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Abstract

Real-world planning problems can require search over thou-
sands of actions and may yield a multitude of plans of dif-
fering quality. To solve such real-world planning problems,
we need to exploit domain control knowledge that will prune
the search space to a manageable size. And to ensure that
the plans we generate are of high quality, we need to guide
search towards generating plans in accordance with user pref-
erences. Unfortunately, most state-of-the-art planners cannot
exploit control knowledge, and most of those that can exploit
user preferences require those preferences to only talk about
the final state. Here, we report on a body of work that extends
classical planning to incorporate procedural control knowl-
edge and rich, temporally extended user preferences into the
specification of the planning problem. Then to address the en-
suing nonclassical planning problem, we propose a broadly-
applicablecompilation techniquethat enables a diversity of
state-of-the-art planners to generate such plans without ad-
ditional machinery. While our work is firmly rooted in AI
planning it has broad applicability to a variety of computer
science problems relating to dynamical systems.

Preamble
This paper is reprinted from the Proceedings of AAAI-08
where it appeared as a Nectar report entitledBeyond Clas-
sical Planning: Procedural Control Knowledge and Prefer-
ences in State-of-the-Art Planners(Baieret al. 2008). The
text that follows has been augmented with data that appeared
in (Baier, Fritz, & McIlraith 2007) and some of the discus-
sion updated to include mention of new related work.

We wanted to share this work with participants of the
ICAPS 2009 workshop on Generalized Planning. In this
work, we donot address the problem of how to synthesize
a generalized plan with complex control structures such as
conditionals and loops. Rather we address the problem of
how to take a generalized plan, in this case, represented in
a Golog-inspired procedural programming language akin to
Algol, and synthesize a problem-specific instance of it – a
sequential plan – that will achieve a particular goal. Our ob-
jective is to do so in such a way that enables us to exploit
the latest advances in state-of-the-art classical planning, and
in particular, heuristic search. To this end, we treat a gener-
alized plan – a plan that has been hand-crafted in a Golog-
inspired language to address a family of planning problems –
as domain control knowledge. We then compile this domain

control knowledge into a classical planning domain so that it
directs the search of any PDDL-compliant classical planner.
We also show how such a planner can be further augmented
with preferences so that we can optimize the instantiation of
our generalized plan with respect to certain properties of a
plan that an individual deems desirable. As discussed at the
end of this paper, we have recently done similar work cus-
tomizing the instantiation of generalized plans represented
in Hierarchical Task Networks (Sohrabi, Baier, & McIlraith
2009).

The contribution of this work is not that we can generate
an instance of a given generalized plan, but that we propose
an approach to do so very efficiently, and that we can further
refine the generation of this plan instance to optimize for
custom-specified plan properties.

Introduction
Planning has been a significant area of AI research for
decades, dating at least as far back as Newell and Simon’s
General Problem Solver (GPS). For much of this time, the
planning problem has been specified in terms of a domain
theory that describes the preconditions and effects of ac-
tions, a description of the initial state, and a final-state goal
formula – a set of properties that must hold upon successful
execution of the plan. This specification of planning lends
itself well to study, but does not capture many of the needs
of real-world planning systems.

To substantiate this claim, consider the oft-cited exam-
ple of travel planning on the web. The search space for
this problem is enormous. There are tens of thousands of
different “actions” that can be performed on the web, and
hundreds of different ways to book flights and hotels online,
and when you consider all the groundings for specific ori-
gins, destinations and days, the search space becomes far
too large to manage with classical planning techniques. And
yet we humans plan our travel on the web all the time, rel-
atively seamlessly. We do so by utilizing a script of how to
plan travel –domain control knowledgethat helps guide our
search for a plan. Even with such a script constraining the
solutions, we still get a large number of solutions – some
of higher quality than others. Indeed, our complex personal
preferences over such things as departure times, airlines, and
travel bonus points, all play a role in softly constraining and
guiding our search towards high-quality plans.
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So what’s the problem with limiting ourselves to final-
state goals? In specifying a planning problem a user may
not care exclusively about what holds in the final state, but
may equally care abouthowthe goal is achieved – properties
of the world that are to be achieved, maintained or avoided
during plan execution, or adherence to a particular way of
doing something. These are legitimate goals of a planning
problem, that are “temporally extended” rather than “final
state”. Further, the user may have insight into how the plan
should be realized from a search perspective, and may wish
to provide guidance to the planner on actions to take, states
to avoid, and so on. Together, such control knowledge has
the potential to tremendously reduce the search space for a
plan, an issue that is critical to planning in the real world.

We propose to incorporate such knowledge into the spec-
ification of a planning problem by replacing the final-state
goal with a formula describing temporally extended goals
and domain control knowledge, henceforth referred to as
control knowledge. Our control knowledge is action-centric
and procedural, in contrast to (state-centric) linear tempo-
ral logic (LTL) based control knowledge in such planners as
TLPlan. We contend that it is more natural for a user that
wants to specify how to construct a plan.

Even with the stipulation of control knowledge, we need
look no further than travel planning to realize that many
plans that are technically valid solutions, are not all equally
desirable. As with control knowledge, a user may have tem-
porally extended preferences over properties of a plan. For
example, a user may prefer not to book her hotel until af-
ter her flight is booked. She may always wish to pay with
a particular credit card, or use a particular airline. In ad-
dition to our procedural control knowledge, we propose a
language for specifying rich, temporally extended user pref-
erences that is unique in that it provides for both state-centric
(e.g., always maintain $100 in my bank account) and action-
centric (e.g., book my flight then book my hotel) prefer-
ences. In contrast to many other languages which are typ-
ically state-centric and ultimately quantitative, our language
is qualitative, making it more amenable to human elicitation.

We now have a nonclassical planning problem with our
final-state goal formula replaced by a specification of pro-
cedural control knowledge and user preferences. Unfortu-
nately, most state-of-the-art planners are not designed to ex-
ploit control knowledge. A barrier to this is that much of
it is temporally extended and most planners work towards
achieving a goal, using some measure of progress towards
goal/preference satisfaction. This is however difficult for
temporally extended formulae.

A main contribution of our work is a compilation tech-
nique that can take action-centric and/or state-centric con-
trol knowledge and preference formulae, and compile them
into a new planning problem that is specified in terms of
final-state goals and preferences. This enables some of the
fastest state-of-the-art classical planners to exploit control
knowledge, and for those that use heuristic search, it pro-
vides a means of measuring progress towards satisfaction
of temporally extended goals. Also problem specification
including preferences can be reduced to a basic final-state
goal and preference problems, which all preference-based

planners address, and this again enables heuristic search.
The work presented here is part of a body of research

originally presented in (Baier, Fritz, & McIlraith 2007;
Bienvenu, Fritz, & McIlraith 2006; Baier & McIlraith 2007).
In the sections that follow we briefly overview our specifi-
cation language and compilation technique.

Specification
The specification of our planning problem comprises a do-
main theory, an initial state, and in place of a final-state goal
we provide control knowledge in the form of aprocedureδ,
and user preferences in the form of apreference formulaΦ.
Final state goals can be expressed as a special case. In this
section we intuitively describe the Golog language we use
to specifyδ, and the language we use to specifyΦ.

Golog (Reiter 2001) has classically been used for agent
programming and can be thought of in two ways: a pro-
gramming language with non-deterministic constructs that
are “filled-in” using planning, or a language for constrain-
ing the search space of a planner. Its syntax contains con-
ventional programming language constructs such as if-then-
else and while-loops, together with a set of nondetermin-
istic constructions –(δ1|δ2) for non-deterministic choice
between sub-procedures,δ∗ for non-deterministic iteration,
andπ(x-type)δ(x) for non-deterministic choice of param-
eterx. Returning to our travel planning example, we can
specify our knowledge of how to plan a trip on the web con-
cisely by the following Golog procedure, slightly abusing
syntax and simplifying the task.

[ π(flight-Flight) π(pm-PaymentMethod) book(flight, pm);

if (IsBusinessTrip) then bookLuxuryHotelelse

π(hotel-Hotel)π(pm-PaymentMethod) book(hotel, pm)) ]

Using the sequencing construct[a; b], the procedure tells us
to first pick a flight non-deterministically from all available
flights, choose a payment method, and book the flight. After
that, if this is a business trip, we are to book a luxury hotel,
or otherwise find and book a hotel. While providing some
guidance as to how to plan a trip, the procedure still leaves
some non-determinism. The choices are made through plan-
ning with respect to the user’s preferences.

The semantics of Golog was originally defined in the situ-
ation calculus. To make such procedures usable by state-of-
the-art planners, we have developed a method for compiling
them to PDDL, the Planning Domain Definition Language,
the input language in the International Planning Competition
(IPC). The compilation is described in the next section.

In this paper we use a language for specifying rich tempo-
ral user preferences based on LTL (Bienvenu, Fritz, & McIl-
raith 2006) which we here refer to asLPP. LPP is one
possible language for expressing preferences, enabling state-
centric preferences through LTL and action-centric prefer-
ences through the use of theLPP constructocc. Despite our
use ofLPP here, our technique is applicable to other prefer-
ence languages, including IPC’s quantitative preference lan-
guage, PDDL3 (Gerevini & Long 2005).LPP allows the
user to express temporal properties over states and actions,
and to qualitatively rank such expressions to create prefer-
ences. Rankings can be complex and conditional. Finally,
the language allows the user to logically combine several
rankings into one general preference formula. In the first

11



step of writing a formula, a user specifies properties over
plans, for instance:

always((∀h-Hotel, pm)(occ(book(h, pm)) → h = hilton))(P1)

always((∀h-Hotel, pm)(occ(book(h, pm)) → h = delta)) (P2)

IsBusinessTrip→ eventually(occ(fileExpenses)) (P3)

where P1 and P2 say that a Hilton, resp. Delta, hotel is
booked, and P3 states that if it is a business trip, at some
point an expense report needs to be filed.

Such properties can be ranked to express preferences over
them in case they turn out to be mutually exclusive in prac-
tice. The ranking does not need to be totally ordered. If the
user, for instance, prefers P1 over P2, denoted P1≫ P2, but
also has a second independent ranking, these can be com-
bined using disjunction or conjunction. Rankings can also
be conditioned on other properties, for instance

(∃f -Flight, pm)
`

occ′(book(f, pm))∧ ArrivalTime(f) > 12am) :

(∀h-Hotel, pm)occ′(book(h, pm))→ NearAirport(h) (P4)

says that if the booked flight arrives after midnight,
we prefer to stay near the airport –occ′(a) abbreviates
eventually(occ(a)). Details of these more complex formu-
lae and their semantics in the situation calculus can be found
in (Bienvenu, Fritz, & McIlraith 2006).

Computation
Our planning problem consists of a control procedureδ and a
preference formulaΦ. Now we propose a compilation strat-
egy to allow state-of-the-art planners to plan in this setting.

A standard approach to planning in the presence of control
knowledge, is to build a search algorithm based onprogres-
sion. Progression – one of the tools used in planning with
temporally extended control (Bacchus & Kabanza 2000;
Pistore, Bettin, & Traverso 2001) – enables the planner to
prune states from the search space by determining whether
or not a state visited by the search algorithm can be reached
by an execution of the control procedure. The sole use of
progression is not appealing for two reasons. First, it does
not make procedural control available to people who wish
to use procedural control but are bound to using a specific
planner. Second, it does not allow the planner to exploit
techniques that are central to the efficiency of state-of-the-
art planners, such as domain-independent heuristic search.

Domain-independent heuristics can play a key role in ef-
ficient planning in the presence of control knowledge and
preferences. By way of illustration, consider the example in
the previous section. Assume the planner is about to instan-
tiate the action of picking a flight, and furthermore suppose
there is a budget limit of $2,500. Here the planner should re-
alize that it cannot choose an exceedingly expensive ticket,
as that may lead to backtracking when later booking the ho-
tel. In order to realize this, the planner must do some kind
of lookahead computation to determine that there is an un-
avoidable use of money in the future. This type of compu-
tation, which can save a great deal of search effort, is stan-
dard in state-of-the-art heuristic planners (such as e.g. FF
(Hoffmann & Nebel 2001)) which usually estimate the cost
of achieving a goal by performing some sort of reachability
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Figure 1: Run-time comparison of a heuristic search based
planner solving instances of thestorage domain of the
International Planning Competition, with and without Golog
search control compiled into the PDDL domain definition.

analysis. On the other hand, by using only progression, one
cannot extract that type of lookahead information.

To efficiently plan in the presence of control, we have pro-
posed a method to compile a planning instanceI and a con-
trol procedureδ into a new, classical planning instanceIδ
represented in PDDL, such that a plan forIδ corresponds
exactly to an execution ofδ (Baier, Fritz, & McIlraith 2007).
The key idea of the compilation is that a procedureδ can be
represented as a finite-state automaton (whose size is poly-
nomial in the size ofδ) that in turn is representedwithin
the planning domain. The state of the automaton forδ is
represented by an additional predicate, and the effects and
preconditions of actions inI are modified to respect the exe-
cution of the procedure by referring to those new predicates
(see Fig. 2). The resulting instance is amenable to use by any
state-of-the-art planner, including those exploiting heuris-
tics, and because action preconditions are modified, search
algorithms implicitly behave as if they were implementing
progression. We have shown that Golog control knowledge
can be effectively used to improve the efficiency of state-of-
the-art planners in standard benchmark domains. Figure 1
shows a sample of these results. Full details are found in
(Baier, Fritz, & McIlraith 2007).

Now that we can convert any problem with domain con-
trol into a classical planning problem, we consider the
case of adding preferences. To plan efficiently for pref-
erences we also need mechanisms to guide the search to-
wards the satisfaction of the preferences. For example, if
a preference establisheseventually(ϕ), we want the plan-
ner to choose actions that will lead to the satisfaction of
ϕ. By utilizing the relationship between linear temporal
logic and automata, we have proposed a parametric compi-
lation from temporalLPP preferences into a problem with
non-temporalLPP preferences (Baier & McIlraith 2006;
2007). Those non-temporal preferences refer only to the fi-
nal state of the plan, i.e. could be interpreted assoft goals.
Interestingly, this enables existing state-of-the-art planning
technology to be exploited to guide the search towards the
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Figure 2:Automaton forδ = while φ do if ψ then a elseb. The
fluent state in Iδ represents the automaton’s state. InIδ ’s initial
state,state = q1. Additional goal:state = q8.

satisfaction of the preferences. Most importantly, our trans-
lation generates a problem that can be the input to almost
any preference-based planner existing at the moment, since
preferences only refer to the final state of the plan. We have
also developed our own planner, HPLAN -QP, which is able
to plan heuristically withLPP preferences.

Discussion
This paper summarizes and connects research published by
the authors in the last two years. We have shown exper-
imentally that our compilation techniques enable state-of-
the-art planners to plan for various types of goals and pref-
erences, typically obtaining improved performance over ex-
isting planners. Details can be found in the original papers.

The results presented here have the potential for broad ap-
plicability beyond planning. Planning can be conceived as
a reachability analysis problem, as can a number of other
problems in diverse areas of computer science that relate to
dynamical systems. As such, the research described here is
applicable to a variety of problems. Among these are con-
troller synthesis; requirements engineering; software syn-
thesis, particularly synthesis of component-based software
such as web services; business process and workflow man-
agement; and software or hardware verification, all of which
have demonstrated some use of temporally extended hard or
soft constraints, to encode their problem, to control search,
and/or to enforce solution quality.

We substantiate this claim with a few specific exam-
ples. Erdem & Tillier (2005) already use planning technol-
ogy together with domain control knowledge to address the
genome rearrangement problem. They would benefit both
from the speed up provided by our compilation technique
and the ability to express preferences over rearrangement al-
ternatives. Further, Bryl, Giorgini, & Mylopoulos (2006)
have considered the problem of assigning delegations of
tasks to actors in the development of information systems.
They have characterized this task as a planning problem with
preferences. The tasks that can be assigned to the actors in
the system are described procedurally, in terms of decompo-
sitions into other sub-tasks, something easily expressible in
our procedural control language. Finally, de Leoni, Mecella,
& de Giacomo (2007) have deployed ConGolog, a concur-
rent variant of Golog, to model business processes and mon-
itor their execution. We believe our approach could help to
speed up computation in these applications as well.

Despite their common heritage in the very early stages

of AI, agent programming and planning have been largely
studied in isolation in recent history. While the focus of
agent programming has been on increasing expressiveness
to address the needs of real-world applications, in classical
planning the speed of plan generation has remained a central
concern. Our work makes a significant step towards reunit-
ing these two branches of research to the betterment of both.
The provision of a compilation technique that enables any
state-of-the-art planner to exploit control knowledge has the
potential for broad impact within the planning community.
Likewise agent programming applications can benefit from
the opportunity to exploit state-of-the-art planners, while the
integration of research on preferences to specify and gener-
ate high-quality solutions further benefits both communities.

We now turn our attention to related work, situating our
contributions in the context of previous work. There is a
body of related work in using domain control knowledge to
speed up planning. TLPLan (Bacchus & Kabanza 2000),
the winner of the 2002 International Planning Competition
(IPC), is able to use state-centric temporal logic formulae
to significantly prune the search space. HTN planning (Nau
et al. 1999), is also a successful framework to incorporate
procedural control. A significant difference between those
approaches and ours is (1) these approaches are usually tied
to specific planners and (2) planners such as TLPLan or the
HTN planner SHOP2 (Nauet al. 2003) cannot provide guid-
ance to achieving goals, because the algorithmic semantics
given to the respectively deployed control languages is not
immediately compatible with known successful heuristics.

Also related is work that compiles LTL preferences
into final-state preferences (e.g. Edelkamp (2006)) and
LTL goals into final-state goals (e.g. Cresswell & Cod-
dington (2004)). These approaches, however, are not
parametrized like ours and are therefore more prone to ex-
ponential blowups. Finally, Sohrabi, Prokoshyna, & McIl-
raith (2006) have proposed a Golog interpreter which inte-
gratesLPP preferences. Unlike our work, they exploit pro-
gression to compute plans.

The future prospects for this work are plentiful. A num-
ber of compelling extensions can be easily integrated into
our approach. Among the most compelling is the incorpora-
tion of Gologoperators, snippets of procedures that can be
used like macro actions in the place of primitive actions dur-
ing plan construction. This is very natural to do in a number
of domains. Returning to our travel example, one could rep-
resent the “book hotel” action as a procedure that evaluates
different prices over a number of web services eventually
booking a hotel.LPP preferences could then refer to the
execution of procedures (e.g.occ(BookHotelProcedure))
and/or impose specific user preferences on particular pro-
cedures (e.g. “I’d like to pay for the air ticket using my air-
miles Visa, but the hotel with my low-interest Mastercard”).
Alternatively, we could think of Golog control procedures
that at some point during the execution activate a particular
preference. Here, a user would declare a preference in the
Golog procedure that would affect only part of it.

Although we have presented our approach as a combina-
tion of Golog action-centric control and action-centric and
state-centricLPP user preferences, our compilation tech-
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nique is sufficiently general to handle a variety of domain
control specification languages and preference specification
languages. For example, after compiling our control knowl-
edge into PDDL, we could use PDDL3 preferences. In
PDDL3, state-centric preference formulae are expressed in
a subset of LTL. The LTL preferences can also be converted
into final-state preferences in a similar way as we have done
with LPP preferences (Baier, Bacchus, & McIlraith 2007;
Edelkamp 2006). The quality of the plan, on the other hand,
is expressed in a quantitative manner. The resulting planning
problem could then be solved by any PDDL3-compliant
planner for final-state preferences (see IPC-5 booklet for de-
tails (Gereviniet al. 2006)).

It is also possible to translate a subset of HTN action-
centric domain control knowledge into PDDL, which can
speed up planning as well (Alford, Kuter, & Nau 2009;
Fritz, Baier, & McIlraith 2008). Conceptually, the result
could be integrated withLPP or PDDL3 preferences us-
ing a similar translation. As an alternative, preferences of
the kind presented here could be integrated into HTN plan-
ning directly, where the hierarchical structure can be used
to express preferences not only over the occurrence of prim-
itive actions, but also over the use of specific methods to
decompose tasks into primitive actions (Sohrabi, Baier, &
McIlraith 2009). This often speaks to the intuition of the
user in the same way that the hierarchy helps structuring the
problem conceptually.
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