and modified slightly to address referee comments.

We wanted to share this work with participants in the
ICAPS 2009 Workshop on Generalized Planning because it
presents a particular approach to specifying and instantiating
generalized plans, as well as describing a well-motivated ap-
plication for generalized plans – Web service composition.
The approach advocated in this paper is to represent a solu-
tion to a family of planning problems as a template or work-
flow scaffold, which is a form of generalized plan. In this
paper, we use Golog to specify the template, in more recent
work on Web service composition, we have used Hierarchi-
cal Task Networks (HTNs) [25].

A key observation of this work is that the task of creat-
ing a generalized plan is something that can often be per-
formed manually because the template is simple, but that
the instantiation of that template into a high-quality plan can
necessitate a number of decision points because of nondeter-
minism in the template, and that this presents a significant
conceptual and computational challenge. We hold that this
challenge is best addressed by specifying desirable proper-
ties of the plan in terms of preferences and constraints, and

generating plan instances that optimize these desirable prop-
erties. The need to provide further advise to generalized
plans was first observed by Myers and colleagues, precip-
itating a body of work on advisable plans that augmented
HTNs with hard and soft advice on how to decompose the
HTN [17, 18]. The need for optimization in the instantiation
of generalized plans is particularly clearly illustrated with
Web service composition where the large number of avail-
able services and the large volume of Web data translates
into execution-time choice points over service selection and
action groundings.

Both HTNs and Golog have a rich history in terms of their
ability to specify generalized plans. Generalized plans have
also been specified as automata (e.g., [4]) and as hierarchi-
cal constraint networks (e.g., [10], and both of these tech-
niques have been applied to Web service composition, but
without any preference specification. Clearly all of these
techniques, including those described below, are applicable
to a diversity of applications beyond Web service compo-
sition, including business process modeling and execution,
and controller synthesis.

1 Introduction
Web services provide a standardized means for diverse, dis-
tributed software applications to be published on the Web
and to interoperate seamlessly. Simple Web accessible pro-
grams are described using machine-processable descriptions
and can be loosely composed together to achieve complex
behaviour. The weather service at www.weather.com and
the flight-booking services at www.aircanada.ca, are exam-
ples of Web applications that can be described and com-
posed as Web services. They might be coupled as part of
a travel-booking service, for example.

Automated Web service composition is one of many
interesting challenges facing the Semantic Web. Given
computer-interpretable descriptions of: the task to be per-
formed, the properties and capabilities of available Web ser-
vices, and possibly some information about the client or
user’s specific constraints,automated Web service composi-
tion requires a computer program to automatically select, in-
tegrate and invoke multiple Web services in order to achieve
the specified task in accordance with any user-specific con-
straints. Compositions of Web or Grid services are neces-
sary for realizing both routine and complex tasks on the Web
(resp. Grid) without the need for time-consuming manual

19

composition and integration of information. Compositions
are also a useful way of enforcing business rules and poli-
cies in both Web and Grid computing.

Fully automated Web service composition has been char-
acterized as akin to both an artificial intelligence (AI) plan-
ning task and to a restricted software synthesis task (e.g.,
[14]). A composition can be achieved using classical AI
planning techniques by conceiving services as primitive or
complex actions and the task description specified as a (final
state) goal (e.g., [13, 28]). This approach has its drawbacks
when dealing with data. In general, the search space for a
composition (aka plan) is huge because of the large number
of available services (actions), which grow far larger with
grounding for data.

A reasonable middle ground which we originally pro-
posed in [15, 14] is to specify a flexible template of the
composition in the form of ageneric procedureand to cus-
tomize such a procedure withuser constraints. We argued
that many of the tasks performed on the Web or on intranets
are repeated routinely, and the basic steps to achieving these
tasks are well understood, at least at an abstract level – travel
planning is one such example. Nevertheless, the realization
of such tasks varies as it is tailored to individual users. As
such, our proposal was to specify such tasks using a work-
flow template or generic procedure and to customize the pro-
cedure with user constraints at run time. Such an approach is
generally of the same complexity as planning but the search
space is greatly reduced, and as such significantly more effi-
cient than planning without such generic advice.

In [14] we proposed to use an augmented version of
the agent programming language Golog [20] to specify our
generic procedures or workflows with sufficient nondeter-
minism to allow for customization. (E.g.,“book inter-city
transportation, local transportation and accommodations in
any order”). User constraints (e.g.,“I want to fly with Air
Canada.”) were limited to hard constraints (as opposed to
“soft”), were specified in first-order logic (FOL), and were
applied to the generic procedure at run-time to generate a
user-specific composition of services. A similar approach
was adopted using hierarchical task networks (HTNs) to
represent generic procedures or templates, and realized us-
ing the HTN planner, SHOP2 (e.g., [22]) without user cus-
tomization of the HTN template.

In this paper, we extend our Golog framework for Web
service composition, customizing Golog generic procedures
not only with hard constraints but withsoftuser constraints
(henceforth referred to aspreferences). These preferences
are defeasible and may not be mutually achievable. We ar-
gue that user preferences are a critical and missing compo-
nent of most existing approaches to Web service composi-
tion. User preferences are key for at least two reasons. First,
the user’s task (specified as a goal and/or generic procedure
with user constraints) is often under constrained. As such,
it induces a family of solutions. User preferences enable a
user to specify properties of solutions that make them more
or less desirable. The composition system can use these to
generate preferred solutions.

A second reason why user preferences are critical to Web
service composition is with respect tohow the composition

is performed. A key component of Web service composition
is the selection of specific services used to realize the com-
position. In AI planning, primitive actions (the analogue of
services) are selected for composition based on their pre-
conditions and effects, and there is often only one primitive
action that realizes a particular effect. Like actions, services
are selected for composition based on functional properties
such as inputs, output, preconditions and effects, but they are
also selected based on domain-specific nonfunctional prop-
erties such as, in the case of airline ticket booking, whether
they book flights with a carrier the user prefers, what credit
cards they accept, how trusted they are, etc. By integrat-
ing user preferences into Web service composition, prefer-
ences over services (thehow) can be specified and consid-
ered along side preferences over the solutions (thewhat).

In this paper we recast the problem of Web service com-
position as the task of finding a composition of services that
achieves the task description (specified as a generic proce-
dure in Golog), that achieves the user’s hard constraints, and
that is optimal with respect to the user’s preferences. To
specify user preferences, we exploit a rich qualitative pref-
erence language, based on the LPP language proposed by
Bienvenu et al. to specify users’ preferences in a variant of
linear temporal logic (LTL) [1, 2]. We prove the soundness
of our approach and the optimality of our compositions with
respect to the user’s preferences. Our system can be used to
select the optimal solution from among families of solutions
that achieve the user’s stated objective. Our system is imple-
mented in Prolog and integrated with a selection of scraped
Web services that are appropriate to our test domain of travel
planning.

The work presented here is predicated on the assump-
tion that Web services have been described in a computer-
interpretable form. This is the starting point for most work
on semantic Web services [15] and a great deal of effort has
gone into the development of ontologies for precisely this
purpose. In this paper, Web service descriptions are pre-
sented in FOL,not in one of the typical Semantic Web
languages such as OWL [8] nor more specifically in terms
of a semantic Web service ontology such as OWL-S [12]
or WSMO [3]. Nevertheless, it is of direct significance
to semantic Web services. As noted in (e.g., [12]) pro-
cess models, necessary for Web service composition, can-
not be expressed in OWL while preserving all and only the
intended interpretations of the process model. OWL (and
thus OWL-S) is not sufficiently expressive. Further OWL
reasoners are not designed for the type of inference neces-
sary for Web service composition. For both these reasons,
Web service composition systems generally translate the rel-
evant aspects of service ontologies such as OWL-S into in-
ternal representations such as the Planning Domain Defini-
tion Language (PDDL) that are more amenable to AI plan-
ning (e.g., [22, 9]). Golog served as one of the inspirations
for what is now OWL-S [15] and all the OWL-S constructs
have translations into Golog [16]. Further, the semantics of
the OWL-S process model has been specified in situation
calculus [19]. Thus, our Golog generic procedures can be
expressed in OWL-S and likewise, OWL-S ontologies can
be translated into our formalism. We do not have a cur-

20

rent implementation of this translation, but it is conceptually
straightforward.

2 Situation Calculus and Golog
We use the situation calculus and FOL to describe the func-
tional and nonfunctional properties of our Web services. We
use the agent programming language Golog to specify com-
posite Web services and to specify our generic procedures.
In this section, we review the essentials of situation calculus
and Golog.

The situation calculus is a logical language for specifying
and reasoning about dynamical systems [20]. In the situation
calculus, thestateof the world is expressed in terms of func-
tions and relations (fluents) relativized to a particularsitua-
tion s, e.g.,F (~x, s). In this paper, we distinguish between the
set of fluent predicates,F , and the set of non-fluent pred-
icates,R, representing properties that do not change over
time. A situations is a history of the primitive actions,
a ∈ A, performed from a distinguished initial situationS0.
The functiondo(a, s) maps a situation and an action into a
new situation thus inducing a tree of situations rooted inS0.
Poss(a, s) is true if actiona is possible in situations.

Web services such as the Web exposed application at
www.weather.com are viewed as actions in the situation cal-
culus and are described as actions in terms of a situation
calculus basic action theory,D. The details ofD are not es-
sential to this paper but the interested reader is directed to
[20, 19, 14] for further details.

Golog [20] is a high-level logic programming language
for the specification and execution of complex actions in dy-
namical domains. It builds on top of the situation calculus
by providing Algol-inspired extralogical constructs for as-
sembling primitive situation calculus actions into complex
actions (akaprograms) δ. These complex actions simply
serve as constraints upon the situation tree. Complex action
constructs include the following:

nil – the empty program
a – primitive action
φ? – test action
πx. δ – nondeterministic choice of argument
δ1; δ2 – sequences (δ1 is followed byδ2)
δ1|δ2 – nondeterministic choice betweenδ1 andδ2

if φ then δ1 else δ2 endif – conditional
while φ do δ endW – loop
proc P (~v) δ endProc– procedure

We also include the constructanyorder[δ1, . . . , δn] which
is encoded as the nondeterministic choice of all possible per-
mutaions of the sequencing ofδ1, . . . , δn. The conditional
and while-loop constructs are defined in terms of other con-
structs. For the purposes of Web service composition we
generally treat iteration as finitely bounded by a parameter
k. Such finitely bounded programs are calledtree programs.

if φ then δ1 elseδ2 endIf def
= [φ?; δ1] | [¬φ?; δ2]

while1(φ) δ endWhile def
= if φ then δ endIf 1

whilek(φ) δ endWhile def
=

if φ then [δ; whilek−1(φ)δ endWhile] endIf

These constructs can be used to write programs in the lan-
guage of the domain theory, or more specifically, they can
be used to specify both composite Web services and also
generic procedures for Web service composition. E.g.2,

bookAirT icket(~x) ; if far then bookRentalCar(~y)
else bookTaxi(~y) endIf

bookRentalCar(~x) ; bookHotel(~y).
In order to understand how we modify Golog to incorpo-

rate user preferences, the reader must understand the basics
of Golog semantics. There are two popular semantics for
Golog programs: the original evaluation semantics [20] and
a related single-step transition semantics that was proposed
for on-line execution of concurrent Golog programs [5]. The
transition semantics is axiomatized through two predicates
Trans(δ, s, δ′, s′) andFinal(δ, s). Given an action theoryD,
a programδ and a situations, Transdefines the set of possi-
ble successor configurations (δ′, s′) according to the action
theory. Final defines whether a given program has legally
terminated in a given situation.TransandFinal are defined
for every complex action. A few examples follow. (See [5]
for details):

Trans(nil, s, δ
′

, s
′) ≡ False

Trans(a, s, δ
′

, s
′) ≡ Poss(a[s], s) ∧ δ

′ = nil

∧s
′ = do(a[s], s)

Trans(φ?, s, δ′, s′) ≡ φ[s] ∧ δ
′ = nil ∧ s

′ = s

Trans([δ1; δ2], s, δ
′

, s
′) ≡ Final(δ1, s) ∧ Trans(δ2, s, δ

′

, s
′)

∨ ∃δ′′.δ′ = (δ′′; δ2) ∧ Trans(δ1, s, δ
′′

, s
′)

Trans([δ1 | δ2], s, δ
′

, s
′) ≡ Trans(δ1, s, δ

′

, s
′)

∨ Trans(δ2, s, δ
′

, s
′)

Trans(π(x)δ, s, δ′, s′) ≡ ∃x.T rans(δv
x, s, δ

′

, s
′)

Final(nil, s) ≡ TRUE

Final(a, s) ≡ FALSE

Final([δ1; δ2], s) ≡ Final(δ1, s) ∧ Final(δ2, s)

Thus, given the programbookCar(~x); bookHotel(~y), if the
actionbookCar(~x) is possible in situations, then

Trans([bookCar(~x); bookHotel(~y)], s,
bookHotel(~y), do(bookCar(~x), s))

describes the only possible transition according to the action
theory.do(bookCar(~x), s) is the transition andbookHotel(~y)
is the remaining program to be executed. Using the transi-
tive closure ofTrans, denotedTrans∗, one can define aDo
predicate as follows. ThisDo is equivalent to the original
evaluation semanticsDo [5].

Do(δ, s, s′)
def
= ∃δ′.Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′). (1)

Given a domain theory,D and Golog programδ,
program execution must find a sequence of actions~a
(where ~a is a vector of actions) such that:D |=
Do(δ, S0, do(~a, S0)). Do(δ, S0, do(~a, S0)) denotes that the
Golog programδ, starting execution inS0 will legally ter-
minate in situationdo(~a, S0), wheredo(~a, S0) abbreviates

1if-then-endIf is the obvious variant ofif -then-else-endIf.
2Following convention we will generally refer to fluents

in situation-suppressed form, e.g.,at(Toronto) rather than
at(Toronto, s). Reintroduction of the situation term is denoted
by [s]. Variables are universally quantified unless otherwise noted.

21

do(an, do(an−1, . . . , do(a1, S0))). Thus, given a generic pro-
cedure, described as a Golog programδ, and an initial sit-
uation S0, we would like to infer a terminating situation
do(~a, S0) such that the vector~a denotes a sequence of Web
services that can be performed to realize the generic proce-
dure.

3 Specifying User Preferences
In this section, we describe the syntax of the first-order lan-
guage we use for specifying user preferences. This descrip-
tion follows the LPP language we proposed in [1, 2] for
preference-based planning. The semantics of the language is
described in the situation calculus. We provide an informal
description here, directing the reader to [1, 2] for further de-
tails. Our language is richly expressive, enabling the expres-
sion of static as well as temporal preferences, and action-
centric as well as state-centric preferences. Unlike many
preference languages, it induces a total order over the com-
positions that differ with respect to the preferences, which
avoids the high degree of incomparability experienced by
many other non-quantitative preference languages, and sim-
plifies computation of preferred compositions. Our language
is qualitative, rather than ordinal or quantitative. Unlike
many ordinal preference languages, our language provides
a facility to stipulate the relative strength of preferences. We
claim that its qualitative nature facilitates elicitation.

Illustrative example: To help illustrate our preference lan-
guage, consider the task of travel planning. A generic pro-
cedure, easily specified in Golog, might say:In any order,
book inter-city transportation, book local accommodations
and book local transportation.With this generic procedure
in hand an individual user can specify their hard constraints
(e.g.,Lara needs to be in Chicago July 29-Aug 5, 2009.) to-
gether with a list of preferences described in the language to
follow.

To understand the preference language, consider the com-
position we are trying to generate to be a situation – a se-
quence of actions or Web services executed from the initial
situation. A user specifies his or her preferences in terms of a
single, so-calledGeneral Preference Formula. This formula
is an aggregation of preferences over constituent properties
of situations (i.e., compositions). The basic building block
of our preference formula is aTrajectory Property Formula
which describes properties of (partial) situations (i.e., com-
positions).

Definition 1 (Trajectory Property Formula (TPF)) A trajectory
property formula is a sentence drawn from the smallest setB
where:

1. F ⊂ B
2.R ⊂ B
3. f ∈ F , thenfinal(f) ∈ B
4. If a ∈ A, thenocc(a) ∈ B
5. If ϕ1 andϕ2 are inB, then so are¬ϕ1, ϕ1 ∧ ϕ2,

ϕ1 ∨ ϕ2, (∃x)ϕ1, (∀x)ϕ1, next(ϕ1), always(ϕ1),
eventually(ϕ1), anduntil (ϕ1, ϕ2).

final(f) states that fluentf holds in the final situation,occ(a)
states that actiona occurs in the present situation, and

next(ϕ1), always(ϕ1), eventually(ϕ1), anduntil (ϕ1, ϕ2) are ba-
sic LTL constructs.

TPFs establish properties of preferred situations (i.e.,
compositions of services). By combining TPFs using
boolean connectives we are able to express a wide variety
of properties of situations. E.g.3

final(at(Home)) (P1)

(∃ ~c).occ′(bookAir(~c, Economy, Direct))

∧member(~c, StarAlliance) (P2)

always(¬((∃ ~h).hotelBooked(~h) ∧ hilton(~h))) (P3)

(∃ ~h, ~r).(occ′(bookHotel(~h, ~r)) ∧ starsGE(~r, 3)

paymentOption(~h, V isa) (P4)

P1 states that the user is at home in the final situation. P2
states that at some point the user books a direct economy
flight with a Star Alliance carrier. Recall there was no stipu-
lation in the generic procedure regarding the mode of trans-
portation between cities or locally. P3 states that a Hilton
hotel never be booked while P4 states that at some point the
user books a hotel that accept Visa credit cards and has a
rating of 3 or more.

To define a preference ordering over alternative proper-
ties of situations, we defineAtomic Preference Formulae
(APFs). Each alternative being ordered comprises two com-
ponents: the property of the situation, specified by a TPF,
and avalueterm which stipulates the relative strength of the
preference.

Definition 2 (Atomic Preference Formula (APF)) LetV be a to-
tally ordered set with minimal elementvmin and maximal ele-
mentvmax. An atomic preference formula is a formulaϕ0[v0] ≫
ϕ1[v1] ≫ ... ≫ ϕn[vn], where eachϕi is a TPF, eachvi ∈ V,
vi < vj for i < j, andv0 = vmin. Whenn = 0, atomic preference
formulae correspond to TPFs.

An APF expresses a preference over alternatives. Note that
vmin is the most preferred andvmax is the least preferred. In
what follows, we letV = [0, 1], but we could instead choose
a strictly qualitative set like{best< good< indifferent<
bad < worst} since the operations on these values are lim-
ited tomax andmin. The following APFs express an or-
dering over Lara’s preferences.

P2[0]≫ (∃ ~c, ~w).occ′(bookAir(~c, Economy, ~w))

∧member(~c, StarAlliance)[0.2]

≫ occ′(bookAir(Delta,Economy, Direct))[0.5] (P5)

(∃ ~t).occ′(bookCar(National,~t))[0]

≫ (∃ ~t).occ′(bookCar(Alamo,~t))[0.2]

≫ (∃ ~t).occ′(bookCar(Avis,~t))[0.8] (P6)

(∃ ~c).occ′(bookCar(~c, SUV))[0]

≫ (∃ ~c).occ′(bookCar(~c, Compact))[0.2] (P7)

P5 states that Lara prefers direct economy flights with
a Star Alliance carrier, followed by economy flights with

3To simplify the examples many parameters have been sup-
pressed. For legibility, variables are bold faced, we abbreviate
eventually(occ(ϕ)) by occ′(ϕ), and we refer to the preference for-
mulae by their labels.

22

a Star Alliance carrier, followed by direct economy flights
with Delta airlines. P6 and P7 are preference over cars. Lara
strongly prefers National and then Alamo over Avis, fol-
lowed by all other car-rental companies. Finally she slightly
prefers an SUV over a compact with any other type of car a
distant third.

To allow the user to specify more complex preferences
and to aggregate preferences, General Preference Formulae
(GFPs) extend our language to conditional, conjunctive, and
disjunctive preferences.

Definition 3 (General Preference Formula (GPF)) A formulaΦ
is a general preference formula if one of the following holds:
• Φ is an APF
• Φ is γ : Ψ, whereγ is a TPF

andΨ is a GPF [Conditional]
• Φ is one of

- Ψ0 &Ψ1 & ... &Ψn [General Conjunction]
- Ψ0 | Ψ1 | ... | Ψn [General Disjunction]

wheren ≥ 1 and eachΨi is a GPF.

Continuing our example:
(∀ ~h,~c,~e, ~w).always(¬hotelBooked(~h) :

¬occ′(bookAir(~c,~e, ~w))) (P8)

far : P5 (P9)

P3&P4& P6&P7& P8&P9 (P10)

P8 states that Lara prefers not to book her air ticket until
she has a hotel booked. P9 conditions Lara’s airline prefer-
ences on her destination being far away. (If it is not far, she
will not fly and the preferences are irrelevant.) Finally, P10
aggregates previous preferences into one formula.

Semantics:Informally, the semantics of our preference lan-
guage is achieved through assigning a weight to a situation
s with respect to a GPF,Φ, written ws(Φ). This weight is
a composition of its constituents. For TPFs, a situations is
assigned the valuevmin if the TPF is satisfied ins, vmax

otherwise. Recall that in our example abovevmin = 0 and
vmax = 1, though they could equally well have been a qual-
itative e.g., [excellent, abysmal]. Similarly, given an APF,
and a situations, s is assigned the weight of the best TPF
that it satisfies within the defined APF. Returning to our ex-
ample above, for P6 if a situation (composition) booked a
car from Alamo rental car, it would get a weight of 0.2. Fi-
nally GPF semantics follow the natural semantics of boolean
connectives. As such General Conjunction yields the max-
imum of its constituent GPF weights and General Disjunc-
tion yields the minimum of its constituent GPF weights. For
a full explanation of the situation calculus semantics, please
see [1]. Here we also define further aggregations that can be
performed. These are mostly syntactic sugar that are com-
pelling to the user and we omit them for space.

We conclude this section with the following definition
which shows us how to compare two situations (and thus
two compositions) with respect to a GPF:

Definition 4 (Preferred Situations) A situations1 is at least
as preferred as a situations2 with respect to a GPFΦ, written
pref(s1, s2, Φ) if ws1

(Φ) ≤ ws2
(Φ).

4 Web Service Composition
In this section, we define the notion of Web Service Compo-
sition (WSC) with generic procedures and customizing user
preferences, present an algorithm for computing these com-
positions and prove properties of our algorithm. Our defini-
tion relies on the definition ofDo from (1) in Section 2.

Definition 5 (WSC w/ User Preferences (WSCP))A Web
service composition problem with user preferences is described as
a 5-tuple(D, O, δ, C, Φ) where:
• D is a situation calculus basic action theory describing func-
tional properties of the Web services,
• O is a FOL theory describing the non-functional properties of
the Web services4,
• δ is a generic procedure described in Golog,
• C is a formula expressing hard user constraints, and
• Φ is a GPF describing user preferences.
A Web Service Composition (WSC) is a sequence of Web services~a
such that

D ∧O |= ∃s.Do(δ, S0, s) ∧ s = do(~a, S0) ∧ C(s)

A preferred WSC (WSCP) is a sequence of Web services~a such that

D ∧O |= ∃s.Do(δ, S0, s) ∧ s = do(~a, S0) ∧ C(s)

∧ 6 ∃s′.[Do(δ, S0, s
′) ∧ C(s′) ∧ pref(s′, s, Φ)]

A WSC is a sequence of Web services,~a, whose execution
starting in the initial situation enforces the generic procedure
and hard constraints terminating successfully indo(~a, s). A
WSCP yields a most preferred terminating situation.

4.1 Computing Preferred Compositions
A Golog program places constraints on the situation tree that
evolves fromS0. As such, any implementation of Golog
is effectively doing planning in a constrained search space,
searching for a legal termination of the Golog program. The
actions that define this terminating situation are the plan. In
the case of composing web services, this plan is a web ser-
vice composition.

To compute a preferred composition, WSCP, we search
through this same constrained search space to find themost
preferredterminating situation. Our approach, embodied in
a system called GologPref, searches for this optimal termi-
nating situation by modifying the PPLAN approach to plan-
ning with preferences proposed in [1]. In particular, Golog-
Pref performs best-first search through the constrained
search space resulting from the Golog program,δ; C. The
search is guided by an admissible evaluation function that
evaluates partial plans with respect to whether they satisfy
the preference formula,Φ. The admissible evaluation func-
tion is the optimistic evaluation of the preference formula,
with the pessimistic evaluation and the plan length used as
tie breakers where necessary, in that order.

The preference formulaΦ and the constraintsC are eval-
uated over intermediate situations (partial compositions) by
exploitingprogressionas described in [1]. Informally, pro-
gression takes a situation and a temporal logic formula
(TLF), evaluates the TLF with respect to the state of the

4the content ofD andO would typically come from an OWL-S,
SWSO, or other semantic Web service ontology.

23

situation, and generates a new formula representing those
aspects of the TLF that remain to be satisfied in subsequent
situations.

GologPref(init, pgm, pref)
frontier← INIT FRONTIER (init, pgm, pref)
while frontier 6= ∅

current← REMOVE FIRST(frontier)
% establishes current values forprogPgm, partialPlan,
%state, progPref
if progPgm=nil andoptW=pessW

return partialPlan, optW
end if
neighbours← EXPAND(progPgm, partialPlan,

state, progPref)
frontier← SORTNMERGE BYVAL (neighbours, frontier)

end while
return [], ∞

EXPAND(progPgm, partialPlan, state, progPref) returns a list of
new nodes to add to the frontier. IfpartialPlan=nil then EX-
PAND returns []. Otherwise,EXPAND uses Golog’sTrans to
determine all the executable actions that are legal transitions of
progPgmin stateand to compute the remaining program for each.
It returns a list which contains, for each of these executable ac-
tionsa a node (optW, pessW,newProgPgm, newPartialPlan, new-
State, newProgPref) and for eacha leading to a terminating state,
a second node (realW, realW, nil, newPartialPlan, newState, new-
ProgPref).

Figure 1: A sketch of the GologPref algorithm.

Fig 1 provides a sketch of the basic GologPref algorithm
following from PPLAN. The full GologPref algorithm takes
as input a 5-tuple(D, O, δ, C, Φ). For ease of explication,
our algorithm sketch in Fig 1 explictly identifies the initial
situation ofD, init, the Golog program,δ; C which we refer
to aspgmandΦ, which we refer to aspref. GologPref re-
turns a sequence of Web services, i.e. a plan, and the weight
of that plan. Thefrontier is a list of nodes of the form [optW,
pessW, pgm, partialPlan, state, pref], sorted by optimistic
weight, pessimistic weight, and then by length. The frontier
is initialized to the input program and the empty partial plan,
its optW, pessW, andpref corresponding to the progression
and evaluation of the input preference formula in the initial
state.

On each iteration of thewhile loop, GologPref removes
the first node from the frontier and places it incurrent. If
the Golog program ofcurrent is nil then the situation asso-
ciated with this node is a terminating situation. If it is also
the case thatoptW=pessW, then GologPref returnscurrent’s
partial plan and weight. Otherwise, it calls the functionEX-
PAND with current’snode as input.

EXPAND returns a new list of nodes to add to the frontier.
If progPgmis nil then no new nodes are added to the fron-
tier. Otherwise,EXPAND generates a new set of nodes of the
form [optW, pessW, prog, partialPlan, state, pref], one for
each action that is a legal Golog transition ofpgm in state.
For actions leading to terminating states,EXPAND also gen-
erates a second node of the same form but withoptW and
pessWreplaced by the actual weight achieved by the plan.

The new nodes generated byEXPAND are then sorted by
optW, pessW, then length and merged with the remainder of
the frontier. If we reach the empty frontier, we exit thewhile
loop and return the empty plan.

We now prove the correctness of our algorithm.

Theorem 1 (Soundness and Optimality)
Let P=(D, O, δ, C, Φ) be a Web service composition problem,

whereδ is a tree program. Let~a be the plan returned by Golog-
Pref from inputP . Then~a is a WSCP of(D, O, δ, C, Φ).

Proof sketch:We prove that the algorithm terminates ap-
pealing to the fact thatδ is a tree program. Then we prove
that~a is a WSC by cases overTransandFinal. Finally we
prove that~a is also optimal, by exploiting the correctness of
progression of preference formuale proven in [1], the admis-
sibility of our evaluation function, and the bounded size of
the search space generated by the Golog programδ; C.

4.2 Integrated Optimal Web Service Selection
Most Web service composition systems use AI planning
techniques and as such generally ignore the important prob-
lem of Web service selection or discovery, assuming it will
be done by a separate matchmaker. The work presented here
is significant because it enables the selection of services for
composition based, not only on their inputs, outputs, pre-
conditions and effects but also based on other nonfunctional
properties. As such, users are able to specify properties of
services that they desire along side other properties of their
preferred solution, and services are selected that optimize
for the users preferences in the context of the overall com-
position.

To see how selection of services can be encoded in our
system, we reintroduce the service parameter~u which was
suppressed from the example preferences in Section 3. Re-
visiting P2, we see how the selection of a service~u is easily
realized within our preference framework with preference
P2’.

(∃ ~c, ~u).occ′(bookAir(~c, Economy, Direct, ~u))

∧member(~c, StarAlliance)

∧ serviceType(~u, AirT icketV endor)

∧sellsT ickets(~u,~c) (P2’)

P2’ causes GologPref to prefer booking air tickets with
an air ticket vendor that sells the tickets of a carrier that is a
member of Star Alliance.

5 Implementation and Application
We have implemented the generation of Web Service com-
positions using generic procedures and customizing user
preferences as described in previous sections. Our im-
plementation, GologPref, builds on an implementation of
PPLAN[1] and an implementation of IndiGolog [20] both
in SWI Prolog5.

GologPref interfaces with Web services through the im-
plementation of domain-specific scrapers developed using

5See [20] for a description of the translation ofD to Prolog.

24

AgentBuilder 3.2, and AgentRunner 3.2, Web agent design
applications developed by Fetch Technologiesc©. Among
the sites we have scraped are Mapquest, and several air, car
and hotel services. The information gathered is collected in
XML and then processed by GologPref.

We tested GologPref in the domain of travel planning.
Our tests serve predominantly as a proof of the concept and
to illustrate the utility of GologPref.

Our generic procedure which is represented in Golog was
very simple, allowing flexibility in how it could be instanti-
ated. What follows is an example of the Prolog encoding of
a GologPref generic procedure.

anyorder[bookAcc, bookCityToCityTranspo,
bookLocalTranspo]

proc(bookAcc(Location, Day, Num),
[stayWithFriends(Location) |

bookHotel(Location, Day, Num)]).

proc(bookLocalTranspo(Location, SDay, RDay),
[getRide(Location, SDay, RDay) |

walk(Location) |
bookCar(Location, SDay, RDay)]).

proc(bookCityToCityTranspo(Orig, Des, SDay, RDay),
[getRide(Orig, Des, SDay, RDay) |

bookAir(Orig, Des, SDay, RDay) |
bookCar(Orig, Des, SDay, RDay)]).

We tested our GologPref generic procedure with 3 differ-
ent user profiles: Jack the impoverished university student,
Lara the picky frequent flyer, and Conrad the corporate ex-
ecutive who likes timely luxury travel. Each user lived in
Toronto and wanted to be in Chicago for specific days. A
set of rich user preferences were defined for each user along
the lines of those illustrated in Section 3. These preferences
often required access to different Web information, such as
driving distances.

Not surprisingly, in all cases, GologPref found the optimal
WSC for the user. Compositions varied greatly ranging from
Jack who arranged accommodations with friends; checked
out the distance to his local destinations and then arranged
his local transportation (walking since his local destination
was close to where he was staying); then once his accom-
modations were confirmed, booking an economy air ticket
Toronto-Chicago with one stop on US Airways with Expe-
dia. Lara on the other hand, booked a hotel (not Hilton),
booked an intermediate-sized car with National, and a direct
economy air ticket with Star Alliance partner Air Canada via
the Air Canada Web site. The optimality and the diversity of
the compositions, all from the same generic procedure, il-
lustrate the flexibility afforded by the WSCP approach.

Figure 2 shows the number of nodes expanded relative
to the search space size for 6 test scenarios. The full
search space represents all possible combinations of city-
to-city transportation, accommodations and local transporta-
tion available to the users which could have been considered.
These results illustrate the effectiveness of the heuristic used
to find optimal compositions.

CASE NODES NODES T I ME FULL SEARCH

EXPANDED CONSIDERED (SEC) SPACE

1 104 1700 14.38 28,512
2 102 1647 13.71 28,512
3 27 371 2.06 28,512
4 27 368 2.09 28,512
5 99 1692 14.92 28,512
6 108 1761 14.97 28,512

Figure 2: Test results for 6 scenarios run under 64bit Ubuntu
Linux with 2.66 GHz CPU.

6 Summary and Related Work
In this paper we argued that the integration of user prefer-
ences into Web service composition was a key missing com-
ponent of Web service composition. Building on our pre-
vious framework for Web service composition via generic
procedures [14] and our work on preference-based plan-
ning [1], we proposed a system for Web service composi-
tion with user preferences. Key contributions of this paper
include: characterization of the task of Web service compo-
sition with generic procedures and user preferences, provi-
sion of a previously developed language for specifying user
preferences, provision of the GologPref algorithm that in-
tegrates preference-based reasoning into Golog, a proof of
the soundness and optimality of GologPref with respect to
the user’s preferences, and a working implementation of our
GologPref algorithm. A notable side effect of our frame-
work is the seamless integration of Web service selection
with the composition process.

We tested GologPref on 6 diverse scenarios applied to the
same generic procedure. Results illustrated the diversity of
compositions that could be generated from the same generic
procedure. The number of nodes expanded by the heuris-
tic search was several orders of magnitude smaller than the
grounded search space, illustrating the effectiveness of the
heuristic and the Golog program in guiding search.

A number of researchers have advocated using AI plan-
ning techniques to address the task of Web service compo-
sition including using regression-based planners [13], plan-
ners based on model checking (e.g., [28]), highly optimized
hierarchical task network (HTN) planners such as SHOP2
(e.g., [21]), and a combination of classical and HTN plan-
ning called XPLAN [9]. Like Golog, HTNs afford the user
the ability to define a generic procedure ortemplateof how
to perform a task.

Sirin et al. incorporated simple service preferences into
the SHOP2 HTN planner to achieve dynamic service bind-
ing [22]. Their preference language is significantly less ex-
pressive than the one presented here and is restricted to the
task of service selection rather than solution optimization.
Nevertheless, it is a promising start. Also related is the work
by Fritz and the third author in which theyprecompileda
subset of the preference language presented here into Golog
programs that were then integrated with a decision-theoretic
Golog (DTGolog) program [6]. The main objective of this
work was to provide a means of integrating qualitative and
quantitative preferences for agent programming. While both

25

used a form of Golog, the form and processing of prefer-
ences was quite different.

Since the original publication of this work, preference-
based planning has been the subject of much interest,
spurred on in great part by three tracks on planning with
preferences at the 2006 International Planning Competition
(IPC-5). A number of preference-based planners were de-
veloped, including one by a subset of the authors, all based
on the competition’s PDDL3 language [7]. The most no-
table new work that is directly related to this paper is that
of [11]. In this paper, the authors propose a prototype HTN
preference-based planner,SCUP, tailored to the task of Web
service composition and that uses PDDL3 as its preference
specification language.

We also have two follow-up pieces of work [24] and [23]
in which we specify flexible templates in the form of an
HTN rather than a Golog generic procedure. In [24] we
proposed a qualitative language very similar to the prefer-
ence language discussed in this paper but tailored to HTN
planning. In [23] we extended PDDL3 with HTN-specific
preference constructs. The proposed planners employ state
of the art heuristic guided search and algorithms that exploit
HTN-specific preferences and control. In contrast to the
work presented here, optimality is not guaranteed without
exhaustive search. In future work, we would like to improve
the GologPref algorithm with the addition of more informa-
tive inadmissible heuristics coupled with branch and bound
search. We would also like to exploit a recent extension to
the LPP preference language to include preferences over the
occurrence of Golog complex actions [2].

References
[1] M. Bienvenu, C. Fritz, and S. McIlraith. Planning with qual-

itative temporal preferences. InKR, pages 134–144, 2006.

[2] M. Bienvenu, C. Fritz, and S. McIlraith. Specifying and gen-
erating preferred plans. 2009. Submitted for publication.

[3] J. De Bruijn, H. Lausen, A. Polleres, and D. Fensel. The web
service modeling language WSML: An overview. Technical
report, DERI, 2006.

[4] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenz-
erini, Massimo Mecella, and Fabio Patrizi. Automatic ser-
vice composition and synthesis: the Roman Model.IEEE
Data Eng. Bull., 31(3):18–22, 2008.

[5] G. De Giacomo, Y. Lespérance, and H. Levesque. ConGolog,
a concurrent programming language based on the situation
calculus.AIJ, 121(1–2):109–169, 2000.

[6] C. Fritz and S. McIlraith. Decision-theoretic golog with qual-
itative preferences. InKR, pages 153–163, Lake District, UK,
June 2006.

[7] Alfonso Gerevini and Derek Long. Plan constraints and pref-
erences for PDDL3. Technical Report 2005-08-07, Univer-
sity of Brescia, 2005.

[8] I. Horrocks, P. Patel-Schneider, and F. van Harmelen. From
SHIQ and RDF to OWL: The making of a web ontology
language.Journal of Web Semantics, 1(1):7–26, 2003.

[9] M. Klusch, A. Gerber, and M. Schmidt. Semantic web service
composition planning with OWLS-Xplan. InAAAI-05 Fall
Symposium, 2005.

[10] C. A. Knoblock, S. Minton, J. Luis Ambite, M. Muslea, J. Oh,
and M. Frank. Mixed-initiative, multi-source information as-
sistants. InWWW, pages 697–707, 2001.

[11] Naiwen Lin, Ugur Kuter, and Evren Sirin. Web service com-
position with user preferences. InESWC-08, pages 629–643,
2008.

[12] D. Martin, M. Burstein, D. McDermott, S. McIlraith,
M. Paolucci, K. Sycara, D. McGuinness, E. Sirin, and
N. Srinivasan. Bringing semantics to web services with
OWL-S. World Wide Web Journal, 10(3):243–277, 2007.

[13] D. V. McDermott. Estimated-regression planning for interac-
tions with web services. InAIPS, pages 204–211, 2002.

[14] S. McIlraith and T. Son. Adapting golog for composition
of semantic web services. InKR, pages 482–493, Toulouse,
France, April 22-25 2002.

[15] S. McIlraith, T. Son, and H. Zeng. Semantic Web services.
In IEEE Intelligent Systems (Special Issue on the Semantic
Web), volume 16, March/April 2001.

[16] Sheila McIlraith and Ronald Fadel. Planning with complex
actions. InNMR-02, pages 356–364, 2002.

[17] K. Myers. Strateigc advice for hierarchical planners. InPrin-
ciples of Knowledge Representation and Reasoning: Proc.
of the 5th International Conference (KR96), pages 112–123.
Morgan Kaufmann, 1996.

[18] K. Myers. Planning with conflicting advice. InAIPS, pages
355–362, 2000.

[19] S. Narayanan and S. McIlraith. Simulation, verification
and automated composition of web services. InProc. of
the 11th International World Wide Web Conference (WWW-
2002), May 2002.

[20] R. Reiter. Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT Press,
Cambridge, MA, 2001.

[21] E. Sirin, B. Parsia, and J. Hendler. Template-based composi-
tion of semantic web services. InAAAI-05 Fall Symposium
on Agents and the Semantic Web, 2005.

[22] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN
planning for web service composition using SHOP2.Journal
of Web Semantics, 1(4):377–396, 2005.

[23] S. Sohrabi, J. Baier, and S. McIlraith. HTN planning with
preferences. InIJCAI, 2009.

[24] S. Sohrabi and S. A. McIlraith. On planning with prefer-
ences in HTN. In12th International Workshop on Non-
Monotonic Reasoning (NMR-08), pages 241–248, Sydney,
Australia, 2008.

[25] S. Sohrabi and S. A. McIlraith. Optimizing web service com-
position while enforcing regulations. InISWC, 2009. To ap-
pear.

[26] S. Sohrabi, N. Prokoshyna, and S. A. McIlraith. Web ser-
vice composition via generic procedures and customizing
user preferences. InISWC, pages 597–611, 2006.

[27] S. Sohrabi, N. Prokoshyna, and S. A. McIlraith. Web service
composition via the customization of Golog programs with
user preferences. InConceptual Modeling: Foundations and
Applications: Essays in Honor of John Mylopoulos, pages
319–334. Springer-Verlag, 2009.

[28] P. Traverso and M. Pistore. Automatic composition of seman-
tic web services into executable processes. InISWC, 2004.

26

