
Web Service Composition via the Customization of Golog Programs with User
Preferences

Shirin Sohrabi and Nataliya Prokoshyna and Sheila A. McIlraith
Department of Computer Science, University of Toronto, Toronto, Canada.

{shirin,nataliya,sheila}@cs.toronto.edu

Abstract
We claim that user preferences are a key component of effective

Web service composition, and one that has largely been ignored. In
this paper we propose a means of specifying and intergrating user
preferences into Web service composition. To this end, we propose
a means of performing automated Web service composition by ex-
ploiting a flexible template of the composition in the form of a
generic procedure. This template is augmented by a rich specifica-
tion of user preferences that guide the instantiation of the template.
We exploit the agent programming language Golog to represent
our templates as Golog generic procedures and we exploit a first-
order preference language to represent rich qualitative temporally-
extended user preferences. From these we generate Web service
compositions that realize a given generic procedure, satisfying the
user’s hard constraints and optimizing for the user’s preferences.
We prove our approach is sound and optimal. Our system, Golog-
Pref, is implemented and interacting with services on the Web. The
language and techniques proposed in this paper can be integrated
into a variety of approaches to Web or Grid service composition.

Preamble
The work that follows first appeared in the proceedings
of the 5th International Semantic Web Conference (ISWC
2006) [26] and was recently reprinted in [27]. These archival
publications are the appropriate references for this work.
The text that follows has been shortened to address length re-
strictions and modified slightly to address referee comments.

We wanted to share this work with participants in the
ICAPS 2009 Workshop on Generalized Planning because it
presents a particular approach to specifying and instantiating
generalized plans, as well as describing a well-motivated ap-
plication for generalized plans – Web service composition.
The approach advocated in this paper is to represent a solu-
tion to a family of planning problems as a template or work-
flow scaffold, which is a form of generalized plan. In this
paper, we use Golog to specify the template, in more recent
work on Web service composition, we have used Hierarchi-
cal Task Networks (HTNs) [25].

A key observation of this work is that the task of creat-
ing a generalized plan is something that can often be per-
formed manually because the template is simple, but that
the instantiation of that template into a high-quality plan can
necessitate a number of decision points because of nondeter-
minism in the template, and that this presents a significant
conceptual and computational challenge. We hold that this
challenge is best addressed by specifying desirable proper-
ties of the plan in terms of preferences and constraints, and

generating plan instances that optimize these desirable prop-
erties. The need to provide further advise to generalized
plans was first observed by Myers and colleagues, precip-
itating a body of work on advisable plans that augmented
HTNs with hard and soft advice on how to decompose the
HTN [17, 18]. The need for optimization in the instantiation
of generalized plans is particularly clearly illustrated with
Web service composition where the large number of avail-
able services and the large volume of Web data translates
into execution-time choice points over service selection and
action groundings.

Both HTNs and Golog have a rich history in terms of their
ability to specify generalized plans. Generalized plans have
also been specified as automata (e.g., [4]) and as hierarchi-
cal constraint networks (e.g., [10], and both of these tech-
niques have been applied to Web service composition, but
without any preference specification. Clearly all of these
techniques, including those described below, are applicable
to a diversity of applications beyond Web service compo-
sition, including business process modeling and execution,
and controller synthesis.

1 Introduction
Web services provide a standardized means for diverse, dis-
tributed software applications to be published on the Web
and to interoperate seamlessly. Simple Web accessible pro-
grams are described using machine-processable descriptions
and can be loosely composed together to achieve complex
behaviour. The weather service at www.weather.com and
the flight-booking services at www.aircanada.ca, are exam-
ples of Web applications that can be described and com-
posed as Web services. They might be coupled as part of
a travel-booking service, for example.

Automated Web service composition is one of many
interesting challenges facing the Semantic Web. Given
computer-interpretable descriptions of: the task to be per-
formed, the properties and capabilities of available Web ser-
vices, and possibly some information about the client or
user’s specific constraints,automated Web service composi-
tion requires a computer program to automatically select, in-
tegrate and invoke multiple Web services in order to achieve
the specified task in accordance with any user-specific con-
straints. Compositions of Web or Grid services are neces-
sary for realizing both routine and complex tasks on the Web
(resp. Grid) without the need for time-consuming manual

19

composition and integration of information. Compositions
are also a useful way of enforcing business rules and poli-
cies in both Web and Grid computing.

Fully automated Web service composition has been char-
acterized as akin to both an artificial intelligence (AI) plan-
ning task and to a restricted software synthesis task (e.g.,
[14]). A composition can be achieved using classical AI
planning techniques by conceiving services as primitive or
complex actions and the task description specified as a (final
state) goal (e.g., [13, 28]). This approach has its drawbacks
when dealing with data. In general, the search space for a
composition (aka plan) is huge because of the large number
of available services (actions), which grow far larger with
grounding for data.

A reasonable middle ground which we originally pro-
posed in [15, 14] is to specify a flexible template of the
composition in the form of ageneric procedureand to cus-
tomize such a procedure withuser constraints. We argued
that many of the tasks performed on the Web or on intranets
are repeated routinely, and the basic steps to achieving these
tasks are well understood, at least at an abstract level – travel
planning is one such example. Nevertheless, the realization
of such tasks varies as it is tailored to individual users. As
such, our proposal was to specify such tasks using a work-
flow template or generic procedure and to customize the pro-
cedure with user constraints at run time. Such an approach is
generally of the same complexity as planning but the search
space is greatly reduced, and as such significantly more effi-
cient than planning without such generic advice.

In [14] we proposed to use an augmented version of
the agent programming language Golog [20] to specify our
generic procedures or workflows with sufficient nondeter-
minism to allow for customization. (E.g.,“book inter-city
transportation, local transportation and accommodations in
any order”). User constraints (e.g.,“I want to fly with Air
Canada.”) were limited to hard constraints (as opposed to
“soft”), were specified in first-order logic (FOL), and were
applied to the generic procedure at run-time to generate a
user-specific composition of services. A similar approach
was adopted using hierarchical task networks (HTNs) to
represent generic procedures or templates, and realized us-
ing the HTN planner, SHOP2 (e.g., [22]) without user cus-
tomization of the HTN template.

In this paper, we extend our Golog framework for Web
service composition, customizing Golog generic procedures
not only with hard constraints but withsoftuser constraints
(henceforth referred to aspreferences). These preferences
are defeasible and may not be mutually achievable. We ar-
gue that user preferences are a critical and missing compo-
nent of most existing approaches to Web service composi-
tion. User preferences are key for at least two reasons. First,
the user’s task (specified as a goal and/or generic procedure
with user constraints) is often under constrained. As such,
it induces a family of solutions. User preferences enable a
user to specify properties of solutions that make them more
or less desirable. The composition system can use these to
generate preferred solutions.

A second reason why user preferences are critical to Web
service composition is with respect tohow the composition

is performed. A key component of Web service composition
is the selection of specific services used to realize the com-
position. In AI planning, primitive actions (the analogue of
services) are selected for composition based on their pre-
conditions and effects, and there is often only one primitive
action that realizes a particular effect. Like actions, services
are selected for composition based on functional properties
such as inputs, output, preconditions and effects, but they are
also selected based on domain-specific nonfunctional prop-
erties such as, in the case of airline ticket booking, whether
they book flights with a carrier the user prefers, what credit
cards they accept, how trusted they are, etc. By integrat-
ing user preferences into Web service composition, prefer-
ences over services (thehow) can be specified and consid-
ered along side preferences over the solutions (thewhat).

In this paper we recast the problem of Web service com-
position as the task of finding a composition of services that
achieves the task description (specified as a generic proce-
dure in Golog), that achieves the user’s hard constraints, and
that is optimal with respect to the user’s preferences. To
specify user preferences, we exploit a rich qualitative pref-
erence language, based on the LPP language proposed by
Bienvenu et al. to specify users’ preferences in a variant of
linear temporal logic (LTL) [1, 2]. We prove the soundness
of our approach and the optimality of our compositions with
respect to the user’s preferences. Our system can be used to
select the optimal solution from among families of solutions
that achieve the user’s stated objective. Our system is imple-
mented in Prolog and integrated with a selection of scraped
Web services that are appropriate to our test domain of travel
planning.

The work presented here is predicated on the assump-
tion that Web services have been described in a computer-
interpretable form. This is the starting point for most work
on semantic Web services [15] and a great deal of effort has
gone into the development of ontologies for precisely this
purpose. In this paper, Web service descriptions are pre-
sented in FOL,not in one of the typical Semantic Web
languages such as OWL [8] nor more specifically in terms
of a semantic Web service ontology such as OWL-S [12]
or WSMO [3]. Nevertheless, it is of direct significance
to semantic Web services. As noted in (e.g., [12]) pro-
cess models, necessary for Web service composition, can-
not be expressed in OWL while preserving all and only the
intended interpretations of the process model. OWL (and
thus OWL-S) is not sufficiently expressive. Further OWL
reasoners are not designed for the type of inference neces-
sary for Web service composition. For both these reasons,
Web service composition systems generally translate the rel-
evant aspects of service ontologies such as OWL-S into in-
ternal representations such as the Planning Domain Defini-
tion Language (PDDL) that are more amenable to AI plan-
ning (e.g., [22, 9]). Golog served as one of the inspirations
for what is now OWL-S [15] and all the OWL-S constructs
have translations into Golog [16]. Further, the semantics of
the OWL-S process model has been specified in situation
calculus [19]. Thus, our Golog generic procedures can be
expressed in OWL-S and likewise, OWL-S ontologies can
be translated into our formalism. We do not have a cur-

20

situation, and generates a new formula representing those
aspects of the TLF that remain to be satisfied in subsequent
situations.

GologPref(init, pgm, pref)
frontier← INIT FRONTIER (init, pgm, pref)
while frontier 6= ∅

current← REMOVE FIRST(frontier)
% establishes current values forprogPgm, partialPlan,
%state, progPref
if progPgm=nil andoptW=pessW

return partialPlan, optW
end if
neighbours← EXPAND(progPgm, partialPlan,

state, progPref)
frontier← SORTNMERGE BYVAL (neighbours, frontier)

end while
return [], ∞

EXPAND(progPgm, partialPlan, state, progPref) returns a list of
new nodes to add to the frontier. IfpartialPlan=nil then EX-
PAND returns []. Otherwise,EXPAND uses Golog’sTrans to
determine all the executable actions that are legal transitions of
progPgmin stateand to compute the remaining program for each.
It returns a list which contains, for each of these executable ac-
tionsa a node (optW, pessW,newProgPgm, newPartialPlan, new-
State, newProgPref) and for eacha leading to a terminating state,
a second node (realW, realW, nil, newPartialPlan, newState, new-
ProgPref).

Figure 1: A sketch of the GologPref algorithm.

Fig 1 provides a sketch of the basic GologPref algorithm
following from PPLAN. The full GologPref algorithm takes
as input a 5-tuple(D, O, δ, C, Φ). For ease of explication,
our algorithm sketch in Fig 1 explictly identifies the initial
situation ofD, init, the Golog program,δ; C which we refer
to aspgmandΦ, which we refer to aspref. GologPref re-
turns a sequence of Web services, i.e. a plan, and the weight
of that plan. Thefrontier is a list of nodes of the form [optW,
pessW, pgm, partialPlan, state, pref], sorted by optimistic
weight, pessimistic weight, and then by length. The frontier
is initialized to the input program and the empty partial plan,
its optW, pessW, andpref corresponding to the progression
and evaluation of the input preference formula in the initial
state.

On each iteration of thewhile loop, GologPref removes
the first node from the frontier and places it incurrent. If
the Golog program ofcurrent is nil then the situation asso-
ciated with this node is a terminating situation. If it is also
the case thatoptW=pessW, then GologPref returnscurrent’s
partial plan and weight. Otherwise, it calls the functionEX-
PAND with current’snode as input.

EXPAND returns a new list of nodes to add to the frontier.
If progPgmis nil then no new nodes are added to the fron-
tier. Otherwise,EXPAND generates a new set of nodes of the
form [optW, pessW, prog, partialPlan, state, pref], one for
each action that is a legal Golog transition ofpgm in state.
For actions leading to terminating states,EXPAND also gen-
erates a second node of the same form but withoptW and
pessWreplaced by the actual weight achieved by the plan.

The new nodes generated byEXPAND are then sorted by
optW, pessW, then length and merged with the remainder of
the frontier. If we reach the empty frontier, we exit thewhile
loop and return the empty plan.

We now prove the correctness of our algorithm.

Theorem 1 (Soundness and Optimality)
Let P=(D, O, δ, C, Φ) be a Web service composition problem,

whereδ is a tree program. Let~a be the plan returned by Golog-
Pref from inputP . Then~a is a WSCP of(D, O, δ, C, Φ).

Proof sketch:We prove that the algorithm terminates ap-
pealing to the fact thatδ is a tree program. Then we prove
that~a is a WSC by cases overTransandFinal. Finally we
prove that~a is also optimal, by exploiting the correctness of
progression of preference formuale proven in [1], the admis-
sibility of our evaluation function, and the bounded size of
the search space generated by the Golog programδ; C.

4.2 Integrated Optimal Web Service Selection
Most Web service composition systems use AI planning
techniques and as such generally ignore the important prob-
lem of Web service selection or discovery, assuming it will
be done by a separate matchmaker. The work presented here
is significant because it enables the selection of services for
composition based, not only on their inputs, outputs, pre-
conditions and effects but also based on other nonfunctional
properties. As such, users are able to specify properties of
services that they desire along side other properties of their
preferred solution, and services are selected that optimize
for the users preferences in the context of the overall com-
position.

To see how selection of services can be encoded in our
system, we reintroduce the service parameter~u which was
suppressed from the example preferences in Section 3. Re-
visiting P2, we see how the selection of a service~u is easily
realized within our preference framework with preference
P2’.

(∃ ~c, ~u).occ′(bookAir(~c, Economy, Direct, ~u))

∧member(~c, StarAlliance)

∧ serviceType(~u, AirT icketV endor)

∧sellsT ickets(~u,~c) (P2’)

P2’ causes GologPref to prefer booking air tickets with
an air ticket vendor that sells the tickets of a carrier that is a
member of Star Alliance.

5 Implementation and Application
We have implemented the generation of Web Service com-
positions using generic procedures and customizing user
preferences as described in previous sections. Our im-
plementation, GologPref, builds on an implementation of
PPLAN[1] and an implementation of IndiGolog [20] both
in SWI Prolog5.

GologPref interfaces with Web services through the im-
plementation of domain-specific scrapers developed using

5See [20] for a description of the translation ofD to Prolog.

24

AgentBuilder 3.2, and AgentRunner 3.2, Web agent design
applications developed by Fetch Technologiesc©. Among
the sites we have scraped are Mapquest, and several air, car
and hotel services. The information gathered is collected in
XML and then processed by GologPref.

We tested GologPref in the domain of travel planning.
Our tests serve predominantly as a proof of the concept and
to illustrate the utility of GologPref.

Our generic procedure which is represented in Golog was
very simple, allowing flexibility in how it could be instanti-
ated. What follows is an example of the Prolog encoding of
a GologPref generic procedure.

anyorder[bookAcc, bookCityToCityTranspo,
bookLocalTranspo]

proc(bookAcc(Location, Day, Num),
[stayWithFriends(Location) |

bookHotel(Location, Day, Num)]).

proc(bookLocalTranspo(Location, SDay, RDay),
[getRide(Location, SDay, RDay) |

walk(Location) |
bookCar(Location, SDay, RDay)]).

proc(bookCityToCityTranspo(Orig, Des, SDay, RDay),
[getRide(Orig, Des, SDay, RDay) |

bookAir(Orig, Des, SDay, RDay) |
bookCar(Orig, Des, SDay, RDay)]).

We tested our GologPref generic procedure with 3 differ-
ent user profiles: Jack the impoverished university student,
Lara the picky frequent flyer, and Conrad the corporate ex-
ecutive who likes timely luxury travel. Each user lived in
Toronto and wanted to be in Chicago for specific days. A
set of rich user preferences were defined for each user along
the lines of those illustrated in Section 3. These preferences
often required access to different Web information, such as
driving distances.

Not surprisingly, in all cases, GologPref found the optimal
WSC for the user. Compositions varied greatly ranging from
Jack who arranged accommodations with friends; checked
out the distance to his local destinations and then arranged
his local transportation (walking since his local destination
was close to where he was staying); then once his accom-
modations were confirmed, booking an economy air ticket
Toronto-Chicago with one stop on US Airways with Expe-
dia. Lara on the other hand, booked a hotel (not Hilton),
booked an intermediate-sized car with National, and a direct
economy air ticket with Star Alliance partner Air Canada via
the Air Canada Web site. The optimality and the diversity of
the compositions, all from the same generic procedure, il-
lustrate the flexibility afforded by the WSCP approach.

Figure 2 shows the number of nodes expanded relative
to the search space size for 6 test scenarios. The full
search space represents all possible combinations of city-
to-city transportation, accommodations and local transporta-
tion available to the users which could have been considered.
These results illustrate the effectiveness of the heuristic used
to find optimal compositions.

CASE NODES NODES T I ME FULL SEARCH

EXPANDED CONSIDERED (SEC) SPACE

1 104 1700 14.38 28,512
2 102 1647 13.71 28,512
3 27 371 2.06 28,512
4 27 368 2.09 28,512
5 99 1692 14.92 28,512
6 108 1761 14.97 28,512

Figure 2: Test results for 6 scenarios run under 64bit Ubuntu
Linux with 2.66 GHz CPU.

6 Summary and Related Work
In this paper we argued that the integration of user prefer-
ences into Web service composition was a key missing com-
ponent of Web service composition. Building on our pre-
vious framework for Web service composition via generic
procedures [14] and our work on preference-based plan-
ning [1], we proposed a system for Web service composi-
tion with user preferences. Key contributions of this paper
include: characterization of the task of Web service compo-
sition with generic procedures and user preferences, provi-
sion of a previously developed language for specifying user
preferences, provision of the GologPref algorithm that in-
tegrates preference-based reasoning into Golog, a proof of
the soundness and optimality of GologPref with respect to
the user’s preferences, and a working implementation of our
GologPref algorithm. A notable side effect of our frame-
work is the seamless integration of Web service selection
with the composition process.

We tested GologPref on 6 diverse scenarios applied to the
same generic procedure. Results illustrated the diversity of
compositions that could be generated from the same generic
procedure. The number of nodes expanded by the heuris-
tic search was several orders of magnitude smaller than the
grounded search space, illustrating the effectiveness of the
heuristic and the Golog program in guiding search.

A number of researchers have advocated using AI plan-
ning techniques to address the task of Web service compo-
sition including using regression-based planners [13], plan-
ners based on model checking (e.g., [28]), highly optimized
hierarchical task network (HTN) planners such as SHOP2
(e.g., [21]), and a combination of classical and HTN plan-
ning called XPLAN [9]. Like Golog, HTNs afford the user
the ability to define a generic procedure ortemplateof how
to perform a task.

Sirin et al. incorporated simple service preferences into
the SHOP2 HTN planner to achieve dynamic service bind-
ing [22]. Their preference language is significantly less ex-
pressive than the one presented here and is restricted to the
task of service selection rather than solution optimization.
Nevertheless, it is a promising start. Also related is the work
by Fritz and the third author in which theyprecompileda
subset of the preference language presented here into Golog
programs that were then integrated with a decision-theoretic
Golog (DTGolog) program [6]. The main objective of this
work was to provide a means of integrating qualitative and
quantitative preferences for agent programming. While both

25

used a form of Golog, the form and processing of prefer-
ences was quite different.

Since the original publication of this work, preference-
based planning has been the subject of much interest,
spurred on in great part by three tracks on planning with
preferences at the 2006 International Planning Competition
(IPC-5). A number of preference-based planners were de-
veloped, including one by a subset of the authors, all based
on the competition’s PDDL3 language [7]. The most no-
table new work that is directly related to this paper is that
of [11]. In this paper, the authors propose a prototype HTN
preference-based planner,SCUP, tailored to the task of Web
service composition and that uses PDDL3 as its preference
specification language.

We also have two follow-up pieces of work [24] and [23]
in which we specify flexible templates in the form of an
HTN rather than a Golog generic procedure. In [24] we
proposed a qualitative language very similar to the prefer-
ence language discussed in this paper but tailored to HTN
planning. In [23] we extended PDDL3 with HTN-specific
preference constructs. The proposed planners employ state
of the art heuristic guided search and algorithms that exploit
HTN-specific preferences and control. In contrast to the
work presented here, optimality is not guaranteed without
exhaustive search. In future work, we would like to improve
the GologPref algorithm with the addition of more informa-
tive inadmissible heuristics coupled with branch and bound
search. We would also like to exploit a recent extension to
the LPP preference language to include preferences over the
occurrence of Golog complex actions [2].

References
[1] M. Bienvenu, C. Fritz, and S. McIlraith. Planning with qual-

itative temporal preferences. InKR, pages 134–144, 2006.

[2] M. Bienvenu, C. Fritz, and S. McIlraith. Specifying and gen-
erating preferred plans. 2009. Submitted for publication.

[3] J. De Bruijn, H. Lausen, A. Polleres, and D. Fensel. The web
service modeling language WSML: An overview. Technical
report, DERI, 2006.

[4] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenz-
erini, Massimo Mecella, and Fabio Patrizi. Automatic ser-
vice composition and synthesis: the Roman Model.IEEE
Data Eng. Bull., 31(3):18–22, 2008.

[5] G. De Giacomo, Y. Lespérance, and H. Levesque. ConGolog,
a concurrent programming language based on the situation
calculus.AIJ, 121(1–2):109–169, 2000.

[6] C. Fritz and S. McIlraith. Decision-theoretic golog with qual-
itative preferences. InKR, pages 153–163, Lake District, UK,
June 2006.

[7] Alfonso Gerevini and Derek Long. Plan constraints and pref-
erences for PDDL3. Technical Report 2005-08-07, Univer-
sity of Brescia, 2005.

[8] I. Horrocks, P. Patel-Schneider, and F. van Harmelen. From
SHIQ and RDF to OWL: The making of a web ontology
language.Journal of Web Semantics, 1(1):7–26, 2003.

[9] M. Klusch, A. Gerber, and M. Schmidt. Semantic web service
composition planning with OWLS-Xplan. InAAAI-05 Fall
Symposium, 2005.

[10] C. A. Knoblock, S. Minton, J. Luis Ambite, M. Muslea, J. Oh,
and M. Frank. Mixed-initiative, multi-source information as-
sistants. InWWW, pages 697–707, 2001.

[11] Naiwen Lin, Ugur Kuter, and Evren Sirin. Web service com-
position with user preferences. InESWC-08, pages 629–643,
2008.

[12] D. Martin, M. Burstein, D. McDermott, S. McIlraith,
M. Paolucci, K. Sycara, D. McGuinness, E. Sirin, and
N. Srinivasan. Bringing semantics to web services with
OWL-S. World Wide Web Journal, 10(3):243–277, 2007.

[13] D. V. McDermott. Estimated-regression planning for interac-
tions with web services. InAIPS, pages 204–211, 2002.

[14] S. McIlraith and T. Son. Adapting golog for composition
of semantic web services. InKR, pages 482–493, Toulouse,
France, April 22-25 2002.

[15] S. McIlraith, T. Son, and H. Zeng. Semantic Web services.
In IEEE Intelligent Systems (Special Issue on the Semantic
Web), volume 16, March/April 2001.

[16] Sheila McIlraith and Ronald Fadel. Planning with complex
actions. InNMR-02, pages 356–364, 2002.

[17] K. Myers. Strateigc advice for hierarchical planners. InPrin-
ciples of Knowledge Representation and Reasoning: Proc.
of the 5th International Conference (KR96), pages 112–123.
Morgan Kaufmann, 1996.

[18] K. Myers. Planning with conflicting advice. InAIPS, pages
355–362, 2000.

[19] S. Narayanan and S. McIlraith. Simulation, verification
and automated composition of web services. InProc. of
the 11th International World Wide Web Conference (WWW-
2002), May 2002.

[20] R. Reiter. Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT Press,
Cambridge, MA, 2001.

[21] E. Sirin, B. Parsia, and J. Hendler. Template-based composi-
tion of semantic web services. InAAAI-05 Fall Symposium
on Agents and the Semantic Web, 2005.

[22] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN
planning for web service composition using SHOP2.Journal
of Web Semantics, 1(4):377–396, 2005.

[23] S. Sohrabi, J. Baier, and S. McIlraith. HTN planning with
preferences. InIJCAI, 2009.

[24] S. Sohrabi and S. A. McIlraith. On planning with prefer-
ences in HTN. In12th International Workshop on Non-
Monotonic Reasoning (NMR-08), pages 241–248, Sydney,
Australia, 2008.

[25] S. Sohrabi and S. A. McIlraith. Optimizing web service com-
position while enforcing regulations. InISWC, 2009. To ap-
pear.

[26] S. Sohrabi, N. Prokoshyna, and S. A. McIlraith. Web ser-
vice composition via generic procedures and customizing
user preferences. InISWC, pages 597–611, 2006.

[27] S. Sohrabi, N. Prokoshyna, and S. A. McIlraith. Web service
composition via the customization of Golog programs with
user preferences. InConceptual Modeling: Foundations and
Applications: Essays in Honor of John Mylopoulos, pages
319–334. Springer-Verlag, 2009.

[28] P. Traverso and M. Pistore. Automatic composition of seman-
tic web services into executable processes. InISWC, 2004.

26

