
P2: A Baseline Approach to Planning with Control Structures and Programs

Ronald P. A. Petrick
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, Scotland, UK
rpetrick@inf.ed.ac.uk

Abstract

Many planners model planning domains with “primitive ac-
tions,” where action preconditions are represented by sets of
simple tests about the state of domain fluents, and action ef-
fects are described as updates to these fluents. Queries and
updates are typically combined in only very limited ways, for
instance using logical operators and quantification. By com-
parison, formalisms like Golog permit “complex actions,”
with control structures like if-else blocks and while
loops, and view actions as programs. In this paper we explore
the idea of planning directly with complex actions and pro-
grams. We describe the structure of a simple planner based on
undirected search, that generates plans by simulating the exe-
cution of action programs before they are added to a plan. An
initial evaluation compares this approach against a classical
heuristic planner using a domain whose program structures
have been compiled into ordinary PDDL actions. Initial re-
sults illustrate that in certain domains, planning directly with
programs can lead to a significant performance improvement.
This work offers a baseline planner to compare against alter-
nate approaches to planning with programs.

Introduction and Motivation
A recent trend in modern planning research has focused on
the problem of planning with complex expressions, con-
trol structures, and programs—representations that are more
complicated compared with traditional formalisms based on
PDDL (McDermott 1998), the standard language for mod-
elling planning domains. While recent additions to PDDL
(e.g., constraints, preferences, durative actions, and numer-
ical fluents) have extended its expressiveness, PDDL re-
mains inherently STRIPS-like (Fikes and Nilsson 1971) in
its structure. Primitive actions form the basis of a domain
specification: action preconditions are defined by simple
tests about the state of domain fluents, and action effects
capture the (conditional) changes made to these fluents. Flu-
ent tests and updates are often combined in very limited
ways, using standard logical connectives and quantification.

By comparison, attempts to plan with complex actions ad-
mit actions with control flow blocks (e.g., sequence, iter-
ation, and conditionals) and other procedural operators in-
spired by imperative programming languages. In practice,
complex actions operate more like programs and are often
distinct from primitive actions, with the latter defining the

fluent-level state changes and the former acting as a wrap-
per around sets of primitive actions. While complex actions
add more flexibility to the expressiveness of the representa-
tion language, most planners cannot directly construct plans
with such actions. In this paper we present a simple planner
that is capable of manipulating such structures.

The idea of mixing procedural constructs with planning is
not new. For instance, much work has addressed the problem
of automatically constructing macro operators, which com-
bine useful sequences of actions in an attempt to improve
plan generation efficiency (e.g., (Botea, Müller, and Scha-
effer 2007; Coles and Smith 2007)). HTN planning (e.g.,
(Sacerdoti 1975; Nau et al. 2003)) also has a procedural
flavour: HTN domains abstract the action space into high-
level tasks and methods for decomposing those tasks into
more primitive subtasks, with the lowest-level subtasks cor-
responding to ordinary planning operators. More formally,
Levesque (1996) generalizes the planning problem in terms
of a universal programming language R, which includes se-
quence, branch, and loop constructs operating over actions.
Levesque (2005) also uses a variant of R to investigate the
problem of automatically generating plans with loops.

More closely related to the focus of this paper, one of
the most popular approaches to planning with programs
has been to compile complex actions into primitive ac-
tions, written in ordinary PDDL, which can then be used
in conjunction with ordinary off-the-shelf planners. For in-
stance, McIlraith and Fadel (2002) formalize an approach
that transforms certain classes of programs written in Golog
(Levesque et al. 1997)—a high-level programming language
based on the situation calculus (McCarthy and Hayes 1969;
Reiter 2001)—into PDDL. These programs allow procedu-
ral structures like action sequencing, if-else blocks, and
a bounded while loop, among others. Baier and McIl-
raith (2006) build on this work by considering Golog pro-
grams with sensing actions (i.e., knowledge-producing ac-
tions that observe the state of the world without necessarily
changing it) and translate these domains into a form usable
by planners that support sensing actions, but not complex ac-
tions. Similarly, Baier, Fritz, and McIlraith (2007) compile
procedural domain control knowledge into PDDL domains,
modelled in a language based on Golog.

There are two potential drawbacks of the compilation ap-
proaches. First, new fluents and actions are generally intro-

59

duced into the resulting planning domain as a consequence
of the compilation process, thereby increasing the size of
the state space. Second, the rich control knowledge explic-
itly represented in structures like loops is discarded during
compilation. Instead, the behaviour of such structures must
be “rediscovered” through search, by appropriately guiding
the planner’s search through the resulting primitive actions,
to mimic the effects of the original complex actions. While
modern planners can often cope with the first drawback, the
second is more problematic. For instance, the number of
states a planner must visit can quickly become large when
loops are permitted. As we will see, even the best heuristic
planners do not always work well with compiled domains.

As an alternative to the compilation approaches, we ex-
plore the notion of planning directly with complex actions
and programs, by simulating their execution within action
blocks. We describe the implementation of a simple planner
that supports a set of procedural constructs, including if-
else blocks and unbounded while loops. During plan
construction our planner simulates the application of an ac-
tion by “running” its precondition or effects program, in
a manner not unlike Golog. While we do not aim to be
competitive with off-the-shelf planners in terms of speed
(e.g., our initial implementation uses blind search), our plan-
ner nevertheless shows good performance compared against
Metric-FF (Hoffmann 2003) on a toy domain, and provides
a useful baseline to compare against alternative approaches.
Overall, this work is a first step in a research agenda aimed
at designing new planners that can search and plan directly
with procedural control structures.

Example: Compiling while Loops into PDDL
As motivation for this work, consider the toy action in Fig-
ure 1. This action is similar in form to a primitive action, but
includes a while loop. The intent here is to “loop while i is
less than or equal to the value of the function size(?d),”
adding i to the value of count and 1 to i each time through
the loop. Although PDDL does not directly support actions
with while loops, we can transform this action into a valid
PDDL form that achieves a similar effect.1

Figure 2 shows three PDDL actions that encode the be-
haviour of the action in Figure 1: processDataset
models the effects of the original action up to the start of
the while loop, processDataset-inLoop simulates
one iteration through the loop, and processDataset-
endLoop encodes the effects following the loop. The first
action contains the preconditions of the original action. The
new predicate context-loop acts as a guard, controlling
access to the body of the compiled loop. A second new pred-
icate, context-loop-params, tracks the parameters of
the original action. (If the domain contained additional ac-
tions their preconditions would also be updated with refer-

1We have implemented a compiler for transforming actions
with simple program structures into PDDL, in order to compare
our approach against such compilation methods. The example in
Figure 2 was generated by our compiler and is characteristic of the
kinds of actions we can produce. In general, we use the ADL sub-
set of PDDL but our example here also requires numerical fluents.

action processDataset(?d)
precondition:

dataset(?d) and
not(processedDataset(?d))

effect:
i = 1 ;
while (i <= size(?d))

count = count + i ;
i = i + 1 ;
processedDataset(?d)

endWhile
endAction

Figure 1: A simple action with a while loop

ences to context-loop to prohibit their application dur-
ing the execution of this loop.)

In this case, the correct behaviour of the compiled ac-
tions results from the planner’s ability to order these ac-
tions appropriately during its search. For instance, once
processDataset has been applied, the only action
subsequently permitted according to its preconditions is
processDataset-inLoop, which can be continually
applied until the loop conditions are false. At this point the
only permissible action is processDataset- endLoop,
which completes the execution of the original action.

Although this example is extremely simple, we note two
potential drawbacks. First, two actions and two predicates
are added to the domain, increasing the size of the state
space. Second, and more worrying, is the prospect that each
iteration of the while loop is now an action instance. Thus,
a loop with 100 iterations requires a sequence of 102 actions,
and the rich control knowledge explicitly represented by the
original while loop must be implicitly rediscovered by the
backend PDDL planner during preprocessing and search.

Representing Actions as Programs
As an alternative to the compilation approach, we describe
the structure of a simple planner called ProgPlan (abbrevi-
ated P2), which supports actions with program constructs,
and simulates their execution during plan search.

Symbols We assume a planning scenario whose symbols
are defined as in an ordinary PDDL planning problem. Thus,
we include a set of fluent symbols representing the proper-
ties of the domain that can change as a result of action, in-
cluding both predicates and functions. (We also allow equal-
ity and standard numerical relations like <.) A set of con-
stants denoting the objects in the domain is also defined.

The representation language used by P2 is built around the
notion of an expression and a program.

Expressions An expression in our representation is simi-
lar to the form of the preconditions used by ordinary clas-
sical, deterministic planners (e.g., the preconditions in Fig-
ure 2). Expressions can use the connectives and, or, not,
exists, and forall, plus arithmetic expressions and flu-
ent tests about the value of relations and functions.

We define a complex expression as follows:

60

(:action processDataset
:parameters (?d)
:precondition

(and (not (context-loop))
(dataset ?d)
(not (processedDataset ?d)))

:effect
(and (assign (i) 1)

(context-loop)
(context-loop-params ?d)))

(:action processDataset-inLoop
:parameters (?d)
:precondition

(and (context-loop)
(context-loop-params ?d)
(<= (i) (size ?d)))

:effect
(and (increase (count) (i))

(increase (i) 1)))

(:action processDataset-endLoop
:parameters (?d)
:precondition

(and (context-loop)
(context-loop-params ?d)
(not (<= (i) (size ?d))))

:effect
(and (processedDataset ?d)

(not (context-loop))
(not (context-loop-params ?d))))

Figure 2: Compiled PDDL actions simulating a while loop

expression ::= expression and expression |
expression or expression |
not (expression) | (expression) |
forall (parameters) expression |
exists (parameters) expression |
arithmetic-expression |
fluent-test.

We note that expressions “ground out” with ordinary arith-
metic expressions (which include a large set of expressions
from the C programming language) and fluent queries.

Programs A program is a set of control structures which
operate over fluent updates and expressions.

program ::= program ; program |
if expression then

program else program endIF |
while expression do

program endWhile |
forall(parameters)

program endForall |
exists(parameters) expression then

program else
program endExists |

arithmetic-assignment |
fluent-update | nil.

We follow ordinary program syntax in using ; as the stan-
dard sequence operator for chaining program statements to-
gether. The if-else block is a standard conditional test

which allows a choice as to which program should be exe-
cuted, depending on the outcome of the test (the first pro-
gram on success, the second on failure). Similarly, while
is a standard while loop that repeats the execution of a pro-
gram as long as the test expression is true. The forall
and exists control structures introduce a special type of
“quantified” program statement. forall is a loop that re-
peatedly executes a program; each time through the loop
a new binding from the set of domain constants is chosen
and assigned to the specified parameters. exists is a con-
ditional nondeterministic choice statement that attempts to
find a binding for the specified parameters so that the test
expression evaluates as true. If found, the first program
block is executed; otherwise, the second program block is
executed. In both types of quantified structures, the “bound”
parameters may be used in the body of the control block.
Finally, a program can also be an empty program nil, an or-
dinary fluent update, or an arithmetic assignment statement.
For arithmetic assignments, we not only allow simple cal-
culations whose results are assigned to functions but also a
rich selection of C-style numerical expressions.

Actions Actions are structured in a similar way to ordinary
actions, with names, parameters, preconditions, and effects.
Parameters are ordinary action variables which are bound to
produce action instances. (Such variables may occur in an
action’s preconditions or effects.) In our case, preconditions
are defined to be expressions and effects are programs, i.e.,

action A (parameters)
preconditions: expression
effects: program

endAction

Action preconditions and effects have the same intuitive
meaning as ordinary planning actions: during plan construc-
tion an action’s preconditions must be true before it’s effects
can be applied. In particular, we do not distinguish between
“primitive” and “complex” actions in our representation.2

For instance, Table 3 shows a set of actions taken from
an e-mail application domain, which give a flavour of the
types of actions we can model with our representation. The
read(m) action marks a particular message m as “read”,
provided it is in the user’s inbox. In this case there are
two effects: a fluent update marking m as read, and a sec-
ond update increasing the count of the function numread
which tracks the number of messages marked as read. The
markAllRead action has the effect of marking all known
messages in the user’s inbox as read. In this case, the ef-
fects are modelled with an outer forall block and an inner
if-then block, which tests each message and ensures only
those messages in the user’s inbox are appropriately marked.
The functions numread and numunread denote the number
of read and unread messages, respectively. The findUnread
action uses the exists structure to find a message in the
user’s inbox which has not been read and sets the function
current as this message. In the case no such message ex-
ists, current is set to a special constant none. Finally, the

2We are currently adding a “procedure call” to our representa-
tion, allowing one action to execute another action. This construct
will let us specify actions with more complex control flow.

61

action markRead(?m)
precondition: inbox(?m)
effect:

read(?m) ;
numread = numread + 1

endAction

action markAllRead
precondition: true
effect:

numread = 0 ;
numunread = 0 ;
forall(?m)

if inbox(?m) then
read(?m) ;
numread = numread + 1

endIf
endForall

endAction

action findUnread
precondition: true
effect:

exists(?m)
(inbox(?m) and not(read(?m)))
then current = ?m
else current = none

endExists
endAction

action countRange
precondition: from <= to
effect:

count = 0 ; skipped = 0 ;
i = from ;
while i <= to do

if read(msg(i)) then
count = count + 1

else
skipped = skipped + 1

endIf ;
i = i + 1

endWhile
endAction

Figure 3: Actions from an e-mail application domain

countRange action is used to count the number of messages
in a particular range that are marked as read. The function
msg(i) maps a message number i to a particular message.
The while loop ensures we only consider the range de-
fined by the functions from and to. The function count tracks
the number of messages that are counted in the range, while
skipped denotes the number of messages in the range that we
ignore. The expression read(msg(i)) illustrates a permissi-
ble fluent test, with a nested function as an argument.

Planning by Simulating Program Execution
We now turn our attention to evaluating expressions and pro-
grams with respect to our representation.

Expression evaluation A state is a snapshot of the values
of all fluents defined in a domain. For expressions, we de-
fine a procedure EvalExpr(e, S) which evaluates whether a

compound expression e is true at a state S by recursively
unwinding the expression down to its component parts (i.e.,
fluent tests), which are then evaluated at S. A special func-
tion EvalArithExpr(e, S) evaluates arithmetic expressions
by reducing all arithmetic expressions (which may contain
functions) to a number. Following C programming style, an
arithmetic expression is “true” if it evaluates to a non-zero
value. We have the following evaluation function.

Definition 1 Let S be a state let e, e1, and e2 be expressions.
EvalExpr(e, S) = true if

1. e has the form “e1 and e2” and EvalExpr(e1, S) = true
and EvalExpr(e2, S) = true,

2. e has the form “e1 or e2” and EvalExpr(e1, S) = true or
EvalExpr(e2, S) = true,

3. e has the form “not(e1)” and EvalExpr(e1, S) = false,
4. e has the form “(e1)” and EvalExpr(e1, S) = true,
5. e has the form “forall(~x) e1” and

EvalExpr(e1(~x/~c), S) = true for every substitution
~c of ~x in e1,

6. e has the form “exists(~x) e1” and
EvalExpr(e1(~x/~c), S) = true for some substitution
~c of ~x in e1,

7. e is an arithmetic expression and EvalArithExpr(e, S) 6=
0,

8. e is a fluent query and IA(e, S) = true.
Otherwise, EvalExpr(e, S) = false.

EvalExpr recursively deconstructs a complex expression
into simpler components. In (1) – (4), the standard and,
or, and not connectives, plus expression precedence, are
evaluated in a straightforward way. In (5) and (6), EvalExpr
considers possible substitutions of the quantified parame-
ters. The notation e1(~x/~c) indicates that all occurrences of
~x in e1 should be syntactically replaced with ~c, where ~c is
taken from the set of defined constants. (I.e., the expres-
sion is rewritten before it is recursively evaluated.) In (7),
the special function EvalArithExpr evaluates an arithmetic
expression against a state S, by attempting to reduce the ex-
pression to a number. (Space prohibits us from describing
this process in detail.) We follow C programming style here
and consider an arithmetic expression to be “true” at S if it
evaluates to a non-zero value. In (8), the truth of a fluent
query e is determined by a function called IA which checks
the fluent’s value in state S. IA is also responsible for eval-
uating queries with references to nested functional fluents.

Program simulation In traditional planning, a set of ordi-
nary fluent updates, when applied to a state S, transforms
S to produce a new state S′. We extend this notion to pro-
grams by simulating the run of a given program at a state S.
All fluent updates that arise during program execution are
applied to the current state, generating a sequence of new
states. (Each fluent update could produce a new state.) Upon
program termination, we disregard any “intermediate” states
and return the final resulting state S′.

A procedure called RunProg(p, S) simulates the execu-
tion of a program p starting in a state S, and returns a
state S′ on completion of the program run. In general,

62

proc ProgPlan(S, G,A, P)
if EvalExpr(G, S) = true then return P
else if

choose(a ∈ A) : EvalExpr(pre(a), S) = true then
S′ = RunProg(eff(a), S) ;
return ProgPlan(S′, G,A, P + a)

else return fail
endIf

endProc

Figure 4: Pseudocode for the P2 planning algorithm

RunProg operates as a program interpreter, stepping its way
through a given program. A program counter tracks the
current program statement being executed, which is up-
dated after its completion. Depending on the type of pro-
cedural construct under evaluation, the interpreter runs a
small control program to evaluate its outcome. For instance,
evaluating a sequence construct involves running two pro-
grams in turn, with the second program executing from the
state resulting from the execution of the first program, i.e.,
RunProg(p1 and p2, S) := RunProg(p2, RunProg(p1, S)).
For a while loop, the interpreter runs the control program

RunProg(while e do p endWhile, S) :=
while EvalExpr(e, S) = true do

S = RunProg(p, S)
endWhile ; return S.

Here, EvalExpr evaluates the truth of expression e in each
iteration of the loop. (The underlined control structures are
part of the interpreter’s control program for simulating the
while loop.) S is updated each time through the loop and
the final S is returned on completion. One important danger
of this approach is that programs aren’t guaranteed to ter-
minate: since we simulate actual programs, we also inherit
the problems of ordinary program design, including the pos-
sibility of infinite loops. Similar control programs are de-
fined for the other control structures in our representation
language. When RunProg encounters a fluent update, it ap-
plies it to the existing state an an ordinary update.

Planning A planning problem is specified by a set of actions
A, an initial state S, and a set of goal conditions G. The ini-
tial state can be any state (as in ordinary PDDL) and a goal
is any expression. Figure 4 shows the pseudocode describ-
ing the main operation of our program planner, P2. Plans are
built in a simple forward-chaining manner, starting from the
initial state. The planning algorithm attempts to grow a plan
by searching over the space of applicable actions and choos-
ing a ground action instance a whose preconditions pre(a)
(an expression) are satisfied in the current state S accord-
ing to EvalExpr. If such an action exists, its effects eff(a)
(a program) are applied to S by RunProg to produce a new
state S′. Action a is concatenated to the end of the current
plan and planning continues until a state is reached where
the goal is satisfied, or the plan cannot be extended.

Initial Evaluation
We have implemented an initial version of our planner in
C++ as a simple forward-chaining planner using undirected

size(d1) Metric-FF P2

100 0.01 0.01
1000 0.33 0.01
2500 2.03 0.01
5000 8.07 0.01

10000 32.41 0.01
25000 202.62 0.02
50000 >3000.00 0.05

Table 1: Running time in seconds on the example domain

n Test-1 Test-2 Test-3 Test-4

100 0.01 0.02 0.02 0.03
1000 0.07 0.11 0.14 0.21

10000 0.71 0.90 1.20 1.94
100000 7.02 8.82 13.08 19.30

Table 2: Running time in seconds of benchmark tests on
while loop programs of n iterations and length 100 plans

depth-first search and breadth-first search.3 Our expression
evaluator implements the expressions described above and a
large subset of the numerical expressions available in C.

Although our planner has not been optimized in any sub-
stantial way, we have applied it to a series of experiments
in some small planning domains. In the first set of experi-
ments, we compare P2 using the action in Figure 1 against
Metric-FF (Hoffmann 2003) using the compiled PDDL ac-
tions in Figure 2. In each case we consider a problem with
the goal of processing a single dataset d1 of varying size
size(d1). The results of this experiment are shown in
Table 1. (All tests were performed on a Linux system with
a single CPU running at 1.86 GHz and 2Gb of RAM.) Our
prototype planner performs significantly better than Metric-
FF. This is not surprising since Metric-FF must build a plan
of length n+2 using the compiled domain, for each while
loop with n iterations. (It is also not altogether bad, and a
tribute to modern search heuristics, that Metric-FF can build
a plan with 2500 steps in 2 seconds.) By comparison, simu-
lating the execution of the while loop means that P2 solves
each problem instance with a plan of length 1.

We also ran a number of benchmark experiments designed
to test the efficiency of the program simulator running at the
core of our planner. In these tests, we construct a planning
domain with a single action that does not have any precon-
ditions. This action’s effects consist of a while loop of
n iterations, forming the outermost control block. We then
vary the contents of the while loop in each test case to
evaluate the performance of different program structures. In
Test-1, a single fluent update is added within the while
loop. In Test-2, an if-then statement is added which con-
ditionally performs a fluent update. In Test-3, a forall
statement is added which ranges over a domain of 50 ob-
jects, performing a fluent update each iteration through the
loop. Finally, in Test-4, a forall statement ranges over

3The source code for P2 is available from http://
homepages.inf.ed.ac.uk/rpetrick/research/p2.

63

100 objects. Each task has the common goal of chaining
100 actions together into a plan. The results of the four tests
are shown in Table 2. Our initial experiments are encourag-
ing, at least as far as program simulation is concerned. For
instance, the n = 10000 case in Test-1 means that the pro-
gram simulator is running 1 million loop iterations and fluent
updates in under 1 second. However, these experiments are
also quite simple and more work is needed to improve the
planner’s search procedure: blind search is only effective in
small domains and there are many instances where off-the-
shelf heuristic planners using compiled program actions will
outperform our current implementation.

Discussion
Our approach differs from the complex-to-primitive action
compilation methods since we’re primarily interested in
working with program structures directly at the planning
level. However, for some types of control structures we
can also make use of the compiled form, especially when
it is well understood how to plan with such structures. (For
instance, if-else blocks are a special case of ADL-style
context-dependent effects (Pednault 1989).) For more com-
plex structures, such as loops, we want to develop tech-
niques for searching the state spaces arising from such struc-
tures, and use the rich procedural control information these
structures provide. As a first step, we are interested in adapt-
ing the state relaxation technique used by FF during its pre-
processing phase, as a distance estimate from a state to the
goal, for instance by simulating program execution while
ignoring delete lists. We are initially focusing on subsets of
our representation for which this technique can be easily ap-
plied, to assess its effect on performance. In general, more
study is needed since complications can make this method
more difficult to apply (e.g., the continuation/exit conditions
of a while loop might depend on the deletion of a fluent
from the current state; failure to do so could result in poor
reachability estimates or non-terminating loops).

While our approach to simulating program execution is
similar to that of Golog, we differ from those approaches
aimed at integrating Golog with off-the-shelf planners. For
instance, Röger, Helmert, and Nebel (2008) compare the ex-
pressiveness of Golog and ADL (Pednault 1989), and iden-
tify a maximal subset of the situation calculus that can be
equivalently expressed in ADL. Claßen et al. (2007) sep-
arate certain procedural parts of Golog from the classical
planning task, by using FF as a blackbox planner which is
invoked when certain “achieve” statements are encountered
in a Golog program. In contrast, we take a more tightly cou-
pled view and treat program constructs as part of the plan-
ning problem. (In this way we are much closer to (McIlraith
and Fadel 2002) than (Claßen et al. 2007).) However, one
of Golog’s strengths is its clean semantics, built on the situ-
ation calculus—an approach we are sympathetic with. (For
instance, our informal procedural semantics could be rede-
fined more formally in terms of Golog programs.) In future
work we plan to evaluate our approach against (Claßen et al.
2007), as well as related approaches like (Baier and McIl-
raith 2006), which uses sensing actions.

Our current planner is not meant to be competitive with

current off-the-shelf planners. Instead, it is a first step in an
ongoing research programme aimed at developing practical
planners that can operate in more complex state spaces. As
such, we offer our present planner to the community as a
baseline tool for evaluating alternative approaches and ad-
vancing research into planning with programs.

Acknowledgements
This work was partly funded by the European Commission
through the PACO-PLUS project (FP6-2004-IST-4-27657).

References
Baier, J. A., and McIlraith, S. A. 2006. On planning with pro-
grams that sense. In Proc. of KR-06, 492–502.
Baier, J. A.; Fritz, C.; and McIlraith, S. A. 2007. Exploiting
procedural domain control knowledge in state-of-the-art planners.
In Proc. of ICAPS-07, 26–33.
Botea, A.; Müller, M.; and Schaeffer, J. 2007. Fast planning with
iterative macros. In Proc. of IJCAI-07, 1828–1833.
Claßen, J.; Eyerich, P.; Lakemeyer, G.; and Nebel, B. 2007. To-
wards an integration of golog and planning. In Proc. of IJCAI-07,
1846–1851.
Coles, A., and Smith, A. 2007. Marvin: A heuristic search plan-
ner with online macro-action learning. J. Artificial Intelligence
Research 28:119–156.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new approach to
the application of theorem proving to problem solving. Artificial
Intelligence 2:189–208.
Hoffmann, J. 2003. The Metric-FF planning system: Translat-
ing ”ignoring delete lists” to numeric state variables. J. Artificial
Intelligence Research 20:291–341.
Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.; and Scherl,
R. B. 1997. GOLOG: A logic programming language for dynamic
domains. Journal of Logic Programming 31(1–3):59–83.
Levesque, H. J. 1996. What is planning in the presence of sens-
ing? In Proc. of AAAI-96, 1139–1146.
Levesque, H. J. 2005. Planning with loops. In Proc. of IJCAI-05,
509–515.
McCarthy, J., and Hayes, P. J. 1969. Some philosophical prob-
lems from the standpoint of artificial intelligence. Machine Intel-
ligence 4:463–502.
McDermott, D. 1998. PDDL – The Planning Domain Definition
Language (Version 1.2). Technical Report CVC TR-98-003/DCS
TR-1165, Yale Center for Computational Vision and Control.
McIlraith, S., and Fadel, R. 2002. Planning with complex actions.
In Proc. of NMR-02, 356–364.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, J. W.; Wu,
D.; and Yaman, F. 2003. SHOP2: An HTN planning system. J.
Artificial Intelligence Research 20:379–404.
Pednault, E. P. D. 1989. ADL: Exploring the middle ground
between STRIPS and the situation calculus. In Proc. of KR-89,
324–332.
Reiter, R. 2001. Knowledge In Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT Press.
Röger, G.; Helmert, M.; and Nebel, B. 2008. On the relative
expressiveness of ADL and Golog: The last piece of the puzzle.
In Proc. of KR-08, 544–550.
Sacerdoti, E. D. 1975. The nonlinear nature of plans. In Proc. of
IJCAI-75, 206–214.

64

