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Abstract

We describe an approach to robot control in real-world en-
vironments that integrates a cognitive vision system with a
knowledge-level planner and plan execution monitor. Our
approach makes use of a formalism called an Object-Action
Complex (OAC) to overcome some of the representational
differences that arise between the low-level control mecha-
nisms and high-level reasoning components of the system.
We are particularly interested in using OACs as a formalism
that enables us to induce certain aspects of the representation,
suitable for planning, through the robot’s interaction with the
world. Although this work is at a preliminary stage, we have
implemented our ideas in a framework that supports object
discovery, planning with sensing, action execution, and fail-
ure recovery, with the long term goal of designing a system
that can be transferred to other robot platforms and planners.

Introduction and Motivation
A robot operating in a real-world domain must typically rely
on a range of mechanisms that combine both reactive and
planned behaviour, and operate at different levels of repre-
sentational abstraction. Building a system that can effec-
tively perform these tasks requires overcoming a number of
theoretical and practical challenges that arise from integrat-
ing such diverse components within a single framework.

One of the crucial aspects of the integration task is repre-
sentation: the requirements of robot controllers differ from
those of traditional planning systems, and neither represen-
tation is usually sufficient to accommodate the needs of an
integrated system. For instance, robot systems often use
real-valued representations to model features like 3D spa-
tial coordinates and joint angles, allowing robot behaviours
to be specified as continuous transforms of vectors over time
(Murray, Li, and Sastry 1994). On the other hand, planning
systems tend to use representations based on discrete, sym-
bolic models of objects, properties, and actions, described in
languages like STRIPS (Fikes and Nilsson 1971) or PDDL
(McDermott 1998). Overcoming these differences is essen-
tial for building a system that can act in the real world.

In this paper we describe an approach that combines a
cognitive vision system with a knowledge-level planner and
plan execution monitor, on a robot platform that can manip-
ulate objects in a restricted, but uncertain, environment. Our
system uses a multi-level architecture that mixes a low-level

robot/vision controller for object manipulation and scene
interpretation, with high-level components for reasoning,
planning, and action failure recovery. To overcome the mod-
elling differences between the different system components,
we use a representational unit called an Object-Action Com-
plex (OAC) (Geib et al. 2006; Krüger et al. 2009), which
arises naturally from the robot’s interaction with the world.
OACs provide an object/situation-oriented notion of affor-
dance in a universal formalism for describing state change.

Although the idea of combining a robot/vision system
with an automated planner is not new, the particular com-
ponents we use each bring their own strengths to this work.
For instance, the cognitive vision system (Krüger, Lappe,
and Wörgötter 2004; Pugeault 2008) provides a powerful
object discovery mechanism that lets us induce certain as-
pects of the representation, suitable for planning, from the
robot’s basic “reflex” actions. The high-level planner, PKS
(Petrick and Bacchus 2002; 2004), is effective at construct-
ing plans under conditions of incomplete information, with
both ordinary physical actions and sensing actions. More-
over, OACs occur at all levels of the system and, we believe,
provide a novel solution to some of the integration problems
that arise in our architecture.

This paper reports on work currently in progress, cen-
tred around OACs and their role in object discovery, plan-
ning with sensing, action execution, and failure recovery in
uncertain domains. This work also forms part of a larger
project investigating perception, action, and cognition, and
combines multiple robot platforms with symbolic represen-
tations and reasoning mechanisms. We have therefore ap-
proached this work with a great deal of generality, in order
to facilitate the transfer of our ideas to robot platforms and
planners with capabilities other than those we describe here.

Hardware Setup and Testing Domain
The hardware setup used in this work (see Figure 1) con-
sists of a six-degree-of-freedom industrial robot arm (Stäubli
RX60) with a force/torque (FT) sensor (Schunk FTACL 50-
80) and a two-finger-parallel gripper (Schunk PG 70) at-
tached. The FT sensor is mounted between the robot arm
and gripper and is used to detect collisions which might oc-
cur due to limited knowledge about the objects in the world.
In addition, a calibrated stereo camera system is mounted in
a fixed position. The AVT Pike cameras have a resolution
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Figure 1: Hardware setup.

of up to 2048x2048 pixels and can produce high-resolution
images for particular regions of interest.

To test our approach, we use a Blocksworld-like object
manipulation scenario. This domain consists of a table with
a number of objects on it and a “shelf” (a special region of
the table). The robot can view the objects in the world but,
initially, does not have any knowledge about those objects.
Instead, world knowledge must be provided by the vision
system, the robot’s sensors, and the primitive actions built
into the robot controller. The robot is given the task of clear-
ing the objects from the table by placing them onto the shelf.
The shelf has limited space so the objects must be stacked in
order to successfully complete the task. For simplicity, each
object has a radius which provides an estimate of its size. An
object A can be stacked into an object B provided the radius
of A is less than that of B, and B is “open.” Unlike standard
Blocksworld, the robot does not have complete information
about the state of the world. Instead, we consider scenarios
where the robot does not know whether an object is open or
not and must perform a test to determine an object’s “open-
ness”. The robot also has a choice of four different grasping
types for manipulating objects in the world. Not all grasp
types can be used on every object, and certain grasp types
are further restricted by the position of an object relative to
other objects in the world. Finally, actions can fail during
execution and the robot’s sensors may return noisy data.

Basic Representations and OACs
At the robot/vision level, the system has a set Σ of sensors,
Σ = {σ1, σ2, . . . , σn}, where each sensor σi returns an ob-
servation obs(σi) about some feature of the world, repre-
sented as a real-valued vector. The execution of a robot-level
action, called a motor program, may cause changes to the
world which can be observed through subsequent sensing.
Each motor program is typically executed with respect to
particular objects in the world. We assume that initially the
robot/vision system does not know about any objects and,
therefore, can’t execute many motor programs. Instead, the
robot has a set of object-independent basic reflex actions
which it can use in conjunction with the vision system for
early exploration and object discovery.

At the planning level, the underlying representation is

based on a set of fluents, f1, f2, . . . , fm: first-order predicates
and functions that denote particular qualities of the world,
robot, and objects. Fluents typically represent high-level
versions of some of the world-level properties the robot is
capable of sensing, where the value of a fluent is a function
Γi of a set of observations returned by the sensor set, i.e.,
fi = Γi(Σ). However, in general, not every sensor need map
to some fluent, and we allow for the possibility of fluents
with no direct mapping to robot-level sensors.

Fluents may be parametrized and instantiated by high-
level counterparts of the objects discovered at the robot
level. In particular, for each robot-level object objr we de-
note a corresponding high-level object by objp. A state is
a snapshot of the values of all instantiated fluents at some
point during the execution of the system, i.e., { f1, f2, . . . , fm}.
States represent an intersection between the low-level and
high-level representations and are induced from the sensor
observations (the Γi functions) and the object set.

The planning level representation also includes a set of
high-level actions, α1, α2, . . . , αp, which are viewed as ab-
stract versions of some of the robot’s motor programs. Since
all actions must ultimately be executed by the robot, each ac-
tion is decomposable to a fixed set of motor programs Π(αi),
where Π(αi) = {mp1,mp2, . . . ,mpl}, and each mp j is a mo-
tor program. As with fluents, not every robot-level motor
program need map to a high-level action.

Although the robot/vision and planning levels use quite
different representations (i.e., real-valued vectors versus log-
ical fluents), the notions of “action” and “state change” are
common among these components. To capture these simi-
larities, we model our actions and motor programs using a
structure called an Object-Action Complex (OAC) (Geib et
al. 2006; Krüger et al. 2009). Formally, an OAC is a tu-
ple
〈
I,T S ,M

〉
, where I is an identifier label for the OAC,

T : S → S is a transition function over a state space S , and
M is a statistic measure of the accuracy of the transition.
OACs provide a universal “container” for encapsulating the
relationship between actions (operating over objects) and the
changes they make to their state spaces. Each OAC also
has an identical set of predefined operations (e.g., compo-
sition, update, etc.), providing a common interface to these
structures. Since robot systems may have many components,
OACs are meant to provide a standard language for describ-
ing action-like processes (including continuous processes)
within these components, and to simplify the exchange of
information between different components.

OACs exist at each level of our system. We encode each
motor program on the robot/vision level and each action at
the planning level as a separate OAC, with OACs at each
level having a different underlying state space. By assigning
an accuracy metric to each OAC we also capture the non-
deterministic nature of our actions in the real world. Fur-
thermore, since every interaction of the robot with the world
provides the robot with an opportunity to observe a small
portion of the world’s state space (interpreted with respect
to the state space of a particular OAC), we can make use
of this information to refine or improve the accuracy of the
OACs at all levels of our system.
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Typically, we consider OACs that are formed from partial
state descriptions, which may have low reliability. Such de-
scriptions arise since the robot cannot always sense the sta-
tus of all objects and properties in the world (e.g., occluded
or undiscovered objects). Furthermore, the robot’s sensors
may be noisy and, thus, there is no guarantee that sensor ob-
servations are always correct. Certain sensors also have as-
sociated resource costs (e.g., time, energy, etc.) which limit
their execution. For instance, our robot can perform a test to
determine whether an object is open by “poking” the object
to check its concavity. Such operations are only initiated on
demand at the discretion of the high-level planning system.

Finally, our system includes a middle level component
that mediates between the robot and planning levels. This
component is responsible for mapping between OACs at dif-
ferent levels of the system (i.e., implementing the Γi and Π
functions) in order to ensure that observation/state and motor
program/action information passing between levels is trans-
lated into a form that the destination level understands.

In the remainder of this paper we will look at the main
components of our system in greater detail, and describe the
current (and future) role of OACs in our framework.

Vision-Based Object Discovery
The visual representation used by the lower level of our sys-
tem is delivered by an early cognitive vision system (Krüger,
Lappe, and Wörgötter 2004; Pugeault 2008) which creates
sparse 2D and 3D features, so-called multi-modal primitives,
along image contours from stereo images. 2D features rep-
resent a small image patch in terms of position, orientation,
phase, colour and optical flow. These are matched across
two stereo views, and pairs of corresponding 2D features
permit the reconstruction of an equivalent 3D feature. 2D
and 3D primitives are then organized into perceptual groups
in 2D and 3D. The procedure to create visual representations
is illustrated in Figure 2. We note that the resulting represen-
tation not only contains appearance information (e.g., colour
and phase) but also geometrical information (i.e., 2D and 3D
position and orientation).

Initially, the system lacks knowledge of the objects in a
scene and so the visual representation is unsegmented: de-
scriptors that belong to one object are not explicitly dis-
tinct from the ones that belong to other objects, or the back-
ground. To aid in the discovery of new objects, the robot is
equipped with a basic reflex action (Aarno et al. 2007) that
is elicited by specific visual feature combinations in the un-
segmented world representation (e.g., see Figure 3(a)–(c)).
The outcome of these reflexes allows the system to gather
knowledge about the scene, which is used to segment the vi-
sual world into objects and identify basic affordances. We
consider a reflex where the robot tries to grasp a planar sur-
face in the scene. Each time the robot executes such a re-
flex, haptic information allows the system to evaluate the
outcome: either the grasp was successful and the gripper is
holding something, or it failed and the gripper simply closed.

With physical control, the system visually inspects an ob-
ject from a variety of viewpoints and builds a 3D represen-
tation (Kraft et al. 2008). Features on the object are tracked
over multiple frames, between which the object moves with

Right Image

Left Image

(a)

(b)

(c)

(d)

(e)Right Image

Left Image

Early Vision Early Cognitive Vision

Figure 2: An overview of the visual representation. (a)
Stereo image pair, (b) Filter responses, (c) 2D primitives,
(d) 2D contours, (e) 3D primitives.

a known motion. If features are constant over a series of
frames they become included in the object’s representation;
otherwise they are assumed to not belong to the object. (See
Figure 3(d)–(f) and (Kraft et al. 2008) for a more detailed
explanation.) The final description is labelled and recorded
as an identifier for a new object class, along with the success-
ful reflex (now a motor program). Using this new knowl-
edge, the system then reconsiders its interpretation of the
scene: using a representation-specific pose estimation algo-
rithm (Detry, Pugeault, and Piater 2009) all other instances
of the same object class are identified and labelled. By re-
peating this process, the system constructs a representation
of the world objects, as instances of symbolic classes that
carry basic affordances, i.e., particular reflex actions that
have been successfully applied to objects of this class.1 This
relationship can also be interpreted as a new low-level OAC.

The object-centric nature of the robot’s world exploration
process has immediate consequences for the high-level rep-
resentation. First, newly discovered objects are reported to
the planning level and added to its representation. At this
level, objects are simply labels that act as indices to the ob-
ject information stored at the robot level. Such a represen-
tation means that the planner can avoid reasoning about cer-
tain types of real-valued information (e.g., 3D coordinates,
orientation vectors, etc.) and instead refer to objects by their
labels (e.g., obj1p may denote a particular red cup on the ta-
ble). Second, the planner can immediately use such objects
during plan generation. Since we assume that object names
do not change over time, plans with object references will be
understandable to the lower system levels. Finally, the iden-
tification of new objects will cause the robot/vision system
to start sending regular updates about the state of objects and
their properties to the planning level. In particular, low-level
observations resulting from subsequent interactions with the
world will contain state information about these objects, pro-

1We have recently completed the technical implementation of
the pose estimation algorithm. Prior to this, a circle detection algo-
rithm was developed (Başeski, Kraft, and Krüger 2009) to recog-
nise cylindrical objects. Four grasp templates were used to define
the primitive reflex actions in an object-centric way (where con-
crete grasps were generated based on the object pose). Although
this approach negates the need for the general pose estimation al-
gorithm, the conclusions drawn from experiments in this limited
scenario are still easily transferable to the general case.
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Figure 3: (a)–(c) Initial grasping behaviour: (a) A Scene, (b) Definition of a possible grasp based on two contours, (c) Repre-
sentation of the scene with contours generating a grasp. (d)–(f) Accumulation process (“birth of the object”): (d) One step in
the process. The dots on the image show the predicted structures. Both spurious primitives, parts of the background that are not
confirmed by the image, and the confirmed predictions are shown, (e) Images of objects, (f),(g) Extracted models.

vided they can be sensed by the robot.

Knowledge-Level Planning with Sensing
The high-level planner constructs plans that direct the be-
haviour of the robot to achieve a set of goals. Plans are built
using PKS (“Planning with Knowledge and Sensing”) (Pet-
rick and Bacchus 2002; 2004), a conditional planner that can
operate with incomplete information and sensing actions.
Like other symbolic planners, PKS requires a goal, a de-
scription of the initial state, and a list of the available actions.
Unlike classical planners, PKS operates at the knowledge
level by explicitly modelling what the planner knows and
does not know about the state of the world. PKS can reason
efficiently about certain restricted types of knowledge, and
make effective use of features like functions, which often
arise in real-world scenarios.

PKS is based on a generalization of STRIPS (Fikes and
Nilsson 1971). In STRIPS, a single database represents the
world state; actions update this database in a way that cor-
responds to their effects on the world. In PKS, the plan-
ner’s knowledge state is represented by five databases, each
of which stores a particular type of knowledge. Actions de-
scribe the changes they make to the database set and, thus,
to the underlying knowledge state. PKS also supports ADL-
style conditional action effects (Pednault 1989), numerical
reasoning, and a set of program-like control structures.

Table 1 shows an example of some of the PKS ac-
tions available in the testing domain. As in standard plan-
ning representations, like PDDL, actions in PKS are de-
scribed by their preconditions and effects. Actions may be
parametrized (e.g., graspA(x)), with an action’s parameters
replaced with references to specific world objects when an
action is instantiated in a plan. As we described above, ob-
jects at the planning level are labels to actual objects identi-
fied by the robot/vision system.

Preconditions and effects are specified in terms of a set of
high-level predicates and functions, i.e., fluents that model

particular qualities of the world, robot, and objects. For in-
stance, the actions in Table 1 include references to fluents:
• open(x): object x is open,
• gripperEmpty: the robot’s gripper is empty,
• onTable(x): object x is on the table,
• isIn(x, y): object x is stacked in object y,
• radius(x) = y: the radius of object x is y, and
• reachableX(x): object x is reachable using grasp type X,
among others. While most high-level properties abstract
the information returned by the robot-level sensors (e.g.,
onTable requires data from a set of visual sensors con-
cerning object positions), some properties correspond more
closely to individual sensors (e.g., gripperEmpty closely
models a low-level sensor that detects whether the robot’s
gripper can be closed without contact).

One significant difference between PKS and other plan-
ners is that all actions in PKS are modelled at the knowledge
level: preconditions denote conditions that must be true of
the planner’s knowledge state while effects describe changes
to what the planner knows. For instance, precondition ex-
pressions of the form K(φ) denote a knowledge-level query
that asks “does the planner know φ to be true?” while an ex-
pression like Kw(φ) asks “does the planner know whether φ is
true or not?” Effect expressions of the form add(D, φ) assert
that φ should be added to database D, while del(D, φ) means
that φ should be removed from database D. In Table 1, Kf
refers to a database that models the planner’s definite knowl-
edge of facts, while Kw is a specialized database that stores
the results of sensing actions that return binary information.

In our robot scenario, high-level actions represent coun-
terparts to some of the motor programs available at the robot
level. For instance, the planner has access to actions like:
• graspA(x): grasp x from the table using grasp type A,
• graspD(x): grasp x from the table using grasp type D,
• putInto(x, y): put x into y on the table,
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Action Preconditions Effects
graspA(x) K(reachableA(x)) add(Kf , inGripper(x))

K(gripperEmpty) add(Kf ,¬gripperEmpty)
K(onTable(x)) add(Kf ,¬onTable(x))
K(clear(x))
K(radius(x) ≥ minA)
K(radius(x) ≤ maxA)

graspD(x) K(reachableD(x)) add(Kf , inGripper(x))
K(gripperEmpty) add(Kf ,¬gripperEmpty)
K(onTable(x)) add(Kf ,¬onTable(x))
K(radius(x) ≤ maxD)

putInto(x, y) K(x , y) add(Kf , gripperEmpty)
K(inGripper(x)) add(Kf , isIn(x, y))
K(open(y)) add(Kf , clear(y))
K(clear(y)) add(Kf ,¬inGripper(x))
K(onTable(y))
K(radius(y) > radius(x))

putAway(x) K(inGripper(x)) add(Kf , onShelf(x))
K(shelfSpace > 0) add(Kf , gripperEmpty)

add(Kf ,¬inGripper(x))
add(Kf , shelfSpace –= 1)

findout-open(x) ¬Kw(open(x)) add(Kw, open(x))
K(onTable(x))

Table 1: PKS actions in the testing domain.

• putAway(x): put x away onto a shelf space, and

• findout-open(x): determine whether x is open or not,

among others. Some actions like “grasp” are divided into
multiple actions (e.g., graspA, graspD, plus actions for grasp
types B and C). The object-centric nature of these actions
means they do not require 3D coordinates, joint angles, or
similar real values but, instead, include parameters that can
be instantiated with specific objects. Actions like putInto
and putAway account for different object/location configura-
tions, although the motor programs that implement these ac-
tions do not necessarily make such distinctions. (The com-
plete action list has a larger set of such actions.) The findout-
open action is an example of a high-level sensing action that
directs the robot to gather information about the world state
that is not normally provided as part of its regular sensing
cycle. From the planner’s point of view, an action’s sensory
effects are assumed to only change the planner’s knowledge
state, while leaving the world state unchanged.

Each planning level action is treated as an individual OAC
with its own identifier and transition function corresponding
to the action’s preconditions and effects. All planning level
OACs share a common state space consisting of the high-
level predicates and functions. Each OAC also maintains a
measure, M, of its reliability, which is updated by the plan
execution monitor (see below). Currently, PKS does not use
this information (or any probabilistic measures) during plan
generation, but instead relies on its ability to reason about
incomplete information and replan from action failure.

As an example, consider the situation in the testing do-
main where two unstacked and open objects obj1p and obj2p

are on a table, the planner can construct the following plan

for clearing all open objects from the table:
graspD(obj2p),
putInto(obj2p, obj1p),
graspD(obj1p),
putAway(obj1p).

In this plan, obj2p is grasped from the table using grasp type
D (an overhand grasp) and put into obj1p, before the stacked
objects are grasped and removed to the shelf.

The planner can also build more complex plans using
sensing actions. For instance, if the planner is given the goal
of removing the open objects from the table in the example
scenario, but does not know whether object obj3p is open or
not, then it might construct the conditional plan:

findout-open(obj3p),
branch(open(obj3p))
K+ :

graspA(obj3p),
putAway(obj3p)

K− :
nil.

This plan senses the truth value of the predicate open(obj3p)
using findout-open and reasons about the possible outcome
of this action. As a result, two branches are included in the
plan denoting potential execution paths: if open(obj3p) is
true (the K+ branch) then obj3p is grasped and put away; if
open(obj3p) is false (the K− branch) then no action is taken.

State Generation and OAC Interaction
From an integration point of view, the robot/vision system is
linked to the planning level through a component which me-
diates between the state spaces and OACs used by the two
levels of the system. Since the planner is not able to han-
dle raw sensor data as a state description, or directly con-
trol the robot, the low-level observations generated by the
robot/vision system must be abstracted into a language the
planner understands, and planned actions must be converted
into appropriate robot-level motor programs.

For state space information, sensor data is “wrapped” and
reported to the planner in the form of a fluent-based sym-
bolic state representation that includes predicates and func-
tions. Currently, the mappings between certain sensor com-
binations and the corresponding high-level fluents (i.e., the
Γi functions) are simply hardcoded. For example:
• inGripper, gripperEmpty: Initially the gripper is empty

and the predicate gripperEmpty is formed. As soon as the
robot grasps an object (objXr), and confirms that the grasp
is successful by means of the gripper not closing up to
mechanical limits, the system knows that it has the object
in its hand and can form a predicate inGripper(objXp).
Releasing the object returns the gripper to an empty state.

• reachableX : Based on the position of a circle forming the
top of a cylindrical object in the scene we can compute
possible grasp positions (for the different grasp types) for
each object. Using standard robotics path planning meth-
ods we then compute whether or not there is a collision-
free path between the start position and the gripper pose
needed to reach the object for a particular grasp.
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• open: Objects are not assumed to be “open.” Unlike the
above properties which are determined directly from or-
dinary sensor data, the robot must perform an explicit test
to determine an object’s openness. In this case, the robot
attempts to use its gripper to “poke” inside the potential
opening of an object. If the robot encounters a collision
(determined by the FT sensor), the object is assumed to
be closed. Otherwise, we assume the object is open.

To compute these predicates, the mediator interacts with
the robot/vision system to maintain a snapshot of the cur-
rent world state which, besides the state information neces-
sary for the planner, also contains information needed for
consistency and action computations. In particular, object
positions are represented here. To cope with sensor noise
(especially the vision-based information about the number
and location of circles) a simple mechanism to avoid spuri-
ous object disappearance and appearance is employed.

From the planner’s point of view, it begins operation with-
out any information about the state of the world. After an
initial exploration of the environment, the robot/vision sys-
tem begins to gather observations and generate (partial) state
reports about the current set of objects it believes to be in the
world, along with the properties it senses for those objects.
This observation set (converted into a fluent-based represen-
tation) is then sent to the planner and used as its initial (in-
complete) knowledge state: the predicate and function in-
stances are treated as known state information, with all other
state information considered to be unknown. Subsequent
state reports are interpreted by the plan monitor (see below)
and used to update the reliability of high-level OACs.

High-level planning actions, in the form of OACs, must
also be mapped to their appropriate low-level counterparts,
for execution by the robot system in the real world. We cur-
rently assume that the set of action schema is supplied to the
planner as part of its input, as are the mappings from plan-
ning actions to robot motor programs (the Π function).

For instance, the high-level OAC graspD is realised on the
lowest level as a mapping to an object-independent OAC,
graspDr.2 This low-level OAC requires the object position
(retrieved using the object label as an index) as an input to
computing suitable grasping positions. The preconditions
of this OAC require that there be a grasping position on
the brim of the object for which a collision free path from
the current position to the grasp position exists. The mo-
tor program associated with this OAC is a motion sequence
that first completely opens the gripper’s fingers, followed
by a movement of the arm along the joint trajectory and,
lastly, closes the fingers and lifts the arm. After the motor
program has been executed the expected outcome state ex-
presses that the fingers should no longer be totally open nor
totally closed. In this case, closed fingers indicate that the
action failed and no object has been grasped.

Plan Execution and Failure Recovery
Once a plan is generated, the planning level interacts with
the robot/vision level (through the mid-level mediator) to ex-

2In general, a high-level OAC may be realised by multiple
robot-level OACs.

(a) graspD(obj2p) (b) putInto(obj2p, obj1p)

(c) graspD(obj1p) (d) putAway(obj1p)

Figure 4: Executing a high-level plan to clear a table.

ecute the plan. Actions are sent to the robot one at a time,
where they are converted into motor programs and executed
in the world. A stream of observations is also generated,
arising from the executed motor programs, and processed
into high-level state information. Upon action completion
the robot/vision level returns this information to the higher
reasoning levels, along with an indication of the success or
failure of the action which are used to update the reliabil-
ity measure M of the high-level OACs. The execution cycle
then continues. For instance, Figure 4 shows the execution
of the four step plan described above for clearing a table.

An essential component in this process is the plan execu-
tion monitor, which assesses action failure and unexpected
state information resulting from feedback provided to the
planner from the execution of planned actions at the robot
level. The execution monitor operates in conjunction with
the planner and mid-level mediator, and is responsible for
controlling replanning and resensing activities in the system.
In particular, the difference between predicted and observed
states are used to decide between (i) continuing the execu-
tion of an existing plan, (ii) asking the vision system to re-
sense a portion of a scene at a higher resolution in the hope
of producing a more detailed state report, and (iii) replan-
ning from an unexpected state using the current state report
as a new initial planning state. The plan execution moni-
tor also has the important task of managing the execution of
plans with conditional branches, resulting from the inclusion
of high-level sensing actions. In each case, the decision of
the monitor depends on the type of action being processed
and the state information returned by the robot.
Continuing a plan’s execution During plan execution, ac-
tions are delivered to the lower control levels for execution
on the robot. After the execution of each action, a state re-
port representing the observed state of the world is returned
to the plan monitor and compared against the planner’s pre-
dicted state as constructed during planning, to determine
if plan execution should continue or resensing/replanning
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(a) Object is not open (b) Object is open

Figure 5: Testing the openness of an object.

should be activated. Since states in our testing domain tend
to be partial, we currently use a limited horizon lookahead
method, that attempts to verify that the preconditions for the
next n actions in the plan are satisfied in the current (partial)
state, and the states that follow when the predicted effects
of those actions are applied. (In our testing domain n = 1
is often sufficient to ensure good performance.) This means
that it is possible for an action to only achieve some of its
effects and for the plan to continue, provided the action did
not report that it outright failed, and the state is sufficiently
correct to ensure the execution of the next action in the plan.
(Thus, we defer possible replanning over plan continuation
if possible.) If a state match is successful, the monitor then
proceeds with the current plan. Otherwise, resensing is con-
sidered as a secondary test before replanning (see below).

Sensing actions and conditional plan execution The plan
execution monitor also has the added task of managing the
execution of plans with sensing actions and associated con-
ditional plan branches. When a high-level sensing action is
encountered in a plan it is sent to the robot/vision level like
any other action and executed on the robot (as determined
by the Π mappings). The actual execution of a sensing ac-
tion is left to the lower control level which can make more
informed decisions about motor program execution. For in-
stance, the findout-open action in our example domain is
executed at the robot level as a combination of “physical”
action (e.g., “poking” an object to determine its openness)
and “observational” action (i.e., observing the result); as far
as the planner is concerned, the action is executed under the
assumption that it is knowledge producing and will return an
expected piece of information. (Figure 5 shows the execu-
tion of findout-open by the robot in the case where (a) an
object is not open and (b) an object is open.) The sensing re-
sult will subsequently be observed by the robot system and
returned to the planner as part of the state update cycle.

Plans may also have conditional branch points resulting
from sensing actions. When faced with a branch in a plan,
the plan execution monitor makes a decision as to the correct
plan branch it should execute, based on its current knowl-
edge state. If only partial state information is available, but
the required information needed for branch determination is
missing (e.g., due to a failure at the robot/vision level), re-
sensing or replanning is triggered. For instance, the exam-
ple conditional plan given above includes the branch point
branch(open(obj3p)), i.e., branch on the truth of the fluent
open(obj3p). If open(obj3p) is true according to the plan-
ner’s knowledge state then the “positive” (K+) branch of
the plan is followed and the next action is considered; if

(a) (b)

Figure 6: Resensing the scene using the region of interest
capabilities of the high resolution cameras.

¬open(obj3p) is true then the “negative” (K−) branch is fol-
lowed. If the planner has no information about open(obj3p)
then replanning or resensing is activated. It is important
to note that the robot/vision system will never be aware of
the conditional nature of a plan, and will never receive a
“branch” action. From the point of view of the robot, it will
only receive a sequential stream of actions.

Resensing at the monitoring level Sensing also plays a role
during plan monitoring as a strategy for improving the moni-
tor’s accuracy. When the monitor has determined an action’s
predicted effects do not match the observed state, resensing
is considered. At this point, the accuracy of the action’s pre-
dictions are checked by comparing the M component of the
high-level OAC, weighted together with the M components
of the OACs of the underlying motor programs which imple-
ment this action (the Π mapping), against a threshold value.
If the accuracy measure falls below the threshold (i.e., the
predictions are considered too spurious), then replanning is
activated; otherwise, resensing is performed.

When resensing is required, the plan monitor provides the
vision system with a list of the objects considered relevant
to the execution of the action that is reported to have failed,
based on the parameters in the high-level action description.
This information lets the vision system use its high reso-
lution camera to target particular regions of interest in the
scene with greater resolution, to reevaluate the sensors that
provide information about these objects. New state informa-
tion returned by this operation may help the monitor decide
between continuing a plan’s execution and replanning.

For instance, Figure 6(a) shows the state of the world be-
fore the graspD(obj2p) action in our example plan for clear-
ing a table is executed and obj2p is grasped; both objects in
the scene are correctly detected and identified. After ex-
ecuting graspD(obj2p), however, it is possible that obj1p

may no longer be detected, leading the monitor to resense
both obj1p and obj2p since the next action in the plan,
putInto(obj2p, obj1p), depends on these two objects. In Fig-
ure 6(b), the old position of obj1p is resensed, leading to a
rediscovery of the object. The old position of obj2p is also
resensed to confirm that it is no longer on the table. In this
case, the conditions in the state are sufficient for the monitor
to decide that the next action in the plan can be executed.

Replanning When the monitor determines that an action
has failed based on the available (resensed) state informa-
tion, a new plan is constructed for the given goal using the
current state as the planner’s new initial knowledge state. We
use rapid replanning techniques, rather than plan repair, due
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to the success of planners like FF-Replan (Yoon, Fern, and
Givan 2007). This technique also provides a way of over-
coming PKS’s inability to work with probabilistic represen-
tations: if a plan fails we direct PKS to construct an alternate
plan for achieving the goal. So far this technique has proven
to be effective during testing in our example domain.

Discussion and Conclusions
We believe OACs provide a useful tool for overcoming some
of the challenges surrounding the representation of affor-
dances, actions, and state change in real-world robot sys-
tems: OACs facilitate the description of different system
components in terms of a common representation and com-
mon set of interfaces. Although we have grounded many of
our system components in terms of the OAC concept, and
can describe processes like object discovery and action ex-
ecution in terms of OACs, our work is preliminary and we
have not used this representation to its full potential.

For instance, while our OACs maintain a measure of re-
liability (i.e., the M measure), this property is not signifi-
cantly used in our system. We are currently exploring how
to improve the reliability of lower-level OACs based on state
observations, which could in turn “refine” related higher-
level OACs. Closely related to OAC update is the idea of
learning completely new OACs. To this end, we are inves-
tigating how high-level action schema (i.e., planning level
OACs) can be learned directly from (partial) state snapshots
provided by the robot level (Mourão, Petrick, and Steedman
2008). Furthermore, we would also like to automatically in-
duce the mapping between OACs at different levels. Thus,
the OACs in this paper are not as fully featured as those of
(Krüger et al. 2009) and implementing the full set of OAC
properties remains a future goal of this work.

The robot/vision components of our system are also be-
ing improved. After a recent significant increase in the fre-
quency at which the robot/vision level can provide state up-
dates, we are exploring a more sophisticated mechanism to
cope with the sensor noise using multiple consecutive up-
dates. In the future we will also investigate whether a prob-
abilistic framework can increase the reliability of the infor-
mation provided to the planning level. More work is also
needed to properly compare our approach to other existing
architectures in the literature.

Although this work is preliminary, we have implemented
a framework with all the control mechanisms described here.
This has enabled us to test our system in a domain similar to
the one described in the paper, but with more actions, more
objects, and more complex plans. While the results of our
initial experiments look promising, we are also in the pro-
cess of transferring some of our ideas to a humanoid robot
that can operate in a real-world kitchen with real-world ob-
jects and appliances. This will provide us with a challenging
environment to test the scalability of our system and, in par-
ticular, our approach to planning and plan execution.
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