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Planning Problems

Planning as heuristic search?

Successful and robust

Top four planners in the “satisficing” track of IPC6

Several top planners in the “optimal” track

Many well-performing planners from previous competitions

Standardized framework

Mix and match heuristics and search tecniques

Take advantage of results in other fields



Planning Problems

Search Problems

Given a graph G = 〈V ,E 〉, where

V is a finite set of vertices

E is a set of (directed) edges

a search problem P is defined by:

An initial vertex v0 ∈ V

goal verteces VG ⊆ V

A function c : E → R, giving the cost of each edge



Planning Problems

Search Problems

A solution is a sequence of edges P = 〈e0, . . . , en〉, mapping v0

into vn+1 ∈ G

An optimal solution is a path with minimum total cost, where the
cost of a path is given by the sum of the costs of the edges it
contains:

c(P) =
∑
e∈P

c(e)



Planning Problems

Solving Search Problems

Brute–force approach: Systematically explore full graph

Uniform–cost search, Dijkstra

Starting from v0, explore reachable verteces until vg ∈ G is
found

Complexity of search proportional to |V |

Heuristics help by delaying or ruling out the exploration of
unpromising regions of the graph



Planning Problems

Heuristics: What are they?

In the graph setting, heuristics are methods for estimating the
distance from a node to some goal node

Definition

h∗(s) is the cost of the lowest-cost path from s to a goal node

h∗(s)→ optimal solution in linear time

Objective when designing a heuristic is to get as close as pos-
sible to h∗
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Planning Problems

The power of heuristics

Consider the two following heuristics for grid navigation problems:

h(s) = 0, ∀s, equivalent to blind search

h(s) = |xG − xs |+ |yG − ys |, the Manhattan Distance heuristic
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Blind vs. Informed Search

Manhattan Distance heuristic = h∗
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Blind vs. Informed Search

When obstacles are present, hMD is uninformed and explores large
part of state space
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Heuristics: Some properties

Definition

A heuristic h is admissible if for all s ∈ S : h(s) ≤ h∗(s)

Definition

A heuristic h is consistent if for all s ∈ S and edge (s, s ′):

h(s) ≤ c(s, s ′) + h(s ′)

Consistency implies admissibility

Admissible heuristics used to compute optimal solutions

Consistent heuristics guarantee optimal behaviour

h(s) = 0 is a consistent but non-informative heuristic
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Classical planning with costs as a search problem

Classical planning problems are search problems in the
state-space graph where

nodes are planning states

edges correspond to operators

Paths from s0 to a goal state are valid plans

An optimal plan is a plan of minimum cost
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Classical planning as a search problem

Set of states S

Initial state s0 ∈ S

A function G (s) that tells us whether a state is a goal

Planning operators O

Applicable operators A(s) ⊆ O in state s

Transition function f (s, o) for s ∈ S and o ∈ A(s)

Non-negative operator costs, c(o) ∈ R+
0



Planning Problems

Planning as heuristic search

Idea: Search the state space using a heuristic

The “better” the heuristic:

the fewer the generated (stored) states

the faster a solution is found

For optimal planning, use admissible heuristics

Problem: How to compute good heuristics?

This is the topic of this tutorial
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Outline for the rest of the tutorial

Planning Problems

Part I: Delete-Relaxation Heuristics

Part II: Exact Computation of h+

Part III: The hm Heuristics

Part IV: The Context-Enhanced Additive Heuristic
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Problem Representation

Problem representation

Factored representations of states:

Set V of variables

Domain DX of values for each variable X

Most common: STRIPS (boolean variables)

Dtruck-at-Thessaloniki = {true, false}

Another option: SAS+ (multi-valued variables)

Dloc-truck = {Thessaloniki ,Athens, Istanbul}
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Problem Representation

STRIPS

Problems P = 〈F , I ,G ,O, c〉:
fluents (boolean variables) F
initial state I ⊆ F
goal description G ⊆ F
operators O = 〈Pre(o), Add(o), Del(o)〉, each ⊆ F
positive costs c(o)

States are subsets of fluents that have value true

State space is exponential O(2|F |)
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Problem Representation

SAS+

Problems P = 〈V , I ,G ,O, c〉:
set of variables V , each with associated domain DV

initial state I , a full variable assignment
goal G , a partial variable assignment
operators O, consisting of two partial variable assignments
〈Pre(o), Eff(o)〉
positive costs c(o)

A full variable assignment assigns to each vi ∈ V a value
di ∈ Dvi and represents a state

A partial variable assignment assigns values to a subset
C ⊆ V

State space:
∏

v∈V |Dv |
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Problem Representation

Translation from STRIPS to SAS+

Basic Idea: Make a graph with node set F , and edges between
any two fluents that cannot occur in the same state

Example:
〈truck-at-Thessaloniki, truck-at-Athens, truck-at-Istanbul〉

Cliques in graph represent multi–valued variables

Replace n boolean variables with single n–valued variable

More efficient representation - 2n vs. n configurations
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Part I

Delete-Relaxation Heuristics



Delete-Relaxation Heuristics

Introduction

Relaxations

Relaxations are assumptions about a problem that make it easier
to solve

Manhattan Distance assumption: no barriers

Idea: Solve relaxed problem and use cost of this solution as h



Delete-Relaxation Heuristics

Introduction

The Delete Relaxation P+

Assumption: Once a variable has a certain value, that value can
always be used to satisfy preconditions/goals

When something is achieved, it stays achieved

⇒
move-right

h+ = h∗(P+) is admissible

Any solution to P is a solution to P+ as well

In P, a fluent may have to be made true > 1 times



Delete-Relaxation Heuristics

Introduction

The Delete Relaxation P+ – Formalization

In STRIPS, remove delete lists:

Definition

Given a STRIPS problem P = 〈F , I ,G ,O, c〉, its delete relaxation
is given by P+ = 〈F , I ,G ,O ′, c〉, where

O ′ = {〈Pre(o),Add(o), ∅〉 | o ∈ O}

|s| increases with each action

Stratification of fluents by first
level at which they can be achieved

s0



Delete-Relaxation Heuristics

Introduction

The Delete Relaxation P+

Plan existence for P+ is easy

Use all applicable operators until goal achieved or no further
fluents can be added

Optimal solution to P+ is NP-hard

Why?



Delete-Relaxation Heuristics

Introduction

Simplifying P+

Ideally, |s0| = |Pre(o)| = |Add(o)| = |G | = 1

Search problem on graph G = 〈V ,E 〉, V = F , E = O

|F | is small, so easily solvable

Question: Does there exist a P+′ equivalent to P+ with this
property?

Theorem

For any P+, there exists an equivalent problem P+′ such that
|s ′0| = 1, |G ′| = 1, and |Add(o)| = 1 for all o ∈ O ′
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Introduction

Simplifying P+

s0

⇒

a3
0(0)

s′
0

a1
0(0)

a2
0(0)

A start state with size |s0| = n can be replaced with:

A new start state containing a single newly-introduced fluent:
s ′0 = {f }
A set of n zero-cost actions: A0 = {〈{f }, {si}, ∅〉 | si ∈ s0}
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Introduction

Simplifying P+

a(c)

⇒

a′
3(0)

faa′(c)

a′
1(0)

a′
2(0)

An action a with |Add(a)| = n can be replaced with:

A new fluent fa, representing that the action has been
executed

An action a′ = 〈Pre(a), fa, ∅〉 with cost c(a′) = c(a)

A set of n zero-cost actions:
A′ = {〈{fa}, {ai}, ∅〉 | ai ∈ Add(a)}
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Introduction

Simplifying P+

And |G |?
G

⇒
End(0)

G′

A goal with size |G | = n can be replaced with:

A new goal with a single newly-introduced fluent: G ′ = {g}
A single action End = 〈G , g , ∅〉
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Introduction

P+ as a graph problem

Special cases of P+ are well-known graph problems in which
nodes → fluents, edges → actions

|G | = |Pre(o)| = 1→ Shortest Path tractable

|G | > 1, |Pre(o)| = 1→ Directed Steiner Tree NP-hard

|Pre(o)| > 1→ Optimal Directed Hyperpath NP-hard
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Introduction

Hypergraphs vs. AND/OR graphs?

Equivalent representations:

Hypergraphs

Multi-source edges

Weights on edges

AND/OR graphs

AND nodes

Weights on AND nodes
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Introduction

The Delete Relaxation P+

Difficulty of P+: estimating cost of sets

To be optimal, must take into account interactions between plans
for fluents in set

Interactions between plans for individual fluents are always positive:

Theorem

For any set of fluents G ⊆ F ,

h+(G ) ≤
∑
g∈G

h+(g)



Delete-Relaxation Heuristics

Introduction

The Delete Relaxation P+

Idea: Solve P+ suboptimally, use cost of this solution as h

Resulting heuristics no longer admissible

But useful for finding suboptimal solutions fast

Fundamental tradeoff: Computation time vs. solution
quality



Delete-Relaxation Heuristics

hadd

The (Numeric) Additive Heuristic hadd

First practical domain-independent planning heuristic (used in
HSP)

Relies on the independence assumption for costs:

hadd(G )
def
=
∑
g∈G

hadd(g)

Intuition: Estimate the cost of a set as the sum of the costs
of the individual fluents

Assume no positive interactions
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hadd

The (Numeric) Additive Heuristic hadd

hadd(s) = hadd(G ; s)

hadd(P; s)
def
=
∑
p∈P

hadd(p; s)

where

hadd(p; s)
def
=

{
0 if p ∈ s
hadd(ap(s)) otherwise

ap(s)
def
= argmina∈O(p) hadd(a; s)

hadd(a; s)
def
= cost(a) + hadd(Pre(a); s)
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hadd

Computation

Equations give properties of estimates, not how to calculate them

Basic idea: value iteration

Start with rough estimates (e.g. 0,∞), do updates

Methods differ principally in choice of update ordering:

1 Label-correcting methods

Arbitrary action choice
Multiple updates per fluent

2 Dijkstra method

Updates placed in priority queue
Single update per fluent
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hadd

Computation

Algorithm 1 Heuristic calculation
s ← current state
for p ∈ F do

if p ∈ s then h(p) = 0 else h(p) =∞ // Initialization
end for
repeat

a = chooseAction()
for q ∈ Add(a) do

if h(a; s) < h(q; s) then
h(q; s) = h(a; s)

end if
end for

until fixpoint
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hadd

Example - Label correcting method

0

a(0) b c G

e

2

1

5
1

4

4

d

a b c d e G

0 ∞ ∞ ∞ ∞ ∞
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hadd

Example - Label correcting method

0

a(0) b(2) c G

e

2

1

5
1

4

4

d

a b c d e G

0 2 ∞ ∞ ∞ ∞



Delete-Relaxation Heuristics

hadd

Example - Label correcting method

0

a(0) b(2) G

e

2

1

5
1

4

4

c(7)

d

a b c d e G

0 2 7 ∞ ∞ ∞
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hadd

Example - Label correcting method

d(8)

a(0) b(2) c(7) G

e

2

1

5
1

0

4

4

a b c d e G

0 2 7 8 ∞ ∞
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hadd

Example - Label correcting method

0

a(0) b(2) c(7) G

d(8)

e(8)

2

1

5
1

4

4

a b c d e G

0 2 7 8 8 ∞
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hadd

Example - Label correcting method

G(16)a(0) b(2) c(7)

d(8)

e(8)

2

1

5
1

0

4

4

a b c d e G

0 2 7 8 8 16
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hadd

Example - Label correcting method

d(6)

a(0) b(2) c(7)

e(8)

2

1

5
1

0

4

4

G(16)

a b c d e G

0 2 7 6 8 16
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hadd

Example - Label correcting method

G(16)a(0) b(2) c(7)

d(6)

e(6)

2

1

5
1
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4

4

a b c d e G

0 2 7 6 6 16
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hadd

Example - Label correcting method

G(12)a(0) b(2) c(7)

d(6)

e(6)

2

1

5
1

0

4

4

a b c d e G

0 2 7 6 6 12
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hadd

Example - Dijkstra method

0

a(0) b c G

e

2

1

5
1

4

4

d

a b c d e G

0 ∞ ∞ ∞ ∞ ∞
← Priority

b(2)
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hadd

Example - Dijkstra method

0

a(0) b(2) c G

e

2

1

5
1

4

4

d

a b c d e G

0 2 ∞ ∞ ∞ ∞
← Priority

d(6) e(6) c(7)
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hadd

Example - Dijkstra method

0

a(0) b(2) c G

e

2

1

5
1

4

4

d(6)

a b c d e G

0 2 ∞ 6 ∞ ∞
← Priority

e(6) c(7) G(∞)
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hadd

Example - Dijkstra method

0

a(0) b(2) c G

e(6)

2

1

5
1

4

4

d(6)

a b c d e G

0 2 ∞ 6 6 ∞
← Priority

c(7) G(12)
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hadd

Example - Dijkstra method

c(7)a(0) b(2) G

e(6)

2

1

5
1

4

4

d(6)

0

a b c d e G

0 2 7 6 6 ∞
← Priority

G(12)
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hadd

Example - Dijkstra method

G(12)a(0) b(2)

e(6)

2

1

5
1

4

4

d(6)

0
c(7)

a b c d e G

0 2 7 6 6 12

← Priority
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hadd

Comments

Generalized Dijkstra performs single update per fluent

Cannot overcome overhead from priority queue

In practice, Generalized Bellman-Ford often used

However, GD + incremental computation shown to give
speedup

See Speeding Up the Calculation of Heuristics for Heuristic
Search-Based Planning by Liu, Koenig and Furcy
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hadd

Problems with hadd

Ga b

e

2

1

5
1

4

4

d

0

c

Figure: h+(G ) = 2 + 5 + 1 + 1 + 0 = 9, hadd(G ) = 12

Sources of error in hadd(G )?

1 Overcounting

– Easier to address

a→ b counted twice

2 Independence assumption

hadd(d , e) = hadd(d) + hadd(e) – not optimal
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Problems with hadd

Ga b
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5
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d
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c

Figure: h+(G ) = 2 + 5 + 1 + 1 + 0 = 9, hadd(G ) = 12

Sources of error in hadd(G )?

1 Overcounting – Easier to address

a→ b counted twice

2 Independence assumption

hadd(d , e) = hadd(d) + hadd(e) – not optimal
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Relaxed Plans

Relaxed Plan Heuristics

Idea: Find explicit plan π+ for P+, h = cost(π+)

Incrementally construct plan, make sure no duplicates occur

No overcounting

Relies on the idea of supporters

The supporter of a fluent p is the designated action used to
make p true

First used in FF with relaxed planning graphs
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Relaxed Plans

Relaxed Planning Graphs

Tool to graphically represent heuristic computation

Layer i contains facts achievable with i layer parallel plan

c

a

b

G

e

d

c

a

b

G

e

d

c

a

b

e

d

c

G

a

b

G

e

d
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Relaxed Plans

Relaxed Planning Graphs

0

a(0) b c G

e

2

1

5
1

4

4

d

c

a

b

G

e
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c

a

b

G

e

d

c

a

b

e

d

c

G

a

b

G

e

d
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Relaxed Plans

Relaxed Plan Heuristics

Construct relaxed plan by starting from goal, choose supporter for
each fluent at first layer in which it appears

c

a

b

G

e

d

c

a

b

G

e

d

c

a

b

e

d

c

G

a

b

G

e

d
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Relaxed Plans

Relaxed Plan Heuristics

Construct relaxed plan by starting from goal, choose supporter for
each fluent at first layer in which it appears
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d

c

G

a

b

G

e
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Relaxed Plans

Relaxed Plan Heuristics

Construct relaxed plan by starting from goal, choose supporter for
each fluent at first layer in which it appears
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Relaxed Plans

Relaxed Plan Heuristics

Construct relaxed plan by starting from goal, choose supporter for
each fluent at first layer in which it appears
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Relaxed Plans

Relaxed Plan Heuristics

Construct relaxed plan by starting from goal, choose supporter for
each fluent at first layer in which it appears

d

a

b

G

e

d

c

a

b

G

e

c

a

b

e

d

c

G

a

b

G

e

d

c

hFF(s) = c(π) = {〈a→ b〉, 〈b → d〉, 〈b → e〉, 〈d , e → G 〉} = 10
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Relaxed Plans

hFF Relaxed Plan

Ga b

e

2

1

5
1

4

4

d

0

c

Figure: Plan computed by hFF
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Relaxed Plans

Relaxed Plan Heuristics - Benefits

Generate explicit plans π whose cost can be used as the heuristic
value, rather than only numeric estimates

Advantages:

Explicit representation of plan – no overcounting!

Helpful actions

Helpful Actions: Suggestions likely to decrease heuristic estimate

Prune non-helpful actions – generate/evaluate fewer nodes
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Relaxed Plans

The hmax Heuristic

hmax replaces
∑

in hadd with max :

hmax(P; s) = max
p∈P

(hmax(p; s))

Estimates cost of set as cost of most expensive fluent in set

Admissible

Turns out to be an instance of a more general formulation – more
on this later
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Relaxed Plans

Relaxed Planning Graphs and hmax

If action costs are uniform, hmax and RPGs are related

If p ∈ s:

hmax(p) = 0

rpg-level(p) = 0

else:

hmax(p) = min
a∈O(p)

(1 + hmax(Pre(a)))

rpg-level(p) = min
a∈O(p)

(1 + rpg-level(Pre(a)))

Theorem

When action costs are uniform, the relaxed planning graph level of
a fact is equal to its hmax estimate
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Relaxed Plans

Relaxed Planning Graphs and hmax

If action costs are uniform, hmax and RPGs are related
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hmax(p) = min
a∈O(p)

(1 + hmax(Pre(a)))

rpg-level(p) = min
a∈O(p)

(1 + rpg-level(Pre(a)))

Theorem

When action costs are uniform, the relaxed planning graph level of
a fact is equal to its hmax estimate
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Relaxed Plans

Relaxed Plans from hmax , hadd , etc.

hFF uses uniform cost hmax supporters + plan extraction algorithm

Drawback: Uniform cost hmax not cost-sensitive

Solution: Cost-sensitive heuristic to choose best supporter ...

ap(s) = argmin
a∈O(p)

h(a; s)

... combined with generic plan extraction algorithm

Construct π+ by collecting the best supporters recursively
backwards from the goal
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Relaxed Plans

Relaxed Plan Extraction Algorithm

Algorithm 2 Relaxed plan extraction

π+ ← ∅
supported← s
to-support← G
while to-support 6= ∅ do

Remove a fluent p from to-support
if p 6∈ supported then
π+ ← π+ ∪ {ap(s)}
supported← supported ∪ Add(ap(s))
to-support← to-support ∪ (Pre(ap(s)) \ supported)

end if
end while
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Relaxed Plans

Relaxed Plans

. . . and estimate the cost of a state s as the cost of π+(s):

h(s) = Cost(π+(s)) =
∑

a∈π+(s)

c(a)

Results in cost-sensitive heuristic with no overcounting
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Relaxed Plans

The Set–Additive Heuristic hs
a

Different method for computing relaxed plans, sometimes with
higher quality

Idea: Instead of costs, propagate the supports themselves

For each fluent, maintain explicit relaxed plan

Obtain plan for set as union of plans for each

Seeds for computation are also sets:

π(p; s) =

{
{} if p ∈ s
undefined otherwise

The cost of an undefined plan is ∞
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Relaxed Plans

The Set–Additive Heuristic hs
a

hs
a(s) = Cost(π(G ; s))

π(P; s) =
⋃
p∈P

π(p; s)

where

π(p; s) =

{
{} if p ∈ s
π(ap(s); s) otherwise

ap(s) = argmin
a∈O(p)

[Cost(π(a; s))]

π(a; s) = {a}
⋃
{ ∪
q∈Pre(a)

π(q; s)}

Cost(π) =
∑
a∈π

cost(a)
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Relaxed Plans

The Set–Additive Heuristic hs
a

Intuition: Estimate the cost of a set taking into consideration the
overlap between the plans for the individual fluents

Potentially better estimates

Drawback: Requires the expensive ∪ operator to calculate the cost
of a set of fluents, rather than the cheaper

∑
or max operators
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Relaxed Plans

Example

G
4

0

0
0

06

a

b

c

d

s0
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Relaxed Plans

Example

b(4)

4

0

0 0

06

c(4)

d(6)

G(6)

a(4)

s0(0)

Figure: πhadd
= {s0 → d , d → G}, c(πhadd

) = 6

hadd counts cost of action s0 → a twice when computing cost of
upper path

Leads to suboptimal relaxed plan
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Example

G
4

0

0
0

06

a

b

c

d

s0(0)

π(s0) {}
π(a) undefined

π(b) undefined

π(c) undefined

π(d) undefined

π(G ) undefined
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Relaxed Plans

Example

G
4

0

0 0

06

a(4)

b

c

d

s0

π(s0) {}
π(a) {s0 → a}
π(b) undefined

π(c) undefined

π(d) undefined

π(G ) undefined



Delete-Relaxation Heuristics

Relaxed Plans

Example

b(4)

4

0

0 0

06

a(4)

c

d

Gs0

π(s0) {}
π(a) {s0 → a}
π(b) {s0 → a, a→ b}
π(c) undefined

π(d) undefined

π(G ) undefined
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Relaxed Plans

Example

b(4)

4

0

0 0

06

a(4)

c(4)

d

Gs0

π(s0) {}
π(a) {s0 → a}
π(b) {s0 → a, a→ b}
π(c) {s0 → a, a→ c}
π(d) undefined

π(G ) undefined
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Relaxed Plans

Example

b(4)

4

0

0 0

06

a(4)

c(4)

d

G(4)s0

π(s0) {}
π(a) {s0 → a}
π(b) {s0 → a, a→ b}
π(c) {s0 → a, a→ c}
π(d) undefined

π(G ) {s0 → a, a→ b, a→ c , bc → G}



Delete-Relaxation Heuristics

Relaxed Plans

Example

b(4)

4

0

0 0

06

a(4)

c(4)

d(6)

G(4)s0

π(s0) {}
π(a) {s0 → a}
π(b) {s0 → a, a→ b}
π(c) {s0 → a, a→ c}
π(d) {s0 → d}
π(G ) {s0 → a, a→ b, a→ c , bc → G}
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Relaxed Plans

Example

b(4)

4

0

0 0

06

c(4)

d(6)

G(4)

a(4)

s0(0)

Figure: πhs
a

= {s0 → a, a→ b, a→ c , bc → G}, c(πhs
a
) = 4

hs
a stores explicit relaxed plans, realizing that the plans for b and c

overlap
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Remaining issues

Relaxed plan heuristics solve the overcounting issue by computing
an explicit relaxed plan with no duplicate actions

Independence assumption issues remain

Ga b

e

2

1

5
1

4

4

d

0

c

vs.

Ga b

e

2

1

5
1

4

4

d

0

c
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Relaxed Plans

Another Example

t1

L0L1

t1

L2

t2

L3

Agent at location L0 must perform tasks t1 and t2
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Relaxed Plans

Another Example

t1

L0L1

t1

L2

t2

L3

Task t1 can be performed at L1 and L3
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Relaxed Plans

Another Example

t1

L0L1

t1

L2

t2

L3

π+(t1) = 〈left, left, left, do t1〉
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Relaxed Plans

Another Example

t1

L0L1

t1

L2

t2

L3

Task t2 can be performed only at L2
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Relaxed Plans

Another Example

t1

L0L1

t1

L2

t2

L3

π+(t2) = 〈right, right, right, right, do t2〉
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Relaxed Plans

Another Example

t1

L0L1

t1

L2

t2

L3

Delete relaxation heuristics such as hadd , hs
a and hFF compute plan

for {t1, t2} by combining plans for t1 and t2, giving a cost of 7 – in
this case and many others, this is suboptimal



Delete-Relaxation Heuristics

Relaxed Plans

Another Example

t1

L0L1

t1

L2

t2

L3

Plan suggests actions left and right, neither of which decreases
heuristic estimate
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Relaxed Plans

Another Example

t1

L0L1

t1

L2

t2

L3

Optimal plan for {t1, t2} in both P and P+, right is only suggested
action and decreases heuristic estimate
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Relaxed Plans

The Independence Assumption

Heuristics discussed previously implicitly or explicitly assume
independence to make P+ tractable:

The Independence Assumption for Relaxed Plan Heuristics

The relaxed plan for a set of goals G is the union of the relaxed
plans for each goal

π+(G ) =
⋃
g∈G

π+(g)

The limitations of this approach can be understood by considering
the Steiner Tree Problem
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Steiner Trees

The Steiner Tree Problem

The Steiner Tree Problem

Given a graph G = 〈V ,E 〉 and a set of terminal nodes T ⊆ V ,
find a minimum-cost tree S that spans all t ∈ T

10

2

1
1 2

1

3

n3

n1

n4 n5

n2

n0

Figure: A Steiner Tree Problem, T = {n0, n4, n5}
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Steiner Trees

The Steiner Tree Problem

The Steiner Tree Problem

Given a graph G = 〈V ,E 〉 and a set of terminal nodes T ⊆ V ,
find a minimum-cost tree S that spans all t ∈ T

10

2

1
1 2

1

3

n3

n1

n4 n5

n2

n0

Figure: A Steiner Tree with cost 6
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Steiner Trees

The Steiner Tree Problem

When T = V , this is the tractable Minimum Spanning Tree (MST)
problem

10

2

1
1 2

1

3

n3

n1

n4 n5

n2

n0

Figure: A Minimum Spanning Tree
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Steiner Trees

The Steiner Tree Problem

Otherwise, equivalent to finding best set of non-terminal nodes P
to span, known as Steiner Points

Steiner Tree is then MST over P ∪ T

10

2

1
1 2

1

3

n3

n1

n4 n5

n2

n0

Figure: P = {n2}
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Steiner Trees

Equivalence of ST and P+

Given a Steiner Tree Problem S with graph W = 〈V ,E 〉 and
terminal set T , we construct an equivalent planning problem
PS = 〈F , I ,O,G 〉 with no deletes:

F = V

I = {n0} for some n0 ∈ T

O = {an,n′ |〈n, n′〉 ∈ E}, Pre(an,n′) = n, Add(an,n′) = n′

G = T

Theorem

The optimal plans for PS encode the Steiner Trees for the problem
S = 〈W ,T 〉, and c(S) = c∗(PS) = c∗(P+

S )
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Steiner Trees

Question: What do heuristics such as hadd , hs
a, and hFF do on this

problem?
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Steiner Trees

Steiner Trees vs. Trees of Shortest Paths

Theorem

Given a Steiner Tree Problem PS , independence-based relaxed plan
heuristics compute tree-of-shortest-paths approximation

10

2

1
1 2

1

3

n3

n1

n4 n5

n2

n0

Figure: Tree of shortest paths rooted at n0 with cost 7
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Steiner Trees

Steiner Trees vs. Trees of Shortest Paths

Given a root node r and a set of terminal nodes T , a tree of shortest
paths consists of the union of the paths from r to each t ∈ T

10

2

1
1 2

1

3

n3

n1

n4 n5

n2

n0

Figure: Tree of shortest paths rooted at n0 with cost 7
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Steiner Trees

Question: Can we do better?

Several approximation algorithms proposed previously (Charikar et
al. [1998], Zelikovsky [1997]) but not readily adaptable to our
problem
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Steiner Trees

Improving Candidate Steiner Trees

A necessary property of Steiner trees: A Steiner Tree S is an
MST over the set of nodes that it spans

Idea: Ensure that the tree satisfies this criterion

For each edge e in the tree, check whether there is a cheaper edge
e ′ between the two connected components C1 and C2 linked by e
→ If so, replace e with e ′

When no more edges can be replaced, tree is an MST

e′C1 C2

e

⇒
e′C1 C2

e
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Steiner Trees

Example

10

2

1
1 2

1

3

n3

n1

n4 n5

n2

n0

Figure: A candidate Steiner Tree with cost 14
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Steiner Trees

Example

10

2

1
1 2

1

3

n3

n1

n4 n5

n2

n0

Figure: Removing edge 〈n4, n5〉 leaves connected components {n0, n2, n5}
and {n4}
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Steiner Trees

Example

10

2

1
1 2

1

3

n3

n1

n4 n5

n2

n0

Figure: We reconnect the connected components with 〈n2, n4〉



Delete-Relaxation Heuristics

Steiner Trees

Example

10

2

1
1 2

1

3

n3

n1

n4 n5

n2

n0

Figure: MST criterion is necessary, not sufficient
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Steiner Trees

Replacing Paths

An improvement: Replace paths rather than edges

Replace a path P connecting two connected components C1 and
C2 with a cheaper path P ′ that connects the same two connected
components

P cannot cross any terminal node t ∈ T

Observation: This improvement leads to local search procedure
that yields lower cost Candidate Steiner Trees with a possibly
different set of Steiner Points P

P ′C1 C2

P

⇒
P ′C1 C2

P
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Steiner Trees

Example

10

2

1
1 2

1

3

n3

n1

n4 n5

n2

n0

Figure: A candidate Steiner Tree
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Steiner Trees

Example

10

2

1
1 2

1

3

n3

n1

n4 n5

n2

n0

Figure: Removing path P = 〈n0, n1, n4〉 leaves connected components
{n0, n2, n5} and {n4}
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Steiner Trees

Example

10

2

1
1 2

1

3

n3

n1

n4 n5

n2

n0

Figure: We reconnect the connected components with P ′ = 〈n2, n4〉



Delete-Relaxation Heuristics

Steiner Trees

Improving Relaxed Plans

Idea: Improve a relaxed plan π+(s) using edge/path replacement
methods

Problem: Delete-relaxation graphs are directed hypergraphs rather
than graphs

Solutions are directed hyperpaths

However, it turns out main ideas can be adapted to this setting
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Steiner Trees

Improving Relaxed Plans

Given a fluent y , we partition π(s) into three disjoint sets:

π−(y ; s) Actions required only to achieve y

π+(y ; s) Actions that depend on y being achieved

π0(y ; s) All other actions
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Steiner Trees

Improving Relaxed Plans

s

y

G

π+(y)

π−(y)

π0(y)

C1

P

P ′ C2

π0(y ; s) and π+(y ; s) correspond to connected components rooted
at s and y respectively, while π−(y ; s) corresponds to a path from
π0(y ; s) to y
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Steiner Trees

Relaxed Plan Improvement Algorithm

Look for fluent y in π(s) such that

cost(π(y ; s ′)) < cost(π−(y ; s))

where

s ′ = s ∪ {p | ap(s) ∈ π0(y ; s)}

Replace π−(y ; s) with π(y ; s ′) if such y is found:

π′(s) = π0(y ; s) ∪ π+(y ; s) ∪ π(y ; s ′)

When no further improvement possible, heuristic is cost of
resulting plan:

hlst(s) = cost(π)
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Steiner Trees

Example

5

5

2

3

8

s

g1 g2

qy

Figure: A planning problem P with I = {s} and G = {g1, g2}
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Steiner Trees

Example

5

5

2

3

8

s

g1 g2

qy

Figure: A shortest paths plan for P
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Steiner Trees

Example

5

5

2

3

8

y

g1 g2

q

s

π+(y; s)

π−(y; s)

π0(y; s)

Figure: Plan partitioned for fluent y
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Steiner Trees

Example

5

5

2

3

8

π(y; s′)

g1 g2

q

s

π0(y; s)

y

Figure: Calculation of π(y ; s ′) from s ′ = {s, q, g2}
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Steiner Trees

Example

5

5

2

3

8

π(y; s′)

g1 g2

q

s

π+(y; s)

π0(y; s)

y

Figure: New plan π′(s) = π0(y ; s) ∪ π+(y ; s) ∪ π(y ; s ′)
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Steiner Trees

Conclusions

The optimal delete relaxation heuristic h+ is admissible and
powerful, but calculating it is NP-hard

Sub-optimal solutions have proven to be effective heuristics

hadd suffers from two problems:
1 Over-counting of actions when combining estimates

2 The independence assumption

Overcounting problem can be solved with relaxed plan
heuristics

Steiner Tree heuristic is a preliminary attempt at improving
over the independence assumption
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Part II

Exact Computation of h+
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Introduction

Heuristic h+

Defined in terms of the delete relaxation P+

h+(P[I = s]) = h∗(P+[I = s])

Logical approach to compute h+

Delete relaxation encoded as a propositional theory T (P+)

We will show that h+(P[I = s]) is equal to the rank
r∗(T (P+) ∧ I (s)) of the theory T (P+) ∧ I (s) where T (P+)
encodes P+ and I (s) encodes the state s
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Introduction

Heuristic h+

Defined in terms of the delete relaxation P+

h+(P[I = s]) = h∗(P+[I = s])

Logical approach to compute h+

Delete relaxation encoded as a propositional theory T (P+)

We will show that h+(P[I = s]) is equal to the rank
r∗(T (P+) ∧ I (s)) of the theory T (P+) ∧ I (s) where T (P+)
encodes P+ and I (s) encodes the state s



Exact Computation of h+

Ranks of Logical Theories

Ranks of logical theories

A literal-ranking function r maps literals into real numbers

The rank of a model ω is the sum of the ranks of the literals
it makes true:

r(ω) =
∑
ω�L

r(L)

The rank of a theory Γ is the minimum rank of its models

r∗(Γ) = min
ω�Γ

r(ω)

If the γ is in d-DNNF format, its rank can be computed in
linear time for every literal-ranking function r
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Ranks of Logical Theories

Ranks of logical theories

A literal-ranking function r maps literals into real numbers

The rank of a model ω is the sum of the ranks of the literals
it makes true:

r(ω) =
∑
ω�L

r(L)

The rank of a theory Γ is the minimum rank of its models

r∗(Γ) = min
ω�Γ

r(ω)

If the γ is in d-DNNF format, its rank can be computed in
linear time for every literal-ranking function r



Exact Computation of h+

Ranks of Logical Theories

Negation Normal Form

A formula is in NNF if it is made of conjunctions, disjunctions
and negations, and the negations only appear at the literal
level

Alternatively, a NNF formula is a rooted DAG whose leaves
are literals or the constants true and false, and whose
internal nodes stand for conjunctions (AND nodes) or
disjunctions (OR nodes)

The NNF fragment is the collection of all formulas in NNF. It
is a complete fragment for propositional logic
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Ranks of Logical Theories

Example: NNF formula

OR

AND AND

OR OR OR OR

AND AND AND AND AND AND AND AND

¬A B ¬B A C ¬D D ¬C
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Ranks of Logical Theories

Deterministic Decomposable Negation Normal Form

A NNF is decomposable if the subformulas associated to the
children of an AND node share no variables

A NNF is deterministic if the subformulas associated to the
children an OR node are pairwise inconsistent

The d-DNNF fragment is the collection of all formulas that
are NNF, decomposable and deterministic. It is a complete
fragment for propositional logic
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Ranks of Logical Theories

Example: d-DNNF formula

OR

AND AND

OR OR OR OR

AND AND AND AND AND AND AND AND

¬A B ¬B A C ¬D D ¬C
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Ranks of Logical Theories

Example: d-DNNF formula

Decomposable: AND OR

AND AND

OR OR OR OR

AND AND AND AND AND AND AND AND

¬A B ¬B A C ¬D D ¬C
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Ranks of Logical Theories

Example: d-DNNF formula

Decomposable: AND OR

AND AND

OR OR OR OR

AND AND AND AND AND AND AND AND

¬A B ¬B A C ¬D D ¬C
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Ranks of Logical Theories

Example: d-DNNF formula

Decomposable: AND OR

AND AND

OR OR OR OR

AND AND AND AND AND AND AND AND

¬A B ¬B A C ¬D D ¬C
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Ranks of Logical Theories

Example: d-DNNF formula

Decomposable: AND OR

AND AND

OR OR OR OR

AND AND AND AND AND AND AND AND

¬A B ¬B A C ¬D D ¬C
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Ranks of Logical Theories

Example: d-DNNF formula

Decomposable: AND OR

AND AND

OR OR OR OR

AND AND AND AND AND AND AND AND

¬A B ¬B A C ¬D D ¬C
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Ranks of Logical Theories

Example: d-DNNF formula

Decomposable: AND OR

AND AND

OR OR OR OR

AND AND AND AND AND AND AND AND

¬A B ¬B A C ¬D D ¬C
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Ranks of Logical Theories

Example: d-DNNF formula

Deterministic: OR OR

AND AND

OR OR OR OR

AND AND AND AND AND AND AND AND

¬A B ¬B A C ¬D D ¬C
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Ranks of Logical Theories

Example: d-DNNF formula

Deterministic: OR OR

AND AND

OR OR OR OR

AND AND AND AND AND AND AND AND

¬A B ¬B A C ¬D D ¬C
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Ranks of Logical Theories

Example: d-DNNF formula

Deterministic: OR OR

AND AND

OR OR OR OR

AND AND AND AND AND AND AND AND

¬A B ¬B A C ¬D D ¬C
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Ranks of Logical Theories

Example: d-DNNF formula

Deterministic: OR OR

AND AND

OR OR OR OR

AND AND AND AND AND AND AND AND

¬A B ¬B A C ¬D D ¬C
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Ranks of Logical Theories

Example: d-DNNF formula

Deterministic: OR OR

AND AND

OR OR OR OR

AND AND AND AND AND AND AND AND

¬A B ¬B A C ¬D D ¬C
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Ranks of Logical Theories

d-DNNF: Operations

d-DNNFs support a number of operations in polynomial time:

1 Satisfiability

2 Validity

3 Clause entailment

4 Model counting

5 Computation of ranks

6 others
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Ranks of Logical Theories

Example: Model Counting

OR

AND AND

OR OR OR OR

AND AND AND AND AND AND AND AND

¬A1 B ¬B A C ¬D D ¬C 1
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Ranks of Logical Theories

Example: Model Counting

+

× ×

+ + + +

× × × × × × × ×

¬A1 B ¬B A C ¬D D ¬C 1
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Ranks of Logical Theories

Example: Model Counting

+

× ×

+ + + +

× × × × × × × ×

¬A1 B1 ¬B1 A1 C 1 ¬D 1 D 1 ¬C 1
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Ranks of Logical Theories

Example: Model Counting

+

× ×

+ + + +

×1 ×1 ×1 ×1 × 1 × 1 × 1 × 1

¬A1 B1 ¬B1 A1 C 1 ¬D 1 D 1 ¬C 1
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Ranks of Logical Theories

Example: Model Counting

+

× ×

+2 +2 + 2 + 2

×1 ×1 ×1 ×1 × 1 × 1 × 1 × 1

¬A1 B1 ¬B1 A1 C 1 ¬D 1 D 1 ¬C 1
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Ranks of Logical Theories

Example: Model Counting

+

×4 × 4

+2 +2 + 2 + 2

×1 ×1 ×1 ×1 × 1 × 1 × 1 × 1

¬A1 B1 ¬B1 A1 C 1 ¬D 1 D 1 ¬C 1
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Ranks of Logical Theories

Example: Model Counting

+8

×4 × 4

+2 +2 + 2 + 2

×1 ×1 ×1 ×1 × 1 × 1 × 1 × 1

¬A1 B1 ¬B1 A1 C 1 ¬D 1 D 1 ¬C 1
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Ranks of Logical Theories

Example: Model Counting

# models = 8+8

×4 × 4

+2 +2 + 2 + 2

×1 ×1 ×1 ×1 × 1 × 1 × 1 × 1

¬A1 B1 ¬B1 A1 C 1 ¬D 1 D 1 ¬C 1
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Ranks of Logical Theories

Example: Rank Computation

OR

AND AND

OR OR OR OR

AND AND AND AND AND AND AND AND

¬A1 B ¬B A C ¬D D ¬C 1
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Ranks of Logical Theories

Example: Rank Computation

min

+ +

min min min min

+ + + + + + + +

¬A1 B ¬B A C ¬D D ¬C 1
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Ranks of Logical Theories

Example: Rank Computation

min

+ +

min min min min

+ + + + + + + +

¬A0 B1 ¬B2 A0 C 0 ¬D 1 D 1 ¬C 1
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Ranks of Logical Theories

Example: Rank Computation

min

+ +

min min min min

+1 +2 +1 +2 + 1 + 1 + 2 + 2

¬A0 B1 ¬B2 A0 C 0 ¬D 1 D 1 ¬C 1
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Ranks of Logical Theories
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Ranks of Logical Theories

Example: Rank Computation

min

+2 + 2

min1 min1 min 1 min 1

+1 +2 +1 +2 + 1 + 1 + 2 + 2

¬A0 B1 ¬B2 A0 C 0 ¬D 1 D 1 ¬C 1
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Ranks of Logical Theories

Example: Rank Computation

min2

+2 + 2

min1 min1 min 1 min 1

+1 +2 +1 +2 + 1 + 1 + 2 + 2

¬A0 B1 ¬B2 A0 C 0 ¬D 1 D 1 ¬C 1
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Ranks of Logical Theories

Example: Rank Computation

rank = 2min2

+2 + 2

min1 min1 min 1 min 1

+1 +2 +1 +2 + 1 + 1 + 2 + 2

¬A0 B1 ¬B2 A0 C 0 ¬D 1 D 1 ¬C 1
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Ranks of Logical Theories

Ranks and d-DNNF

Theorem

Let Γ be a d-DNNF formula and r a literal ranking function. Then,
the rank r∗(Γ) can be computed in linear time in the size of Γ.
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Ranks of Logical Theories

Compilaton into d-DNNF 1/2

If the theory is not in d-DNNF, it needs to be first compiled
into d-DNNF using a compiler such as Darwiche’s c2d
compiler

The compilation takes exponential time and space in the
worst case. Otherwise, some important complexity classes
would collapse to P

However, the compilation needs to be computed only once in
order to compute any number of rank computations with
respect to different literal-ranking functions
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Ranks of Logical Theories

Compilaton into d-DNNF 2/2

If the compilation succeeds with a “small” d-DNNF. The
compilation time can be traded off when computing a large
number of rank operations

The compilation time and space is exponential in a parameter
known as the treewidth of the theory

If the formula is not compilable due to high treewidth, it can
be relaxed into a simpler one whose would be lower bounds on
the rank of the original formula
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Encodings of delete relaxations

We now see how to encode a delete-relaxation P+ into a logical
theory T (P+) that allow us to compute h+ exactly as a rank
operation. We consider two encodings:

Stratified encodings that use a time horizon

LP encodings that use no time horizon
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Encodings of Delete Relaxations

Stratified encodings of P+ 1/2

Plans for a STRIPS problem P+ = 〈F , I ,O,G 〉 with horizon n
can be obtained from models of propositional theory Tn(P+):

1 Actions: For i = 0, . . . , n − 1 and all action a:

ai ⊃ pi for p ∈ Pre(a)

Ci ∧ ai ⊃ pi+1 for each effect a : C → p

2 Frame: For i = 0, . . . , n − 1 and all fluent p:

pi ⊃ pi+1

¬pi ∧ (
∧

a:C→p(¬ai ∨ ¬C )) ⊃ ¬pi+1

3 Seriality: For i = 0, . . . , n − 1 and a 6= a′, ¬(ai ∧ a′i )

4 Goals and Init: free, defined by formulas I0 and Gn
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Encodings of Delete Relaxations

Stratified encodings of P+ 2/2

Heuristic h+(P[I = s,G = g ]) = h∗(P+[I = s,G = g ]) can
be defined as the rank r∗(Tn(P+) ∧ I0 ∧ Gn) where:

1 Horizon n is equal to min{#actions,#fluents}
2 Literal ranking function:

r(L) =

{
c(a) if L = ai

0 otherwise

Theorem

Let Πn(P+) be the compilation of theory Tn(P+) in d-DNNF
where n is a sufficiently large horizon. Then, the heuristic values
h+(P[I = s,G = g ]) for any initial and goal situation s and g, and
any cost function c, can be computed from Πn(P+) in linear time.
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Encodings of Delete Relaxations

Horizons

The SAT encoding of a STRIPS problem P requires an
exponential horizon in the worst case

The SAT encoding of the delete-relaxation P+ requires a
linear horizon, yet in most applications this horizon is still too
large to compile the theory Tn(P+)

However, we can achieve a more compact encoding of P+

that requires no time horizon

This encoding is called the LP encoding as it is obtained from
a set of positive Horn clauses
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Encodings of Delete Relaxations

The LP encoding of P+ 1/2

Obtained from LP rules of the form:

p ← Pre(a), a

for each (positive) effect p ∈ Add(a)

Additionally, we consider rules of the form:

p ← set(p)

Focus is on a class of minimal models (stable models) that
have an implicit stratification in correspondence with the
temporal stratification
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Encodings of Delete Relaxations

The LP encoding of P+ 2/2

Models are grounded on the actions as all fluents are
required to have well-founded support on them

Furthermore, actions do no imply their preconditions. Not a
problem, since cost of actions are positive, and they require
their preconditions to have an effect

Models that make actions true without their preconditions are
not preferred
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Encodings of Delete Relaxations

SAT encoding of the LP 1/2

Let L(P) be the LP encoding of planning problem P+

Let wffc(L(P)) be the well-founded fluent completion of
L(P): a completion formula that forces each fluent p to have
a well-founded support

Then,

h+(P[I = s,G = g ]) = r∗(wffc(L(P)) ∪ I (s) ∪ g)

where
I (s) = {set(p) : p ∈ s}
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Encodings of Delete Relaxations

SAT encoding of the LP 2/2

wffc(L(P)) picks up the models of L(P) in which each fluent
has a non-circular support that is based on the actions made
true in the model

Let’s say that L(P) is acyclic if the directed graph, formed by
connecting the atoms in the body of a rule to the head, is
acyclic

If L(P) is acyclic, wffc(P) is Clark’s completion applied to the
fluent literals
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Encodings of Delete Relaxations

Clark’s completion of the LP

For each fluent p with rules p ← Bi for i = 1, . . . , n, add the
formula

p ⊃ B1 ∨ · · · ∨ Bn

Bi ⊃ p

If there are no rules for p, add the formula ¬p

In the presence of cycles, Clark’s completion is not enough
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Encodings of Delete Relaxations

Well-founded fluent completion

From Answer Set Programming

Completion adds new atoms and rules to the LP, providing a
consistent and partial ordering of the fluents

Then, Clark’s completion of the extended LP is computed
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Encodings of Delete Relaxations

Example 1/3

A B C

Actions move(x , y) and fluents at(x). LP rules:

at(y)← at(x),move(x , y)

at(y)← set(at(y))

Let s = {at(A)} and g = {at(C )} be init and goal states, and
let all actions have unit cost except c(move(A,B)) = 10

Best plan (in P and P+) is π = {move(A,B),move(B,C )} so
that h+(P[I = s,G = g ]) = h∗(P+[I = s,G = g ]) = 11
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Encodings of Delete Relaxations

Example 2/3

We have I (s) = {set(at(A)),¬set(at(B)),¬set(at(C ))}
Clark’s completion is

at(A) ≡ (at(B) ∧move(B,A)) ∨ set(At(A))

at(B) ≡ (at(A) ∧move(A,B)) ∨ (at(C ) ∧move(C ,B)) ∨ set(At(B))

at(C ) ≡ (at(B) ∧move(B,C )) ∨ set(At(C ))

Best model corresponds to actions

{move(B,C ),move(C ,B)}

which has circular support for at(C ) and has rank equal to 2
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Encodings of Delete Relaxations

Example 3/3

The wffc(L(P)) is Clark’s completion of the modified LP in
which each rule

at(y)← at(x),move(x , y)

is replaced by the rules:

rk ← NOT at(y) ≺ at(x), at(x),move(x , y)

at(y)← rk

at(x) ≺ at(y)← rk

at(z) ≺ at(y)← rk , at(z) ≺ at(x)

where z ∈ {A,B,C} and NOT is negation as failure

wffc(L(P)) is Clark’s completion of the modified LP
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Encodings of Delete Relaxations

Heuristic Computation

Theorem

Let Π(P) be the compilation of theory wffc(L(P)) in d-DNNF.
Then, for any initial and goal situation s and g, and any cost
function c, the heuristic h+(P[I = s,G = g ]) can be computed
from Π(P) in linear time.
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Encodings of Delete Relaxations

Extended Planning Model

This framework allow us to extend the planning model by
considering positive or negative costs c(p) for fluents, in
addition to the positive action costs c(a)

Given a planning problem P and plan π, the cost c(π) of a
plan is given by the cost of actions in π and the cost of the
atoms F (π) made true by π (at any time)

c(π) =
∑
a∈π

c(a) +
∑

p∈F (π)

c(p)

The cost of a problem P is defined as

c∗(P) = min
π

c(π)

This model extends classical planning by allowing to express
non-trivial preferences . . .
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Encodings of Delete Relaxations

Scope of the model

The model is simple and flexible, and can represent:

Terminal costs: a fluent p can be rewarded or penalized if
true at the end of the plan, by means of a new atom p′

initialized to false, and conditional effect p → p′ for action
End

Goals: not strictly required since can be modeled as a
sufficiently high terminal reward

Soft Goals: modeled as terminal rewards

Rewards on Conjunctions: using actions Collect(p1, . . . , pn)

Not so simple to represent repeated costs or rewards, penalties on
sets of atoms, partial preferences, . . .
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Encodings of Delete Relaxations

Ranking Function

The only fix required is to use a ranking function of the form:

r(L) =


c(a) if L = a
c(p) if L = p
0 otherwise

Then, the LP encodings still works and the heuristic
h+(P[I = s,G = g ]) is the rank r∗(T (P+) ∧ I (s) ∧ g)
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Encodings of Delete Relaxations

Conclusions

h+ efficiently computable when T (P+) is in d-DNNF

Can compute exact heuristics for more general planning
models
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Part III

The hm Heuristics
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hmax heuristic

hmax Heuristic 1/2

Obtained by replacing the
∑

in hadd with max:

hmax(p; s)
def
=

{
0 if p ∈ s

min
a∈O(p)

cost(a) + hmax(Pre(a); s) otherwise

where

O(p) = “operators that add p”

hmax(P; s) = max
p∈P

hmax(p; s)
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hmax heuristic

hmax Heuristic 2/2

hmax(P; s) is cost to achieve a costliest atom in P from s

It is computed using Dijkstra algorithm, and provides
admissible estimates that can be used for optimal planning,
yet its values are often low and non-informative

This heuristic is also referred as the h1 heuristic
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h2 heuristic

h2 Heuristic 1/2

Haslum and Geffner observed that hmax can be modified to
compute costs for pairs of atoms:

h2(P; s) estimates the cost to achieve a costliest pair
{p, q} ⊆ P from s

If {p, q} ⊆ s, then the cost of {p, q} is zero as both atoms
are already achieved

Otherwise, need to consider ways to achieve {p, q} from s

Let O(pq) be the set of operators that add p and q, and
O(p|q) be the set of operators that add p and don’t delete q
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h2 heuristic

h2 Heuristic 2/2

We can achieve {p, q} by either:

1 applying an operator in O(pq) that achieves p and q
simultaneously

2 applying an operator in O(p|q) that achieves p and doesn’t
delete q from a state that already contains q, or

3 applying an operator in O(q|p) that achieves q and doesn’t
delete p from a state that already contains p
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h2 heuristic

h2 Heuristic 2/2

We can achieve {p, q} by either:

1 applying an operator in O(pq) that achieves p and q
simultaneously

2 applying an operator in O(p|q) that achieves p and doesn’t
delete q from a state that already contains q, or

3 applying an operator in O(q|p) that achieves q and doesn’t
delete p from a state that already contains p
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h2 heuristic

h2 Heuristic 2/2

We can achieve {p, q} by either:

1 applying an operator in O(pq) that achieves p and q
simultaneously

2 applying an operator in O(p|q) that achieves p and doesn’t
delete q from a state that already contains q, or

3 applying an operator in O(q|p) that achieves q and doesn’t
delete p from a state that already contains p
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h2 heuristic

h2 Regression

Formula that expresses the different ways to achieve (regress) the
pair {p, q} thru action a:

R({p, q}, a) =



Pre(a) if a ∈ O(pq)

Pre(a) ∪ {q} if a ∈ O(p|q)

Pre(a) ∪ {p} if a ∈ O(q|p)

undefined otherwise
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h2 heuristic

h2 Equation

Defined by generalizing hmax fix-point equation to pairs of atoms:

hmax(p; s)
def
=

{
0 if p ∈ s
mina∈O(p) cost(a) + hmax(Pre(a); s) otherwise

h2({p, q}; s)
def
=

{
0 if {p, q} ⊆ s
mina cost(a) + h2(R({p, q}, a); s) otherwise

where

h2(P; s) = max{h2({p, q}; s) : p, q ∈ P}
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h2 heuristic

h2 Equation

Defined by generalizing hmax fix-point equation to pairs of atoms:

hmax(p; s)
def
=

{
0 if p ∈ s
mina∈O(p) cost(a) + hmax(Pre(a); s) otherwise

h2({p, q}; s)
def
=

{
0 if {p, q} ⊆ s
mina cost(a) + h2(R({p, q}, a); s) otherwise

where

h2(P; s) = max{h2({p, q}; s) : p, q ∈ P}
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h2 heuristic

h2 Computation

h2 computed with Dijkstra algorithm seeded at

1 h2({p, q}; s) = 0 if {p, q} ⊆ s

2 h2({p, q}; s) =∞ if {p, q} * s

In practical applications, h2 is too expensive to compute for
forward-search planners; used by backward-search planners

However, the values h2(·; s0) are computed by almost all
planners to obtain the mutexes of the planning problem
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h2 heuristic

h2 vs h+

Both h2 and h+ are admissible heuristics but neither
dominates the other

Therefore, h2 is not a delete-relaxation heuristic

Indeed, h2 values for problem P and P+ may differ
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Mutexes

Mutexes 1/2

A mutex (relation) between a pair of atoms p and q (with
respect to initial state s0) specifies that there is no reachable
state from s0 that makes both p and q true

The pairs {p, q} such that h2({p, q}; s0) =∞ are indeed in
mutex relation

Yet there are other mutex pairs whose h2-value is less than ∞
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Mutexes

Mutexes 2/2

The mutex graph is an undirected graph defined over the
atoms in which there is an edge {p, q} iff the pair {p, q} is
mutex

The maximal cliques of the graph define the implicit
multi-valued variables of the problem

A maximal clique C can be thought as a variable X with
domain DX = C ∪ {⊥} since

1 no state makes two values of DX true

2 every state makes one value of DX true
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Mutexes

Example: Implicit Multi-valued Variables

Blocksworld with 4 blocks {A,B,C ,D}:

top-of-A = {on(B,A), on(C,A), on(D,A), clear(A)}

bot-of-A = {on(A,B), on(A,C), on(A,D), table(A)}

holding = {hold(A), hold(B), hold(C), hold(D),⊥}
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hm heuristic

hm Heuristic

Same idea for h2 can be generalized to subsets of size ≤ m

hm(P; s) is the cost to achieve a costliest subset of size ≤ m
from s

This time need to consider all possible ways to achieve
(regress) a subset of size at most ≤ m
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hm heuristic

hm Regression

For subset P of atoms of size at most m, define the regression
thru a as

R(P, a) =

{
(P\Add(a)) ∪ Pre(a) if P ∩ Del(a) = ∅
undefined otherwise

This formula generalizes the h2 regression; indeed, for m = 2
both regressions coincide!
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hm heuristic

hm Equation

hm(P; s) =


0 if P ⊆ s
min

a
cost(a) + hm(R(P, a)) if |P| ≤ m

max{hm(X ; s) : X ⊂ P, |X | ≤ m} otherwise
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hm heuristic

hm Computation

hm computed using Dijkstra’s seeded at, for |P| ≤ m,

1 hm(P; s) = 0 if P ⊆ s

2 hm(P; s) =∞ if P * s

Up to our knowledge, only up to h3 has been computed in real
planners

There exist m such that hm = h∗

The general computation of hm is exponential in m
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Higher-Order Mutexes

Higher-Order Mutexes 1/2

A mutex of order m is a subset M of atoms, |M| = m, for
which there is no reachable state s from s0 that contains M

The sets M such that hm(M; s0) =∞ are mutex of order m

A mutex M of order m may impose contraints on the
simultaneous achievement of values for different variables

Therefore, they can be used to improve the value of other
heuristics such as Pattern Database heuristics
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Higher-Order Mutexes

Higher-Order Mutexes 2/2

For m > 2, it is possible that hm({p, q}; s0) =∞ whereas
h2({p, q}; s0) <∞

For example, consider atoms p, q, r , x , y such that the pairs
{p, q}, {p, r} and {q, r} are reachable (non-mutex),
h3({p, q, r}; s0) =∞ (mutex), and the action

a : Pre = {p, q, r},Add = {x , y},Del = {}

Then, R({x , y}, a) = {p, q, r} and we have

1 h2({x , y}; s0) <∞
2 h3({x , y}; s0) = cost(a) + h3({p, q, r}; s0) =∞

Similar for higher-order mutexes and values of m
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Higher-Order Mutexes

Conclusions

hm heurisitcs are powerful but expensive to compute

Not an instance of delete-relaxation heuristics

Can be used to boost other heuristics such as Pattern
Database heuristics and even h+
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Part IV

The Context-Enhanced Additive Heuristic
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The Context-Enhanced Additive Heuristic

hcea extends the causal graph heuristic hCG for SAS+ domains
(used in Fast Downward) by recasting it as a variation of hadd

hCG

Procedurally defined

Certain problem
structures must be
simplified by removal of
preconditions for
computation

hcea

Mathematically defined

Computable on all
problem structures
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hcea vs. hCG

If hCG is computable, hCG (s) = hcea(s)

Otherwise, hcea is expected to be more informative since no
simplification required

This is confirmed by empirical results
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Notation

x , x ′, x ′′ etc. are different values of the same multi-valued
variable

For a partial or complete variable assignment A, xA is the
value of x in A

For a state s and a partial assignment P, s[P] is identical to s
except has the values that appear in P for all var(P)
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hadd in SAS+

For SAS+ planning, hadd can be rewritten as follows:

hadd(s)
def
=
∑
xg∈G

hadd(xg |xs)

hadd(x |x ′) def
=


0 if x = x ′

min
o:P→x

c(o) +
∑
y∈P

hadd(y |ys) otherwise

Cost of preconditions always evaluated from initial state
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hadd in SAS+

For SAS+ planning, hadd can be rewritten as follows:

hadd(s)
def
=
∑
xg∈G

hadd(xg |xs)

hadd(x |x ′) def
=


0 if x = x ′

min
o:P→x

c(o) +
∑
y∈P

hadd(y |ys) otherwise

Cost of preconditions always evaluated from initial state
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hcea

hcea(s)
def
=
∑
xg∈G

hcea(xg |xs)

hcea(x |x ′) def
=


0 if x = x ′

min
o:x′′,P→x

c(o) + hcea(x ′′|x ′) +
∑
y∈P

hcea(y |ys(x′′|x′)) o.w.

Intuition: Starting at x ′, x is achieved with o, where x ′′ ∈ Pre(o):

x ′ → · · · → x ′′ o−→ x

Achieve precondition x ′′ of o first, evaluate cost of
P = Pre(o) \ {x ′′} given the resulting context s(x ′′|x ′)
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hcea

hcea(s)
def
=
∑
xg∈G

hcea(xg |xs)

hcea(x |x ′) def
=


0 if x = x ′

min
o:x′′,P→x

c(o) + hcea(x ′′|x ′) +
∑
y∈P

hcea(y |ys(x′′|x′)) o.w.

Intuition: Starting at x ′, x is achieved with o, where x ′′ ∈ Pre(o):

x ′ → · · · → x ′′ o−→ x

Achieve precondition x ′′ of o first, evaluate cost of
P = Pre(o) \ {x ′′} given the resulting context s(x ′′|x ′)
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Contexts 1/2

s(x ′′|x ′) is projected state after achieving x ′′ from x ′

How to calculate s(x ′′|x ′)?

Use the actions that result in the minimum values for the
equation above:

x ′ . . .→ x ′′′ o′−→ x ′′ o−→ x

Define s(x ′′|x ′) recursively:

s(x ′′|x ′) def
=

{
s if x ′′ = x ′

s(x ′′′|x ′)[Pre(o ′)][Eff (o ′)] otherwise

Context states and heuristic values are computed in parallel
and are mutually dependent
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Contexts 2/2

Ideally, use full contexts s(x ′′|x ′), e.g. hcea(y |s(x ′′|x ′))

Problem: Exponential number of context states

Idea: Information about other variables is discarded

Approximate cost of precondition y from context state s ′ as
hcea(y |ys′)

Information about other variables in s ′ is discarded

. . .+
∑
y∈P

hcea(y |ys(x ′′|x ′))
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Example 1/4

Let P = 〈V ,O, I ,G , c〉 be an SAS+problem with

V X = {x0, . . . , xn}
Y = {true, false}

O a : {¬y} → {y} bi : {y , xi} → {¬y , xi+1}
I {x0, y}

G {xn}
c c(a) = c(bi ) = 1

The optimal plan is then

π∗ = 〈b0, a, . . . , a, bn−1〉
containing n × bi + (n − 1)× a = 2n − 1 actions
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Example 2/4

x0
b0−→ . . .

bn−2−−−→ xn−1
bn−1−−−→ xn

What is the value of s(xi |x0)?

Base case: s(x0|x0) = s = {x0, y}
s(x1|x0):

= s(x0|x0)[Pre(b0)][Eff (b0)]

{x0, y}[Pre(b0)][Eff (b0)]

{x0, y}[Eff (b0)]

{x1,¬y}

Recursive case: s(xi |x0) = {xi ,¬y}
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Example 3/4

What is the value of hcea(xi |x0)?

hcea(x0|x0) = 0

hcea(x1|x0) = c(b0) + hcea(x0|x0) + hcea(y |ys(x0|x0))

= 1 + 0 + 0

hcea(xi |x0) = c(bi−1) + hcea(x0|xi−1) + hcea(y |ys(xi−1|x0))

= c(bi−1) + hcea(x0|xi−1) + hcea(y |y{x0,¬y})

= c(bi−1) + hcea(x0|xi−1) + hcea(y |¬y)

= 1 + hcea(x0|xi−1) + 1

Since s(xi−1|x0) = {xi−1,¬y}, y evaluated from value ¬y
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Example 4/4

We have:

hcea(x1|x0) = 1

hcea(xn|x0) = hcea(xn−1|x0) + 2

hcea gives optimal solution to this problem:

hcea(xn|x0) = 2(n − 1) + 1 = 2n − 1

hcea(s) = h∗(s)



The Context-Enhanced Additive Heuristic

Conclusions

Context-enhanced heuristics generalize the concept of causal
graph heuristic to problems with cyclic causal graphs

Can be very informative in some cases in which h+ is not

Not comparable to delete relaxation heuristics
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