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Abstract

This paper focuses on a temporal reasoning approach
for human activity recognition. Specifically, we show
how search and temporal propagation are used to enable
long term and continuous activity recognition. Two spe-
cific issues are addressed, namely maintaining perfor-
mance over long monitoring horizons and ensuring fu-
ture temporal consistency of recognized activities. We
propose a complete search algorithm for activity recog-
nition which addresses these issues, in which an admis-
sible pruning technique allows improved performance.
We show a sufficient condition for guaranteeing future
admissibility, and experimental results which test the
limits and practical applicability of the system are pre-
sented.

Introduction

The demand for intelligent services in home environments
can be expected to grow in the near future as ubiquitous sen-
sors become more widely available and mature. However,
sophisticated intelligent home services cannot be provided
in a purely reactive fashion, since they require contextual
knowledge about the environment such as the activities the
residents are engaged in at any given time. Obtaining such
knowledge poses a series of interesting problems since it is
often the case that information about human behavior can-
not be sensed directly. The key to providing context about a
human user in a sensor-rich environment lies in aggregating
percepts from multiple sensors.

Due to its importance for realizing intelligent environ-
ments, activity recognition has received much attention in
the literature and the term has been employed to indicate a
variety of capabilities. In this paper we take activity recog-
nition to mean the ability of the intelligent system to deduce
temporally contextualized knowledge regarding the state of
the user on the basis of a set of heterogeneous sensor read-
ings. Prior approaches to the problem of recognizing human
behavior can roughly be categorized by how the input data is
processed. A common solution is the data-driven approach,
in which models of human behavior are learned from large
volumes of data over time. Notable examples include tech-
niques employing Hidden Markov Models (Sanchez, Ten-
tori, and Favela 2007) or neural networks (Gyorbird, Fabian,
and Homadnyi 2009). Knowledge-driven approaches on the
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other hand follow a complementary strategy in which pat-
terns of observations are modeled from first principles rather
than learned. In these approaches, sensor data is explained
by hypothesizing the occurrence of human activities based
on rich representations modeling typical conditions of the
environment under which these activities occur. A direction
currently emerging from the literature consists in represent-
ing these conditions as temporal constraints, as done for in-
stance in (Cirillo et al. 2009; Zouba, Bremond, and Thonnat
2009; Jakkula, Cook, and Crandall 2007).

In this paper we focus on a knowledge-driven approach
based on temporal constraint reasoning, in which knowl-
edge about the environment is represented as symbolic val-
ues which are constrained with relations in Allen’s Interval
Algebra (Allen 1984). As in other knowledge-based ap-
proaches for activity recognition, we employ an iterated ab-
ductive process in which sensor data is explained by hypoth-
esizing the occurrence of specific human activities. Data ac-
cumulated over days or weeks of monitoring must be ana-
lyzed so as to infer states of the monitored human being that
depend on events that are separated by long temporal inter-
vals, e.g., recognizing activities that occur every Monday.
Also, we require the system to be capable of recognizing ac-
tivities as soon as they occur. This requirement arises in con-
texts where the inferred activities should lead to the timely
enactment of appropriate procedures. These requirements
entail two problems.

First, the on-line nature of the application combined with
the long temporal horizon over which inference is performed
entails strong scalability requirements. This is achieved in
our system through an admissible heuristic which markedly
decreases the computational load of inference. This admis-
sible pruning of the search space is obtained by maintaining
a history of previously attempted inferences. This article
analyzes the computational bounds of the resulting iterative
inference process, and an experimental evaluation of the sys-
tem in a number of worse case and realistic conditions is
given.

Secondly, the consistency of inferred states must be con-
sidered, as any inference on the state of the user should be
guaranteed to be valid under all possible future evolutions of
sensor readings. In this paper we solve this issue by building
into the inference procedure a set of criteria which disallows
abductive inference when support cannot be guaranteed to



persist in future evolutions of sensor readings.

This paper is organized as follows. We first briefly sum-
marize the temporal constraint based approach to activity
recognition employed in our architecture. We then analyze
the computational bounds of the continuous inference pro-
cess and describe how to obtain an admissible pruning of the
search space. We address the problem of maintaining future
consistency, and conclude with an experimental evaluation
of the system in several worse case, and realistic conditions.

Constraint-Based Activity Recognition

The activity recognition system which is the object of this
paper is part of an activity management system described
in (Pecora and Cirillo 2009). This system deals with both
activity recognition and contextual plan synthesis and ac-
tuation. In this paper we focus on the activity recognition
capabilities of the system, and specifically on how they are
adapted to operate continuously in scenarios where activity
recognition must occur on-line, as soon as possible, and over
long horizons. In this section we briefly describe the under-
lying activity recognition system employed, introducing the
notation used in the rest of this article.

The activity recognition system is realized within the
OMPS temporal reasoning framework. OMPS (Fratini,
Pecora, and Cesta 2008) is a constraint-based planning
and scheduling software API for developing temporal plan-
ning and scheduling applications, and has been used to
develop a variety of decision support tools, ranging from
highly-specialized space mission planning software to clas-
sical planning frameworks'. Our system leverages the do-
main description language provided by OMPS to model
the dependencies that exist between sensor readings and
the state of the human user. Specifically, we employ the
state variable type to model one or more aspects of the
user’s activities of daily living. For instance, in the ex-
amples that follow we will use a state variable whose
values are {Sleeping, Cooking, Eating, InBed,
WatchingTV, Out} to model the human user’s domes-
tic activities. We also employ the state variable metaphor for
modeling the possible states of sensors. For instance, if the
intelligent environment is equipped with a person localiza-
tion sensor which can determine the position of the user in
various rooms, we model a state variable whose values are
{Kitchen, Livingroom, Bathroom, ...}.

The current state of the state variables representing the
user and the sensors is maintained in a decision network
(DN), a network whose nodes represent values of state vari-
ables and whose edges represent temporal constraints among
these values. More specifically, a node of the network is
called a decision, and represents an assertion on the value of
a state variable in a given flexible time interval:

Definition 1. A decision d% is a pair (v, [I5, I]), where x is
a state variable, v is a possible value of the state variable z,
and I, I, represent, respectively, an interval of admissibility
of the start and end times of the decision.

'A complete description of OMPS (Open Multi-component
Planner and Scheduler) is outside the scope of this paper.
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For instance, the decision d]gffht = (Off, [[10, 10], [40, 40]])
on a state variable representing a luminosity sensor could
model the fact that the the environment was dark from time
instant 10 to time instant 50. We express the lack of knowl-
edge on the temporal evolution of the light sensor with flex-
ibLe bounds on the end time of the decision. For instance,
dgE™ = (Off, [[10,10], [40, 00)]) expresses the fact that
the sensor has ceased to perceive light at time 10 and that
this perception has not thus far (time instant 40) changed.
An example evolution of this sensor’s readings is given in
Figure 1, where the unbounded end time of the light’s and
bed’s states are represented with a dashed extension. As
the flexible time intervals of decisions are used to model
the evolution of sensor readings in time, the same princi-
ple is used to model temporal uncertainty on the state of
human activities. For instance, the decision dglgg)?;‘g
(Sleeping, [[20, 20], [40, 0)]) on a state variable modeling
the activity of a human being represents the fact that he or
she has begun to sleep at time instant 20, and that this activ-
ity does not end before time instant 40.

0 10 20 30 40 50 60
tanon
Bed | Occupied l\ \|
Light | OF K J

Figure 1: Timelines of three state variables: the first representing a
human user, the other two representing sensors in the environment.

Decisions are bound by temporal constraints. Such con-
straints are bounded variants of the relations in the restricted
Allen’s Interval Algebra (Allen 1984; Vilain, Kautz, and
van Beek 1989). Temporal constraints enrich Allen’s re-
lations with bounds through which it is possible to fine-
tune the relative temporal placement of constrained deci-

. . ] Human
sions. For instance, suppose the two decisions dgjeering

and dgéht model, respectively, the state of the human and
the state perceived by the luminosity sensor. The constraint

difuman DURING [3,5][0, 00) dg§™ then states that Sleep-
ing should be temporally contained in Off, that the start time
of Sleeping must occur between 3 and 5 units of time af-
ter the beginning of Off, and that the end time of Sleeping
should occur some time before the end of Off.

The DN is at all times kept consistent through temporal
constraint propagation. This ensures that the temporal inter-
vals underlying the decisions are kept consistent with respect
to the temporal constraints, while decisions are anchored
flexibly in time. In other words, adding a temporal constraint
to the DN will either result in the calculation of updated
bounds for the intervals I, I, for all decisions, or in a prop-
agation failure, indicating that the added constraint or deci-
sion is not admissible. For instance, given the constraints de-
picted in Figure 2, namely d{'a" DURING |0, 00)[0, 00)

’ Sleeping
dgg" and difuman EQUALS [0, 00)[0, o) dBed

Occupied?® tem-
poral propagation would update the bounds of dgll‘gg}‘)?;‘g
[[20, 20], [40, 0)]. In OMPS, temporal constraint propaga-
tion is a polynomial time operation, as it is based on a Sim-
ple Temporal Network (Dechter, Meiri, and Pearl 1991) in

to



which each decision is represented by two time points (start
and end times of the decision). Allen’s temporal relations
are represented as simple distance constraints between time
points, according to simple transformations.

Sleeping

During

;'State Variable
‘Human

Equals
gme e
' State Variable
1 Bed

State Variable '
Deadline nght E
[40,INF] '

'
! Release
! [10,10]
H
H

Release
[20,20]

Deadline
[40,INF]

Occupied

Figure 2: Example decision network involving three decisions,
each on a different state variable. The timelines extracted from this
DN are shown in Figure 1.

Given the DN, a timeline of a state variable shows the
values of the state variable in time as they are determined by
the decisions and constraints imposed on this state variable
in the DN. Figure 1 shows a possible timeline for the three
state variables described above. This timeline is obtained
from the DN shown in Figure 2. Notice that, in general, it
is possible to extract many timelines for a state variable, as
constraints bound decisions’ start and end times flexibly.

Representing Sensor Readings in the Decision
Network

Every sensor in the environment is represented by a state
variable whose values model its possible sensor readings.
The activity recognition system implements a sensing pro-
cess for each of these state variables. If DV, represents the
decision network at time ¢, running the sensing process at
time ¢’ > ¢ for the state variable = will yield a new decision
network DNy = Sense,(DNy,t'). This function, which
is run iteratively at a given rate f, reads the interface of the
sensor and models the current sensor reading in the decision
network, yielding a DN in which the state variable is con-
strained to take on the sensed values in the appropriate time
intervals. Specifically, if a new reading v is sensed at time

to by sensor x, a decision di, = (vs, [Is, I.]) is added to
the DN with a fixed interval of admissibility I, = [to, to]
for its start time, and a flexible interval I, = [to, c0) for

its end time which reflects the uncertainty about the read-
ing’s temporal evolution. The lower bound on the end time
interval is then periodically updated to reflect the incoming
sensor readings: if at time ¢; > o the sensor provides the
same reading, then the Sense, procedure will constrain /.
to [t;, o), reflecting the fact that the sensor value persists at
least until the current time ¢;; conversely, if the sensor read-
ing changes at time t;, the interval of admissibility for the
end time is fixed to [t;, t;], reflecting the knowledge that the
sensed value vy persisted in the interval [tg,¢;]. Thus, as
time progresses, the end time intervals of sensed decisions
are progressively constrained until their flexible intervals are
in effect fixed in time.
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Continuous Inference Process

Along with a sensing procedure for each sensor, our system
also runs an iterative inference process. This inference pro-
cess operates at the same rate f as the sensing procedures,
thus realizing an on-line sensing-deduction loop.

Human Stceping
Contains
During Pl ;; ________
Bed rl Occupied | ',"' rz Occupied |
ng ht ‘ r3 off | r4 off | rs off |

Figure 3: A hypothesis asserting that the human being is sleep-
ing is supported by a possible combination of decisions on sensory

state variables. . .
he inference procedure employs a domain theory which

describes the conditions under which patterns of sensor
readings indicate a certain human activity (i.e., a particu-
lar value of the state variable representing the user). These
prerequisites are specified as synchronizations. A domain
theory thus models a collection of criteria for recognizing
activities from sensor readings. More specifically,

Definition 2. A synchronization is a tuple ((Vyef, ), R),
where

e Vv.or is a reference value of a reference state variable x;,

e R is a set of requirements, each in the form ((vi,j), R;)
where

— vj is a value of a state variable j (called a target value)

— R, is a bounded temporal constraint between the refer-
ence value Vyof Of state variable x and the target value
vi of state variable j

For instance, a synchronization with reference value Sleep-
ing on state variable x = Human and requirements

R = {{{Occupied, Bed), CONTAINS),
((Off, Light), DURING)}

models that the human being is sleeping during an interval
of time when the light is off and temporally contains a sensor
reading indicating that the bed sensor is activated.

The inference procedure implemented in our system con-
tinuously attempts to assess the applicability of a set of
synchronizations in the DN. Specifically, this is done by
adding a decision that represents a hypothesis on the current
state of the monitored human being, selecting a synchroniza-
tion whose reference value matches the current hypothesis,
and expanding the synchronization’s requirements. More
specifically, expanding a set of requirements R equates to
(1) adding a new decision to the DN with value d; ;=
(Vret, [[0,00) , [0,00)]); (2) finding a suitable set of deci-
sions in the DN whose values are equal to the values v;; and
(3) imposing the constraints R; between the reference de-
cision dy, ¢ and these decisions. If the imposition of these



constraints does not lead to a propagation failure, then we
say that the hypothesis has been supported. The “candidate”
decisions that are used to represent the hypotheses in the
DN are in the form d}/X™** = (v, [[0,00), [0, 00)]), repre-
senting the fact that the system will try to support a hypothe-
sized state v in some interval of time for the monitored state
variable Human. The procedure can be seen as an opera-
tor Support(DNy, d’,‘;yp, «) that returns true if the decision
dj,,,, On monitored state variable 2 can be supported in a de-
cision network DN, using a set of target decisions «, and
false otherwise.

In the remainder of this paper, we indicate that there is a
one-to-one matching between the values of decisions in a set
« and the values of a set of requirements R with the notation
Unifies(a, R).

Notice that for each synchronization, the framework must
attempt to impose the required constraints between the can-
didate decision and a number of possible decisions whose
values unify with the target values. An example of this
is shown in Figure 3, where a candidate decision assert-
ing that the human being is sleeping is supported by two
of the six possible combinations of decisions modeling the
state of the bed and light sensors in the environment. In the
worst case, all possible selections of target decisions need
to be explored: given a synchronization with requirements

R = {R1 o R\RI} and assuming there are n; decisions
in the DN which unify with the requirement R;, then it is
R|

necessary to perform HI-:1 n; tests. Under the simplified
assumption that there are an equal number m of applica-
ble decisions for each requirement, the number of tests to
be performed is O(m!®!). Notice also that every attempt to
employ a combination of sensed decisions to provide sup-
port for a hypothesis will require temporal constraint prop-
agation, which is polynomial in the number of decisions in
the DN. Overall, it is clear that this will not scale well dur-
ing long-term monitoring since the number of decision in
the DN grows as time progresses.

The technique sketched above realizes an iterated abduc-
tive process, whereby sensor data is periodically explained
by hypothesizing the occurrence of specific human activi-
ties. Note that the synchronizations provide a representa-
tion scheme similar to chronicles as described in (Dousson
and Maigat 2007) and previous papers. This work is simi-
lar in that temporal propagation is used to determine when
sensory events provide support for given chronicle descrip-
tions. However, the work of Dousson et al. is event-driven,
and new constraint networks are instantiated when sensory
events occur. Conversely, in our system sensing and infer-
ence occur at a given rate, and all sensory events and de-
duced activities are maintained in one constraint network
(the DN). One of the differences this entails is related to
how the two approaches ensure scalability. In (Dousson and
Maigat 2007), efficiency is obtained by curtailing the num-
ber of chronicle instances; in our system, assessing whether
a synchronization applies requires non-trivial search in the
space of possible combinations of sensor readings. This
search space is characterized in the following section, and an
admissible heuristic is described. Further comparison with
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the work by Dousson et at. is the topic of future work.

Pruning the Search Space

In order to reduce the cost of supporting decisions, we intro-
duce the concept of inactive decisions.
Definition 3. A decision d = (v, [[ls, us], [le, ue]]) is inac-
tive when ly, = us and l, = u,.
A decision on a state variable modeling a sensor becomes
inactive when the state variable’s sensing procedure has
bounded its end time (i.e., when the sensor reading is no
longer being sensed). An important property of such de-
cisions in our approach is that they can no longer provide
new information to the inference process. In fact, since
constraints on sensor decisions are only tightened, is easy
to see that if Support(DNy,dj, . «) is false, where a is
a set of inactive decisions, then S’upport(DNt/,d%;yp,a)
will be false for all # > ¢. The opposite also holds, i.e.,
if Support(DNy,dy,, ,, o) is true, then Support holds true
for the same set of target decisions for all ¢’ > ¢. It should
also be noted that if a new decision appears in the DN (such
as a new percept) and it is taken into account for inference,
i.e., one of the decisions in « is active, then the DN may
indeed be found to support the hypothesis d;ﬁyp. Overall,
sets of inactive decisions represent support that will never
affect the inference process in a new way. All decisions on
sensory state variables are bound to become inactive, as the
Sense, (DN, t') operator for sensor y will eventually set
the upper bound of any sensed decision to a fixed time.
Inactive decisions can be leveraged for pruning as shown
in procedure ActivityRecognition. Specifically, the

Procedure ActivityRecognition (x, DNy)

1 foreach v € PossibleValues(x) do
da}tzlyp — (v, [[07 00) , [07 OO)]>
foreach Synch. S = ({(Vref, ), R) : Vrer = v do
Q—0
foreach « C DN, : Unifies(a, R) do
if 3d € a : dis active then
L Q—QUa

NS R W

foreach o € Q2 do

9 if Support(DN¢, dy,,,, o) then
10 DN +— DNy Udy,,
11 L return success

=]

12 return failure

procedure is applied to a monitored component  given a de-
cision network D N;, and attempts to find support for one of
its possible values. Support for a possible value is attempted
through all applicable synchronizations in the domain the-
ory (line 3), and only sets of supporting decisions in the DN
that contain at least one active decision are considered (lines
5-7). The procedure terminates either when support is found
or all synchronizations have been attempted. Note that the
ActivityRecognition procedure is greedy, in that the
first acceptable hypothesis is selected in support of current
sensor readings. Also note that in line 10 the DN is incre-
mentally updated when a hypothesis is confirmed.



Theorem 1 (Completeness). The ActivityRecog-—
nition procedure is complete under the assumption
that ActivityRecognition(xz, DNy ) always follows
Sensey (DNy,t'), where Y is a set of sensors that are up-
dated at time t' . In other words, recognition is carried out
every time new sensory information is obtained.

Proof. We are guaranteed that if a set « of decisions cannot
support a hypothesis dj;, , at time ¢, this set need only be at-
tempted in subsequent calls to ActivityRecognition
as a subset of a support set o U o’ where o’ contains at least
one active decision. A decision d¥ on a sensory component
y can become inactive only as a consequence of the sensing
procedure Sense,(DN¢,t"). Also, when a sensor signals
a new sensed value, this is modeled as a decision with un-
bounded end-time. If the ActivityRecognition pro-
cedure is always applied after a sensor update, we are thus
guaranteed that no sensory decision will become inactive
without having previously been employed in an attempt to
support a hypothesis. In other words, every set of decisions
containing at least one active decision will be considered for
support, thus proving completeness. O

The added requirement that states that at least one of the
target decisions of a unification should be active increases
the performance during long term monitoring since the bulk
of the decisions will be inactive (i.e., the number of active
decisions is bounded by the number of sensors). For exam-
ple, consider a synchronization that requires two decisions
A and B, and that there are seven inactive and three active
decisions with the value A, and five inactive and two active
decisions with the value B. The number of sets of deci-
sions that contain at least one active decision are therefore
(3 x2)+ (3 x5)+ (7 x2) = 35, while a naive approach
would in this case have to attempt (7 + 3) % (5 + 2) = 70
combinations.

More in general, we can quantify the amount of pruning
that is achieved as follows.

Theorem 2. Given a synchronization ((Vyes,Z),R), let
DN, be a decision network containing m decisions
that unify with each target value vi in R. The
cost of searching for a set a such that Unifies(a, R)
and Support(DNy,dy,, . ) holds (lines 4-11 in the

ActivityRecognition procedure)is O(m!RI=1).

Proof. If we do not prune sets of decisions that are all inac-
tive, a synchronization will require

IR|

H(I i +Aq)

i=1
combinations to be tried, where |R| is the number of re-
quirements for the synchronization, and I; and A; are, re-
spectively, the number of inactive and active decisions that
the ¢-th target value in R can unify against. Conversely, if
sets of all inactive decisions are discarded, it is only neces-
sary to attempt

IR IR|

[T+ 40 -T[@)

i=1 i=1
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different sets of decisions. Due to the binomial theorem, and
assuming without loss of generality that each sensory state
variable has an equal number of active and inactive decisions
that unify with each target value, i.e., I, = I and A; = A,
we obtain:

IR|
(I+ AR _ IRl = Z <R|>IiA|Ri _ IRl
(3
=0
IR|-1

_ Z <7:'|>IiA|R—i

=0

where the maximum power of I is |R| — 1, thus decreasing
the cost per synchronization by one order of magnitude. [J

Maintaining Future Consistency

Consistency problems arise when a set of decisions « can act
as support for a decision d at time ¢ but not in all future tem-
poral evolutions of the DN. This is clearly never the case if a
contains only inactive decisions. However, as shown earlier,
the inference procedure will support a hypothesis with a set
that includes at least one active decision. This implies that
support may cease to exist in future evolutions of the DN,
i.e., there may exist a such that Support(DNy,dy, . o)
is true and Support(Sense, (DN, t'), hyp «) is false
for some sensor y at time ¢’ > ¢t An example of
such a situation can be seen in Figure 4 (top), which
represents the situation at ¢ = 40. Here, the deci-
sion dHman with value Sleeping is supported by a =
{(Occupied, [[20, 20], [40, 00)]), (OfF, [[10, 10], [40, 00)])}
so that Sleeping is required to occur during a time span
which EQUALS the one of Occupied and DURING Off. If
the temporal evolution of Off and Occupied are as indicated
by their dashed extensions in the figure, these requirements
cease to hold when ¢ > 50. On the other hand, if the
evolution of sensor readings proceeds as shown in Figure 4
(bottom), then the hypothesis of Sleeping deduced by the
the inference procedure will hold. In general, the inference
procedure as we have described it so far is “optimistic”, as
it recognizes activities as soon as their requirements are
found to hold, and ignores the possibility that supported
hypotheses will not hold in the future due to “unexpected”
evolutions of sensor readings.

The root of the problem lies in the fact that
the temporal constraints imposed to support a hy-
pothesis may introduce indirect constraints between
decisions representing sensor readings. As shown
in Figure 2, the DN resulting from the applica-
tion of Support(DNy, (Sleeping, [[0,c0), [0,00)]), @)
where « contains (Occupied, [[20, 20], [40, 00)]) and
(Off, [[10, 10], [40, 00)]), introduces a dependency between
the two sensed decisions involving the reference decision
on the Human state variable. This can be appreciated by
noting that if the end time of the Occupied decision were
constrained to [50,00), then by temporal propagation the
end time of the Off decision would be also constrained to
[50, 00). This is clearly unacceptable, as start and end times



of decision representing sensor readings should only be af-
fected by the variations of the physical sensor readings. In
other words, it should never be the case that updating one
sensor reading affects another sensor reading.

0 10 20 30 40 50 60
Bed [ 0ccupied” J
Light [ Off NN
0 10 20 30 40 50 60
Human
Bed m
Light [ Ot K J

Figure 4: Recognition of an activity at time 40 resulting in an
inconsistent (top) and consistent (bottom) future scenario.

Identifying such indirect dependencies among sensor
readings constitutes a sufficient condition for determin-
ing whether support for a hypothesis is guaranteed to per-
sist in the future. In other terms, assuming Support is
correct, the overall iterative process shown in procedure
ActivityRecognition iscorrect as long as the follow-
ing conditions for future consistency of recognized hypothe-
ses are applied.

Theorem 3 (Correctness). Let dy, ., be a hypothe-

sis such that Support(DNt,dﬁyp,oz) holds.  The fol-
lowing conditions are sufficient for guaranteeing that

Support(DNy,dy,, ., o) will hold for every t' > t:

o for every pair d;,d; € o, imposing the constraint d;
DEADLINE [l;,1;] does not change the bounds of the end
time of dj, where l; is the lower bound of the end time of

(2]

e for every pair d;,d; € «, imposing the constraint d;
DEADLINE [u;,u;) does not change the bounds of the
end time of d;j, where u; is the upper bound of the end
time of d;.

Proof. Given that the underlying temporal problem is a Sim-
ple Temporal Problem (as all constraints represent simple
intervals defining the distance between decisions’ start and
end times), the temporal relations induced by the network
on any two time points can be modeled as a simple distance
constraint between the two time points (Dechter, Meiri, and
Pearl 1991). Assume that at time ¢ we consider two deci-
sions d; and d; of the support set v, and that the constraint
induced by the temporal network on the end times t?,#/ of
these decisions imposes #J — t! > [ and tJ — ! < u. We at
this point attempt two tests. First, we constrain the interval
of admissibility of ¢! to its upper bound. The imposition of
this further constraint may or may not affect the lower bound
of tJ. Whether it does so depends on the positive slack [ al-
lowed by the induced constraint. Second, we constrain the
interval of admissibility of ¢! to its lower bound, in which
case the slack allowance u will determine whether this fur-
ther constraint affects the upper bound of #/. It is easy to see
that the forward and backward slack allowed by network,
i.e., [ and u, is maximally exhausted by imposing one of the
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two constraints above on the interval of admissibility of té,
and that no other constraint on ¢’ has more power to reduce
the interval of admissibility of ¢/.

The above observation, together with the fact that the
Sense function will only constrain the end times of the de-
cisions in o more as time goes by, proves that the above tests
are sufficient for guaranteeing that sensor decisions in a sup-
port set a can end at any time in the future without introduc-
ing inconsistencies. In essence, testing the impact of con-
straining end times of decisions in « on the end times of each
other decision in « as described above will expose any indi-
rect dependencies introduced by activity recognition. O

The previous theorem is leveraged in our framework by fol-
lowing each successful application of the Support proce-
dure (line 11 in ActivityRecognition) with a test as-
certaining whether the above sufficient condition holds. If
the added hypothesis together with its supporting set fails
the sufficient condition, the results of activity recognition
are discarded, thus guaranteeing that states that may not be
supported in the future are never committed to.

Evaluation

The ActivityRecognition procedure provides a
means to achieve the required performance as it reduces the
cost of supporting a hypothesis with a synchronization from
O(m!R1) to O(mIRI=1). This effectively means that finding
support for a decision through a synchronization with two
requirements can be done in linear time with respect to the
number of applicable target decisions in the DN.

In order to assess whether the performance increase ob-
tained as a result of the admissible pruning can support long-
term monitoring scenarios, we compare the performance of
two implementations of our system, one employing no opti-
mization, and one which prunes the search space as shown
earlier. All tests described in this section were carried out on
an Intel Core2 Duo processor @ 2.33 GHz.

First, we experimentally verify the complexity bounds
shown earlier by performing two tests with a domain theory
containing only one synchronization. In the first test, the do-
main contains one synchronization stating that a value vyer
should be recognized if it occurs DURING value A (on one
sensory state variable) and should CONTAIN value B (on
another sensory state variable). The sensory input shown in
Figure 6 (top) was fed to the systems over a period of 200
seconds. Notice that the number of combinations of support
decisions that need to be explored — i.e., the number of sets
o used to attempt Support(D Ny, (Vryet, [0, 00)[0, 00)), o) —
constantly increases over time. Also, notice that the sensor
readings occur in a repeating pattern such that no combina-
tion of targets can act as support for vyer. This situation
represents the worst case, as all combinations of support-
ing decisions must be attempted in order to conclude that
Vrer cannot be supported. Figure 5 (top) compares the CPU
time required by the ActivityRecognition procedure
in the two systems. As shown, when pruning is employed,
the performance of the system grows linearly with the num-
ber of sensory events, while in the absence of pruning we
obtain a quadratic increase in CPU time.
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Figure 6: Recurring patterns used in the performance tests in Fig-
ure 5 (top and bottom, respectively).

Figure 5 (bottom) shows the second test, where a similar
synchronization that has three requirements was used. As
for the first test, the input for the second test (Figure 6, bot-
tom) feeds sensor readings that never support the reference
value vpef, thus yielding a quadratic increase in CPU time
with pruning, as opposed to cubic complexity without prun-
ing.

Our last experiment aims to assess how the system per-
forms in a more realistic scenario, where a domain theory
containing ten synchronizations models meaningful activi-
ties of daily living. A similar scenario is described more
extensively in (Cirillo et al. 2009), where an experimental
run in a real sensor-rich environment with a human test sub-
ject is described. Suffice it to say here that these activities,
each depending on at most |R| = 3 sensor readings, include
the previously described Sleeping activity, as well as several
other activities such as Cooking, WatchingTV and Hav-
ingLunch. Six sensor state variables were employed, and
the sensory input was modeled in such a way that it would
constitute feasible input from a real world scenario (e.g., the
location state variable providing the position of the human
being was fed realistic movements of a human being in a
topologically correct model of a small apartment).

Figure 7 shows the performance of the system obtained
over a monitoring horizon of one week. The test serves as
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Figure 7: CPU time required to recognize human activities
once each minute during a one-week long scenario.

an experimental proof of the fact that it is possible to use the
current system to recognize activities over periods as long
as one week. Activity recognition and sensing occurs once
per minute (0.02 Hz). The criteria for choosing this rate
is related to the resolution that is necessary in the specific
monitoring scenario. Clearly, this rate has to be low enough
to allow for the ActivityRecognition process to ter-
minate, but also high enough to guarantee that meaningful
variations of sensor readings are detected. In the present
test, we assume that variations of sensor readings within one
minute is sufficient for detecting all meaningful activities.
However, notice that it would have been possible to contin-
uously recognize activities at a frequency of approximately
1.4 Hz throughout the entire scenario, as the maximum CPU
time of the ActivityRecognition procedure is about
0.7 seconds.

At the end of the week, the DN contained close to 350 de-
cisions (a combination of sensor readings and the recognized
activities), with an average production of approximately 50
decisions per day. As can be seen, the system scales well
with the growing number of decisions, which indicates that
recognizing activities at a greater level of detail (e.g., activ-
ities with a shorter time-span that occur more often, such
as relocating etc.) is not believed to cause any performance
problems as long as the number of decisions are reasonable
(e.g., one can assume that the current system can detect ac-
tivities with a similar level of detail during ten weeks while
maintaining an adequate performance for most domestic ap-
plications, but not necessarily for an entire year).

Temporal Propagation

While Theorem 2 shows that pruning reduces the cost of
the ActivityRecognition procedure by one order of
magnitude, the existence of inactive decisions in the DN
brings with it another advantage which can be leveraged to
further increase performance. Specifically, temporal prop-
agation occurs every time Support(DNy, dj,, . «v) is eval-
uated. This incurs a cost which is polynomial in the num-
ber n of decisions in DN;. Our specific implementa-
tion of the underlying temporal propagation is based on
the Floyd-Warshall algorithm, whose computational cost is
O(n?) (Dechter, Meiri, and Pearl 1991). Notice, however,
that inactive decisions are not flexible in time, and thus do
not need to partake in temporal constraint propagation. This
is achieved in our implementation by periodically removing



pairs of timepoints corresponding to inactive decisions from
the underlying temporal network. Any effect these fixed
timepoints have on other (flexible) timepoints is modeled as
constraints on these timepoints, thus effectively reducing the
number of timepoints over which the Floyd-Warshall propa-
gation procedure iterates (two for every active decision).

Although the exclusion of inactive decisions from tempo-
ral constraint propagation alone cannot provide a significant
performance increase, it can be leveraged to increase the
performance of the system when pruning is done. In fact,
notice that in the worst case, one synchronization requires
m!RI=1 propagations, each with a cost of n® (due to Floyd-
Warshall’s temporal propagation). We would therefore incur
in cost m/®I=1 . n3 for each synchronization. Again under
the assumption that there are an equal number m of deci-
sions that unify with each target value in R, the DN contains
|R| - m decisions. As a consequence, the cost per synchro-
nization would be O(m!®!+2) if inflexible timepoints were
never excluded from propagation. Conversely, by exclud-
ing inactive decisions from temporal propagation our sys-
tem periodically curtails this computational load, therefore
guaranteeing a cost of O(m'R‘_l).

Conclusions

The ability to perform long term human activity recognition
is fundamental as applications move towards real-world do-
mains. Solutions for knowledge driven approaches that al-
low temporal reasoning need to be tractable over long mon-
itoring horizons as well as ensure future temporal consis-
tency of recognized activities. This paper has investigated
these two specific aspects in relation to a temporal reason-
ing approach. The main contribution has been to present a
technique for pruning search in the space of supporting sen-
sor readings which leverages the flexible bounds of sensor
readings in the decision network. This process was shown
to improve performance over a naive approach which disre-
gards the temporal flexibility of decisions. The improvement
was twofold: on one hand, less combinations of sensor read-
ings need to be explored to support a hypothesis; on the other
hand, inactive decision are excluded from temporal propaga-
tion, thus ensuring a constant sized temporal network.

Ensuring future consistency as we have described in this
paper inevitably affects the ability to recognize activities as
they happen. However, this does not impact activity recog-
nition more than necessary, as only certain combinations of
constraints are filtered. For instance, a synchronization stat-
ing DURING together with CONTAINS will be considered
“safe” once the contained sensor reading has become inac-
tive. As for other limitations of our system, further analysis
is needed.

As the performance of the system depends on STP prop-
agation cost as well as the number of support sets to be at-
tempted, future work will consider different algorithms to
solve the STP in order to fully evaluate the performance
gain of the current approach (e.g., (Xu and Choueiry 2003)).
Other possible directions for future investigations include
integrating our approach with data-driven methods in order
deal with sensor noise and possibly provide on-line model
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training and adaptation.
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