
Continuous mission plan adaptation for autonomous vehicles:
balancing effort and reward

Pedro Patrón, David M. Lane, Yvan R. Petillot
Ocean Systems Laboratory, Heriot-Watt University∗

EH14 4AS, Edinburgh, Scotland
{p.patron,d.m.lane,y.r.petillot}@hw.ac.uk

Abstract

This paper proposes a novel approach for adaptive mis-
sion planning for autonomous vehicles in a changing
discoverable environment. The approach handles tem-
poral planning with durative actions, metric planning,
opportunistic planning and dynamic planning. Dur-
ing the planning process, plan selection is balanced be-
tween its estimated cost of execution and the reward
obtained by reaching the new configuration of the envi-
ronment. The plan proximity between plans is defined
in order to measure difference between plans perform-
ing on the same execution environment. The approach
is evaluated under a static scenario and a partially
known dynamic scenario using the plan proximity to
the human driven mission.

Introduction
Robotic platforms are helping humans to gain routine
and permanent access to different environments. How-
ever, challenges related to difficult domains, such as
underwater, require the integration of embedded tools
that can raise the platform’s autonomy levels and adapt
to the continuous changes on the perception that the
platform has of the environment.

The problem, however, is that at present, applica-
tions are mono-domain: mission targets are simply
mono-platform, and missions are generally static pro-
cedural lists of commands (Hagen 2001). If behaviours
are added (Pang et al. 2003), they are only to cope with
possible changes that are known a-priori by the opera-
tor. All this, therefore, leaves the platforms in isolation
and limits the potential of adapting mission plans to
the sensing information. The benefits of autonomous
dynamic mission planning in changing domains for has
been promoted by Rajan et al. in (Rajan et al. 2007)
and (McGann et al. 2007).

We propose an approach based on a continuous re-
assessment of the status of the environment resources
and the platform capabilities. The approach combines
a Bayes model for prediction, measurement and correc-
tion (Thurn, Burgard, and Fox 2005) with the classical

∗This paper is partly funded by the Project
RT/COM/5/059 from the Competition of Ideas and
by the Project SEAS-DTC-AA-012 from the Systems
Engineering for Autonomous Systems Defence Technology
Centre, both established by the UK Ministry of Defence.

planning approach. Instead of solving a plan from ini-
tial state to goals like in classical AI planning, the ap-
proach tries to maintain a window of actions that are
believed can be performed from of the current state in
order to improve a given utility function.

The paper is structured as follows: The following sec-
tion describes the modeling of the environment of exe-
cution or domain. Next, we introduce the way the prob-
lem or mission gets represented. The proposed plan
strategy to solve this problem is described in the third
section. A measure of plan proximity is proposed for
comparing different planning strategy results. Based on
this metric, the final section analyses the performance
of the approach in a static and in a partially known dy-
namic scenario. The paper ends with the conclusions
and the future work.

Domain Model
We assume that the planner has access to the domain
knowledge describing the list of actions/capabilities and
resources.

This domain is defined by the tuple Σ =
(C,OC , VC , PV , AV), where:

• C = {ci|i ∈ 〈1, 2, . . . , |C|〉}1 is a set of hierarchi-
cal classes of objects. All classes derive from a
root class named object (e.g.: (:types location
- object area - location) class(c) represents
the set form by class c and all its ancestors:

class(c) =
{
{object}, if c=object
{c} ∪ {class(parent(c))}, otherwise

• OC = {oci
j |j ∈ 〈1, 2, . . . , |OC |〉, ci ∈ C} represents a

set of objects or resources of C. Each object oj is of
only one class ci. Therefore each object oj belongs
to its class and all the ancestors of this class (∀oci

j ∈
OC class(oj) = class(ci)). (e.g.: seabedA - area
indicates that the region ’seabedA’ belongs to the
area, location and object classes).
• VC = {vci

k |k ∈ 〈1, 2, . . . , |VC |〉, ci ∈ C} is a set
of variables of C. In the same way, each variable
vk belongs to its class and all the ancestors of this
1A set is a collection of elements. It is represented by {}.

A list is an ordered set. It is represented by 〈〉.

50

class (∀vci

k ∈ VC class(vk) = class(ci)). (e.g.: ?v -
vehicle indicates a variable v of the class vehicle).
An ordered set of variables and objects defines a list
of arguments for an item x:

arg(x) =
〈
vci

k |k ∈ 〈1, 2, . . . , n〉,

0 ≤ n ≤ |VC |+ |OC |, ci ∈ C
〉

⊆ {VC ∪OC}

• PV = {pm|m ∈ 〈1, 2, · · · , |PV |〉} is a set of proposi-
tions. A proposition can return a boolean or a nu-
meric value. Each proposition pm has a list of ar-
guments arg(pm). (e.g.: (at ?l - location) rep-
resents the proposition of being at a particular loca-
tion).
FV = {fq, |q ∈ 〈1, 2, · · · , |FV |〉} ⊆ PV is a set of func-
tions. A function is a proposition that returns a nu-
meric value. (e.g.: (distance ?a ?b - location)
represents the value of the distance between two lo-
cations).

• AV = {ah, |h ∈ 〈1, 2, · · · , |AV |〉} is a set of
actions. Each action ah has a list arguments
arg(ah). An action can have a set of requirements:
condition(ah) = {pm|pm ∈ PV ∧arg(pm) ⊆ arg(ah)}.
An action can have a set of effects: effect(ah) =
{pm|pm ∈ PV ∧ arg(pm) ⊆ arg(ah)}. An action
has some duration in time: duration(ah) ∈ R.
(e.g.: (move (?from ?to - location) (:dur
(distance ?from ?to)) (:cond (at ?from))
(:effect (not (at ?from)) (at ?to))).
From this tuple, another two sets can be calculated:

• RO = {rpm
y |y ∈ 〈1, 2, · · · , |RO|〉, pm ∈

PV , arg(rpm
y) ⊆ OC} is the set of proposition

facts. A proposition fact rpm
y is an instantiation of

a proposition pm for a particular list of objects as
arguments arg(rpm

y). (e.g.: (at seabedA)).

• GO = {gah
z |z ∈ 〈1, 2, · · · , |GO|〉, ah ∈ AV , arg(gah

z) ⊆
OC} is the set of ground actions. A ground action
gz is an instantiation of an action ah for a particular
list of objects as arguments arg(rah

z). (e.g.: (move
start seabedA)).
An action can be probabilistic. Given an action ah

with probabilistic effects, the uncertainty matrix Γ for
this action can be defined as:
Γ(ah)|effect(ah)|×|RO| = {p(i|j)|

i ∈ effect(ah), j ∈ RO}

Problem Model
t ∈ R defines the continuous time of the mission. s ∈
N0 defines a discrete step or slot in time of a certain
duration ds : [ts0, t

s
n].

A state at some particular step in time xs is a set con-
taining information of the available actions, available
resources and the combination of possible proposition
facts at that step:

xs = xAV
s ∪ xOC

s ∪ xRO
s

= {i(x) ∈ [0; 1] ∀x ∈ {AV ∪OC ∪RO}}

It can be seen that |xs| = |AV |+ |OC |+ |RO| .
A ground action gah

s at step s defines a transition
function between states gah

s : xs−1 → xs through the
sequence of steps.

A plan uTs defines a list of ground actions to
be performed in the T steps ahead uTs : xs−1 →
〈gs, gs+1, · · · , gn|n ≤ T 〉, where T defines the number
of ground actions (windows size) to be included in the
continuous plan. T is also known as the planning hori-
zon. ets defines the execution of gs at time t.

Rewards
Each object oci

j ∈ OC has a reward value δ(oci
j).

The reward of a proposition fact rpm
y ∈ RO is the sum

of all the rewards of the objects used as arguments:

δ(rpm
y) =

∑
δ(oci

j)|∀oci
j ∈ arg(rpm

y)

The reward of a state is the sum of all the rewards of
the proposition facts available on it:

δ(xs) =
∑

δ(rpm
y)i(rpm

y)|i(rpm
y) ∈ xRO

s

The set of mission goals can be defined explicitly with
a list of rewards assigned to different proposition facts.
• QO = {λ(rpm

y)|rpm
y ∈ RO, arg(rpm

y) ⊆ OC} is the set
of proposition fact goals. λ(rpm

y) is a reward defined
by the operator. (e.g.: (= (surveyed seabedA)
100)).
The reward of a ground action gah

s is related to the
production of a proposition fact that has been explicitly
defined as a mission goal in the mission problem. This
means that the ground action has to produce a goal
proposition fact in the new state that was not available
in the previous state:

δ(gah
s , xs−1) =

∑
λ(rpm

y)
|rpm
y ∈ {xRO

s ∩QO}
∧rpm

y 6∈ {xRO
s ∩ xRO

s−1}

If ah has probabilistic effects, the reward of the
ground action gah

s is related to the probabilistic increase
in the production of mission goals in the mission prob-
lem:
δ(gah

s , xs−1) =
∑
λ(rpm

y)×
(Γ(ah)[rpm

y |xs−1]− xRO
s−1[rpm

y])
|rpm
y ∈ QO

Costs
Each ground action gah

s has an execution cost when
being executed in a state γ(gah

s , xs−1).

Payoffs
The payoff function σ of a ground action gah

s in a state
xs−1 is the difference between its cost and the rewards
of the proposition facts of the generated state xs:

σ(gah
s , xs−1) = δ(xs)

+δ(gah
s , xs−1)

−γ(gah
s , xs−1)

51

The cumulative payoff of a plan us of length T given
a state xs is the expected utility function of the plan
at that state σ(uTs , xs). It is the difference between the
rewards accumulated through all the expected states
and the ground actions in the plan:

σ̂(uTs , xs−1) = E
[T∑
τ=1

βτσ(gah
s+τ , xs+τ−1)

]
where β ∈ [0; 1] is known as the discount factor. It
represents the fact that actions that are planned in the
long term may have less effect over the current state
than short term actions.

Passive Action
An action should always exists called passive-action
(φ). This action has no preconditions, no effects and a
unitary cost (∀s, γ(gφs , xs−1) = 1).

Solution Approach
The approach assumes that planning, observation and
execution are performed concurrently. Under such as-
sumption, a plan is calculated up to a defined planning
horizon. While executing this plan, the environment is
continuously observed. When all the plan is executed,
the plan is calculated. If the environment (resources
and/or capabilities) changes, the approach supports a
greedy and a lazy behaviour. Under the lazy behaviour,
planning is only performed at the end of the current
plan execution ignoring changes on the environment.
The greedy approach recalculates the plan as soon as
the changes have being detected. The pseudo-code de-
scribing this process can be seen in Fig. 7.

We assume a framework of stochastic environments
with fully observable states. This is known as Markov
decision processes. A policy in this framework is a map-
ping from states to plans π : x→ u. In this framework
the current state is sufficient for determining the op-
timal control. A policy selects the plan uτs of horizon
τ that maximizes the expected cumulative payoff from
the current state xs−1:

πτs (xs−1) = argmaxu [σ(uτs , xs−1)] |1 ≤ τ ≤ T
This policy is implemented using exhaustive planning

search in the state-space. This policy is described in
Fig. 8.

Given a plan policy πτs , the plan matrix ∆̂τ
s contains

information of the expected actions and resources used
by the plan ahead. This matrix has T rows and |AV |+
|OC | columns:

∆̂τ
s = [µ]T×|AV |+|OC ||µ ∈ [0; 1]

Given a row ς ≤ τ and an action ah,

µς,ah
=
{

1, if gs+ς ∈ πτs (xs−1)
0, otherwise

Given a row ς and an object oj ,

µς,oj
=
{

1, if oj ∈ x̂s+ς
0, otherwise

Action Management

• Removal of an action that is not in plan: In this case
the state is corrected and the execution continues.

• Removal of an action that is in the plan: In this case
the state and the plan are corrected.

• Action recovery : In this case, an action/capability
that was previously available is recovered. The state
gets corrected, and the plan is not guaranteed to be
optimal for the window if a lazy approach is used. A
lazy approach means that the plan only gets recalcu-
lated when the plan is empty.

• New action: When a new action is inserted in the
system, the state and plan need to be corrected.

Object Management

• Removal of an object that is part of the current state:
In this case the framework becomes unstable as the
system no longer has available an object that was
being used.

• Removal of an object used in the plan: In this case,
the states needs to get corrected and the plan recal-
culated.

• Other removal of objects: In this case, only the state
needs correction.

• Object recovery : In a similar way as for the action
recovery, when an object that was not available pre-
viously is recovered the state needs to get corrected.
The plan is not guaranteed to be optimal for the win-
dow if a lazy approach is used.

• New object : When a new object is added, the state
and the plan need to be corrected.

Predicate Management or Explicit Goals

Predicates can be managed through the use of goals.
Goals are predicate facts that the operator want them
to happen.

Action with Probabilistic Effects

Actions can have probabilistic effects. In this case, the
information of the state vector is probabilistic. The
reward of the proposition facts in the goals is affected
by the probabilistic effect of the actions.

Information Exchange

It can be seen that information about the current avail-
ability of actions and resources is stored in a single
binary state vector. This vector can be easily com-
pressed and transfered using low bandwidth communi-
cation hardware such as acoustic modems.

52

Plan Proximity

Plan proximity measures the similarity between two
plans. Plan proximity can be calculated from the
plan difference and the state difference of the outcome
states (Patrón and Birch 2009).

The plan difference between u1 and u2, Dp(u1, u2) is
the number of missing actions mp from the reference
plan u1 and the number of extra actions ep from a test
plan u2 that do not appear in the longest common sub-
sequence of actions (Hunt and McIlroy 1976). The plan
difference is normalized using the sum of the number of
actions of the reference plan n1 and the test plan n2.

D̂p(u1, u2) =
mp + ep
n1 + n2

∈ [0; 1]

The state difference can be calculated as the Ham-
ming distance (Hamming 1950) between the string rep-
resentation of s1 and s2. The state difference is nor-
malized using the string length m.

D̂s(s1, s2) =
∑m
i=1 xi
m

where xi =
{

0 if s1(i) = s2(i)
1 otherwise

Plan proximity, PP (u1, u2), is defined as the normal-
ized balanced sum of the plan difference Dp(u1, u2) and
the state difference of the estimated final states that
they are expected to produce Ds(G1, G2).

PPα(u1, u2) = 1 −α · D̂p(u1, u2)
−(1− α) · D̂s(G1, G2) ∈ [0; 1]

where α ∈ [0; 1] represents a balance factor between
plan and state difference.

Plan proximity is more informed than plan stabil-
ity (Fox et al. 2006) for measuring plan strategies solv-
ing the dynamic planning problem as it takes into ac-
count actions missing from the reference plan, extra ac-
tions added in the test plan, sequential ordering of the
plans and the expected outcomes states of these plans.

Evaluation

Using this metric, the approach has been evaluated un-
der the scenario described by the Student Autonomous
Underwater Challenge - Europe mission rules (SAUC-
E 2009). For this competition the scenario is form by
three aligned gates, a bottom target, a moving mid-
water target, two wall sections and a docking station.
The vehicle should pass through three aligned gates,
first forward and then backwards. Green and red lights
on the second gate indicate the route that should be
taken for its avoidance during the forward pass. After
passing the gates in and out, the vehicle should attempt
(in no particular order) to perform an inspection of the
bottom target, to follow the moving mid-water target,
to survey the walls and to dock at the docking station.
The scenario is represented in Fig. 1.

The scenario is described using four files based on the
PDDL syntax (Ghallab et al. 1998):

x

y

Gate 3

Gate 2

Validation Gate

Position and orientation of objects other than

the gates are given as an example. They could

be changed daily.

Docking box

Mid column moving target

Hovering target

Reference Frame z downward

Wall to be survey

Figure 1 :Mission Illustration

NOTES:

! Submerge and the validation gate MUST be undertaken first. The other tasks may be
undertaken in any order.

! Tasks may be attempted individually from a start point requested by teams. Points
can be collected for the successful completion of tasks throughout the practice days,
qualification and final6.

! For completing all the tasks in a single joined up mission, extra points will be
awarded, See scoring section.

! Between subsequent entry runs the in-water targets may be moved in position and/or
depth.

! The vehicle MUST remain fully submerged. Surfacing at any time will result in
termination of that mission.

! The use of a Doppler Velocity Log will be strictly prohibited7.

6 Points for completing an individual task will only be awarded once for that task.
7
 This expensive commercial equipment would give an unfair advantage to the cash rich teams, without

contributing to the advancement of the vehicle’s autonomy.

Figure 1: Scenario of the 2009 Student Autonomous
Underwater Challenge - Europe. Mission starting at
the origin. Gates, bottom target, mid-water target, wall
sections and docking station locations are shown.

• The domain: describes the classes in C, constants
of OC , the predicates PV , the functions FV and the
actions AV .
• The problem: describes the initial state x0, the re-

wards δ(OC), the goals QO and the cost metric γ.
• The world model : describes the known objects in OC

and their particular domain properties. These prop-
erties allow the calculation of the functions in FV .
• The dynamic world model : simulates events that oc-

cur on the execution time line. Events can be trig-
gered by a predicate in the current state or by reach-
ing a slot. They can add, delete and restore objects,
actions and predicates from the current knowledge.

Known Static Environment
This section analyses the outcomes of the proposed
planning strategies in a fully known static environment.
In this case, the world model contains all the informa-
tion about the environment and the dynamic world file
is empty.

The different planning strategies are evaluated look-
ing at their plan proximity to u0 (see Fig.2) after re-
moving any instances of the passive action φ that may
appear on the plan. Each approach was executed un-
til t > 220 seconds. Fig.3 describes the cumulative
payoff for different planning strategies. Table 1 shows
plan proximity to u0 of different planning strategies.
T ∈ 2, 3, 4 generates the same plan as the human. T = 1
does not have enough evidence about rewards to com-
mit to different actions other than the passive action.
T = 5 reaches the exhaustive search limits and stops a
step before providing the final section of the plan.

Partially-known Dynamic Environment
This section analyses the outcomes of the proposed
planning strategies when solving the dynamic planning
problem under the same scenario. In this case, the orig-
inal world model only contains information about the

53

Time(s)

toMove
toTraverse−in

toTurn
toTraverse−out

toInspect
toSurvey
toFollow

toDock
toWait

lstart
gate1
gate2
gate3

up
downward

bottom
forward

wall2
wall1

middle
recovery

off
red

down
centre

right

0 50 100 150 200

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

● ●

● ●

●

●

●

●

action
arg1
arg2
arg3

●

●

●

●

Figure 2: Ground actions with their arguments exe-
cuted over time during the human generated plan u0.
This plan is used as ground truth for the evaluation of
the different planning strategies.

T D̂p D̂s PP0.5

1 1.00 0.21 0.39
2 0.00 0.00 1.00
3 0.00 0.00 1.00
4 0.00 0.00 1.00
5 0.21 0.04 0.87

Table 1: Plan proximity to u0 for the approaches using
T ∈ [1; 5] in the known static environment.

first gate and the docking station. The dynamic world
model file simulates a series of events that add, delete
or restore objects and/or actions on the world model.
Fig.4 shows the evolution of capabilities and resources
over time for the case of the human driven mission.

Fig. 5 represents the human driven mission as it was
adapted by the human to cope with the changes per-
ceived in the environment by the world model. It can
be seen how the operator is forced to insert a series of
passive action instances as the action toWait becomes
unavailable until s = 22 while being at gate2. Table 2
represents the plan proximity to u0 of the different plan-
ning strategies solving the dynamic planning problem
scenario. It can be seen that the planning strategy so-
lutions for T ∈ 3, 4, 5 are as close to u0 as the human.

Conclusion
We have presented an approach for continuous mission
planning for autonomous vehicles. The approach han-
dles temporal planning with durative actions, metric
planning, opportunistic planning and dynamic plan-
ning. During the planning process, the action selec-

Time (s)

C
um

ul
at

iv
e

P
ay

of
f

0

200

400

600

800

1000

0 50 100 200

5
1

4
1

0 50 100 200

3
1

2
1

0 50 100 200

1
1

5
0.9

0 50 100 200

4
0.9

3
0.9

0 50 100 200

2
0.9

0

200

400

600

800

1000

1
0.9

Greedy Lazy

Figure 3: Cumulative payoff of different planning strat-
egy results solving the known static scenario. T ∈ [1; 5],
β ∈ [0.9; 1] and lazy ∈ [0; 1].

T D̂p D̂s PP0.5

H 0.18 0.01 0.90
1 1.00 0.25 0.37
2 0.41 0.06 0.76
3 0.15 0.01 0.91
4 0.20 0.01 0.89
5 0.20 0.01 0.89

Table 2: Plan proximity to u0 for the different plan-
ning strategies using the human H and T ∈ [1; 5] in a
partially-known dynamic environment.

tion is balanced between its estimated cost of execution
and the reward obtained by reaching the new config-
uration of the environment. A plan proximity metric
has been defined in order measure difference between
plans performing on the same execution environment.
The approach is evaluated under a static scenario and
a partially known dynamic scenario showing that the
results are close to the ones provided by the human.

In the future we are going to be looking at the limi-
tations of the planning horizon, more informed policies,
and the discovery of actions and resources via a service-
oriented architecture.

References

Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006.
Plan stability: Replanning versus plan repair. In Int.
Conf. on Automated Planning and Scheduling.
Ghallab, M.; Howe, A.; Knoblock, C.; McDermott,
D.; Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D.
1998. Pddl: The planning domain definition language.

54

Slot

C
ap

ab
ili

ty

toWait
toMove

toTraverse−in
toTraverse−out

toTurn
toSurvey
toInspect
toFollow

toDock

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

Slot

R
es

ou
rc

e

gate1
lstart

recovery
downward

forward
sidescan

video
red

green
off
up

down
left

right
centre

engaged
detached

gate2
gate3

bottom
middle

wall1
wall2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

Figure 4: Evolution of capabilities and resources over
time for the human driven mission (dark grey means un-
available). gate2, gate3, bottom, middle, wall1 and
wall2 are discovered during the mission. gate2 lights
are discovered and change colour during the mission.
forward camera and action toMove are temporarily un-
available during the mission.

Time(s)

toMove
toTraverse−in

toTurn
toTraverse−out

toWait
toInspect
toSurvey
toFollow

toDock
lstart

gate1
gate2

up
down
gate3

downward
bottom
forward

wall2
wall1

middle
recovery

off
red

centre
right

0 50 100 150 200

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

● ●

● ●

●

●

●

●

action
arg1
arg2
arg3

●

●

●

●

Figure 5: Ground actions with their arguments exe-
cuted over time for the human driven mission in the
dynamic environment scenario.

Technical report, Yale Center for Computational Vi-
sion and Control.

Hagen, P. 2001. Auv/uuv mission planning and real
time control with the hugin operator system. In IEEE
OCEANS 2001, volume 1, 468–473.

Time (s)

C
um

ul
at

iv
e

P
ay

of
f

0

500

1000

0 50100 200

5
1

4
1

0 50100 200

3
1

2
1

0 50100 200

1
1

5
0.9

0 50100 200

4
0.9

3
0.9

0 50100 200

2
0.9

0

500

1000

1
0.9

Greedy Lazy

Figure 6: Cumulative payoff of different planning strat-
egy results solving the partially known dynamic sce-
nario. T ∈ [1; 5], β ∈ [0.9; 1] and lazy ∈ [0; 1].

Hamming, R. W. 1950. Error detecting and error
correcting codes. Bell System Technical Journal 29
2:147–160.
Hunt, J. W., and McIlroy, M. D. 1976. An algo-
rithm for differential file comparison. Computing Sci-
ence Technical Report, Bell Laboratories 41.
McGann, C.; Py, F.; Rajan, K.; Thomas, H.; Hen-
thorn, R.; and McEwen, R. 2007. T-rex: A model-
based architecture for auv control. In Workshop in
Planning and Plan Execution for Real-World Sys-
tems: Principles and Practices for Planning in Execu-
tion, International Conference of Autonomous Plan-
ning and Scheduling.
Pang, S.; Farrell, J.; Arrieta, R.; and Li, W. 2003. Auv
reactive planning: deepest point. In IEEE OCEANS
2003, volume 4, 2222–2226.
Patrón, P., and Birch, A. 2009. Plan proximity: an
enhanced metric for plan stability. In Workshop on
Verification and Validation of Planning and Schedul-
ing Systems, 19th International Conference on Auto-
mated Planning and Scheduling.
Rajan, K.; McGann, C.; Py, F.; and Thomas, H.
2007. Robust mission planning using deliberative au-
tonomy for autonomous underwater vehicles. In ICRA
Robotics in challenging and hazardous environments.
SAUCE. 2009. Mission rules for the student au-
tonomous underwater challenge 2009 - europe v.1.
Technical report, Defence Science and Technology
Laboratory - Ministry of Defence, UK.
Thurn, S.; Burgard, W.; and Fox, D. 2005. Probabilis-
tic robotics. MIT Press.

55

t← s ← 0
T ← τ ← planning horizon
xs ← xAV

s ∪ xOC
s ∪ xRO

s
greedy← TRUE ∨ FALSE
∆̂τ
s ← zeroT×|AV |+|OC |

s← s+ 1
forever do

;; adaptation
τ ← T

(πτs , ∆̂
τ
s)← argmaxu [σ(uτs , xs−1)]

recalculate← FALSE
while (recalculate 6= TRUE) do

;; execute first action in the plan
ets ← g0(πτs))
;; predict next state
(x̂s+1, ∆̂τ−1

s+1)← exec(ets)
;; observe state
x′s+1 ← world model
;; diagnosis
if (|x̂s+1| < |x′s+1|)

recalculate← TRUE
else

if (x̂s+1 ⊃ x′s+1) ∧ (∆̂τ−1
s+1 * x′AV

s+1 ∪ x
′OC
s+1|∀ς ≤ τ − 1) then

if (∆̂τ−1
s+1 (ets) * x′AV

s+1 ∪ x
′OC
s+1) then

unstable, execute emergency script!!!
endif
recalculate← TRUE

endif
if (x̂s+1 ⊂ x′s+1) ∧ (∆̂τ−1

s+1 ⊆ x
′AV
s+1 ∪ x

′OC
s+1|∀ς ≤ τ − 1) ∧ (greedy) then

recalculate← TRUE
endif

endif
;; correction
xs+1 ← x′s+1

t← t+ duration(ets)
τ ← τ − 1
s← s+ 1
if (τ = 0) then

recalculate← TRUE
endif

endwhile
endfor

Figure 7: Approach in Pseudo-code

56

function SearchPolicy(xs, T)
;; initialize policy to the laziest plan: a sequence of pasive actions
πTs ← {φ1, φ2, · · · , φT }
σ̂(πTs , xs)← goals(xs) + T × δ(xs)
∆̂T
s ← zeroT×|AV |+|OC |

;; initialize search variables
τ ← 0
µτs ← {}
σ̂(µτs , xs)← 0
∆̂τ
s ← zeroT×|AV |+|OC |

;; launch exhaustive search
ExhaustiveSearch(πTs , σ̂(πTs , xs), ∆̂

T
s , xs, τ, µ

τ
s , σ̂(µτs , xs), ∆̂

τ
s)

return (πTs , σ̂(πTs , xs), ∆̂
T
s)

endfunction

function ExhaustiveSearch(πTs , σ̂(πTs , xs), ∆̂
T
s , x̂s+τ , τ, µ

τ
s , σ̂(µτs , xs)), ∆̂

τ
s)

;; if the planning horizon is reached
if (τ = T) then

;; if the plan found is better than the current one
if (σ̂(µτ , xs) > σ̂(πTs , xs)) then

;; adopt new plan
πTs ← µTs
σ̂(πTs , xs)← σ̂(µτ , xs)
∆̂T
s ← ∆̂τ

s
endif
return

endif
τ ← τ + 1
Uτ ← {gs+τ ∈ GO ∧ executable(x̂s+τ−1)}
;; for each of the ground action candidates
foreach (es+τ ∈ Uτ) do

Uτ ← Uτ \ es+τ
(x̂s+τ , ∆̂τ

s)← execute(es+τ , x̂s+τ−1)
µTs ← µTs ∪ {es+τ}
σ̂(µT , xs)← σ̂(µT , xs) + βτσ(es+τ , x̂s+τ−1)
ExhaustiveSearch(πTs , σ̂(πTs , xs), ∆̂

T
s , x̂s+τ , τ, µ

τ
s , σ̂(µτ , xs), ∆̂τ

s)
µTs ← µTs \ {es+τ}
σ̂(µT , xs)← σ̂(µT , xs)− βτσ(es+τ , xs+τ−1)

endfor
return (πTs , σ̂(πTs , xs), ∆̂

T
s)

endfunction

Figure 8: Search process for the optimal policy in Pseudo-code

57

