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Planning Problems

Planning as heuristic search?

Successful and robust

@ Top four planners in the “satisficing” track of IPC6
@ Several top planners in the “optimal” track

@ Many well-performing planners from previous competitions

Standardized framework

@ Mix and match heuristics and search tecniques

@ Take advantage of results in other fields



Planning Problems

Search Problems

Given a graph G = (V, E), where
o V is a finite set of vertices
e E is a set of (directed) edges

a search problem P is defined by:

@ An initial vertex vy € V
e goal verteces V; C V
@ A function ¢ : E — R, giving the cost of each edge



Planning Problems

Search Problems

A solution is a sequence of edges P = (ey, ..., e,), mapping vy
into Vntl € G

An optimal solution is a path with minimum total cost, where the
cost of a path is given by the sum of the costs of the edges it
contains:



Planning Problems

Solving Search Problems

Brute—force approach: Systematically explore full graph
Uniform—cost search, Dijkstra

e Starting from vg, explore reachable verteces until vz € G is
found

Complexity of search proportional to |V/|

Heuristics help by delaying or ruling out the exploration of
unpromising regions of the graph



Planning Problems

Heuristics: What are they?

In the graph setting, heuristics are methods for estimating the
distance from a node to some goal node

Definition

h*(s) is the cost of the lowest-cost path from s to a goal node

h*(s) — optimal solution in linear time



Planning Problems

Heuristics: What are they?

In the graph setting, heuristics are methods for estimating the
distance from a node to some goal node

Definition

h*(s) is the cost of the lowest-cost path from s to a goal node

h*(s) — optimal solution in linear time

Objective when designing a heuristic is to get as close as pos-
sible to h*




Planning Problems

The power of heuristics

Consider the two following heuristics for grid navigation problems:

e h(s) =0, Vs, equivalent to blind search
e h(s) = |xg — xs| + |yG — ys|, the Manhattan Distance heuristic



Planning Problems

Blind vs. Informed Search

Manhattan Distance heuristic = h*



Planning Problems

Blind vs. Informed Search

When obstacles are present, hyp is uninformed and explores large
part of state space



Planning Problems

Heuristics: Some properties

Definition
A heuristic h is admissible if for all s € S: h(s) < h*(s)




Planning Problems

Heuristics: Some properties

Definition
A heuristic h is admissible if for all s € S: h(s) < h*(s)

Definition

A heuristic h is consistent if for all s € S and edge (s, s'):

h(s) < c(s,s") + h(s')




Planning Problems

Heuristics: Some properties

Definition
A heuristic h is admissible if for all s € S: h(s) < h*(s)

Definition

A heuristic h is consistent if for all s € S and edge (s, s'):

h(s) < c(s,s") + h(s')

e Consistency implies admissibility

@ Admissible heuristics used to compute optimal solutions

Consistent heuristics guarantee optimal behaviour

h(s) = 0 is a consistent but non-informative heuristic



Planning Problems

Classical planning with costs as a search problem

o Classical planning problems are search problems in the
state-space graph where

e nodes are planning states

e edges correspond to operators

@ Paths from sy to a goal state are valid plans

@ An optimal plan is a plan of minimum cost



Planning Problems

Classical planning as a search problem

Set of states S

Initial state sp € S

A function G(s) that tells us whether a state is a goal

Planning operators O

Applicable operators A(s) C O in state s

@ Transition function f(s,0) for s € S and o € A(s)

Non-negative operator costs, c(0) € Ry



Planning Problems

Planning as heuristic search

Idea: Search the state space using a heuristic

The “better” the heuristic:
@ the fewer the generated (stored) states

@ the faster a solution is found

For optimal planning, use admissible heuristics

Problem: How to compute good heuristics?



Planning Problems

Planning as heuristic search

Idea: Search the state space using a heuristic

The “better” the heuristic:
@ the fewer the generated (stored) states

@ the faster a solution is found

For optimal planning, use admissible heuristics

Problem: How to compute good heuristics?

This is the topic of this tutorial



Planning Problems

Outline for the rest of the tutorial

Planning Problems
@ Part I: Delete-Relaxation Heuristics
@ Part II: Exact Computation of A

Part Ill: The h™ Heuristics

Part IV: The Context-Enhanced Additive Heuristic



Planning Problems
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Problem Representation

Problem representation

Factored representations of states:
@ Set V of variables

@ Domain Dx of values for each variable X

Most common: STRIPS (boolean variables)

® Dtryck-at-Thessaloniki = {true, false}

Another option: SAS™ (multi-valued variables)
® Dioctruck = { Thessaloniki, Athens, Istanbul }



Planning Problems
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Problem Representation

STRIPS

e Problems P = (F,/,G,0,c):

fluents (boolean variables) F

initial state /| C F

goal description G C F

operators O = (Pre(o), Add(o), Del(o)), each C F
positive costs c¢(o)

@ States are subsets of fluents that have value true

@ State space is exponential O(2/F!)



Planning Problems
coeo

Problem Representation

SAST

Problems P = (V. I, G, O, c):
e set of variables V/, each with associated domain Dy
initial state /, a full variable assignment
goal G, a partial variable assignment
operators O, consisting of two partial variable assignments
(Pre(o), Eff(o))
e positive costs c(o)

@ A full variable assignment assigns to each v; € V a value
di € Dy, and represents a state

A partial variable assignment assigns values to a subset
cCcv

State space: [[,cy [Dy|



Planning Problems
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Problem Representation

Translation from STRIPS to SAS™

Basic Idea: Make a graph with node set F, and edges between
any two fluents that cannot occur in the same state

e Example:
(truck-at-Thessaloniki, truck-at-Athens, truck-at-Istanbul)



Planning Problems
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Problem Representation

Translation from STRIPS to SAS™

Basic Idea: Make a graph with node set F, and edges between
any two fluents that cannot occur in the same state

e Example:
(truck-at-Thessaloniki, truck-at-Athens, truck-at-Istanbul)

Cliques in graph represent multi—valued variables

Replace n boolean variables with single n—valued variable

@ More efficient representation - 2" vs. n configurations
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Delete-Relaxation Heuristics



Delete-Relaxation Heuristics
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Introduction

Relaxations

Relaxations are assumptions about a problem that make it easier
to solve

@ Manhattan Distance assumption: no barriers

Idea: Solve relaxed problem and use cost of this solution as h
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Introduction

The Delete Relaxation P™

Assumption: Once a variable has a certain value, that value can
always be used to satisfy preconditions/goals

@ When something is achieved, it stays achieved

=
:ﬁ: move-right :ﬁ: :ﬁ:

*————o o ——=o

ht = h*(P") is admissible
@ Any solution to P is a solution to P as well

@ In P, a fluent may have to be made true > 1 times



Delete-Relaxation Heuristics
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Introduction

The Delete Relaxation P — Formalization

In STRIPS, remove delete lists:

Definition
Given a STRIPS problem P = (F, I, G, O, c), its delete relaxation
is given by PT = (F, I, G, O, c), where

O’ = {{Pre(0),Add(0),0) | o € O}

@ |s| increases with each action ,

@ Stratification of fluents by first é
level at which they can be achieved )
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Introduction

The Delete Relaxation P™

Plan existence for PT is easy

@ Use all applicable operators until goal achieved or no further
fluents can be added

Optimal solution to P* is NP-hard
o Why?
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Introduction

Simplifying P

Ideally, |sp| = |Pre(o)| = |Add(o)| = |G| =1
@ Search problem on graph G = (V,E), V=F, E=0
e |F| is small, so easily solvable

Question: Does there exist a P’ equivalent to P with this
property?
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Introduction

Simplifying P

Ideally, |sp| = |Pre(o)| = |Add(o)| = |G| =1
@ Search problem on graph G = (V,E), V=F, E=0
e |F| is small, so easily solvable

Question: Does there exist a P’ equivalent to P with this
property?

For any P, there exists an equivalent problem Pt such that

Issl =1, |G'| =1, and |Add(0)| =1 for all 0 € O’
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Introduction

Simplifying P

A start state with size |sy| = n can be replaced with:
@ A new start state containing a single newly-introduced fluent:
so = {f}
0
@ A set of n zero-cost actions: Ay = {{({f},{si},0) | si € s}
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Introduction

Simplifying P

An action a with |Add(a)| = n can be replaced with:

@ A new fluent f;, representing that the action has been
executed

@ An action a’ = (Pre(a), f5, () with cost c(a’) = c(a)

@ A set of n zero-cost actions:

A ={{fa},{ai},0) | ai € Add(a)}
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Introduction

Simplifying P

And |G|?

G/

End(0)
A goal with size |G| = n can be replaced with:

@ A new goal with a single newly-introduced fluent: G’ = {g}
e A single action End = (G, g, ()
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Introduction

P as a graph problem

Special cases of P™ are well-known graph problems in which

nodes — fluents, edges — actions
e |G| = |Pre(o)| =1 — Shortest Path tractable
e |G| > 1, |Pre(o)] =1 — Directed Steiner Tree NP-hard
@ |Pre(o)| > 1 — Optimal Directed Hyperpath NP-hard
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Introduction

Hypergraphs vs. AND/OR graphs?

Equivalent representations:

Hypergraphs AND/OR graphs
@ Multi-source edges @ AND nodes

o Weights on edges @ Weights on AND nodes
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Introduction

The Delete Relaxation P™

Difficulty of PT: estimating cost of sets

To be optimal, must take into account interactions between plans
for fluents in set

Interactions between plans for individual fluents are always positive:

For any set of fluents G C F,

H(G) < Y i (e)

geiG
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Introduction

The Delete Relaxation P™

Idea: Solve PT suboptimally, use cost of this solution as h

@ Resulting heuristics no longer admissible
@ But useful for finding suboptimal solutions fast

e Fundamental tradeoff: Computation time vs. solution
quality
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hadd

The (Numeric) Additive Heuristic hygy

First practical domain-independent planning heuristic (used in
HSP)

Relies on the independence assumption for costs:

haad(G) = > haga(8)

geG

@ Intuition: Estimate the cost of a set as the sum of the costs
of the individual fluents

@ Assume no positive interactions



Delete-Relaxation Heuristics
0®000000

hadd

The (Numeric) Additive Heuristic hygy

hada(s) = haad(G; s)

hadd(P;$) £ hada(p;s)
peP

where

0 ifpes
hadd(ap(s))  otherwise

hadd(p; 5) = {

ap(s) o argmin,co(p) hadd(a; s)

hadd(a; ) & cost(a) + hagq(Pre(a); s)
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Computation

Equations give properties of estimates, not how to calculate them

Basic idea: value iteration
@ Start with rough estimates (e.g. 0,00), do updates
Methods differ principally in choice of update ordering:

© Label-correcting methods

o Arbitrary action choice
e Multiple updates per fluent

@ Dijkstra method

e Updates placed in priority queue
e Single update per fluent
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hadd

Computation

Algorithm 1 Heuristic calculation
s « current state
for p € F do
if p € s then h(p) =0 else h(p) = o // Initialization
end for
repeat
a = chooseAction()
for g € Add(a) do
if h(a;s) < h(qg;s) then
h(g;s) = h(a;s)
end if
end for
until fixpoint
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hadd

Example - Label correcting method
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hadd

Example - Label correcting method
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hadd

Example - Label correcting method
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hadd

Example - Label correcting method
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hadd

Example - Label correcting method
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hadd

Example - Label correcting method
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hadd

Example - Label correcting method

16
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hadd

Example - Label correcting method

16
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hadd

Example - Label correcting method
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hadd

Example - Dijkstra method

«— Priority

b(2) | | |
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hadd

Example - Dijkstra method

alblc|d|e]|G «— Priority
2|00 |00 | 00| 0 d(6) | e(6) [ <(7) |




Delete-Relaxation Heuristics
00000®00

hadd

Example - Dijkstra method

a|lb|c|d|e]| G «— Priority
2|00 |6] 00|00 e(6) | <(7) | G() |
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Example - Dijkstra method

a|lb|c|d|e|G «— Priority
20|66 o(7) [ G(12) | |
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hadd

Example - Dijkstra method

«— Priority
G12) [ | |
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hadd

Example - Dijkstra method

riority

1

— o
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Comments

Generalized Dijkstra performs single update per fluent
@ Cannot overcome overhead from priority queue
In practice, Generalized Bellman-Ford often used

@ However, GD + incremental computation shown to give
speedup

See Speeding Up the Calculation of Heuristics for Heuristic
Search-Based Planning by Liu, Koenig and Furcy
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Problems with h,4q

Figure: hT(G)=2+45+1+1+0=09, hg(G) =12

Sources of error in h,qq(G)?
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Problems with h,4q

Figure: hT(G)=2+45+1+1+0=09, hg(G) =12

Sources of error in h,qq(G)?

@ Overcounting
e a — b counted twice
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Problems with h,4q

Figure: hT(G)=2+45+1+1+0=09, hg(G) =12

Sources of error in h,qq(G)?

@ Overcounting
e a — b counted twice
@ Independence assumption
o haua(d, e) = haga(d) + hagg(e) — not optimal
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Problems with h,4q

Figure: hT(G)=2+45+1+1+0=09, hg(G) =12

Sources of error in h,qq(G)?

© Overcounting — Easier to address
e a — b counted twice
@ Independence assumption
o haua(d, e) = haga(d) + hagg(e) — not optimal
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Relaxed Plans

Relaxed Plan Heuristics

Idea: Find explicit plan 7t for P*, h = cost(n™)
@ Incrementally construct plan, make sure no duplicates occur
@ No overcounting

Relies on the idea of supporters
@ The supporter of a fluent p is the designated action used to

make p true

First used in FF with relaxed planning graphs
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Relaxed Plans

Relaxed Planning Graphs

@ Tool to graphically represent heuristic computation

@ Layer i contains facts achievable with i layer parallel plan

Qo--%e - {-2o - -2
=~

b, _J-be_|_b,
co | Co —Ce
d, d, d.,
eo | €6 e,

Ne,
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Relaxed Plans

Relaxed Planning Graphs

AV Er
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Relaxed Plans

Relaxed Plan Heuristics

Construct relaxed plan by starting from goal, choose supporter for
each fluent at first layer in which it appears

A e — P P
w22
b, | _be

Feaas
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Relaxed Plans

Relaxed Plan Heuristics

Construct relaxed plan by starting from goal, choose supporter for
each fluent at first layer in which it appears

a&i—g*———g*———éu
b, - -be | b,
Co Co -Ce
d, d, d,
o e e
G, | G, Ne,
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Relaxed Plans

Relaxed Plan Heuristics

Construct relaxed plan by starting from goal, choose supporter for
each fluent at first layer in which it appears

a&i—g*———g*———éu
b, - -be | b,
Co Co -Ce
d, d, d,
o e e
G, | G, Ne,
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Relaxed Plans

Relaxed Plan Heuristics

Construct relaxed plan by starting from goal, choose supporter for
each fluent at first layer in which it appears

a-»—\——g*———g*———éu
b, - -be | b,
Co Co -Ce
d, d, d,
o e e
G, | G, Ne,
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Relaxed Plans

Relaxed Plan Heuristics

Construct relaxed plan by starting from goal, choose supporter for
each fluent at first layer in which it appears

Boo]-Be-{-2e -2
b, -{-be - 1-bs
Co Co
d, d,
€o €o
G, G,

hee(s) = c(m) = {(a — b), (b — d), (b — €),(d,e — G)} = 10
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Relaxed Plans

h.. Relaxed Plan

Figure: Plan computed by hee
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Relaxed Plans

Relaxed Plan Heuristics - Benefits

Generate explicit plans m whose cost can be used as the heuristic
value, rather than only numeric estimates

Advantages:

@ Explicit representation of plan — no overcounting!

@ Helpful actions
Helpful Actions: Suggestions likely to decrease heuristic estimate

@ Prune non-helpful actions — generate/evaluate fewer nodes
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Relaxed Plans

The h,,., Heuristic

hmax replaces Y in hagg with max:

hmax(P; = hmax(p;
(P;s) = max(hmax(p: s))

@ Estimates cost of set as cost of most expensive fluent in set

Admissible

Turns out to be an instance of a more general formulation — more
on this later
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Relaxed Plans

Relaxed Planning Graphs and h,,.

If action costs are uniform, h,a.x and RPGs are related

If pes:
® hpmax(p) =0
e rpg-level(p) =0
else:
@ hmax(p) = min (1 + hmax(Pre(a)))

acO(p)
o rpg-level(p) = ng? )(1 + rpg-level( Pre(a)))
acO(p
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Relaxed Plans

Relaxed Planning Graphs and h,,.

If action costs are uniform, h,a.x and RPGs are related

If pes:
® hpmax(p) =0
e rpg-level(p) =0
else:
@ hmax(p) = min (1 + hmax(Pre(a)))

acO(p)
o rpg-level(p) = ng? )(1 + rpg-level( Pre(a)))
acO(p

When action costs are uniform, the relaxed planning graph level of
a fact is equal to its hy.x estimate
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Relaxed Plans

Relaxed Plans from h,.x, h.dq, €tc.

her uses uniform cost h,,.x supporters + plan extraction algorithm
Drawback: Uniform cost h,.x not cost-sensitive
Solution: Cost-sensitive heuristic to choose best supporter ...

ap(s) = argmin h(a; s)
acO(p)

. combined with generic plan extraction algorithm

e Construct m1 by collecting the best supporters recursively
backwards from the goal
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Relaxed Plans

Relaxed Plan Extraction Algorithm

Algorithm 2 Relaxed plan extraction
7T — 0
supported < s
to-support «— G
while to-support # () do
Remove a fluent p from to-support
if p & supported then
nt —atu{ay(s)}
supported «— supported U Add(ap(s))
to-support «— to-support U (Pre(ap(s)) \ supported)
end if
end while
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Relaxed Plans

Relaxed Plans

... and estimate the cost of a state s as the cost of 7 (s):

h(s) = Cost(nt(s)) = > c(a)

aent(s)

Results in cost-sensitive heuristic with no overcounting
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Relaxed Plans

The Set—Additive Heuristic h]

Different method for computing relaxed plans, sometimes with
higher quality

Idea: Instead of costs, propagate the supports themselves

@ For each fluent, maintain explicit relaxed plan
@ Obtain plan for set as union of plans for each

@ Seeds for computation are also sets:

ﬂ(p;s):{{} fpes

undefined otherwise

The cost of an undefined plan is co
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Relaxed Plans

The Set—Additive Heuristic h]

h3(s) = Cost(n(G;s))
n(P;s) = (Jn(p:s)

peP
where
{} ifpes
m(pis) = {W(ap(s);s) otherwise
ap(s) = argor’r(ﬂr)'n[Cost(w(a;s))]
acO(p
w@s) = (&b U (g, ")

Cost(m) = Zcosta

acm



Delete-Relaxation Heuristics
000000000000e0000

Relaxed Plans

The Set—Additive Heuristic h]

Intuition: Estimate the cost of a set taking into consideration the
overlap between the plans for the individual fluents

o Potentially better estimates

Drawback: Requires the expensive U operator to calculate the cost
of a set of fluents, rather than the cheaper ) or max operators



Delete-Relaxation Heuristics
0000000000000 e000

Relaxed Plans

Example
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Relaxed Plans

Example

Figure: 7h,,, = {50 — d,d — G}, c(n,,,) = 6

hadq counts cost of action sy — a twice when computing cost of
upper path

@ Leads to suboptimal relaxed plan
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Relaxed Plans

Example

7(s0) {

m(a) | undefined
m(b) | undefined
m(c) | undefined
m(d) | undefined

(d)
7(G) | undefined




Delete-Relaxation Heuristics
0000000000000 e000

Relaxed Plans

Example

7(s0) {

m(a) | {so — a}
m(b) | undefined
m(c) | undefined
m(d) | undefined

(d)
7(G) | undefined
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Relaxed Plans

Example

b(4)

7(s0) {

m(a) {so — a}
7w(b) | {so — a,a — b}
m(c) undefined
m(d undefined

(d)
7(G) undefined
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Relaxed Plans

Example

b(4)

(s0) {

) {so — a}

) | {so — a,a— b}
) | {so — a,a— c}

(d) undefined
7(G) undefined
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Relaxed Plans

Example

b(4)

7(s0) {

m(a) {so — a}

7(b) {so — a,a — b}

7(c) {so — a,a— ¢}

7(d) undefined

7(G) | {so — a,a— b,a— c,bc — G}
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Relaxed Plans

Example

b(4)

7(s0) {

m(a) {so — a}

7(b) {so — a,a — b}

7(c) {so — a,a— ¢}

7(d) {so — d}

7(G) | {so — a,a— b,a— c,bc — G}
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Relaxed Plans

Example

Figure: mps = {so — a,a — b,a — ¢, bc — G}, c(mps) = 4

hs stores explicit relaxed plans, realizing that the plans for b and ¢
overlap
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Relaxed Plans

Remaining issues

Relaxed plan heuristics solve the overcounting issue by computing
an explicit relaxed plan with no duplicate actions

Independence assumption issues remain

=¥
[\S]

VS.

o
[\
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Relaxed Plans

Another Example

ty [?ﬂ to ty

L, Lo Lo La

Agent at location Ly must perform tasks t; and t»
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Relaxed Plans

Another Example

ty [?ﬂ to ty

L, Lo Lo Ls

Task t; can be performed at Ly and L3
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Relaxed Plans

Another Example

t ﬁ t t

L, Lo Lo La

7t (t1) = (left, left, left, do t;)
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Relaxed Plans

Another Example

ty [?ﬂ to ty

L, Lo Lo Ls

Task ty can be performed only at Ly
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Relaxed Plans

Another Example

t ﬁ t t

L, Lo Lo Ls

7t (t2) = (right, right, right, right, do tp)
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Relaxed Plans

Another Example

4 ﬁ [2) b

e<=—9

L1 Ln L? L.’%

Delete relaxation heuristics such as h,qq, h3 and her compute plan
for {t1, to} by combining plans for t; and t», giving a cost of 7 — in
this case and many others, this is suboptimal
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Another Example

ty ﬁ to ty

e<—9©

L1 Ln L? LR

Plan suggests actions left and right, neither of which decreases
heuristic estimate
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Relaxed Plans

Another Example

ty ﬁ to 31

L1 Ln L? LR

Optimal plan for {t1, t>} in both P and P, right is only suggested
action and decreases heuristic estimate
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Relaxed Plans

The Independence Assumption

Heuristics discussed previously implicitly or explicitly assume
independence to make P tractable:

The Independence Assumption for Relaxed Plan Heuristics

The relaxed plan for a set of goals G is the union of the relaxed
plans for each goal

(6) = |J 77 (e)

geiG

The limitations of this approach can be understood by considering
the Steiner Tree Problem
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The Steiner Tree Problem

The Steiner Tree Problem

Given a graph G = (V, E) and a set of terminal nodes T C V/,
find a minimum-cost tree S that spansall t € T

Figure: A Steiner Tree Problem, T = {ng, n4, ns}
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Steiner Trees

The Steiner Tree Problem

The Steiner Tree Problem

Given a graph G = (V, E) and a set of terminal nodes T C V/,
find a minimum-cost tree S that spansall t € T

Figure: A Steiner Tree with cost 6
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Steiner Trees

The Steiner Tree Problem

When T = V, this is the tractable Minimum Spanning Tree (MST)
problem

Figure: A Minimum Spanning Tree
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The Steiner Tree Problem

Otherwise, equivalent to finding best set of non-terminal nodes P
to span, known as Steiner Points

@ Steiner Tree is then MST over PU T

Figure: P = {ny}
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Equivalence of ST and P*

Given a Steiner Tree Problem S with graph W = (V, E) and
terminal set T, we construct an equivalent planning problem
Ps = (F,I,0, G) with no deletes:

e F=V

o | ={ng} for some ng € T

o O={a,y|(n,n') € E}, Pre(an,y) = n, Add(a, )= n'

e G=T

The optimal plans for Ps encode the Steiner Trees for the problem
S=(W,T), and c(S) = c*(Ps) = c*(P;r)
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Steiner Trees

Question: What do heuristics such as h,qq, h3, and hge do on this
problem?
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Steiner Trees

Steiner Trees vs. Trees of Shortest Paths

Given a Steiner Tree Problem Ps, independence-based relaxed plan
heuristics compute tree-of-shortest-paths approximation

Figure: Tree of shortest paths rooted at ng with cost 7
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Steiner Trees

Steiner Trees vs. Trees of Shortest Paths

Given a root node r and a set of terminal nodes T, a tree of shortest
paths consists of the union of the paths from rtoeach t € T

Figure: Tree of shortest paths rooted at ng with cost 7
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Steiner Trees

Question: Can we do better?

Several approximation algorithms proposed previously (Charikar et
al. [1998], Zelikovsky [1997]) but not readily adaptable to our
problem
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Improving Candidate Steiner Trees

A necessary property of Steiner trees: A Steiner Tree S is an
MST over the set of nodes that it spans

Idea: Ensure that the tree satisfies this criterion

For each edge e in the tree, check whether there is a cheaper edge
e’ between the two connected components C; and G, linked by e
— If so, replace e with ¢’

When no more edges can be replaced, tree is an MST

RO
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Steiner Trees

Example

Figure: A candidate Steiner Tree with cost 14
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Steiner Trees

Example

No

Figure: Removing edge (ny, ns) leaves connected components {ng, ny, ns }
and {ny}
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Steiner Trees

Example

No

Figure: We reconnect the connected components with (nz, ns)
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Steiner Trees

Example

No

Figure: MST criterion is necessary, not sufficient
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Replacing Paths

An improvement: Replace paths rather than edges

Replace a path P connecting two connected components C; and
(> with a cheaper path P’ that connects the same two connected
components

P cannot cross any terminal node t € T

Observation: This improvement leads to local search procedure
that yields lower cost Candidate Steiner Trees with a possibly

different set of Steiner Points P
v..P .
.




Delete-Relaxation Heuristics
00000000®000000

Steiner Trees

Example

No

Figure: A candidate Steiner Tree
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Steiner Trees

Example

No

Figure: Removing path P = (ng, n1, ny4) leaves connected components
{no, n2, ns} and {ng}
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Steiner Trees

Example

No

Figure: We reconnect the connected components with P’ = (ny, na)
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Improving Relaxed Plans

Idea: Improve a relaxed plan 77 (s) using edge/path replacement
methods

Problem: Delete-relaxation graphs are directed hypergraphs rather
than graphs

Solutions are directed hyperpaths

However, it turns out main ideas can be adapted to this setting
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Improving Relaxed Plans

Given a fluent y, we partition 7(s) into three disjoint sets:

7~ (y;s) Actions required only to achieve y
71 (y;s) Actions that depend on y being achieved
70(y;s) All other actions
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Steiner Trees

Improving Relaxed Plans

70(y; s) and 71 (y; s) correspond to connected components rooted
at s and y respectively, while 77 (y;s) corresponds to a path from

7r0(y;s) toy
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Relaxed Plan Improvement Algorithm

Look for fluent y in 7(s) such that

cost(m(y;s')) < cost(m™ (y;s))

where
S = sU{p | ap(s) € Pyis)}
Replace 7 (y; s) with 7(y;s’) if such y is found:

7(s)=m(y;s) Unt(y;s) Un(y:s)

When no further improvement possible, heuristic is cost of
resulting plan:

hist(s) = cost()
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Steiner Trees

Example

Figure: A planning problem P with | = {s} and G = {g1, &}
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Steiner Trees

Example

Figure: A shortest paths plan for P
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Steiner Trees

Example

Figure: Plan partitioned for fluent y
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Steiner Trees

Example
91 92
5 3
2
y q
7(y; 5)
5 8
S

Figure: Calculation of 7(y;s’) from s’ = {s,q, &}
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Steiner Trees

Example

Figure: New plan 7/(s) = n%(y;s) U™ (y; s) Un(y;s')
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Conclusions

@ The optimal delete relaxation heuristic h™ is admissible and
powerful, but calculating it is NP-hard

o Sub-optimal solutions have proven to be effective heuristics

hadq suffers from two problems:
@ Over-counting of actions when combining estimates

@ The independence assumption

@ Overcounting problem can be solved with relaxed plan
heuristics

Steiner Tree heuristic is a preliminary attempt at improving
over the independence assumption
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Heuristic h™

@ Defined in terms of the delete relaxation Pt
h*(P[l = s]) = h*(PT[I = s])

e Logical approach to compute h™
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Introduction

Heuristic h™

@ Defined in terms of the delete relaxation Pt
W (Pl = s]) = h*(PT[I = 5])
e Logical approach to compute h™

o Delete relaxation encoded as a propositional theory T(P™)

@ We will show that h™(P[l = s]) is equal to the rank
r*(T(P*) A I(s)) of the theory T(PT) A I(s) where T(P™)
encodes P and /(s) encodes the state s
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Ranks of logical theories

@ A literal-ranking function r maps literals into real numbers

@ The rank of a model w is the sum of the ranks of the literals

it makes true:
rw)=> r(L)

wEL

@ The rank of a theory I is the minimum rank of its models

(M) = T’:Irrl r(w)
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Ranks of Logical Theories

Ranks of logical theories

@ A literal-ranking function r maps literals into real numbers

@ The rank of a model w is the sum of the ranks of the literals

it makes true:
rw)=> r(L)

wEL

@ The rank of a theory I is the minimum rank of its models

(M) = T’:Irrl r(w)

o If the v is in d-DNNF format, its rank can be computed in
linear time for every literal-ranking function r
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Negation Normal Form

@ A formula is in NNF if it is made of conjunctions, disjunctions
and negations, and the negations only appear at the literal
level

@ Alternatively, a NNF formula is a rooted DAG whose leaves
are literals or the constants true and false, and whose
internal nodes stand for conjunctions (AND nodes) or
disjunctions (OR nodes)

@ The NNF fragment is the collection of all formulas in NNF. It
is a complete fragment for propositional logic
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Ranks of Logical Theories

Example: NNF formula

(1) (20
o oo
S B T T O T

-A B -B A Cc -D D -C
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Ranks of Logical Theories

Deterministic Decomposable Negation Normal Form

@ A NNF is decomposable if the subformulas associated to the
children of an AND node share no variables

@ A NNF is deterministic if the subformulas associated to the
children an OR node are pairwise inconsistent

@ The d-DNNF fragment is the collection of all formulas that
are NNF, decomposable and deterministic. It is a complete
fragment for propositional logic
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Ranks of Logical Theories

Example: d-DNNF formula

(1) (20
o oo
S B T T O T

-A B -B A Cc -D D -C
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Ranks of Logical Theories

Example: d-DNNF formula

Decomposable: AND @

(1) (20
o oo
S B T T O T

-A B -B A Cc -D D -C
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Ranks of Logical Theories

Example: d-DNNF formula

Decomposable: AND @

(1) (20
oL oo
CHIH B TS T

-A B -B A C -D D -C
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Ranks of Logical Theories

Example: d-DNNF formula

Decomposable: AND @

(1) ()
o oo e
CHCHOCE T TN

-A B -B A C -D D -C
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Example: d-DNNF formula

Decomposable: AND @

(1) (20
o oo
@ G "0 @ G T (w

-A B -B A Cc -D D -C
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Ranks of Logical Theories

Example: d-DNNF formula

Decomposable: AND @

(1) (20
o oo
@ @ W @ ) T ()

-A B -B A Cc -D D -C
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Ranks of Logical Theories

Example: d-DNNF formula

Decomposable: AND @

(1) (20
o oo
@) Qe W) @ ) T @

-A B -B A Cc -D D -C
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Ranks of Logical Theories

Example: d-DNNF formula

Deterministic: OR @

(1) (20
o oo
S B T T O T

-A B -B A Cc -D D -C
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Example: d-DNNF formula

Deterministic: OR @

(1) (20
o oo
CHIE T MU

-A B -B A Cc -D D -C
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Ranks of Logical Theories

Example: d-DNNF formula

Deterministic: OR @

(1) (20
o oo
SO R T O T

-A B -B A C -D D -C
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Example: d-DNNF formula

Deterministic: OR @

(o) (o)
o oo =
@ (o) @) ) T ()

-A B -B A Cc -D D -C
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Example: d-DNNF formula

Deterministic: OR @

(1) (20
FA
@) Qo)W () T ()

-A B -B A C -D D -C
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d-DNNF: Operations

d-DNNFs support a number of operations in polynomial time:
Q Satisfiability
Q Validity
© Clause entailment
@ Model counting
@ Computation of ranks

@ others
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Example: Model Counting

A

@@@@

—-A B -B A C -D D -C
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Example: Model Counting

=

6066

-A B -B A C -D D -C
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Example: Model Counting
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Example: Model Counting

/\

6066

1-A 1B 1-B 1 A C: =Dt D1 —=C:1
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Example: Model Counting

/Node.s -
e /°°
" ==

6066

1-A 1B 1-B 1 A C: =Dt D1 —=C:1
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Example: Rank Computation

A

@@@@

—-A B -B A C -D D -C
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Example: Rank Computation

=

0000

-A B -B A C -D D -C



Ranks of Logical Theories

Example: Rank Computation
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Example: Rank Computation
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Example: Rank Computation

/\

0000

o-A 1 B 2—-B o A Co —-D: D: —-C:
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Ranks and d-DNNF

Let I be a d-DNNF formula and r a literal ranking function. Then,
the rank r*(I") can be computed in linear time in the size of T.
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Compilaton into d-DNNF 1/2

@ If the theory is not in d-DNNF, it needs to be first compiled
into d-DNNF using a compiler such as Darwiche's c2d
compiler

@ The compilation takes exponential time and space in the
worst case. Otherwise, some important complexity classes
would collapse to P

@ However, the compilation needs to be computed only once in
order to compute any number of rank computations with
respect to different literal-ranking functions
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Compilaton into d-DNNF 2/2

o If the compilation succeeds with a “small” d-DNNF. The
compilation time can be traded off when computing a large
number of rank operations

@ The compilation time and space is exponential in a parameter
known as the treewidth of the theory

o If the formula is not compilable due to high treewidth, it can
be relaxed into a simpler one whose would be lower bounds on
the rank of the original formula
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Encodings of delete relaxations

We now see how to encode a delete-relaxation P into a logical
theory T(P™) that allow us to compute h™ exactly as a rank
operation. We consider two encodings:

@ Stratified encodings that use a time horizon

@ LP encodings that use no time horizon
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Stratified encodings of P+ 1/2

@ Plans for a STRIPS problem P™ = (F, [, O, G) with horizon n
can be obtained from models of propositional theory T,(P*):

© Actions: For i =0,...,n—1 and all action a:

a; D p; for p € Pre(a)
Ci N\ aj D piy1 for each effect a: C — p

@ Frame: For i =0,...,n—1 and all fluent p:

Pi O Pit+1

pi A (Nacp(mai V=C)) D —pisa
© Seriality: For i =0,...,n—1and a# &, =(a; A a})
@ Goals and Init: free, defined by formulas fy and G,
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Stratified encodings of P+ 2/2

o Heuristic h*(P[l =s,G = g]) = h*(P*[I =5,G = g]) can
be defined as the rank r*(T,(P*) A Iy A G,) where:

© Horizon n is equal to min{#actions,#fluents}
@ Literal ranking function:

[ c(a) ifL=g
r(L) = { 0 otherwise

Let N,(P™) be the compilation of theory T,(P") in d-DNNF
where n is a sufficiently large horizon. Then, the heuristic values
ht(P[l = s, G = g]) for any initial and goal situation s and g, and
any cost function ¢, can be computed from M,(P") in linear time.
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Encodings of Delete Relaxations

Horizons

@ The SAT encoding of a STRIPS problem P requires an
exponential horizon in the worst case

@ The SAT encoding of the delete-relaxation P requires a
linear horizon, yet in most applications this horizon is still too
large to compile the theory T,(P™)

@ However, we can achieve a more compact encoding of P
that requires no time horizon

@ This encoding is called the LP encoding as it is obtained from
a set of positive Horn clauses
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The LP encoding of P™ 1/2

e Obtained from LP rules of the form:
p < Pre(a), a
for each (positive) effect p € Add(a)

e Additionally, we consider rules of the form:

p — set(p)

@ Focus is on a class of minimal models (stable models) that
have an implicit stratification in correspondence with the
temporal stratification
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Encodings of Delete Relaxations

The LP encoding of P 2/2

@ Models are grounded on the actions as all fluents are
required to have well-founded support on them

@ Furthermore, actions do no imply their preconditions. Not a
problem, since cost of actions are positive, and they require
their preconditions to have an effect

@ Models that make actions true without their preconditions are
not preferred
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SAT encoding of the LP 1/2

o Let L(P) be the LP encoding of planning problem P*

o Let wffc(L(P)) be the well-founded fluent completion of
L(P): a completion formula that forces each fluent p to have
a well-founded support

@ Then,
Wt (P[l =s,G = g]) = r*(wffc(L(P)) U I(s) Ug)

where
I(s) = {set(p) : p € s}



Exact Computation of h
0000000e0000000000

Encodings of Delete Relaxations

SAT encoding of the LP 2/2

o wffc(L(P)) picks up the models of L(P) in which each fluent
has a non-circular support that is based on the actions made
true in the model

@ Let's say that L(P) is acyclic if the directed graph, formed by
connecting the atoms in the body of a rule to the head, is
acyclic

e If L(P) is acyclic, wffc(P) is Clark’s completion applied to the
fluent literals



Exact Computation of h
00000000e000000000

Encodings of Delete Relaxations

Clark's completion of the LP

@ For each fluent p with rules p < B; for i = 1,...,n, add the
formula

pODBV---VB,
Biop

@ If there are no rules for p, add the formula —p

@ In the presence of cycles, Clark’s completion is not enough
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Well-founded fluent completion

@ From Answer Set Programming

@ Completion adds new atoms and rules to the LP, providing a
consistent and partial ordering of the fluents

@ Then, Clark’s completion of the extended LP is computed
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Encodings of Delete Relaxations

Example 1/3

A B C

e Actions move(x,y) and fluents at(x). LP rules:

at(y) < at(x), move(x,y)
at(y) < set(at(y))

o Let s ={at(A)} and g = {at(C)} be init and goal states, and
let all actions have unit cost except c(move(A, B)) = 10

@ Best plan (in P and PT) is m = {move(A, B), move(B, C)} so
that h*(P[l =s,G =g])=h*(PT[l =s,G=g]) =11
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Encodings of Delete Relaxations

Example 2/3

o We have /(s) = {set(at(A)), —set(at(B)), ~set(at(C))}
o Clark’s completion is

at(A) = (at(B) A move(B, A)) V set(At(A))
at(B) = (at(A) A move(A, B)) V (at(C) A move(C, B)) V set(At(B))
at(C) = (at(B) A move(B, C)) V set(At(C))

@ Best model corresponds to actions
{move(B, C), move(C, B)}

which has circular support for at(C) and has rank equal to 2
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Encodings of Delete Relaxations

Example 3/3

e The wffc(L(P)) is Clark’s completion of the modified LP in
which each rule

at(y) < at(x), move(x, y)
is replaced by the rules:

re — NOT at(y) < at(x), at(x), move(x, y)

at(y) < r
at(x) < at(y) < rx
at(z) < at(y) « rx, at(z) < at(x)

where z € {A, B, C} and NOT is negation as failure

o wffc(L(P)) is Clark's completion of the modified LP
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Heuristic Computation

Let T(P) be the compilation of theory wffc(L(P)) in d-DNNF.
Then, for any initial and goal situation s and g, and any cost
function c, the heuristic h* (P[l = s, G = g]) can be computed
from M(P) in linear time.
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Extended Planning Model

@ This framework allow us to extend the planning model by
considering positive or negative costs c¢(p) for fluents, in
addition to the positive action costs c(a)

@ Given a planning problem P and plan , the cost c(7) of a
plan is given by the cost of actions in 7 and the cost of the
atoms F(7) made true by 7 (at any time)

()= cla)+ Y c(p)
aem peF(n)
@ The cost of a problem P is defined as

c*(P) = mTin c(n)

@ This model extends classical planning by allowing to express
non-trivial preferences ...
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Scope of the model

The model is simple and flexible, and can represent:

@ Terminal costs: a fluent p can be rewarded or penalized if
true at the end of the plan, by means of a new atom p’
initialized to false, and conditional effect p — p’ for action
End

@ Goals: not strictly required since can be modeled as a
sufficiently high terminal reward

@ Soft Goals: modeled as terminal rewards
e Rewards on Conjunctions: using actions Collect(pz,. .., pn)

Not so simple to represent repeated costs or rewards, penalties on
sets of atoms, partial preferences, ...
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Ranking Function

@ The only fix required is to use a ranking function of the form:

c(a) ifL=a
r(l)=4q clp) ifL=p
0 otherwise

@ Then, the LP encodings still works and the heuristic
ht(P[l =s,G = g]) is the rank r*(T(PT) A I(s) A g)
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Encodings of Delete Relaxations

Conclusions

e h' efficiently computable when T(P1) is in d-DNNF

@ Can compute exact heuristics for more general planning
models
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hmax heuristic

hmax Heuristic 1/2

Obtained by replacing the > in h,qqy with max:

wof ifpes
hmax(p: ) = min cost(a) + hmax(Pre(a); s) otherwise
acO(p)

where

O(p) = “operators that add p”

hmax(P; s) = max hmax(p; s)
peP
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hmax heuristic

hmax Heuristic 2/2

@ hpmax(P;s) is cost to achieve a costliest atom in P from s

@ It is computed using Dijkstra algorithm, and provides
admissible estimates that can be used for optimal planning,
yet its values are often low and non-informative

@ This heuristic is also referred as the h! heuristic
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h* heuristic

h? Heuristic 1/2

Haslum and Geffner observed that h,,.x can be modified to
compute costs for pairs of atoms:

o h%(P;s) estimates the cost to achieve a costliest pair
{p,q} C P from s

o If {p,q} C s, then the cost of {p, g} is zero as both atoms
are already achieved

@ Otherwise, need to consider ways to achieve {p, g} from s

@ Let O(pq) be the set of operators that add p and g, and
O(p|q) be the set of operators that add p and don't delete g
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h* heuristic

h? Heuristic 2/2

We can achieve {p, q} by either:

@ applying an operator in O(pgq) that achieves p and ¢
simultaneously
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We can achieve {p, q} by either:

@ applying an operator in O(pgq) that achieves p and ¢
simultaneously

@ applying an operator in O(p|q) that achieves p and doesn't
delete g from a state that already contains g, or
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h? Heuristic 2/2

We can achieve {p, q} by either:

@ applying an operator in O(pgq) that achieves p and ¢
simultaneously

@ applying an operator in O(p|q) that achieves p and doesn't
delete g from a state that already contains g, or

@ applying an operator in O(q|p) that achieves g and doesn't
delete p from a state that already contains p
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h? Regression

Formula that expresses the different ways to achieve (regress) the

pair {p, g} thru action a:

R({p,q},a) =

Pre(a)
Pre(a) U{q}
Pre(a) U {p}

undefined

if a € O(pq)
if a€ O(plq)
if a € O(qlp)

otherwise
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h? Equation

Defined by generalizing hmax fix-point equation to pairs of atoms:

0 ifpes
Min,co(p) €0st(a) + hmax(Pre(a);s) otherwise

hmax(p; 5) < {
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h? Equation

Defined by generalizing hmax fix-point equation to pairs of atoms:

0 ifpes
Min,co(p) €0st(a) + hmax(Pre(a);s) otherwise

hmax(p; 5) < {

2 a0 if {p,q} Cs
h(ip.atis) = { min, cost(a) + h*(R({p, q},a);s) otherwise

where

h?(P;s) = max{h*({p, q};s) : p,q € P}
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h?> Computation

@ h? computed with Dijkstra algorithm seeded at

O W({p,q}is)=0if{p,q} Cs
@ n({p,q}is)=occif {p,q} Ls

e In practical applications, h? is too expensive to compute for
forward-search planners; used by backward-search planners

o However, the values h?(; sp) are computed by almost all
planners to obtain the mutexes of the planning problem
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h? vs ht

@ Both h? and ht are admissible heuristics but neither
dominates the other

o Therefore, h? is not a delete-relaxation heuristic

o Indeed, h? values for problem P and P+ may differ
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Mutexes 1/2

@ A mutex (relation) between a pair of atoms p and g (with
respect to initial state sp) specifies that there is no reachable
state from sy that makes both p and g true

o The pairs {p, g} such that h?({p, q}; so) = oo are indeed in
mutex relation

@ Yet there are other mutex pairs whose h?-value is less than oo
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Mutexes

Mutexes 2/2

@ The mutex graph is an undirected graph defined over the

atoms in which there is an edge {p, ¢} iff the pair {p, g} is
mutex

@ The maximal cliques of the graph define the implicit
multi-valued variables of the problem

@ A maximal clique C can be thought as a variable X with
domain Dx = C U {L} since

@ no state makes two values of Dx true

@ every state makes one value of Dx true
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Mutexes

Example: Implicit Multi-valued Variables

Blocksworld with 4 blocks {A, B, C, D}:

top-of-A = {on(B,A),on(C,A),on(D,A),clear(A)}
bot-of-A = {on(A,B),on(A,C),on(A,D), table(A)}

holding = {hold(A),hold(B),hold(C),hold(D), L}
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h™ Heuristic

@ Same idea for h? can be generalized to subsets of size < m

@ h™(P;s) is the cost to achieve a costliest subset of size < m
from s

@ This time need to consider all possible ways to achieve
(regress) a subset of size at most < m
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h™ heuristic

h™ Regression

@ For subset P of atoms of size at most m, define the regression
thru a as

(P\Add(a)) U Pre(a) if PN Del(a) =10
undefined otherwise

R(P,a) = {

@ This formula generalizes the h? regression; indeed, for m = 2
both regressions coincide!
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h™ heuristic

h™ Equation

0 if PCs
hm(P;s) = main cost(a) + h™(R(P, a)) if [Pl <m
max{h™(X;s) : X C P,|X| < m} otherwise
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h™ Computation

h™ computed using Dijkstra's seeded at, for |P| < m,

Q@ h(P;s)=0ifPCs
Q@ h(P;s)=if PZs

e Up to our knowledge, only up to h3 has been computed in real
planners
@ There exist m such that h"™ = h*

@ The general computation of h™ is exponential in m
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Higher-Order Mutexes 1/2

@ A mutex of order m is a subset M of atoms, |M| = m, for
which there is no reachable state s from sy that contains M

@ The sets M such that h"™(M; sp) = oo are mutex of order m

@ A mutex M of order m may impose contraints on the
simultaneous achievement of values for different variables

@ Therefore, they can be used to improve the value of other
heuristics such as Pattern Database heuristics
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Higher-Order Mutexes 2/2

e For m > 2, it is possible that h™({p, q}; sp) = oo whereas
h*({p, q}i s0) < o0

@ For example, consider atoms p, g, r, x, y such that the pairs
{p,q}, {p,r} and {q, r} are reachable (non-mutex),
h3({p, q,r}; s0) = oo (mutex), and the action

a:Pre={p,q,r},Add = {x,y}, Del = {}

Then, R({x,y},a) = {p, q, r} and we have

(4] hz({x,y};so) < 00
Q M({x,y}:s0) = cost(a) + h*({p, q,r}; s) = o0

@ Similar for higher-order mutexes and values of m
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Higher-Order Mutexes

Conclusions

@ h™ heurisitcs are powerful but expensive to compute
@ Not an instance of delete-relaxation heuristics

@ Can be used to boost other heuristics such as Pattern
Database heuristics and even ht
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The Context-Enhanced Additive Heuristic

he? extends the causal graph heuristic h<¢ for SAST domains
(used in Fast Downward) by recasting it as a variation of h,qq

hCG heea
@ Procedurally defined @ Mathematically defined
@ Certain problem e Computable on all
structures must be problem structures

simplified by removal of
preconditions for
computation
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heea ys. hCG

o If h®C is computable, hC¢(s) = hce(s)

@ Otherwise, h®? is expected to be more informative since no
simplification required

@ This is confirmed by empirical results
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Notation

o x, X', x"" etc. are different values of the same multi-valued
variable

@ For a partial or complete variable assignment A, x4 is the
value of x in A

e For a state s and a partial assignment P, s[P] is identical to s
except has the values that appear in P for all var(P)
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hadd in SAS+

For SAS™ planning, h.qq can be rewritten as follows:

def
hadd(s E hadd(xg|xs)
xg€G

0 if x=x'

haaa(x1X') £ min (o) + > hadalylys) otherwise
o:P—x op
y
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hadd in SAS+

For SAS™ planning, h.qq can be rewritten as follows:

def
hadd(s E hadd(xg|xs)
xg€G

0 if x=x'

haaa(x1X') £ min (o) + > hadalylys) otherwise
o:P—x op
y

Cost of preconditions always evaluated from initial state
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hcea

hcea(s) def Z hcea(Xg|Xs)
xg€G
0 if x=x’

hee(x|x') & min c(0) + h*(x"|x') + > h(y|ysierixy) 0w

o:x"" ,P—x
yeP



The Context-Enhanced Additive Heuristic

hcea

hees(s) £ ST hoxglx)

xg€G

0 if x=x'

hee(x|x') & min c(0) + h*(x"|x') + > h(y|ysierixy) 0w

o:x"" ,P—x
yeP

Intuition: Starting at x/, x is achieved with o, where x” € Pre(0):

o
[V N

Achieve precondition x” of o first, evaluate cost of
P = Pre(o) \ {x"} given the resulting context s(x”|x’)
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Contexts 1/2

s(x"|x") is projected state after achieving x” from x’

How to calculate s(x”|x")?

@ Use the actions that result in the minimum values for the

equation above:

/ " o’ I o
X...—=x" —x —x

o Define s(x”|x") recursively:

s(K"xX) &3 2 o =
| s(xX"|x")[Pre(0')][Eff(0’)] otherwise

Context states and heuristic values are computed in parallel
and are mutually dependent
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Contexts 2/2

Ideally, use full contexts s(x”|x’), e.g. h<?(y|s(x"|x))

@ Problem: Exponential number of context states

Idea: Information about other variables is discarded

@ Approximate cost of precondition y from context state s’ as
he(ylys)
@ Information about other variables in s’ is discarded

ot thea(y|)/s(x”|x’))

yeP
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Example 1/4

Let P=(V,0,I,G,c) be an SAST problem with

V X ={x0,...,%n}
Y = {true, false}

O a:{~y}—{y}bi:{y,x} = {~y, X1}
I {x0,y}

G {xn}

ccl@)=c(b)=1

The optimal plan is then

T = <bo,a,...,a, bn,1>

containing n x b; +(n—1) x a=2n — 1 actions
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Example 2/4

bo bn—2 bn—l
X0 — ... Xn—1 Xn

What is the value of s(xi|xp)?
@ Base case: s(xp|x0) = s = {x0,y}
e s(x1|x0):
= s(xo|x0)[Pre(bo)][Eff (bo)]
{x0, y }[Pre(bo)][Eff (bo)]

{x0, y }[Eff (bo)]
{x1,~y}

@ Recursive case: s(xj|x0) = {x;, "y}
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Example 3/4

What is the value of h“®(x;|xg)?

h®(xolx) = 0
h*(xilx0) = c(bo) + h“(xolx0) + A (¥ [Ys(x0/x))
= 14040
h*(xilx0) = c(bi—1) + h“(xolxi-1) + h“(¥|Vs(x_1lx0))

= c(b,-_l) + hcea(Xo‘X,'_l) + hcea(y,)/{xoﬁy})
= c(bi—1) + h*(xo0|xi—1) + h*(y|—y)
= 14 h*(xo|xj—1) +1

Since s(xi—1|x0) = {xi—1, 7y}, y evaluated from value -y
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Example 4/4
We have:
h*?(x1|x) = 1
h?(xnlx0) = h“(xp—1]x0) + 2
h<®? gives optimal solution to this problem:

he(xalx0) = 2(n—1)+1=2n—1
hcea(s) — h*(s)
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Conclusions

o Context-enhanced heuristics generalize the concept of causal
graph heuristic to problems with cyclic causal graphs

@ Can be very informative in some cases in which h™ is not

@ Not comparable to delete relaxation heuristics
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