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Abstract

The contribution of the paper is a high performance path-
planning algorithm designed to be used within a multi-agent
planning framework solving a UAV collision avoidance prob-
lem. Due to the lack of benchmark examples and available
algorithms for 3D+time planning, the algorithm performance
has been compared in the classical domain of path planning in
grids with blocked and unblocked cells. The Accelerated A*
algorithm has been compared against the Theta* path planner,
Rapid-Exploring Random Trees-based planners and the orig-
inal A* searching in graphs providing the shortest any-angle
paths. Experiments have shown that Accelerated A* finds
the shortest paths in all scenarios including many randomized
configurations. Experiments document that Accelerated A* is
slower than Theta* and RRT-based planers in many cases, but
it is faster than the original A*. In comparison to the origi-
nal A*, Accelerated A* reduces memory requirements which
makes it usable for large-scale worlds where the original A*
is not usable.

Introduction
The paper presents the original Accelerated A* trajectory
planning algorithm which has been designed for fast plan-
ning and replanning of the UAV free-flight operations. When
performing free-flight the aircraft follow their individual
plans, detect possible collisions and they repair their tra-
jectories by peer-to-peer negotiations so that the collision
is avoided. There are no predefined corridors neither flight
levels, thus the planning needs to carried in 3D+time space.
The state-space of possible collision avoidance maneuvers
is vast and it needs to be searched very quickly.

The Accelerated A* planning algorithm (Šišlák, Volf, and
Pěchouček 2009) satisfies these requirements and empirical
measurements proved its fine performance. There are no
widely accepted benchmark problems for 3D+time robotic
planning. In order to compare some of its performance met-
rics with the state-of-the-art robotic algorithms, we have de-
cided to perform scalability tests in the simpler grid-based
path planning scenario.

The grid-based path planning addresses the vehicle path
planning problem in a two-dimensional terrain which is dis-
cretized into grid cells that are either blocked or unblocked.
The goal is to find the shortest path from the start loca-
tion to the goal location that doesn’t intersect any blocked
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Figure 1: An any-angle path in a grid - white cells are un-
blocked, grey cells are blocked and the solid line is the short-
est path.

cell. Both start and goal locations are at corners of cells
(grid positions). To avoid unrealistic paths restricted only
to grid edges using only a limited set of possible heading
changes (Yap 2002), a path can connect any two nodes (any-
angle path) if the line between them doesn’t intersect any
blocked cell, as shown in Figure 1.

Several approaches to the grid path planning problem ex-
ist in the research community. The grid is usually replaced
with a graph, where nodes are placed either in centers or
corners of grid cells and edges connect nodes if the respec-
tive straight-line doesn’t intersect any obstacle. The most
common one is eight-connected graph mapping which puts
edges only between nodes from adjacent cells. Planning on
such a graph is fast since the number of edges is linear in the
number of grid cells. For any-angle path planing, a graph
contains edges connecting all node pairs which can be con-
nected (fully-connected). In such a graph, the number of
edges is quadratic in the number of cells.

The original A* algorithm (Hart, Nilsson, and Raphael
1968) uses a heuristic to focus the search towards the goal
position. Using an edge cost and a heuristic based on the Eu-
clidean distance, the A* algorithm finds the shortest paths
for used graphs. In the case of fully-connected graphs, it
finds the shortest any-angle paths. But the search is slow
due to high number of edges in the graph. A* running on
four-connected grids in combination with post-smoothing
(PS) (Botea, Müller, and Schaeffer 2004) is able to find non-
shortest any-angle paths faster. There exist several incre-
mental modifications of A* that incrementally repair paths
after each change of obstacles and thus in the underly-
ing graph: D* (Stentz 1995), incremental A* (Koenig and
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Likhachev 2002b), D* Lite (Koenig and Likhachev 2002a),
and fringe-saving A* (Sun and Koenig 2007). But all these
approaches allow only limited transitions from each node
using four or eight-connected graphs which results in sub-
optimal paths restricting heading changes by multiples of
Π/4 or Π/8. Field D* (FD*) (Ferguson and Stentz 2006)
is a variant of A* that uses linear interpolation of path costs
along grid edges to find any-angle paths. Theta* (Θ*) (Nash
et al. 2007) allows the parent of a vertex to be any vertex
and not only a direct predecessor like in A*. It connects
each successor of a vertex with its parent if it is possible
considering the blocked cells. Θ* using eight neighbors in a
grid for generating successors of a vertex finds shorter paths
in less time than FD*, as shown in (Nash et al. 2007).

The grid size is crucial for path planing – the size of one
grid cell defines the minimal distance between obstacles to
search for a path between them. If the number of cells in
the grid is high, then the search algorithm is slow. There ex-
ist several modifications of the A* algorithm relevant to the
paper. The incrementally refined A* search (Cormen et al.
2001) starts sampling initially with a sparse grid and its res-
olution is iteratively refined until a solution is found. Such
a modification generates a path that can go around obsta-
cles instead of going through small gaps between them. To
check that no path exists between the initial and goal posi-
tions, it needs to iteratively fail several times until it fails
for the most precise search. The hierarchical path-finding
A* (Botea, Müller, and Schaeffer 2004) reduces the path
planning complexity by planning in abstraction levels (hier-
archy of sectors). It searches consecutively from the highest
abstraction level towards a precise world model. Decom-
position of the world definition into such abstraction levels
with map clusters with identified links among them is a very
complex task.

The 3D field D* algorithm (Hildum and Smith 2007) ex-
tends the FD* algorithm with an acceleration of the search
by search tree running over the smallest unoccupied cells in
an octant tree structure which is used for environment repre-
sentation. The acceleration of planning in areas where there
are no close obstacles is similar to the dynamic expansion
approach presented in the paper. But it requires expensive
transformation of obstacles (blocked cells) into one octant
tree structure. For a large-scale world, it is required to limit
the maximum depth of the tree structure. This causes an in-
crease of the smallest cell dimension (it defines the smallest
gap between any two obstacles where the algorithm can find
a path).

There exist many algorithms based on a randomized
search. They are very efficient and provide a solution
quickly. However, they provide a different result each
time and cannot guarantee any properties of the provided
paths except the fact that they don’t intersect any obstacle.
Moreover, some of the algorithms provide complex paths
with many unnecessary segments which need to be further
smoothed to be executable by a vehicle. Algorithms based
on the rapidly exploring random tree (RRT) (La Valle and
Kuffner 2001) are very popular for a search in complex
large-scale environments.

The novel Accelerated A* (AA*) algorithm is presented

in the paper. AA* algorithm uses four neighbors as succes-
sors during expansion of a node whose distances from that
node differ. This adaptive expansion varies depending on
the distance from obstacles in that area. To provide short
any-angle paths, AA* tries to amend the parent of each node
to a suitable candidate from a set of already expanded nodes
in order to find a shorter any-angle path. In experiments, it
is shown that AA* is faster than the original A* and slower
than Θ* and RRT-based planners in many cases. But the
main advantage of AA* is in the fact that it finds the shortest
paths in all scenarios including many randomized configu-
rations.

Search(sstart, sgoal){1}
g(sstart)← 0;{2}
h(sstart)← c(sstart, sgoal);{3}
parent(sstart)← false;{4}
OPEN ← {sstart};{5}
CLOSED ← ∅;{6}
while OPEN 6= ∅ do{7}

sc ← RemoveTheBest(OPEN);{8}
if sc = sgoal then return sc;{9}
Insert(sc, CLOSED);{10}
foreach sd ∈ Candidates(sc) do{11}

if Contains(sd, CLOSED) then continue;{12}
if Intersect(sc, sd) then continue;{13}
g(sd)← g(sc) + c(sc, sd);{14}
h(sd)← c(sd, sgoal);{15}
parent(sd)← sc;{16}
ProcessNode(sd);{17}

end{18}
end{19}
return false;{20}

end{21}

Candidates(sc){22}
return NODES;{23}

end{24}

ProcessNode(sd){25}
InsertOrReplaceIfBetter(sd, OPEN);{26}

end{27}

Algorithm 1: A* algorithm

A* Algorithm
Both Θ* and AA* planning algorithms are modified ver-
sions of the original A* (Hart, Nilsson, and Raphael 1968),
shown in Algorithm 1. The algorithm is organized so that
the Search function is reused for both Θ* and AA* algo-
rithms. To focus A* search, a heuristic based on the Eu-
clidean distance to the goal is used in all modifications. The
algorithm works with three values for each vertex s: (i) g(s)
is the length of the path from the start vertex sstart to s found
so far, (ii) h(s) is the value of the heuristic for s and (iii)
parent(s) is used to store the link to the predecessor of s
which is also used to extract the final path. c(si, sj) is the
straight line Euclidean distance between si and sj . The al-
gorithm maintains two global structures: (i) OPEN is a
priority queue that contains vertices for expansion and (ii)
CLOSED contains already processed vertices and is used
to ensure that each vertex is processed only once. Initially,
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Figure 2: Visibility graph: the bold solid line is the shortest
path, solid lines are edges in the visibility graph.

the algorithm initializes values for the start vertex sstart,
OPEN and CLOSED structures, lines 2–6.

The main search loop is repeated until OPEN is empty,
lines 7–19. If OPEN is empty it means that no path is
found and the function Search returns false. The func-
tion RemoveTheBest pops one candidate sc with the low-
est value of g(sc) + h(sc), line 8. sc is tested if it matches
the goal vertex sgoal, line 9. If the goal vertex is found,
the search just found a path from the start to the goal and
the algorithm returns the last vertex which is used for a
path reconstruction using parent references. Otherwise,
sc is stored in CLOSED, line 10. Then, sc is used for
generation of all possible successors of sc regardless of
intersection with blocked cells, generated by the function
Candidates, line 11.

Each successor candidate vertex sd is tested whether it
hasn’t been processed yet (line 12) and the straight-line to
this vertex from the predecessor sc doesn’t intersect any
blocked cell (line 13). Then, g(sd), h(sd) and parent(sd)
values are updated, lines 14–16. Finally, sd is passed for
further processing to the function ProcessNode, line 17.

The problem of searching for the shortest any-angle paths
in grids can be transformed into a search for the shortest
paths in visibility graphs, as shown in Figure 2. Visibility
graphs contain the start vertex, the goal vertex and vertices
in corners of all blocked cells (Lozano-Pérez and Wesley
1979). Edges between any two vertices are defined if and
only if the straight-line between them doesn’t intersect any
blocked cell. The A* algorithm (Algorithm 1) uses a set
NODES in the function Candidates to generate all pos-
sible successors for a node, line 23. NODES is constructed
in the following manner. For each blocked cell in a grid, in-
sert all its corner vertices to NODES for which there are
not four blocked cells around the vertex, e.g. the vertex C4
in Figure 2 is not inserted because there are four blocked
cells around it. The goal vertex is inserted into NODES
too. Each vertex can be in NODES only once. The func-
tion ProcessNode is pretty simple for the original A* im-
plementation. It just inserts the vertex sd toOPEN , line 26.

Theta*
The key difference between Θ* (Nash et al. 2007) and A* is
that Θ* allows the parent of a vertex to be any from its pre-
decessors not only the direct predecessor vertex like in A*.
In the paper, Θ* refers to the basic Theta*. The extended
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Figure 3: Sub-optimality of Θ* algorithm (Nash et al.
2007).

angle-propagation Theta* (AP Θ*) version removes inter-
section checks with angle lower and upper bound checks but
each newly generated node requires a complex computation
of its new angle range. In (Nash et al. 2007), it is docu-
mented that AP Θ* over-constrains the angle ranges which
causes that some paths are removed even though they can
be used. Moreover, AP Θ* is slower than the basic Θ* in
almost all experiments due to a complex angle propagation
method. Thus, AP Θ* is not used in the paper.

Candidates(sc){28}
return EightNeighbors(sc);{29}

end{30}

ProcessNode(sd){31}
spp ← parent(parent(sd));{32}
if not Intersect(spp, sd) then{33}

g(sd)← g(spp) + c(spp, sd);{34}
parent(sd)← spp;{35}

end{36}
InsertOrReplaceIfBetter(sd, OPEN);{37}

end{38}

Algorithm 2: Theta* algorithm

The pseudo-code of the Θ* algorithm is shown in Algo-
rithm 2. The main search function is the same as in A*,
Algorithm 1 lines 1–21. In comparison to A*, Θ* produces
only the eight neighbors of a vertex as its successors, line 29.
In the function ProcessNode, Θ* implements a path trun-
cation which is applied to all generated vertices. The prede-
cessor of cd is replaced with the parent of this predecessor if
the straight-line between that parent and cd doesn’t intersect
any blocked cell, lines 32–36. The described one step trun-
cation of Θ* provides shorter paths, but it is not guaranteed
that such paths are the shortest ones, as shown in Figure 3.

Accelerated A*
The AA* algorithm uses only successors from four candi-
dates within the function Expand, as shown in Algorithm 3.
Similarly to Θ*, this accelerates the search process by reduc-
tion of the search branching factor from linear to constant in
number of vertices. The reduction of the search branching
factor effectively reduces the number of all generated states
and the size of the OPEN list as well. Thus, it reduces
memory requirements and speeds up the OPEN list opera-
tions.
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Candidates(sc){39}
sq ← DetectMaxSquare(sc);{40}
return UsableSideCenters(sq);{41}

end{42}

ProcessNode(sd){43}
foreach sn ∈ EllipseMbs(CLOSED, sstart, sd){44}
do

if g(sn) + c(sn, sd) < g(sd) then{45}
if not Intersect(sn, sd) then{46}

g(sd)← g(sn) + c(sn, sd);{47}
parent(sd)← sn;{48}

end{49}
end{50}

end{51}
InsertOrReplaceIfBetter(sd, OPEN);{52}

end{53}

Algorithm 3: Accelerated A* algorithm
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Figure 4: Maximum unblocked squares and successor ver-
tices for C4 and C9.

There are two major differences between AA* and Θ*:
(i) use of a dynamic adaptive expansion and (ii) the way
how AA* searches for the path truncation. The function
Candidates prepares four successor candidates (each in
one direction) at maximum using the maximum unblocked
square, lines 40 and 41. To find the maximum unblocked
square for a given vertex (always positioned in the square
center), both blocked cells and the goal vertex are consid-
ered, see two examples in Figure 4. No blocked cell can be
in the square area and the goal vertex cannot lie inside the
squeare perimeter. The minimal size of the square is 2x2
and grid dimensions don’t restrict the square size. For ex-
ample, the vertex C4 has the maximum unblocked square
with size 4x4 due to blocked cells and the square defines
C2, A4, C6 and E4 as successors of C4. On the other hand,
the vertex C9 has the maximum unblocked square with the
size 2x2 only due to the goal vertex located at the position
B8. Thus, C8, B9, C10 and D9 are defined as successors
of C9. Such a generation of successors guarantees that the
algorithm doesn’t skip any vertex from the visibility graphs
where the shortest paths come from.

AA* truncates the current path to each generated succes-
sor sd to be the shortest one taking into account the already
processed vertices stored in CLOSED, lines 44–51. It
searches for a new parent vertex in CLOSED which is: (i)
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Figure 5: Path truncation in AA*: a is the major radius, b is
the minor radius and x is the ellipse center.

usable (a path between the vertex and its new parent doesn’t
intersect any blocked cell) and (ii) the g cost through this
vertex is the minimal one. It is not necessary to traverse all
vertices in CLOSED, because such a candidate has to be
located inside the ellipse uniquely defined by the start ver-
tex sstart, the current vertex sd and the cost of the path to
the current vertex g(sd). sstart and sd defines two foci of
the ellipse, the major radius is a = g(sd)/2 and the minor
radius is b = (

√
g(sd)2 − c(sstart, sd)2)/2, see illustra-

tion in Figure 5. The vertex D8 has been generated from
the vertex E8 because the goal vertex is in the upper right
direction from the start. Using the ellipse test, the vertex B7
from CLOSED is identified as the new parent for D8. The
path to D8 through B7 is shorter than the original one. The
extraction of all vertices from CLOSED which are inside
the ellipse is accelerated by using a spatial-based hash ta-
ble (Cormen et al. 2001). CLOSED already uses a hash
table for contains tests. A path going through a vertex out-
side the ellipse cannot be shorter than the existing path. The
boundary of the ellipse defines exactly those points where
the cost of a straight line from sstart to the point, plus the
cost of a straight line from that point to sd, is exactly g(sd),
which is the cost of the current path. If you ever go from
sstart outside the ellipse, you definitely cannot get back to
sd without incurring a cost strictly greater than g(sd).

The complexity of the function DetectMaxSquare is
quadratic in the number of cells, but can use a bisection
method (Cormen et al. 2001) to accelerate the detection pro-
cess. In such a case, a bisection is used to reduce the num-
ber of tests required for finding the maximum unblocked
square. The maximum unblocked square has to have the
size ranging from 2x2 to NxN , where N = 2 ∗ max(ε, 1)
and ε is the minimum of the vertical and horizontal grid dis-
tances between the square center vertex and the goal ver-
tex. AA* truncation in the function ProcessNode has
quadratic complexity. However, AA* works with less ver-
tices than A* and thus AA* is still faster than A*. In the case
where few cells are blocked, AA* explores a grid rapidly
and the ellipse test covers only a limited number of parent
candidates during the truncation. On the other hand, if there
are many blocked cells, the path length g to a vertex near the
goal is much longer than the Euclidean distance to the start
and thus the ellipse covers a major part of the grid. In such a
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case, the time required to generate and process successors is
almost similar to the A*. But for vertices closer to the start,
the ellipse becomes smaller and it requires less time. The
overall run-time of the search is still faster than for A*.

RRT(sstart, sgoal){54}
τ.init(sstart);{55}
for k=1 to K do{56}

srand ← RandomVertex();{57}
snear ← τ.nearest(srand);{58}
snew ← τ.stopping configuration(snear, srand);{59}
if snew 6= snear then{60}

τ.add vertex(snew);{61}
τ.add edge(snear, snew);{62}

end{63}
snear ← τ.nearest(sgoal);{64}
if not Intersect(snear , sgoal) then{65}

return τ , snear;{66}
end{67}
return false;{68}

end{69}

Algorithm 4: RRT algorithm

Rapidly-exploring Random Tree
In this section, the Rapidly-exploring Random Tree (RRT)
path planning technique is briefly introduced. RRT tech-
niques are very popular nowadays and they have been
successfully applied to many planning problems also in
robotics. RRT was chosen as a representative for random-
based path planners within experiments. However, RRT is
suitable for high dimensional spaces, contrarily to most of
sampling-based techniques. Specifically, two version are
used: (i) RRT with one exploring tree (La Valle and Kuffner
2001) and (ii) dynamic domain RRT with two exploring
trees (Yershova et al. 2005). The pseudo-code of unidi-
rectional RRT is shown in Algorithm 4. Initially, the tree
τ is initialized with the start vertex, line 55. Then, RRT
incrementally searches a grid for a path connecting start
and goal vertices, lines 56–67. The number of iterations
is limited to the constant K and if a path is not found the
search fails, line 68. At each iteration, a new vertex is sam-
pled and the extension from the nearest node in the tree to-
wards this sample is attempted, lines 57–59. The function
stopping configuration returns the last vertex snew in the
direction from snear towards srand for which the straight-
line between snear and snew doesn’t intersect any blocked
cell. If the extension succeeds (snew is different from snear),
a new node and edge in tree is created, lines 61 and 62. Then,
RRT checks if the goal can be connected to the tree not inter-
secting any blocked cell, lines 64–66. If such a test passes,
a path is found. The constructed tree τ and snear is used for
the reconstruction of the path from the start to the goal.

The most complex part of the RRT algorithm is the func-
tion nearest, line 58. In order to implement the search for an
any-angle path over a grid, the function needs to search for
the nearest vertex not only from the set of inserted vertices in
the tree τ but to any grid position at any edge in τ . This be-
havior can be simplified in the following manner. Each time

when a new sample is added in τ , lines 61 and 62, all inter-
mediate vertices between snew and snear corresponding to a
grid position are inserted too. In such an approach, nearest
is implemented as a process of finding the nearest node in τ .
This results in the computation time for the function nearest
which is linear in the number of vertices. To speed up such
a search, the widely used KD-tree structure (Cormen et al.
2001) is used.

The dynamic-domain modification provides significant
speed up for RRT planning. It reduces the negative effects
of large Voronoi regions causing a considerable bias towards
the vertices near obstacles (Yershova et al. 2005). The
dynamic-domain modification of RRT limits large Voronoi
regions for vertices near obstacles. When a point is quite
far from obstacles its boundary domain is the same as the
RRT’s sampling domain, that is the whole Voronoi region.
The dynamic domain for the random vertex selection is im-
plemented using radius value for each vertex. By default,
it is set to infinity which guarantees the default domain be-
havior. If a generated vertex doesn’t provide any growth of
the tree, the domain is restricted. For all experiments, the re-
stricted region has the radius 10. The bidirectional balanced
RRT expands two trees, one from the start and the second
from the goal. After each successful tree extension, both
trees are swapped. A path from the start to the goal is found
if the inserted vertex snew can be connected also with the
other tree without intersection with any obstacle.

Due to the random nature of RRTs, the post-smoothing
applied to paths formed by RRT planners can consider-
able shorten their lengths. In the paper, the following post-
smoothing (PS) (Botea, Müller, and Schaeffer 2004) is used.
The path’s last vertex is set as the current vertex (s0). PS
checks whether the straight-line between the current vertex
(s0) and the parent of its parent on the path (s2) doesn’t in-
tersect any blocked cell. If so, PS removes the parent (s1)
of the current vertex (s0) from the path and repeats the pro-
cedure by checking again whether the straight-line between
the current vertex (s0) and the parent of its parent on the path
(s3) is usable, and so on. If not, PS uses the parent vertex
(s1) as the current vertex and repeats the procedure again un-
til the path is shortened to the start vertex or the start vertex
is set as the current one.

Experiments
The presented AA* algorithm is compared to the original
A*, the basic Theta* (Θ*), the rapidly-exploring random
tree with post-smoothing (RRT PS) and the dynamic do-
main bi-directional rapidly-exploring random tree with post-
smoothing (dynamic bi-RRT PS) in various grids of size
100x100, 500x500 and 1000x1000. Field D* (FD*) (Fergu-
son and Stentz 2006) is not included in the experiment, be-
cause it is shown in (Nash et al. 2007) that Θ* finds shorter
paths in less time than FD* in similar tests. Both RRT plan-
ners were executed also without post-smoothing, but it was
found that post-smoothing shortens paths with insignificant
time consumption. Thus, all results are provided only for
post-smoothed RRTs. All path planning methods were im-
plemented in Java and executed on a 2.5 GHz Intel Xeon
CPU.
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Configuration Shortest Paths
A* Θ* AA* RRT PS dynamic bi-RRT PS

5% blocked cells 54.210 (10.084) 54.345 (0.023) 54.210 (0.079) 73.834 (0.003) 73.411 (0.0004)
10% blocked cells 53.190 (11.896) 53.428 (0.026) 53.190 (0.082) 79.558 (0.013) 75.896 (0.0015)
20% blocked cells 53.301 (18.476) 53.623 (0.036) 53.301 (0.101) 85.207 (0.032) 78.030 (0.0037)
30% blocked cells 53.206 (31.493) 53.611 (0.049) 53.206 (0.129) 85.344 (0.077) 81.566 (0.0089)

Table 1: Path lengths and run-times (in parenthesis), each averaged from 500 runs for random grids of size 100 x 100.

Configuration Shortest Paths
A* Θ* AA* RRT PS dynamic bi-RRT PS

5% blocked cells 56 (1962) 172 (275) 138 (181) 70 181
10% blocked cells 102 (3296) 216 (324) 162 (205) 323 412
20% blocked cells 198 (2597) 302 (403) 238 (294) 921 988
30% blocked cells 294 (1809) 372 (466) 324 (363) 1938 2053

Table 2: The number of vertex expansions and generated vertices (in parenthesis), each averaged from 500 runs for random
grids of size 100 x 100.

Randomized grids
In the first set of experiments, all path planning algorithms
were executed on grids of size 100 x 100 with randomly
blocked cells. Start and goal vertices were selected ran-
domly too. Similarly to (Nash et al. 2007), four different
densities of obstacles were selected: 5%, 10%, 20% and
30% blocked cells of the whole grid. Table 1 summarizes
results presenting lengths of paths and run-times of tested al-
gorithms. Each different density of obstacles were measured
500 times and results show average values from all repeti-
tions. Please, note that each generated planning task (grid,
start and goal vertices) was executed by all algorithms. In
other words, the same 500 tasks were executed by A*, Θ*,
AA*, RDT PS and dynamic bi-RDT PS.

AA* finds the same shortest paths as the original A* run-
ning on visibility graph in all cases. Θ* finds longer (but still
very close) paths than the shortest ones. Paths found by RRT
planners are more than 36% longer than the shortest paths.
In randomized grids, dynamic bi-RRT PS provides shorter
paths than RRT PS. On the other hand, both RRT planners
are very fast. Both Θ* and AA* are many times faster than
the original A*. Θ* is about three times faster than AA* in
these configurations.

Table 2 provides results about the number of expanded
vertices (those which were popped from OPEN ) and the
total number of generated vertices. For RRT-based planners
only the number of generated vertices is presented. AA*
works with less vertices than Θ* and the original A*. Thus,
AA* requires less memory. The reduction of the number of
vertices for AA* is primarily given by the reduction of the
search branching factor to 4 in these configurations. It is
not necessary to work with all visible vertices (connected by
an edge in the visibility graph) like in A* to find the short-
est paths. Although the original A* algorithm processes the
lowest number of vertices in all cases, it is the slowest one
because it detects all visibility edges during each expansion
and put all of them to OPEN . Dynamic bi-RRT PS vis-
its more vertices than RRT PS in grids but the fact that the
search is running simultaneously in both directions provides
significant acceleration of the search.

Selected Grids
In the second set of experiments, selected obstacle configu-
rations were used, as shown in Figure 6: a wall (a), a half
circle (b), a single gap (c), a double gap (d), a maze (e) and
multi-obstacles (f). Obstacle positions were motivated by
path planning testing setups as presented in (LaValle 2006).
The first five configurations, (a)–(e), are within grids of size
500x500 and the sixth configuration, (f), is within the grid of
size 1000x1000. In all these configurations, each solid line
in Figure 6 is mapped to many blocked cells which do not
allow a path connection to the opposite side of the line.

Configurations (a) and (b) have obstacles positioned so
that they cause deviation from paths which are strongly pre-
ferred by the used distance to goal heuristic. In the config-
uration (b), the path needs to go slightly in a opposite di-
rection, away from the goal as the start vertex is positioned
within that half circle obstacle. Configurations (c) and (d)
are used for checking that the planning algorithm is able to
find a path through a small hole in obstacles. The configu-
ration (e) is used for verification of acceleration capabilities
in the case where the heuristic is completely inefficient. Fi-
nally, the configuration (f) has many half circle obstacles be-
tween start and goal vertices and demonstrates a large-scale
search problem. Each selected configuration was executed
once by A*, Θ* and AA* path planning algorithms. Their
behavior is deterministic and results are the same for the
same configurations. Only values for RRT-based planners
are averaged from 500 successive executions because each
search provides a different result due to the random nature
of the algorithms.

Table 3 provides a comparison of lengths of paths and re-
quired run-times for selected configurations. Similarly to
random grids, AA* finds same the shortest paths as the orig-
inal A* running on visibility graph for all configurations.
Θ* finds slightly longer paths than the shortest ones. Both
RRT planners provides much longer paths than others. For
example, in the multi-obstacles configuration, average path
lengths are more than 4 times longer which is caused by a
very complex combination of blocked cells. In all cases,
the original A* algorithm requires the longest run-time to
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Figure 6: Selected experiment configurations: (a) a wall, (b)
a half circle, (c) a single gap, (d) a double gap, (e) a maze
and (f) multi-obstacles. The start vertex is denoted as sstart

and the goal vertex is denoted as sgoal.

find a solution. Even though AA* algorithm has the same
quadratic complexity like the original A*, AA* is much
faster than A* in these configurations too. The speed up ef-
fect is gained by both the reduction of the search branching
factor and the adaptive expansion. The adaptive expansion
helps AA* to explore quickly parts of grids far from any ob-
stacle and not to lose the ability to find paths through small
holes like in configurations (c) and (d).

Required run-times in Table 3 correlates with the number
of expanded and generated vertices in Table 4. The adap-
tive expansion of AA* significantly reduces the number of
expanded vertices in comparison to Θ*. The huge number
of vertices in OPEN further slows down operations with
it, especially removal of the best candidate from OPEN .
Although OPEN combines together both a hash table for
speed up of contains’ tests and a heap structure (Cormen et
al. 2001) in measured implementations, Θ* is slower than
AA* in four configurations. For example, in the large-scale
configuration (f), AA* is about 12 times faster than Θ* and
works with about one sixth of vertices. Beside the speed
up effect, the reduction of processed vertices also decreases
memory requirements during the search. These memory
savings allow the AA* algorithm to find a path also in con-
figurations where it is impossible with the original A* and
also with Θ*.

RRT-based planners are very fast in configurations (a) and
(b). But their paths are much longer than for others even
though the post-smoothing is applied. RRTs’ run-times are
considerably increased in configurations where there exist

only a few unblocked cells through which the path needs to
pass. In the single gap case (c), the use of two searching
trees still provides fast result. In the complex large-scale
configuration (f), RRT PS is two times slower than AA*
and dynamic bi-RRT PS has similar run-times even though
KD-tree acceleration structure (Cormen et al. 2001) is used
in RRT implementations. In this configuration, both RRTs
work with a huge number of vertices which increases its
memory requirements.

Conclusion
The novel Accelerated A* (AA*) algorithm applied to grid-
based any-angle path planning problem has been presented
in the paper. AA* modifies the original A* searching for the
shortest any-angle paths in two key parts: (i) AA* reduces
the search branching factor and (ii) AA* uses an adaptive
expansion. AA* reduces the search branching factor from
quadratic to constant in comparison to the original A* ap-
plied to visibility graphs providing any-angle paths. Each
vertex can have four successors at maximum in AA*. This
idea is not new, because a similar one has been already used
in Theta* (Θ*) (Nash et al. 2007) which uses eight grid
neighbors. However, AA* comes with novel progressive
truncation applied to each generated node. In contrast to
Θ*, AA* searches for a new suitable parent for each gen-
erated node in a limited set of vertices in CLOSED and
not only in a set of node’s predecessors. Beside the reduced
branching factor and the progressive truncation, AA* comes
with an adaptive expansion in grids. It is based on the iden-
tification of the maximum unblocked square around a vertex
selected for the expansion. Successors are then selected in
the middle of each side of such a square. This modification
of AA* avoids expansion of states in parts far from any ob-
stacle and don’t affect the capability to find a path through a
small hole (one unblocked cell) between obstacles. The used
modification doesn’t require any preprocessing of grids. The
idea of an accelerated space exploration is not novel but the
way how the accelerated search is done is novel. It was pre-
viously used in 3D Field D* (3D FD*) (Hildum and Smith
2007) where the acceleration is given by varying size of oc-
tant tree cells. In 3D FD*, the octant tree is used as a struc-
ture for storage information about obstacles. Each time an
obstacle definition is changed, the octant tree needs to be
rebuilt which is a complex task.

The described AA* doesn’t reduce the quadratic search
complexity like Θ* but the number of processed nodes is
much lower than in the original A*. Thus, AA* is also many
times faster than A*. Properties of AA* have been validated
on many configurations. The main AA* advantage is the
fact that it provides the shortest paths in all of more than
two thousand configurations used during experiments. Be-
side a few selected configurations, many randomized grids
have been used. No grid where AA* provides different re-
sult than the original A* searching for the shortest any-angle
paths was observed. Although AA* is slower than Θ* and
rapid-exploring random trees (RRT) planners in randomized
grids, AA* is faster than Θ in four of six selected configura-
tions. Moreover, in the complex large-scale multi-obstacles
configuration, AA* is faster than unidirectional RRT and is
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Configuration Shortest Paths
A* Θ* AA* RRT PS dynamic bi-RRT PS

a wall 357.106 (2 249.5) 357.125 (0.504) 357.106 (0.881) 490.124 (0.0004) 525.953 (0.0001)
a half circle 422.154 (2 827.2) 424.876 (0.652) 422.154 (0.264) 685.465 (0.0021) 695.129 (0.0001)
a single gap 395.991 (3 985.4) 399.072 (0.736) 395.991 (0.207) 505.632 (0.1962) 737.162 (0.0006)
a double gap 485.213 (6 131.4) 490.056 (1.744) 485.213 (0.735) 581.479 (0.2949) 614.254 (0.2173)

a maze 4 121.478 (10 989.3) 4 133.491 (3.148) 4 121.478 (7.202) 4 542.958 (0.4502) 4 559.624 (0.0188)
multi-obstacles 662.550 (6 750.2) 696.697 (250.208) 662.550 (20.586) 2 971.787 (40.3726) 2 768.783 (17.7803)

Table 3: Path lengths and run-times (in parenthesis). Values for RRT PS and dynamic bi-RRT PS are averages from 500 runs.

Configuration Shortest Paths
A* Θ* AA* RRT PS dynamic bi-RRT PS

a wall 436 (876) 24 020 (25 216) 687 (715) 24 74
a half circle 605 (2 132) 25 756 (26 912) 811 (855) 48 131
a single gap 562 (1 871) 24 308 (25 524) 786 (836) 24 462 463
a double gap 1 092 (2 694) 44 380 (45 302) 1 940 (2 003) 25 266 28 228

a maze 3 324 (5 347) 145 284 (147 940) 13 769 (13 851) 46 272 81 843
multi-obstacles 17 634 (43 796) 166 091 (168 355) 28 149 (28 532) 781 558 638 117

Table 4: The number of vertex expansions and generated vertices (in parenthesis). Values for RRT PS and dynamic bi-RRT PS
are averages from 500 runs.

as fast as dynamic domain bidirectional RRT.
Another strong property of AA* is the reduction of used

vertices during the search. AA* works with less vertices
than A* and Θ* in all configurations. In many cases, AA*
uses less vertices than RRT-based planners. Such a reduc-
tion of used vertices implies reduction of memory require-
ments during the search. These memory savings allow to
use AA* also to search in complex large-scale grids. In the
future, it has to be checked whether AA* techniques are us-
able also for grids with non-uniform traversing costs for the
movement through a cell which are widely used in robotics.
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