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Introduction

Introduction & Motivation

I Petri Nets (PNs) is a formalism for modelling discrete event
systems.

As are planning formalisms (STRIPS, SAS+, etc).
Important differences: general Petri nets are infinite,
diffferent models of event concurrency.

I Developed by (and named after) C.A. Petri in 1960s.

I An exchange of ideas between Petri net theory and planning
holds potential to benefit both:

A wealth of results (theoretical and practical) exist for Petri
nets.
Yet, some standard planning techniques (e.g., search
heuristics) are unheard of in the PN community.
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Introduction

Outline of the Tutorial

1. 1-Safe Petri Nets.

1.1 1-Safe nets as a representation of products of transition
systems.

2. Unfolding: An Analysis Method for 1-Safe Nets.

2.1 Unfoldings and branching processes.
2.2 Constructing the unfolding: search.
2.3 Planning via unfolding.
2.4 Concurrency properties of the generated plans.

3. General Petri Nets.

3.1 Modelling and expressivity.
3.2 Analysis methods for general Petri nets.
3.3 Petri nets with special structure.

4. Conclusions
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1-Safe Petri Nets: Basic Definitions

Part 1: Introduction to 1-Safe Petri Nets

I 1-safe Petri nets is a class of Petri nets that is closely related
to planning formalisms.

Compact representation of products of sequential transition
systems.
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1-Safe Petri Nets: Basic Definitions Transition Systems

Transition systems 1/2

I Transition systems used to model sequential systems

s1

s2 s3

s4

t1 t2

t3 t4

t5

I A tuple A = 〈S, T, α, β, is〉 where S and T are states and
transitions, α and β are source and target states, and is is
the initial state

I E.g., α(t4) = s3, β(t1) = s2, and is = s1

(... from various places ...) ICAPS 2009 6 / 140

1-Safe Petri Nets: Basic Definitions Transition Systems

Transition systems 2/2

s1

s2 s3

s4

t1 t2

t3 t4

t5

I The triplet 〈α(t), t, β(t)〉 is a step; e.g. 〈s2, t3, s4〉
I A “transition word” t1t2 . . . tk is a computation if there is

sequence s0s1 . . . sk so that 〈si, ti, si+1〉 is a step

I A computation is a history if s0 = is

I Computation and histories may be infinite; e.g.
t1t3t5t1t3t5 . . . is an infinite history
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1-Safe Petri Nets: Basic Definitions Transition Systems

(Synchronised) products of transition systems 1/2

I Model concurrent systems with multiple components
s1

s2 s3

s4

t1 t2

t3 t4

t5

r1

r2

r3

u1

u2

u3

I Let A1, . . . ,An be transition systems. A synchronisation
constraint T is a subset of

(T1 ∪ {ε})× · · · × (Tn ∪ {ε}) \ {〈ε, . . . , ε〉}

I Each t ∈ T is a global transition

I If ti 6= ε, Ai participates in t
I The initial global state is equals 〈is1, . . . , isn〉

(... from various places ...) ICAPS 2009 8 / 140



1-Safe Petri Nets: Basic Definitions Transition Systems

(Synchronised) products of transition systems 2/2

s1

s2 s3

s4

t1 t2

t3 t4

t5

r1

r2

r3

u1

u2

u3

I T = {〈t1, ε〉, 〈t2, ε〉, 〈t3, u2〉, 〈t4, u2〉, 〈t5, ε〉, 〈ε, u1〉, 〈ε, u3〉} is
a synchronisation constraint

I (Global) steps, computations and histories are defined like
before; e.g. 〈t1, ε〉〈ε, u1〉〈t3, u2〉 is a computation and history
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1-Safe Petri Nets: Basic Definitions Transition Systems

Transition systems for Gripper with one arm 1/2

Variables:

I Position of Robot: R1, R2

I Empty gripper: Gt, Gf

I Position of ball A: A1, A2, Ar

I Position of ball B: B1, B2, Br

R1

R2

Gt

Gf

A2

Ar

A1

B2

Br

B1

tR11

tR12tR21

tR22

tGtftGft tA2rtAr2

tAr1tA1r

tB2rtBr2

tBr1tB1r
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1-Safe Petri Nets: Basic Definitions Transition Systems

Transition systems for Gripper with one arm 2/2

R1

R2

Gt

Gf

A2

Ar

A1

B2

Br

B1

tR11

tR12tR21

tR22

tGtftGft tA2rtAr2

tAr1tA1r

tB2rtBr2

tBr1tB1r

Synchronisation Constraints:

pickup(A,1) = 〈tR11, tGtf , tA1r, ε〉
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1-Safe Petri Nets: Basic Definitions Transition Systems

Transition systems for Gripper with one arm 2/2

R1

R2

Gt

Gf

A2

Ar

A1

B2

Br

B1

tR11

tR12tR21

tR22

tGtftGft tA2rtAr2

tAr1tA1r

tB2rtBr2

tBr1tB1r

Synchronisation Constraints:

pickup(A,1) = 〈tR11, tGtf , tA1r, ε〉
pickup(B,2) = 〈tR22, tGtf , ε, tB2r〉
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1-Safe Petri Nets: Basic Definitions Transition Systems

Transition systems for Gripper with one arm 2/2

R1

R2

Gt

Gf

A2

Ar

A1

B2

Br

B1

tR11

tR12tR21

tR22

tGtftGft tA2rtAr2

tAr1tA1r

tB2rtBr2

tBr1tB1r

Synchronisation Constraints:

pickup(A,1) = 〈tR11, tGtf , tA1r, ε〉
pickup(B,2) = 〈tR22, tGtf , ε, tB2r〉
drop(B,2) = 〈tR22, tGft, ε, tBr2〉
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1-Safe Petri Nets: Basic Definitions Transition Systems

Transition systems for Gripper with one arm 2/2

R1

R2

Gt

Gf

A2

Ar

A1

B2

Br

B1

tR11

tR12tR21

tR22

tGtftGft tA2rtAr2

tAr1tA1r

tB2rtBr2

tBr1tB1r

Synchronisation Constraints:

pickup(A,1) = 〈tR11, tGtf , tA1r, ε〉
pickup(B,2) = 〈tR22, tGtf , ε, tB2r〉
drop(B,2) = 〈tR22, tGft, ε, tBr2〉
move(1,2) = 〈tR12, ε, ε, ε〉
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1-Safe Petri Nets: Basic Definitions Transition Systems

Semantics for products: Interleaving semantics

I A product A = 〈A1, . . . ,An,T〉 can be translated into an
equivalent transition system TA = 〈S, T, α, β, is〉 where

S is the set of global states of A
T is the set of steps 〈s, t, s′〉
α(〈s, t, s′〉) = s and β(〈s, t, s′〉) = s′

is = is

I The interleaving semantics is of exponential size

(... from various places ...) ICAPS 2009 15 / 140

1-Safe Petri Nets: Basic Definitions Transition Systems

Interleaving semantics: Example

〈s1, r1〉

〈s1, r2〉
〈s2, r1〉 〈s3, r1〉

〈s2, r2〉 〈s3, r2〉

〈s4, r3〉

〈s1, r3〉

〈s4, r1〉

〈s2, r3〉 〈s3, r3〉

〈s4, r2〉

(... from various places ...) ICAPS 2009 16 / 140



1-Safe Petri Nets: Basic Definitions Petri Nets

Petri nets 1/5

I A Petri net is a bipartite graph, with nodes divided into
places (circles) and transitions (boxes)

p1 p2

t1 t2 t3

p3 p4

I Formally, a tuple N = 〈P, T, F 〉 where P / T are the sets of
places / transitions and F ⊆ (P × T ) ∪ (T × P ) is the flow
(i.e., edge) relation

I For any node n ∈ P ∪ T , •n = {n′ | (n′, n) ∈ F} and
n• = {n′ | (n, n′) ∈ F} are the inputs and outputs of n

(... from various places ...) ICAPS 2009 17 / 140

1-Safe Petri Nets: Basic Definitions Petri Nets

Petri nets 2/5

I The state of a Petri net N = 〈P, T, F 〉 is defined by a
marking, which puts zero or more tokens on each place.
Formally, a marking is a mapping m : P → N

I Transition t is enabled at marking m iff m(p) > 0 for each
p ∈ •t, i.e., iff every input of t is marked

Notation: m [t〉

I If t is enabled it can fire (or occur), leading to a new marking
m′ such that
m′(p) = m(p)− 1 if p ∈ •t (and p 6∈ t•)
m′(p) = m(p) + 1 if p ∈ t• (and p 6∈ •t)
m′(p) = m(p) for all other p

Notation: m [t〉m′

I Marking m is 1-bounded iff m(p) ∈ {0, 1} for all p

(... from various places ...) ICAPS 2009 18 / 140

1-Safe Petri Nets: Basic Definitions Petri Nets

Petri nets 3/5

I Marking m = (1 1 0 0):

I Transition t2 is enabled

p1 p2

t1 t2 t3

p3 p4

I Firing t2 at m leads to
m′ = (0 0 1 1):

I Now t1 and t3 are enabled

p1 p2

t1 t2 t3

p3 p4
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1-Safe Petri Nets: Basic Definitions Petri Nets

Petri nets 4/5

I A pair 〈N,m0〉 of a Petri net and an initial marking is called
a marked net, or net system

I For a marked net N = 〈〈P, T, F 〉,m0〉:

A firing sequence (or occurrence sequence) of N is a
sequence of transitions in T , t1, t2, . . . , tn, such that
m0 [t1〉m1 [t2〉 · · · [tn〉mn for some m1 . . .mn

Notation: m0 [t1, . . . , tn〉mn

A marking m is reachable in N iff there exists a firing
sequence t1 . . . tn of N such that m0 [t1, . . . , tn〉m

(... from various places ...) ICAPS 2009 20 / 140



1-Safe Petri Nets: Basic Definitions Petri Nets

Petri nets 5/5

p1 p2

t1 t2 t3

p3 p4

I (1 0 0 1) is reachable via the sequence t2, t1 (and also via
t2, t1, t3, t2, t1, etc)

I (1 1 1 0) is not reachable
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1-Safe Petri Nets: Basic Definitions Petri Nets

1-Safety 1/2

I A marked net N = 〈N,m0〉 is 1-safe iff every reachable
marking m is 1-bounded (m(p) ∈ {0, 1}, ∀p)

Places in a 1-safe net may be viewed as propositions
(true if marked, false if unmarked)

A marking can be given as the set of marked places

I A Petri net N is (structurally) 1-safe iff 〈N,m0〉 is 1-safe
for any 1-bounded initial marking m0

(... from various places ...) ICAPS 2009 22 / 140

1-Safe Petri Nets: Basic Definitions Petri Nets

1-Safety 2/2

I Equivalent concept in planning formalisms:

STRIPS: an operator is safe if it does not delete any
proposition that is already false, or add any proposition that
is already true (in any reachable state where the operator is
applicable)

SAS+: operator o is safe if whenever post(o)[v] is defined,
so is pre(o)[v] and pre(o)[v] 6= post(o)[v]

(... from various places ...) ICAPS 2009 23 / 140

1-Safe Petri Nets: Basic Definitions Petri Nets

Petri net representation of transition systems

I States map to places, transitions to transitions

I Initial marking marks only the initial state
s1

s2 s3

s4

t1 t2

t3 t4

t5

s1

s2 s3

s4

t1 t2

t3 t4

t5

I The Petri net corresponding to a transition system is
inherently 1-safe

(... from various places ...) ICAPS 2009 24 / 140



1-Safe Petri Nets: Basic Definitions Petri Nets

Petri net representation of products 1/2

I Union of the Petri net representations of product systems

I Transitions that participate in a synchronisation constraint
are “merged”

s1 r1

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

〈t5, ε〉 s2 s3 r2 〈ε, u3〉

〈t3, u2〉 〈t4, u2〉

s4 r3

I The product net is also 1-safe
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1-Safe Petri Nets: Basic Definitions Petri Nets

Petri net representation of products 2/2

I Formally, the marked Petri net representation of the product
A = 〈A1, . . . ,An,T〉 is 〈〈P, T, F 〉,m0〉, where:

P = S1 ∪ S2 ∪ · · · ∪ Sn

T = T

F = {(s, t) : ∃i.s = αi(ti)} ∪ {(t, s) : ∃i.s = βi(ti)}

m0 = {is1, . . . , isn}

(... from various places ...) ICAPS 2009 26 / 140

1-Safe Petri Nets: Basic Definitions Petri Nets

Some decision problems for marked Petri nets

For a given marked net (N,m0):

I Coverability of a set of places G:
Is there a firing sequence s, valid at m0 that leads to a
marking which marks all places in G?

I Reachability of a set of places G:
Is there a firing sequence s, valid at m0 that marks all and
only the places in G?

I Executability of transition t:
Is there a valid firing sequence that contains t, i.e., can t ever
be executed?

Note: For 1-safe nets, reachability, coverability and executability
are all easily reduced to one another.

(... from various places ...) ICAPS 2009 27 / 140

1-Safe Petri Nets: Basic Definitions Petri Nets

Some decision problems for marked Petri nets

I Repeated Executability of transition t:
Is there a valid firing sequence that contains t infinitely often?

I Livelock
Let L ⊆ T be a set of “visible” transitions: Is there an
infinite global history in which some transition in L occurs,
followed by an infinite sequence of invisible transitions?

All the above problems are PSPACE-Complete for 1-safe Petri
nets, as well as for products of transition systems.

(... from various places ...) ICAPS 2009 28 / 140



1-Safe Petri Nets: Basic Definitions Petri Nets for Planning

Petri nets for planning problems

I Transition systems for each variable extracted from the
Domain Transition Graphs (DTGs) of the planning problem

I Synchronised products formed by taking the global transitions
as the (ground) actions in the planning problem

(... from various places ...) ICAPS 2009 29 / 140

1-Safe Petri Nets: Basic Definitions Petri Nets for Planning

Planning via Petri nets

I Plan existence can be decided using Petri nets as follows:

Extract the DTGs for each variable X in the planning
problem and make a transition system AX

Form the synchronised product using as global constraint
the actions in the planning problem

Create a new global transition tgoal whose input is the goal
of the planning problem and output a new place

Theorem
There is a valid plan iff tgoal is executable.

I This procedure doesn’t compute plans, yet we will come to
this issue later...

(... from various places ...) ICAPS 2009 30 / 140

Unfolding

Part 2: Unfolding

I Unfolding is an analysis method for 1-safe Petri nets, with
interesting and useful properties.

Partial-order method: Exploits event concurrency to avoid
explosion of interleavings.
Can be directed by state-space search heuristics.

I Using unfolding for planning:

Mapping planning problems to 1-safe Petri nets.
Properties of generated plans: Concurrency and optimality.

(... from various places ...) ICAPS 2009 31 / 140

Unfolding Transition Systems

Unfolding of transition systems 1/2

s1

s2 s3

s4

t1 t2

t3 t4

t5

s1

s2 s3

s4 s4

s1 s1

s2 s3 s2 s3
...

...
...

...

t1 t2

t3 t4

t5 t5

t1 t2 t1 t2
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Unfolding Transition Systems

Unfolding of transition systems 2/2

I The unfolding of a transition system is a transition system
with labels

I The labels refer to states/transitions of the original transition
system

I States and transitions are called ocurrences

I A state/transition may occur an infinite number of time in
the unfolding

(... from various places ...) ICAPS 2009 33 / 140

Unfolding Products and Petri Nets

Unfolding of a product

I Can unfold the interleaving semantics of a product
(need the interleaving semantics of exponential size)

I Instead, we unfold the Petri net representation of the product

I For this, we need to define banching processes

(... from various places ...) ICAPS 2009 34 / 140

Unfolding Branching Processes

Branching process

I A branching process is a labeled Petri net that captures the
computations of a Petri net

I When unfolding a Petri net, we start with the places with
initial tokens and the net is unfolded iteratively using:

1. If, in the current net, there is a reachable marking that
enables a global transition t, then a new transition labeled
by t and new places labeled with the states of t• are
added to the current net

(... from various places ...) ICAPS 2009 35 / 140

Unfolding Branching Processes

Unfolding a product: Example

s1 r1

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

〈t5, ε〉 s2 s3 r2 〈ε, u3〉

〈t3, u2〉 〈t4, u2〉

s4 r3

s1 r1

1t1 2 t2 3 u1

s2 s3 r2

4〈t3, u2〉 5 〈t4, u2〉

s4 r3 s4 r3

6t5 7 u3 8t5 9 u3

s1 r1 s1 r1

10t1 11 t2 12 u1 13t1 14 t2 15 u1

s2 s3 r2 s2 s3 r2

16〈t3, u2〉 17 〈t4, u2〉 18〈t3, u2〉 19 〈t4, u2〉

s4 r3 s4 r3 s4 r3 s4 r3

...
...

...
...

...
...

...
...
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Unfolding Branching Processes

Fundamental properties of the unfolding

I The unfolding is the (unique and perhaps infinite) limiting
branching process

I The unfolding contains all computation histories of the net

I A marking is reachable in a Petri net iff it “appears” as a
marking in the unfolding

I The unfolding has no cycles and no backward conflicts
(places with more than one incoming arrow)

(... from various places ...) ICAPS 2009 37 / 140

Unfolding Branching Processes

Causality, conflict and concurrency 1/2

I A node x (in the unfolding) is a causal predecessor of y,
denoted by ‘x < y’, if there is a (non-empty) directed path
from x to y

I Nodes x and y are in conflict, denoted by ‘x # y’, if there is
a place z, different from x and y, from which one can reach
x and y by exiting z from differents arcs

I Nodes x and y are concurrent, denoted by ‘x co y’, if x and
y are neither causally related nor in conflict

(... from various places ...) ICAPS 2009 38 / 140

Unfolding Branching Processes

Causality, conflict and concurrency 2/2

Theorem
Two nodes x and y are either causally related, in conflict, or
concurrent.

Theorem
If x and y are causally related, then either x < y or y < x, but
not both.

Theorem
Let P be a set of places of a branching process N of a product
A. There is a reachable marking M of N such that P ⊆M iff
the places of P are pairwise concurrent.

(... from various places ...) ICAPS 2009 39 / 140

Unfolding Branching Processes

Configurations 1/2

I A realization of a set of events is an occurrence sequence (of
the branching process) in which every event occurs exactly
once, and no other event occurs

I E.g., {1, 2} and {4, 6} have no realizations, {1, 3, 4, 7} has
the two realizations 1347 and 3147

I A set of events E is a configuration if it has at least one
realization

I A set of events E is causally closed if e ∈ E and e′ < e
implies e′ ∈ E

(... from various places ...) ICAPS 2009 40 / 140



Unfolding Branching Processes

Configurations 2/2

Theorem
Let E be a set of events. Then,

1. E is a configuration if it is causally closed and no two events
in E are in conflict.

2. All realizations of a finite configuration lead to the same
reachable marking.

(... from various places ...) ICAPS 2009 41 / 140

Unfolding Verification

Verification using unfoldings

The question

Does some computation history execute transition t?

can be answered by exploring the unfolding:

1. compute larger and larger portions of the unfolding until
finding an event labeled with t, or

2. until “somehow” we are able to determine that no further
event will be labeled with t

(... from various places ...) ICAPS 2009 42 / 140

Unfolding Construction

Constructing the unfolding 1/4

I Given a branching process N , we need to compute the events
that extend N

I More formally, given N and a global transition t, how can we
decide whether N can be extended with an event labeled by
t?

I Let •t = {s1, . . . , sk}. The number k is the number of
components participating in t

I This number is called the synchronisation degree of t

(... from various places ...) ICAPS 2009 43 / 140

Unfolding Construction

Constructing the unfolding 2/4

I N can be extended with an event labeled by t iff there is a
reachable marking that puts a token on places p1, . . . , pk

labeled by s1, . . . , sk

I The following procedure solves this problem:

1. consider all candidate sets {p1, . . . , pk} of places of N
labeled by {s1, . . . , sk}

2. for each candidate {p1, . . . , pk}, test whether there is a
reachable marking m that contains {p1, . . . , pk}. If so, we
say that the candidate is reachable

(... from various places ...) ICAPS 2009 44 / 140



Unfolding Construction

Constructing the unfolding 3/4

I A candidate set is reachable iff its places are pairwise
concurrent. This can be checked in O(k2) time

I Therefore, checking whether N can be extended with an
event labeled t can be done in time

O(nk/kk)O(k2) = O(nk/kk−2)

(... from various places ...) ICAPS 2009 45 / 140

Unfolding Construction

Constructing the unfolding 4/4

Theorem
Let N be a branching process of a product A and t a global
transition. If A is of bounded synchronisation degree, then
deciding whether N can be extended with an event labeled by t
can be done in polynomial time.

Theorem
In general, deciding whether a branching process can be
extended with an event labeled by t is NP-complete.

(... from various places ...) ICAPS 2009 46 / 140

Unfolding Search Procedures

Search procedures (1/2)

We mentioned earlier that we can somehow construct larger
and larger portions of the unfolding, to answer questions like:

1. Executability (Verification) - does some run contain a
particular transition?

2. Repeated executability - does some run contain a particular
transition an infinte number of times?

3. Livelock - does some run have an inifinite tail of ”silent”
transitions?

This is done using search procedures

(... from various places ...) ICAPS 2009 47 / 140

Unfolding Search Procedures

Verification: Search procedures 1/2

Use the unfolding to compute answers to verification questions:

I Compute more and more of the unfolding, until there is
enough information to answer the verification question

I Use a search procedure to compute the unfolding and
determine when the question is answered:

search strategy specifies the event to be added next

search scheme determines which leaves don’t need to be
explored further (termination condition), and when the
search has been successful (success condition)

(... from various places ...) ICAPS 2009 48 / 140



Unfolding Search Procedures

Verification: Search procedures 2/2

N := unique branching process without events
T := ∅ /* terminal events */
S := ∅ /* successful terminals */
X := Ext(N , T ) /* possible extensions of N */
while X 6= ∅ do

Choose an event e ∈ X according to search strategy
Extend N with e
if e is terminal according to search scheme then
T := T ∪ {e}
if e is successful according to search scheme then
S := S ∪ {e}

end if
end if
X := Ext(N , T )

end while
return 〈N , T, S〉
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Unfolding Search in Transition Systems

Search strategies for transition systems 1/2
I A strategy selects the next event to add
I It is a (partial) order on events . . . but with care . . .
I We define it as an order on histories of events
I H(t) = t1 . . . tn where e1 . . . en are causal predecessors of e

and ti is label of ei
I The state reached by H(e) is St(e) = β(e)

s1

1t1 2 t2

s2 s3

3t3 4 t4

s4 s4

5t5 6 t5

s1 s1

7t1 8 t2 9t1 10 t2

s2 s3 s2 s3
...

...
...

...

H(7) = t1t3t5t1 and St(7) = s2.
Also, H(7) = H(3)t5t1.
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Unfolding Search in Transition Systems

Search strategies for transition systems 2/2

I A search strategy ≺ for transition systems is an order on T ∗

that refines the prefix order (i.e., w is a proper prefix of w′

then w ≺ w′)

I Observe that if e < e′ then H(e) ≺ H(e′) and thus e ≺ e′

I Therefore, a search strategy refines the causal order on
events

(... from various places ...) ICAPS 2009 51 / 140

Unfolding Search in Transition Systems

Search scheme for transition systems 1/3

Let ≺ be a search strategy. An event e is feasible if no event
e′ < e is terminal. A feasible event e is terminal if either

1. e is labeled with a goal transition (successful terminal), or

2. there is a feasible event e′ ≺ e such that St(e′) = St(e)

The ≺-final prefix is the prefix of the unfolding containing only
feasible events.
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Unfolding Search in Transition Systems

Search scheme for transition systems 2/3

G = {t5} ≺1= lexicographic ≺2= smaller |H(e)|
s1

s2 s3

s4

t1 t2t3

t4
t5

s1

1t1 5 t2

s2 s3

2t3

s3

3t4 4 t5

s2 s4

s1

1t1 2 t2

s2 s3

4t3 3t4 5 t5

s3 s2 s4
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Unfolding Search in Transition Systems

Search scheme for transition systems 3/3

Theorem
The search scheme is sound and complete for every strategy.
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Unfolding Search in Product Systems

Search strategies for products 1/3

I For transition systems, a strategy is an order on T ∗ (histories
of events)

I This is possible since every event has a unique history

I Unfortunately, for products, events may have multiple
histories
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Unfolding Search in Product Systems

Search strategies for products 2/3

s1 r1

1t1 2 t2 3 u1

s2 s3 r2

4〈t3, u2〉 5 〈t4, u2〉

s4 r3 s4 r3

6t5 7 u3 8t5 9 u3

s1 r1 s1 r1

10t1 11 t2 12 u1 13t1 14 t2 15 u1

s2 s3 r2 s2 s3 r2

16〈t3, u2〉 17 〈t4, u2〉 18〈t3, u2〉 19 〈t4, u2〉

s4 r3 s4 r3 s4 r3 s4 r3

...
...

...
...

...
...

...
...

histories

1 3 4 5 6 12 10
1 3 4 6 10
3 1 4 6 10
1 3 4 6 10 7
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Search strategies for products 3/3

I So, we are forced to consider subsets of histories . . .

I but we consider those that correspond to Mazurkiewicz
traces
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Unfolding Search in Product Systems

Mazurkiewicz traces 1/2

I Two global transitions are independent if no component Ai

of the product participates in both

I E.g., 〈t1, ε〉 and 〈ε, u1〉 are independent transitions

I If t and u are independent. Then, for w,w′ ∈ T∗

1. if wtuw′ is a history, then so is wutw′

2. if wt and wu are histories, then so are wtu and wut
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Unfolding Search in Product Systems

Mazurkiewicz traces 2/2

I Two words w,w′ ∈ T∗ are 1-equivalent, denoted by
w ≡1 w′ iff w = w′ or there are independent transitions t
and u such that w = w1tuw2 and w′ = w1utw2

I w is equivalent to w′ if w ≡ w′ where ≡ is the transitive
closure of ≡1

I A (Mazurkiewicz) trace is an equivalence class of ≡. The
trace of w is [w]. A trace is a history trace if all its elements
are histories
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Unfolding Search in Product Systems

Search strategies as orders on traces

I We follow the same steps as for transition systems:

1. First, define the set of histories for an event
2. Show that this set is a trace
3. Define a strategy as an order on traces

I The past of event e, denoted by past(e), is the set of events
e′ such that e′ ≤ e; past(e) is a configuration

I A word t1 . . . tn is a history of configuration C if there is a
realization e1 . . . en of C such that ei is labled by ti. The set
of histories of C is denoted by H(C). The set of histories of
past(e) is denoted by H(e).

I H(C) is a trace

I A strategy is an order on traces that refines the prefix order
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Unfolding Search in Product Systems

Search scheme for products 1/2

I Let C be a configuration. The state reached by C, denoted
by St(C), is the state reached by the execution of any of the
histories of H(C)

Let ≺ be a search strategy. An event e is feasible if no event
e′ < e is terminal. A feasible event e is terminal if either

1. e is labeled with a transition of G (successful terminal), or

2. there is a feasible event e′ ≺ e such that St(e′) = St(e)

Theorem
The search scheme is sound for every strategy. Unfortunately,
it is not complete for every strategy.
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Unfolding Search in Product Systems

Search schemes for products 2/2

I A strategy ≺ is adequate if

1. It is well founded
2. It is preserved by extensions: for all traces [w], [w′], [w′′], if

[w] ≺ [w′] then [ww′′] ≺ [w′w′′]

Theorem
The search scheme is complete for all adequate strategies.

Theorem
The final ≺-prefix has at most K non-terminal nodes if ≺ is a
total order where K is the number of global states.
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Unfolding Search in Product Systems

The size and Parikh strategies

I The size strategy, denoted ≺s, is: [w] ≺s [w′] if |w| < |w′|

I The Parikh mapping of w is the function P([w]) that maps
each transition t to the number of times it occurs in w

I Given a total order <a on transitions. The Parikh strategy,
denoted ≺P , is: [w] ≺P [w′] if [w] ≺s [w′], or [w] =s [w′]
and there is t such that

1. P([w])(t) < P([w′])(t) and
2. P([w])(t′) = P([w′])(t′) for every t′ <a t

I The size and Parikh strategies are adequate but not total

I There are other (more complex) total and adequate strategies
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Unfolding Directed Unfolding

Directed unfolding

I In the verification problem, we search the unfolding for an
event labeled by a transition in G until we find it or conclude
no such event exists

I In directed unfolding, we guide the search with a heuristic
function that estimates how far the desired event is from a
given part of the branching process

I It is the same idea used in heuristic search in which instead of
making a blind search, a heuristic function is used to focus
the search

I As expected, when the target event is reachable, directed
unfolding is order of magnitude more efficient than “blind”
unfolding
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Unfolding Directed Unfolding

Heuristic-guided strategies 1/2

Let C be a configuration

I Define g(C) as the size |C|

I Let h map configurations C into reals [0,∞] such that

1. if St(C) = St(C ′) then h(C) = h(C ′)
2. if H(C) ∩G 6= ∅, then h(C) = 0

I Define f(C) = g(C) + h(C)
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Unfolding Directed Unfolding

Heuristic-guided strategies 2/2

I Define the order ≺h on histories as follows:

[w] ≺h [w′] iff

{
f([w]) < f([w′]) if f([w]) <∞
|w| < |w′| if f([w]) = f([w′]) =∞

Theorem
The ≺h-final prefix is finite, and the search scheme is sound
and complete.

I The strategy ≺h is a h-focused strategy
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Unfolding Directed Unfolding

Heuristics

I By definition, h maps global states into non-negative
numbers

I Therefore, we can use any heuristic function defined on
global states such as

1. hmax

2. hadd

3. hFF

4. etc
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Unfolding Directed Unfolding

Experimental results 1/2
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Experimental results 2/2

0.01 0.03 0.05 0.1 0.5 5 100 300
0

0.2

0.4

0.6

0.8

Time limit (seconds)

%
 p

ro
bl

em
s 

so
lv

ed

DARTES

original
hFF

hsum

hmax

Figure: Results for Dartes: Node Expansions

(... from various places ...) ICAPS 2009 69 / 140

Planning via Unfolding & Concurrency From Planning Problem to Petri Net

Planning Problem

Denote a planning problem by P = 〈V,O, S0, G〉, where

I V is a set of multi-valued state variables

I O is a set of (grounded) operators characterised by their pre
and post conditions.

I S0 is the fully specified initial state

I G is the fully or partially specified goal state
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Planning via Unfolding & Concurrency From Planning Problem to Petri Net

Partially-Ordered Plan

I A partially-ordered plan π = 〈A,<〉 consists of a multiset of
operators A in O and a strict partial order relation < over A.

I π is a solution plan for planning problem P if any
linearization of π will transition the system from S0 to a state
where all goal propositions hold.
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Planning via Unfolding & Concurrency From Planning Problem to Petri Net

Using Unfolding for Planning (1/4)

1. Cast planning problem to Petri net executability problem

2. Unfold to solve the related executability question

3. Extract plan

(... from various places ...) ICAPS 2009 72 / 140



Planning via Unfolding & Concurrency From Planning Problem to Petri Net

Using Unfolding for Planning (2/4)

1. Cast planning problem to Petri net executability
problem

1.1 Map O to a set of 1-safe operators O′.
1.2 For a STRIPS problem where V is a set of propositions,

introduce complementary set V̂ and replace every instance
of ¬v with v̂.

1.3 For each variable X ∈ V extract the DTG and make a
transition system AX

1.4 Form the synchronised product A = 〈A1, . . . ,An,T〉
Synchronisation constraints T are defined by the planning
operators O′.

1.5 Map A to a Petri net and extend with ”goal” transition.
1.6 Capture dynamics of prevail conditions.
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Planning via Unfolding & Concurrency From Planning Problem to Petri Net

1-Safe Operators (1/2)

I Recall: SAS+ operator o is safe iff whenever post(o)[v] is
defined, so is pre(o)[v] and pre(o)[v] 6= post(o)[v])

I Translating a non-safe operator:

door: open, closed

shut-door = 〈 {at-door}, {closed} 〉

shut-door1 = 〈 {at-door, closed}, { } 〉

shut-door2 = 〈 {at-door, open }, {closed}〉

I Number of copies created is exponential in the number of
missing preconditions
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Planning via Unfolding & Concurrency From Planning Problem to Petri Net

1-Safe Operators (2/2)

I Operator may be safe, without satisfying the definition, due
to mutexes between values of different variables.

I Use standard reachability analysis techniques to identify such
cases (computing mutexes and state invariants, as in e.g.
[Bonet & Geffner ’99, Helmert ’06])

I Many of the standard benchmark domains are already 1-safe,
or nearly 1-safe.
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Planning via Unfolding & Concurrency From Planning Problem to Petri Net

Product of State Variable DTGs

I For each variable X ∈ V extract the DTG and make a
transition system AX

I Form the synchronised product A = 〈A1, . . . ,An,T〉
I Synchronisation constraints T are defined by the 1-safe

planning operators.
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Planning via Unfolding & Concurrency From Planning Problem to Petri Net

Petri net representation

I Build the marked Petri net representation of A, as described
previously.

I Create a new transition tgoal whose input is the goal of the
planning problem and output is a new place
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Planning via Unfolding & Concurrency From Planning Problem to Petri Net

Translate Prevail conditions (1/3)

Problem: Two actions with a common prevail condition will be
prohibited from executing concurrently.

Let a1, a2 be two actions with common prevail condition p

I Any two events e1 and e2 in the unfolding, labeled by a1 and
a2 respectively, will be in conflict due to p, i.e. e1#e2.

I Any plan containing a1 and a2 will necessarily require that
a1 < a2 or a2 < a1.
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Planning via Unfolding & Concurrency From Planning Problem to Petri Net

Translate Prevail Conditions (2/3)

To overcome this we can apply the place replication technique
proposed by [Vogler, Semenov,Yakovlex, 1998]

ac b

o3

âĉ b̂

o3 o2o1
o4 o5

a1 a2c b

o3

âĉ b̂

o3 o2o1
o4 o5

Picture by Sebastian Sardina
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Planning via Unfolding & Concurrency From Planning Problem to Petri Net

Translate Prevail Conditions (3/3)

c
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a1e1
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b̂

a2e2
o2

e3 o3 âe3

e5

o3

âe5

e6

o5

a1

a2

e6

unfolding
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Picture by Sebastian Sardina

I Denote the Petri net representation of planning problem P as
NP .
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Planning via Unfolding & Concurrency From Planning Problem to Petri Net

Using Unfolding for Planning (3/4)

1. Cast planning problem P to Petri net executability problem

2. Unfold NP to solve the related executability problem

Is the transition tg executable?
Direct the unfolding using a sound and complete scheme
May choose to use planning heuristic, etc.
Denote to the resulting final prefix as Unf≺(N(P))

3. Extract plan
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Planning via Unfolding & Concurrency From Planning Problem to Petri Net

Using Unfolding for Planning (4/4)

1. Cast planning problem to Petri net executability problem

2. Unfold to solve the related executability problem

3. Extract plan from Unf≺(NP)
(Assuming success)
Linear time
Solution plan π = 〈H(eg), <〉 where eg is an event in
Unf≺(NP) labeled by tg and < is the finite closure of the
causal relation over H(eg).
E.g. π = 〈 { o1, o2, o3 }, {o1 < o3} 〉
True concurrency semantics
E.g. o2 can temporally overlap with o1 and o3
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Planning via Unfolding & Concurrency From Planning Problem to Petri Net

Plan generated via unfolding

Theorem
A plan π, extracted from Unf≺(NP) as described, is a solution
plan for planning problem P

I Let us refer to this simply as a plan obtained via unfolding.
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Planning via Unfolding & Concurrency Concurrency, Plan Flexibility & Makespan

Concurrency Semantics

I What is the concurrency semantics of plans synthesised using
this approach?

What are the restrictions on two actions executing
concurrently?

I How does it compare to the standard notion of concurrency
induced by Smith and Weld’s [1999] definition of independent
actions?
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Planning via Unfolding & Concurrency Concurrency, Plan Flexibility & Makespan

Independent Actions

Two actions are independent iff

1. Their effects don’t contradict

2. Their preconditions don’t contradict

3. The preconditions for one aren’t clobbered by the effect of
the other.

A plan respects independence iff for any two non-independent
actions a and b the plan ensures that either a < b or b < a.

I Obviously any totally ordered plan respects independence

Theorem
A plan generated via unfolding respects independence.
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Planning via Unfolding & Concurrency Concurrency, Plan Flexibility & Makespan

Stronger than Independence...

Moreover, planning via unfolding enforces stronger restrictions
on when two actions can be executed concurrently:

I Operators in O with common postcondition v = v1 can’t
temporally overlap if their common effect changes the current
state.

I Occurs through 1-safety transformation of operators

Value of v not specified in the preconditions
Create set of operators to specify the value of v in the
preconditions,
May be that original operators are independent but
translated ones are not.

.
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Planning via Unfolding & Concurrency Concurrency, Plan Flexibility & Makespan

Strongly Independent Actions

Two actions are strongly independent in state S iff

1. They are independent

2. Any postcondition p common to both actions already holds
true in S.

I A variable is locked in shared mode if the action does not
change its value (read only access)

I A variable is locked in exclusive mode if its value is to be
changed by the action (read and write access)

Strong independence reduces to independence if operators are
originally 1-safe.
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Planning via Unfolding & Concurrency Concurrency, Plan Flexibility & Makespan

Strongly Independent Plan

I Let state(π, S0, a) denote the set of states in which
action a may potentially be executed when a linearisation of
plan π is executed in state S0.

A plan π respects strong independence for state S0 iff

I For any two different action (instances) a and b which are
not strongly independent for some state S ∈state(π, S0,
a), the plan ensures that either a < b or b < a
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Planning via Unfolding & Concurrency Concurrency, Plan Flexibility & Makespan

Unfolding Synthesizes Strongly Independent Plan

Theorem
A plan generated via unfolding respects strong independence for
the initial state of the planning problem.

I Are solution plans over-constrained wrt these restrictions?

Any totally ordered plan will respect strong independence.
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Planning via Unfolding & Concurrency Concurrency, Plan Flexibility & Makespan

Plan Flexibility

Partially-ordered plans are in principle more flexible in that they
may avoid over-committing to action orderings

I Scheduler can have alternative execution realizations to
choose from

Sequences in the case of interleaved concurrency
Scheduler may be used to post-process or adapt a plan for
actions with deadlines and earliest release times

I Execution time may be reduced when actions can be
executed in parallel
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Planning via Unfolding & Concurrency Concurrency, Plan Flexibility & Makespan

Plan De/reordering

Can we remove (deorder) or change (reorder) the constraints
from a plan synthesized via the unfolding approach?

catch-train < cook-dinner < eat-dinner < read-paper

⇓ deorder - remove constraints

catch-train < cook-dinner < {eat-dinner, read-paper}

m reorder - change constraints

{catch-train, read paper} < cook-dinner < eat-dinner
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Planning via Unfolding & Concurrency Concurrency, Plan Flexibility & Makespan

Plan validity w.r.t. Strong Independence

A partially ordered plan π is P-valid for planning problem P iff

I All linearizations of π solve P, and

I π respects strong independence for the initial state of P.

Theorem
Plans synthesized via the unfolding approach are P-valid.
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Minimal De/re-ordering

Consider plan π which is P-valid:

I π is a minimal de/re-ordering wrt flexibility if you can’t
de/re-order it to reduce the number of constraints and retain
P-validity.

I A plan is a minimal de/re-ordering wrt execution time if
you can’t de/re-order it to reduce the execution time and
retain P-validity.

[Backstrom 98] gave similar definitions in the context of plans
which respect independence.
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Planning via Unfolding & Concurrency Concurrency, Plan Flexibility & Makespan

Optimality Guarantees (1/2)

Theorem
Any plan synthesized via the unfolding approach is a minimal
deordering wrt flexibility.

I i.e. no constraint can be removed without rendering the plan
invalid.

I Observe that a minimal deordering wrt flexibility is also a
minimal deordering wrt execution time.

Theorem
All solution plans which are minimally deordered wrt flexibility
exist in the unfolding space.

I These results extend to all plans in the unfolding space (i.e.
not necessarily solutions)
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Planning via Unfolding & Concurrency Concurrency, Plan Flexibility & Makespan

Directing the unfolding wrt time

Briefly...

I Use a search strategy based on an order on events ≺time that
prefers histories with a faster execution time.

I Use a search scheme based on a semi-admissible order on
events ≺, such that ≺time⇒≺

I i.e. Direct the search using ≺time, but test termination
condition using ≺.

I This search procedure will find the fastest plan in the
unfolding space, but what does this mean?
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Planning via Unfolding & Concurrency Concurrency, Plan Flexibility & Makespan

Optimality Guarantees (2/2)

Theorem
If the unfolding is directed to prefer faster plans, then the plan
synthesized is a minimal reordering wrt execution time.

I Reordering a plan to be optimal wrt execution time is (still)
NP-hard in the context of strong independence requirements.
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Flexibility and Minimal Makespan

So how does planning via unfolding compare to the standard
notion of concurrency induced by Smith and Weld’s [1999]
definition of independent actions?

I If the original operators are 1-safe then the unfolding space
consists of plans which are least-constrained wrt the standard
definition of independence.

I This means a plan with minimum makespan, as defined by
Smith and Weld [1999], exists in the unfolding space and can
be obtained using an appropriate search procedure.

I If the operators are not 1-safe, then the unfolding space may
contain “slower” (over-constrained) plans due to the stronger
restriction on when two actions can temporally overlap.

I We can guarantee, however, that these plans will be
least-constrained wrt strong independence.
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General Petri Nets

Part 3: General Petri Nets

I In general (not 1-safe) Petri nets, places are unbounded
counters.

Petri nets have advantages in expressivity and modelling
convenience.
Questions of reachability, coverability, etc. are
computationally harder to answer, but still decidable.

I Analysis methods for general Petri nets are often based on
ideas & techniques not common in planning:

Algebraic methods based on the state equation.
Rich literature on the study of classes of nets with special
structure.
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General Petri Nets Notation, Modelling & Expressivity

Recap: Petri Nets

I A Petri net is a directed bipartite (multi-)graph, with nodes
P ∪ T divided into places and transitions.

F : (P × T ) ∪ (T × P )→ N denotes edge multiplicity.
As usual, for any n ∈ P ∪ T , •n = {n′ |F (n′, n) > 0} and
n• = {n′ |F (n, n′) > 0}.

I A marking of the net is a mapping P → N, i.e., places are
unbounded counters.

I A transition t is enabled, or firable, at marking m iff
m[i] ≥ F (pi, t), ∀i, and when fired leads to a marking m′

such that m′[i] = m[i]− F (pi, t) + F (t, pi), ∀i.
Notation: m [t〉m′ (t enabled at m: m [t〉 ).

I m0 [t1〉m1 [t2〉m2 . . . [tn〉mn is a (valid) firing sequence.

Notation: m [t1, t2, . . . , tn〉mn.
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General Petri Nets Notation, Modelling & Expressivity

Modelling Planning Problems Using Counters

# in Room A # in Room B

Robby@A Robby@B

# held

# free

Gripper without Symmetries
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Gold Wood Peasant Supply

100

100

400

500
250

4

Part of the Wargus Domain (Chan et al. 2007)
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General Petri Nets Notation, Modelling & Expressivity

Ordinary Petri Nets

I A Petri net where all edges have multiplicity 1 is ordinary.

I Any net can be transformed into an equivalent ordinary net:

Change p t
2k(+1)

into

p t′
k

p′ t

k(+1)

repeatedly until all edges have multiplicity 1 (and do likewise

with t p
2k(+1)

).

I The transformation increases net size by O(log(F (p, t))), and
hence is linear space.
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General Petri Nets Notation, Modelling & Expressivity

Vector Notation for Nets and Markings

I Marking: |P |-dimensional vector m ∈ N|P |.
I Definition: m ≥m′ iff m[i] ≥m′[i], ∀i.

m > m′ iff m ≥m′ and ∃j such that m[j] > m′[j].
I Two vectors associated with transition t:

c−(t) =

 F (p1, t)
...

F (p|P |, t)

 c+(t) =

 F (t, p1)
...

F (t, p|P |)


t is enabled at m iff m ≥ c−(t);
c(t) = c+(t)− c(t)−(t) is the effect of t: firing t leads to
m′ = m + c(t).

I C =
(
c(t1) c(t2) . . . c(t|T |)

)
is the incidence matrix.

I r(p): row of C corresponding to place p.
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General Petri Nets Notation, Modelling & Expressivity

Examples

p1 t1

p2

p3

t2

t3

C =

 −1 0 1
1 −1 0
1 1 −1



p1

p2

p3

p4

p5

p6

p7

t1

t2

t3

t4

t5

t6

C =



1 −1 0 0 0 0
−1 1 1 −1 0 0

1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 −1 1 −1 1
0 0 0 0 1 −1
−1 0 0 0 0 1


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Representation Ambiguity and Pure Nets

c(t)[i] = 0:

t

pi

or

t

pi

?

I A pure Petri net has no “self loops”, i.e.,
•t ∩ t• = ∅ for every transition t.

I For a pure net, the incidence matrix C
unambiguously defines the net.

I Any net can be transformed into a pure
net by splitting transitions with loops in
two:

ta p′ tb

pi

I The transformation is linear space.
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General Petri Nets Notation, Modelling & Expressivity

Decision Problems for Marked Nets

I Given a marked net (N,m0):

Reachability: Is there a firing sequence that ends with
given marking m?
Coverability: Is there a firing sequence that ends with a
marking m′ such that m′ ≥m?
Boundedness: Does there exist a (finite) K such that for
every reachable marking m, m ≤ K?

Note: The state space of (N,m0) is finite iff (N,m0) is
bounded.

I Coverability and boundedness are EXPSPACE-complete.

I Reachability is EXPSPACE-hard, but existing algorithms are
non-primitive recursive (i.e., have unbounded complexity).
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General Petri Nets Notation, Modelling & Expressivity

I Executability: Is there a firing sequence valid at m0 that
includes transition t?

Executability reduces to coverability: t is executable iff
c−(t) is coverable.
and vice versa: reduction using a “goal transition”.

I Repeated Executability: Is there a firing sequence in which
a given transition (or set of transitions) occurs an infinite
number of times?

I Reachable Deadlock: Is there a reachable marking m at
which no transition is enabled?

I Liveness: Absence of reachable deadlocks.

I ...and many more (e.g., existence of home states, fairness).

(... from various places ...) ICAPS 2009 107 / 140

General Petri Nets Notation, Modelling & Expressivity

Equivalence Problems

I Equivalence: Given two different marked nets, (N1,m1) and
(N2,m2), with equal (or isomorphic) sets of places, do they
have the equal sets of reachable markings?

I Trace Equivalence: Given two different marked nets,
(N1,m1) and (N2,m2), with equal (or isomorphic) sets of
transitions, do they have equal sets of valid firing sequences?

I Language Equivalence: Trace equivalence under mapping
of transitions to a common alphabet.

I Bisimulation: Equivalence under a bijection between
markings.

I In general, equivalence problems are undecidable.
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General Petri Nets Notation, Modelling & Expressivity

Structural Properties & Decision Problems

I Properties of N independent of initial marking m0.

I Invariance:

A vector y ∈ N|P | is a P-invariant of N iff for any markings
m [· · ·〉m′, yTm = yTm′.

A P-invariant is a linear combination of place markings
that is invariant under any transition firing.
In Germany, S-invariant; also called P-semiflow.

A vector x ∈ N|T | is a T-invariant of N iff for any firing
sequence s such that n(s) = x and any marking m where s
is enabled, m [s〉m.

A T-invariant is a multiset of transitions whose combined
effect is zero.
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General Petri Nets Notation, Modelling & Expressivity

I Structural Liveness: It there a marking m such that (N,m)
is live?

I Structural Boundedness: Is (N,m) bounded for every
finite initial marking m?

I Repetitiveness: Is there a marking m and a firing sequence
s valid at m such that a given transition / set of transitions
appears infinitely often in s?

I Deciding structural properties can be easier than the
corresponding problem for a marked net.
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General Petri Nets Notation, Modelling & Expressivity

Complexity: Implications Of and For Expressivity

I Bounded Petri nets are expressively equivalent to
propositional STRIPS/PDDL.

Reachability is PSPACE-complete for both.
Note: The “direct” STRIPS→PN translation can blow up
exponentially.

I General Petri nets are stictly more expressive than
propositional STRIPS/PDDL.

I General Petri nets are at least as expressive as “lifted” (finite
1st order) STRIPS/PDDL.

Probably also strictly more expressive, but no proof yet.
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General Petri Nets Notation, Modelling & Expressivity

I A k-counter machine (kCM) is a deterministic finite
automaton with k (positive) integer counters.

Can increment/decrement (by 1), or reset, a counter.
Conditional jumps on ci > 0 or ci = 0.

I Note the differences:

A kCM is deterministic: starting configuration determines a
unique execution; a Petri net has choice.
A kCM can branch on ci > 0/ci = 0; a Petri net can only
precondition transitions on m(pi) > 0.

I A kCM is M -bounded iff no counter ever exceeds M .
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General Petri Nets Notation, Modelling & Expressivity

I An n-size Turing machine can be simulated by an O(n)-size
2CM (if properly initialised).

Halting (i.e., reachability) for unbounded 2CMs is
undecidable.
Petri nets are strictly less expressive than unbounded 2CMs.

I An n-size and 2n space bounded TM can be simulated by an
O(n)-size 22n

-bounded 2CM.

I A 22n
-bounded n-size 2CM can be (non-deterministically!)

simulated by an O(n2)-size Petri net.

Reachability for Petri nets is DSPACE(2
√

n)-hard.
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General Petri Nets Analysis Methods

The Coverability Tree Construction

I The coverability tree of a marked net (N,m0) is an explicit
representation of reachable markings – but not exactly the
set of reachable markings.

I Constructed by forwards exploration:

Each enabled transition generates a successor marking.
If reach m such that m > m′ for some ancestor m′ of m,
replace m[i] by ω for all i s.t. m[i] > m′[i].
m′ [s = t1, . . . , tl〉m, and since m ≥m′, m [s〉m′′ such
that m′′ ≥m; sequence s can be repeated any number of
times.
ω means “arbitraribly large”.

Also check for regular loops (m = m′ for some ancestor m′

of m).

I Every branch has finite depth.
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General Petri Nets Analysis Methods

Example

p1

t1

p2

p3

t2

t3

(1 0 0)

(0 1 1)
t1

(0 0 2)

t2

(1 0ω)
t3

(0 1ω)

t1

(0 0ω)

t2

(1 0ω)
t3

(1ω ω)t3

. . .

t1

. . .
t2

(ω ω ω)

t3

. . .t3

(1ω 0)t3

. . .

t1

. . .

t2
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General Petri Nets Analysis Methods

Uses For The Coverability Tree

I Decides coverability:

m is coverable iff m ≤m′ for some m′ in the tree (where
n < ω for any n ∈ N).
If m is coverable, there exists a covering sequence of length
at most O(2n).

I Decides boundedness:

(N,m0) is unbounded iff there exists a self-covering
sequence: m0 [s〉m [s′〉m′ such that m′ > m.
I.e., (N,m0) is unbounded iff ω appears in some marking in
the coverability tree.
If (N,m0) is unbounded, there exists a self-covering
sequence of length at most O(2n).

I In general, does not decide reachability.

Except if (N,m0) is bounded.
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General Petri Nets Analysis Methods

The State Equation

I The firing count vector (a.k.a. Parikh vector) of a firing
sequence s = ti1 , . . . , til is a |T |-dimensional vector
n(s) = (n1, . . . , n|T |) where ni ∈ N is the number of
occurrences of transition ti in s.

I If m0 [s〉m′, then

m′ = m0 + c(ti1) + . . .+ c(til) = m0 +
∑

j=1...|T |

c(tj)n(s)[j],

i.e., m′ = m0 + Cn(s).

I m is reachable from m0 only if Cn = (m−m0) has a
solution n ∈ N|T |.

I This is a necessary but not sufficient condition.

A solution n is realisable iff n = n(s) for some valid firing
sequence s.
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General Petri Nets Analysis Methods

The State Equation & Invariance

I y ∈ N|P | is a P-invariant iff it is a solution to yTC = 0.

yTm = yTm0 for any m reachable from m0.

I x ∈ N|T | is a T-invariant iff it is a solution to Cx = 0.

m [s〉m whenever n(s) = x and s enabled at m.

I Any (positive) linear combination of P-/T-invariants is a
P-/T-invariant.

I The reverse dual of a net N is obtained by swapping places
for transitions and vice versa, and reversing all arcs.

The incidence matrix of the reverse dual is the transpose of
the incidence matrix of N .
A P-(T-)invariant of N is a T-(P-)invariant of the reverse
dual.
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General Petri Nets Analysis Methods

Example: P-Invariants



1
1
0
0
1
1
0



T 

1 −1 0 0 0 0
−1 1 1 −1 0 0

1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 −1 1 −1 1
0 0 0 0 1 −1
−1 0 0 0 0 1


=



0
0
0
0
0
0
0



T



1
0
1
1
0
1
2



T 

1 −1 0 0 0 0
−1 1 1 −1 0 0

1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 −1 1 −1 1
0 0 0 0 1 −1
−1 0 0 0 0 1


=



0
0
0
0
0
0
0



T

p1

p2

p3

p4

p5

p6

p7

t1

t2

t3

t4

t5

t6
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Example: T-Invariants



1 −1 0 0 0 0
−1 1 1 −1 0 0

1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 −1 1 −1 1
0 0 0 0 1 −1
−1 0 0 0 0 1




0
0
1
1
0
0

 =


0
0
0
0
0
0




1 −1 0 0 0 0
−1 1 1 −1 0 0

1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 −1 1 −1 1
0 0 0 0 1 −1
−1 0 0 0 0 1




1
1
0
0
1
1

 =


0
0
0
0
0
0



p1

p2

p3

p4

p5

p6

p7

t1

t2

t3

t4

t5

t6
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General Petri Nets Analysis Methods

I The support of a P-/T-invariant y is the set {i |y[i] > 0}.
An invariant has minimal support iff no invariants support is
a strict subset.

The number of minimal support P-/T-invariants of a net is
finite, but may be exponential.
All P-/T-invariants are (positive) linear combinations of
minimal support P-/T-invariants.

I A P-/T-invariant y is minimal iff no y′ < y is invariant.

A minimal invariant need not have minimal support.
For each minimal support, there is a unique minimal
invariant.

I Algorithms exist to generate all minimal support
P-/T-invariants of a net.
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General Petri Nets Analysis Methods

The State Equation & Structural Properties

I N is structurally bounded iff yTC ≤ 0 has a solution
y ∈ N|P | such that y[i] ≥ 1 for i = 1, . . . , |P |.
y is a linear combination of all place markings that is
invariant or decreasing under any transition firing.

I N is repetitive w.r.t. transition t iff Cx ≥ 0 has a solution
x ∈ N|T | such that x[t] > 0.

x is a multiset of transitions, including t at least once,
whose combined effect is zero or increasing.
Can always find some initial marking m0 from which x is
realisable.
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General Petri Nets Analysis Methods

Reachability

I Decidability of the (exact) reachability problem for general
Petri nets was open for some time.

Algorithm proposed by Sacerdote & Tenney in 1977
incorrect (or gaps in correctness proof).
Correct algorithm by Mayr in 1981.
Simpler correctness proof (for essentially the same
algorithm) by Kosaraju in 1982.

I Other algorithms have been presented since.

I All existing algorithms have unbounded complexity.

Fun fact: A 2-EXP algorithm was proposed in 1998, but
later shown to be incorrect.
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General Petri Nets Analysis Methods

Reachability: Preliminaries

I m is semi-reachable from m0 iff there is a transition sequence
s = ti1 , . . . , tin such that m = m0 + c(ti1) + . . .+ c(tin).

s is does not have to be valid (firable) at m0.
m is semi-reachable from m0 iff Cn = (m−m0) has a
solution n ∈ N|T |.

I If m is semi-reachable from m0, then m + a is reachable
from m0 + a for some sufficiently large a ≥ 0.
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General Petri Nets Analysis Methods

I A controlled net is a pair of a marked net
(N = 〈P, T, F 〉,m0) and an NFA (A, q0) over alphabet T .

A defines a (regular) subset of (not necessarily firable)
transition sequences.
Define reachability/coverability/boundedness for (N,m0)
w.r.t. A in the obvious way.
The coverability tree construction is easily modified to
consider only sequences accepted by A.

I The reverse of N , NRev (w.r.t. A) is obtained by reversing
the flow relation (and arcs in A).

C(NRev) = −C(N).
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General Petri Nets Analysis Methods

Reachability: A Sufficient Condition

I In (N,m0) w.r.t. (A, q0), if

(a) (m∗, q∗) is semi-reachable from (m0, q0),
(b) (m0 + a, q0) is reachable from (m0, q0), for a ≥ 1,
(c) (m∗ + b, q∗) is reachable from (m∗, q∗) in NRev w.r.t. A,

for b ≥ 1,
(d) (b− a, q∗) is semi-reachable from (0, q∗),

then (m∗, q∗) is reachable from (m0, q0).

I The conditions above are effectively checkable:

(b) & (c) by coverability tree construction,
(a) & (d) through the state equation.

(... from various places ...) ICAPS 2009 126 / 140

General Petri Nets Analysis Methods

(m0, q0)

+a

(m0 + ka, q0)

+a
(m∗ + ka, q∗)

b− a
(m∗ + kb, q∗)

b− a
−b

(m∗, q∗)

−b
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General Petri Nets Analysis Methods

Reachability: The Mayr/Kosaraju Algorithm

Consider a controlled net (N,A) of the form,

A1 A2 Ak

q0

m0 mout
1 min

2 mout
2 min

k

q∗

m∗

ti1

with constraints min/out
i [j] = x

i/o
i,j or min/out

i [j] ≥ yi/o
i,j ≥ 0.

I If the sufficient reachability condition holds for each
(min

i , q
in
i ) and (mout

i , qout
i ) w.r.t Ai, then (m∗, q∗) is

reachable from (m0, q0).

I Let ∆(Ai) = {m |m = Cn(s), s ∈ L(Ai)}.
I Let Γ = {min

i ,m
out
i ,ni |mi+1

in −mi
out =

c(tii),mi
out −mi

in ∈ ∆(Ai), and constraints hold}.
I If (m0, q0) [s〉 (m∗, q∗), s defines an element in Γ.
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General Petri Nets Analysis Methods

I Γ is a semi-linear set: consistency (non-emptiness) is
decidable via Pressburger arithmetic.

I If Γ is consistent, but the sufficient condition does not hold
in some Ai, then Ai can be replaced by a new “chain” of
controllers, A1

i , . . . , A
li
i , each of which is “simpler”:

more equality constraints (min/out

il
= x

i/o

il,j
), or

same equality constraints and smaller automaton.

I There can be several possible replacements
(non-deterministic choice).

I If (m∗, q∗) is not reachable from (m0, q0), every choice
(branch) eventually leads to an inconsistent system.
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General Petri Nets Special Classes of Nets

FSMs, Marked Graphs & Free Choice Nets

I An ordinary Petri net with |•t| = |t•| = 1 for each transition t
is a P-graph, or finite state machine.

Every P-graph is structurally bounded (# of tokens is
constant).

I An ordinary Petri net with |•p| = |p•| = 1 for each place p is
a T-graph, or marked graph.

Several properties of marked graphs (e.g., liveness,
boundedness, 1-safety) are decidable in polynomial time.

I An ordinary Petri net such that |p•| ≤ 1 or •(p•) = {p} for
each place p, is a free choice net.
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General Petri Nets Special Classes of Nets

Characterisation by Derivation Rules

I Initial net:

I Rule #1: Add a new place p′ with r(p′) =
∑

p∈P λpr(p) and

|p′•| = 1.

I Rule #2: Replace place p with a connected P-graph N ′, and
connect each input and output of p to at least one place in
N ′.

Must have |•p| > 1 and |p•| > 1, except for initial net.
Every place p′ ∈ N ′ must appear on a path in the resulting
net that enters and leaves N ′.

I Theorem: The class of nets obtained by applying the above
rules to the initial net is exactly the class of structurally live
and structurally bounded free choice nets.
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General Petri Nets Special Classes of Nets

Acyclic Nets

I For an acyclic net, every solution
to Cn = (m−m0) is realisable.

I A minimum cost firing sequence
can be found by ILP (and
lower-bounded by LP).

I Removing transition input arcs is
a relaxation.

I We have a new heuristic!

tx px

p1 t1 p′1

p2 t2 p′2

...
...

...

pn tn p′n

Minimum cost: 2n.
LP relaxation: 2n?
h+: n+ 1.
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Conclusion

Summary & Conclusions

I 1-Safe Petri nets: Intuitive, graphical modelling formalism,
closely related to planning.

I Unfolding: Search that combines partial-order planning with
state-space heuristics.

I Petri net theory often uses different tools than planning:

Algebraic methods (based on the state equation).
Characterisation and study of classes of nets with special
structure.

I Planning also has tools applicable to Petri nets:

Domain-independent search heuristics.
What else?
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Conclusion

The Many Things We Haven’t Talked About

I Extensions of basic Place-Transition nets:

Read arcs, reset arcs and inhibitor arcs.
Colored Petri nets, timed nets, stochastic nets, etc.

I Other properties of Petri nets (and related decision
problems):

Model checking (tense logics, process calculi).
Language (trace) properties.

I Heaps more results concerning different Petri net subclasses.
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