

Content

- Requirements of "practical planning" – What is different from classical planning?
- Example application: Mars Exploration

 What might practical planning look like?
- Constraint-based planning
 - What kind of planning might be used?
- Developments and future applications
 - What will we see next in practical planning?

Let's start with a motivating example

MARS EXPLORATION ROVERS

Mars Exploration Rover (MER)

A day in the life of a MER rover

- Operations based on Mars time
 - Solar powered rover operations driven by day/night cycles
 - Planetary alignment and orbiter orbits drive communications
- Tight schedule for planning

REYKJAVÍK UNIVERSITY

- Recent information from rovers required for plan generation
 - Terrain information needed for drives and arm movements
 - Scientists require up-to-date information about outcomes and results
- Result: Minimize time from state information to plan start
 - About 19 hours available for overall process
 - But, only about 2 hours available for planning
- Caveat: What follows is not a real plan
 - Does not conform to preferred operations practices
 - Is much smaller than real plans which have up to a 100 highlevel requests and up to 3500 low-level activities.

9:30 - A new plan for a new day

10:00 - Abrading a rock

11:00 - Microscopic imaging of rock

12:00 - Driving to a new location

13:00 - Taking pictures of new location

14:00 - Sending data to Earth

In the meantime, on Planet Earth...

16:00 - Taking a nap to recharge

17:00 - Taking more pictures

18:00 - Going to sleep for the night

On Earth: Planning problem being defined...

21:00 - Waking up to send data to orbiter

On Earth: Data may impact planning proces

24:00 - Sleeping, but keeping warm

And on Earth: A plan is ready for approval

On Earth: Command sequences being built

Approved

And ready for transmission

8:00 - Waking up to receive new plan

So, where is the planning done?

Activity Planning Process

- Input
 - Prioritized requests from scientists and rover engineers
 - Temporally constrained
 - Temporally related
 - Predicted rover state at plan start time
- Output
 - A day-long plan for rover activities
 - Achieving as much of science requests as possible
 - Satisfying all specified constraints
 - Satisfying all general safety rules
- Rules

REYKJAVÍK UNIVERSITY

- Decomposition rules for high-level activities
- State rules: pre-conditions, maintenance conditions
- Resource impact and resource limitation rules

Resource example: Battery charge

Power input from solar panels:

Complex Planning Problem!

- Constrained temporal planning with concurrent actions
 - Durative concurrent actions related by temporal constraints
 - State conditions, pre-conditions, effects, etc.
 - Exogenous events and constraints on action instances
- Oversubscription problem
 - More requests than can be fit
 - Goal is to maximize science, weighted by priorities
- Solution preferences
 - Among "equivalent" plans, some preferred over others
 - Temporal placements, natural ordering,...
- Complex resources
 - Nonlinear accumulation of impacts
 - External impacts on resource levels
 - Example: Battery charge on solar-powered rover

"PRACTICAL PLANNING"

Perfect for classical planning?

- Idea of classical planning in applications
 - Build the model and get plans automatically
 - With good heuristics, no problem, right?
- Problems

REYKJAVÍK UNIVERSITY

- Any legal plan is not the desired solution
- Sometimes the planning process is the key
- Often the rules cannot be expressed
- Planner application requirements change

Real world adds more complexity

- Plan quality metric not fully specified
 - Quality metric had subjective aspects
 - Some preferences and quality metrics vary sol to sol
- Rules are not absolute
 - Rules are incomplete and exceptions can be made
 - Rover operations evolve and circumstances arise
- Rules and constraints very complex
 - Energy resource calculations and operational limits
 - Thermal protection rules

REYKJAVÍK UNIVERSITY

- Automated capabilities not desired for all cases
 - Resource leveling decisions handled by experts

So, what to do?

- Fully automated planning not possible
 - Not suitable for current rover operations process
 - Human evaluation of plans for safety
 - Require human understanding of plans
 - Subjective preferences play a significant role
 - Cannot be captured in current domain definition languages
 - Some rules exceed domain modeling capabilities
 - Power and thermal levels calculated using finite-element analysis that is only applicable to fully instantiated plans and takes 5 minutes to run
- Need to permit human involvement
 - Humans can make subjective evaluations
 - Humans-in-the-loop facilitate understanding of plans

Solution: Mixed-initiative planning

- MAPGEN
 - Back-end: Constraintbased planning system called EUROPA
 - Front-end: Existing mission plan editing tool called APGEN
- Core notions:

- Actively enforce constraints as user edits the plan
- Offer useful operations for large-scale plan editing

User operations

- Scheduling requests
 - Add pending requests to the plan
 - Range from one activity at a time to fully automated planning
- Unscheduling requests
 - Move activities out of the plan, making them pending requests
- Plan editing
 - Adding, deleting and modifying activities
- Moving activities
 - Move activities in time
- Always: Maintain validity of solution

MAPGEN interface

Usage scenario

- Repeat until plan is ready:
 - Add more requests to the plan
 - Different users used different approaches
 - Evaluate plan
 - Resource usage
 - Subjective preferences
 - Modify plan as needed to
 - Satisfy resource limitations
 - Satisfy rules that are not in domain model
 - Respect preferences to the extent possible
- In case of new information about rover:
 - Make necessary changes to plan

Development of MAPGEN

- Development timeframe short
 - 2001-2003 (for whole mission)
- Good lesson about applying planning

 Flexibility and adaptability keys
- Unclear ground software architecture
 - Changed repeatedly and often significantly
- Late issue with user acceptance

REYKJAVÍK UNIVERSITY

- Led to new approach with time display

Abridged history of MAPGEN

- Call for help with mission in late 2000
 - Initially, offer of automated planning rejected
- Prototypes and demonstrations in 2001
 - Results in acceptance into mission
- Initial development and testing "in vacuum" in 2002
 - Many missteps and problems
- Major descope in ground software in 2002
 - Major change in planned use of MAPGEN (relation to SAP)
- Another descope for MAPGEN in 2003
 - Results in "Constraint Editor" tool among other things
- Operations tests in 2003 identify new changes
 - Problems with planner behavior
 - Asked to also handle heaters
- MAPGEN accepted and used shortly after landings in 2004

Main deliveries and tests

- •7.1 delivered in Dec 2002
 - Speed improvements
 - Goal rejection
 - Parent-child activity tracking
 - Importing APGEN expansions
- •7.6 delivered in March 2003
 - Resource leveling,
- •8.5 delivered in July 2003
 - Super-move
 - User preferred times
 - Relaxed mode
- •9.1 delivered in ????? -
 - Planner restore
 - Sol events
 - Auto-completion on read-in
 - Redetail handling
 - Group/ungroup support
- •10.1 Operations redelivery in March
 - Three minor planner bugs fixed
 - Major APGEN editor error fixed

- R1 June 2001
- R3 Sept 2001 – Demonstration to mission
- TTC July 2002 – Performance abysmal
- TTE Dec 2002
 - Initially limited to acceptance test
 - Unexpected participation
- TTG April 2003
 - First hands-on use by TAPs
 - Some crashes and "turn-offs"
 - Some unexpected use
- PORT 3 August 2003
 - Very limited use in actual tests
 - Problems with constraint editor use
 - Some instability
 - Problems with recovering plans
- "Bake off" thread tests
 - Preceded by comprehensive training
 - Sequence of tests by various users
- PORT 6 Nov 2003
 - Significant improvements over PORT 3
- Surface Operations Jan 2004
 - Few hard crashes
 - Some annoying workarounds

Would classical planning have worked?

- Primary issues
 - Plan generation was not a key target
 - Application way beyond expressivity of classical planning at that point
- Secondary issues
 - General heuristics would not have worked
 - Integration into editor application tricky
 - Time-bounded optimization required
 - Plan editing interleaved with planning

Still, general planning is important

- General planning key to success
 - Responsiveness to changes
 - Ability to handle unforeseen changes
- Planning applications very complex
 - Too expensive to do algorithms from scratch
 - Validation is a critical issue

- Exact planning approach not main issue
 - Advances often transfer between approaches

So, what did we use?

CONSTRAINT-BASED PLANNING

Constraint-based planning

- Family of approaches based on:
 - Time as network of variables
 - Timelines describing fluents over time
 - States and activities networks of variables
 - Constraint propagation
 - Expressiveness in goals, external events etc.
- Will use EUROPA as example
 - Probably most used in applications, along with ASPEN (see later)

Others than EUROPA

- Many other constraint-based planners
 - ASPEN (JPL)
 - IxTeT (LAAS)
 - CSP (ISTC/CNR)
- Also have various applications
 - EO1 on-board science planning
 - MEXAR download operations planning
 - Deep Space Network scheduling
 - and many more

ABOUT EUROPA

Example of "Practical Planning" technology

Motivation

- Requirements driven by domain needs:
 - Concurrent operations with temporal dependencies
 - Instruments, mobility, heaters, communications, etc.
 - Limited resource availability
 - Power, data storage, equipment, etc.
 - Complex rules for interactions between operations
 - Example: Instruments require heating, interact with communications and mobility operations
- Additional considerations:
 - Efficiency and power of constraint reasoning
 - In particular: Temporal reasoning and activity scheduling
 - Flexibility in plan completeness criteria and generated plans
 - Applicability of systematic methods

Constraint problems

- Constraint satisfaction problem
 - Set of variables, each with a finite domain
 - Set of constraints, restricting combinations of values
- Solution to constraint problem
 - Each variable assigned value from its domain
 - All constraints are satisfied
- Simple example
 - Variables: a,b,c,d take values from domain {1,2,3}
 - Constraints:

Constraint reasoning

• Find solution:

- Find values satisfying constraints
- Determine consistency:
 - Problem is consistent if a solution exists, inconsistent otherwise
- Eliminate impossible values:
 - Value is eliminated if it cannot appear in any solution

Arc consistency

- Binary constraint is arc-consistent if
 - for every value in one variable there exist satisfying value for other variable
- Problem state is arc-consistent if
 - each constraint is arc-consistent
- Achieving arc-consistency
 - eliminate values for which no matching satisfying value exists
 - repeat to quiescence
- If a domain becomes empty
 - problem state is inconsistent
- If no domain is empty
 - problem state may or may not be consistent

Dynamic constraint problems

- Constraint problems as part of larger problem
 - Constraint-based planning
 - Design synthesis

- Automated diagnosis
- Constraint problems change over time
 - Variables and constraints are added and deleted
 - Elements of domains are added and deleted
- Dynamic constraint satisfaction problems

Simple temporal reasoning

- Temporal constraint network
 - Variables represent event times
 - Constraints relate event times
- Simple temporal network
 - Domain of each variable is a temporal interval
 - Constraints specify distance bounds on variable pairs
- Efficient reasoning for simple temporal networks
 Consistency can be determined in polynomial time

General constraint reasoning approach

- Dynamic constraint reasoning using procedures
 - Procedures replace (some) declarative constraints
 - Emphasis on propagation, not search (planner does search)
 - Permit variables and values to be dynamic
 - Support real-valued reasoning (within limits)
- Provide a general, widely applicable framework:
 - Other real-world planning systems
 - Configuration systems
 - Design synthesis
 - Automated diagnosis

Constraint reasoning for planning

- Representation
 - Represent activity parameters and temporal events
 - Represent constraints among parameters/events
- Reasoning
 - Identify when plan candidate is inconsistent
 - Eliminate choices not leading to valid plans
- Requirements
 - General: arbitrary constraints (domain-dependent)
 - Dynamic: constraints, variables and values added/deleted
 - Efficient: network changed and queried at each plan step
 - Trade-off between efficiency and completeness of reasoning

Constraint-based planning

- Activities represented as intervals
 - Each interval specifies activity
 - Each interval has start and end
 - Interval can have parameters

Candidate plan is a network of intervals

- Intervals linked by temporal constraints
- Interval parameters linked by constraints
- Gives rise to constraint network

Feasibility of candidate plan

• If network is inconsistent, cannot become a valid plan

Constraint-based plan

• Plan is a network of intervals representing activities

Predicates

Logical predicates describe actions and states

Predicate Parameters

- Parameterized predicates
 - Each predicate type has a fixed set of parameters
 - Each parameter instance comes from associated domain
 - Parameters described by variables

Intervals

- Interval describes activity with duration
 - Start and end times (
 - Predicate and parameter variables

Temporal constraints

- Temporal relations among intervals
 - Can be represented as constraints among start/ end times

Temporal Constraints

- Qualitative relations
 - before,after, contains,contained by,

 - Example: takePic contained by off

Quantitative bounds

REYKJAVÍK UNIVERSITY

 Example: pointAt starts at least 50 seconds before takePic

takePic

?tgt

Timelines

- Enforce that activities for same system do not conflict
 - Activities on same timelines are temporally ordered

Subgoaling constraints

Subgoals

- In order to achieve an activity, other activities must happen
- Example: What is needed to take a picture

Subgoaling

- Automatic addition of necessary subgoals
 - Any activity may give rise to subgoals
 - If activities are merged, only one set of subgoals needed
 - Information from model determines which subgoals are necessary
 - Set of subgoals is affected by parameter variable instantiations
 - Variables affecting subgoals are "decision variables"
- Automatic removel of no-longer-applicable subgoals
 - If the last of a merged set of activities is unscheduled, all associated subgoals are removed from the plan
 - Removal of subgoals then done recursively
 - If a decision variable is assigned values no longer specifying a given subgoal, the subgoal is removed

Simple partial plan

	off	
	ready takePic Ast takePic Ast	
	Candidate Plan	
REY	KJAVÍK UNIVERSITY Háskólinn í reykjavík	

Support activities needed

Planning Support Activities

Recursive Support Activities

Only necessary support added

Support requests updated

Building Plans

Automated Search

- Given: Partial plan, including desired goals
- Process: Modify candidate plan until valid plan
 - Automated system makes decisions about how to modify plan
- Result: A complete valid plan, or report one could not be found
- Interactive Plan Construction
 - Human user uses automated reasoning and planning capabilities to collaboratively build a plan
 - Input/output of process the same
 - Process: User and automated system modify plan
 - User makes decisions automated system handles ramifications
 - User requests help with decisions automated system put to work
 - Automated system decision overridden by user

Automated search - outline

• buildPlan(P)

- determine consequences of decisions in P
- if P cannot lead to a valid plan, return failure
- if P is a valid executable plan, return success
- select decision x (parameter or subgoal) in P
- make decision x by assigning a value or interval
- return buildPlan(P + x)

Initial state

Expand takePic subgoals

Insert off subgoal interval

Insert ready interval

Insert pointAt interval

Expand pointAt

Select image target

Determine consequences

Insert turnTo

Expand turnTo

Coalesce pointAt goals

Final plan

Backtracking : can be non-chronological

Insert pointAt interval

Expand pointAt

Select image target

Determine consequences

No room for turnTo

Standard Backtracking - undo last decision

Interactive Planning

- Motivation for interactive planning
 - Human users can provide subjective evaluations
 - Impossible to encode all nuances and tradeoffs in model
 - Some tradeoffs are also "arbitrary"
 - Helps users understand and accept plans
 - Building plan interactively and incrementally helps understanding
- Elements of interactive planning
 - Interface for users to work on plan and interact with automation
 - User control over process
 - Range of automated reasoning services
 - Continuously operating services, e.g, active constraint enforcement
 - Requested services, e.g, resolve conflicts

Back to MER

PLANNING IN ACTION

EUROPA in MAPGEN

- Full planning expressiveness
 - But, non-cotemporal subgoaling used sparingly
- Full plan optimization algorithm
 - But, rarely used in practice
- Limited planning used extensively
 - Users select goal but planner handles choices
- Constraint reasoning used extensively
 - Plan modifications
 - Time handling and scheduling

MAPGEN interface

Usage scenario

- Repeat until plan is ready:
 - Add more requests to the plan
 - Different users used different approaches
 - Evaluate plan
 - Resource usage
 - Subjective preferences
 - Modify plan as needed to
 - Satisfy resource limitations
 - Satisfy rules that are not in domain model
 - Respect preferences to the extent possible
- In case of new information about rover:
 - Make necessary changes to plan
- Typical plan: 100 "goals" and 3500 activities

Drive must be early Pancam 1 is before drive Other activities after drive Drive most important, then PC1, PC3, MTES1 and PC2

Start by scheduling the drive

Put in flight rules

Insert Pancam 1 next

Enforce flight rules

Insert Pancam 3 and associated flight rules

Next MTES

Finally Pancam 2

Pending requests

Example 1: Simple plan

Example 1: Simple plan

Put it after the MTES

Example 1: Simple plan

Complete plan

Pending requests

Working with plans

- Unexpected results
 - Plan not as good as it should be
 - Plan not "the one" expected
- Provided approaches
 - Moving activities around
 - Unplan and replan selected activities
 - Relaxed mode

REYKJAVÍK UNIVERSITY

- Modify constraints and go back to planner

User selects and moves MTES 1

Pending requests

Bounds from temporal propagation provides legal range of moves

MTES 1 moved to new time

Other activities adjusted as needed

- Consistency of STN guarantees that adjustments will work
- But how do we select the new times for each activity?

User wants to move Pancam 2 ahead of MTES 1

Unplan Pancam 2

Select Pancam 2 and "place it" by clicking on desired part of plan

New plan completed

Pending requests

Want to move MTES 1

- willing to swap order of activities around

Constraint-based plan provides legal range of moves

- this time disregarding impact of activity orderings

Move MTES 1 to new time

Pending requests

Adjust time of other activities:

- Note that STN cannot guarantee new placement working, so move may have to be undone

- How to select new times for activities?

Want to try a different plan -don't like this one

Put planning into relaxed mode

- User can move anything
- Subgoaling removed

Put planning into relaxed mode

- User can move anything

Turn off "relaxed mode" -Reinstate validity enforcement -Reapply constraints and subgoals

Get a new valid plan

- As "close" as possible to plan draft

Time Handling

- Interesting issue
 - Underlying schedule is flexible (a simple temporal network)
 - Interface shows user a single instantiation
 - How to select that instantiation?
 - How to update it as modifications are made?
- Candidate solution: Earliest start time
 - Advantages: Known to be a valid solution
 - Disadvantages: Not very intuitive or user-friendly

REYKJAVÍK UNIVERSITY HÁSKÓLINN Í REYKJAVÍK

Starting point: User decides to move Pancam 2 to fix a battery problem

Other problems now force the Unscheduling of Pancam 2

Other problems now force the Unscheduling of Pancam 2

Pending requests		
	Pancam 2	

Earliest start time instantiation moves everything to the left

Pending requests	
Pancam 2	

Better time handling required

- Earliest start time is unintuitive for user
 - Small changes in plan lead to large changes in activity placement
- User move semantics when using earliest start time
 - Interpreted as constraints, which must be overridden if needed
 - User has no access to these constraints
- New approach:

REYKJAVÍK UNIVERSITY

- Leave activities where they are whenever possible
- Otherwise, change as little as possible
- View placement and moves by user as preferences on placement
- Absolute placements done by editing constraints
- Users were solidly in favor of this approach

Temporal activity network

Current instantation

Add new activity and constraint

Propagate temporal network

Propagate temporal network

Adjust start times out of bounds

Minimal perturbation algorithm

• Step 1: Remove all the current position constraints and repropagate.

٠

REYKJAVÍK UNIVERSITY

- Step 2: For each timepoint x with preferred position t do: if t is within the STN bounds for x then add a position constraint setting x to t else if t < the lower bound (lb) for x then add a position constraint setting x to lb else if t > the upper bound (ub) for x then add a position constraint setting x to ub propagate the effect of the new constraint
- Step 3: Update the preferred positions to the current ones.

So, how has this worked?

RESULTS

How did MAPGEN do?

- Used throughout mission – still in use!
- Had a key role in early mission
- Evaluation:

- Impossible to evaluate analytically
 - But, planning time often fraction of planned 2 hours
- Subjective evaluations by mission folks
 - Increased science by 15-40% during initial mission

REYKJAVÍK UNIVERSITY HÁSKÓLINN Í REYKJAVÍK

Many uses for EUROPA

- ISS solar panels
 - Solar Array Constraint Engine
- Crew scheduling
 - Work under way at NASA Ames
- Robotic control
 - Atacama Desert Experiment
 - Willow Garage Robotics Architecture
- And more

REYKJAVÍK UNIVERSITY

Station before 12A

After 12A.1

After 13A

After 10A - October 2007

After 15A - July 2008

Solar Array Operations

- Power Generation
 - Solar angles alpha (daily) and beta (seasonal)
 - New solar panels articulate using alpha joint and beta joints
 - Power generation tightly related to solar array pointing
- Operational constraints
 - Operational modes
 - Station-keeping with different thruster selections
 - Visiting vehicles including docking and undocking
 - Water dumps, Debris-avoidance maneuvers, EVAs and more
 - Load limits
 - From thruster plumes
 - Shadowing limits
 - Structural longeron thermal loads
 - Contamination limits
 - Water dumps, thrusters, etc.

Solar Array Operations

- Lock/latch/park/track solar arrays
 - Complex constraints for when okay to track, when to lock/latch
 - Tracking depends on patch
 - Locking/latching depends on possible faults and drifts
- Contingency handling
 - Malfunctions in controllability
 - Malfunctions in position determination
- Preferences
 - Avoid locking SARJs and latching BGAs
 - Minimize slew times
- Solution trade-offs and choices
 - Find best solution that provides needed power
 - Get most power with no constraint violations
 - Find best solution that avoids locking/latching

Solar Array Operations

- Flight controllers (PHALCons) need support tools
 - Constraint interactions and prioritization
 - Balancing constraints and power generation needs
 - Responding safely to faults and unplanned situations
- Solar Array Constraint Engine
 - Handles multiple constraints sources
 - Hundreds (later thousands) of load/erosion/power tables
 - Longeron thermal constraints
 - Power generation calculations
 - Plugs into mission telemetry streams
 - Tracks state and determines applicable constraints and their status
 - Provides visual display interface to controller
 - Supports "what if" analysis to find safe configurations
 - Supports automated identification of optimal configurations
 - Provides solar array operations plan management
 - Automated generation of solar array plans
 - Solar array plan editing and "what if" interactions

SACE Interface

	0			SACE - Sandb	DOX - ATL									
Open.	Open Plan Save Prefs Set Time Real Time -		Mon 176	Tue 177	New Mindew				SAG	CE – Teleme	try			
	GMT		01	1	View Window				_		метр	V		
		<u> </u>												
	ti_ati	Attitude			2B N/A	4A 336	CADL Dave	CADL Charle	2	A 43	3B N/A	Attitude Pitch	0	Value
	tl_trtl				ND	LCH	57	142		CH	ND	Attitude_Roll	0	0
					4B N/A	2A 160	PRK	PRK	3	A a	1B N/A	Attitude_Yaw	0	
	tl_config	Configuration		Configura	ND	LCH			L	CH	ND	Control System	RS	Ŧ
1	tl_sarj_port						В	GA Power	Environmer	t Load	Longeron	SARJ Load		~ ~
	ti bga 2a		Mode				2				⊻			
							4	⊳ ⊻ R √				<u>▼</u> ▼		
	tl_bga_4a	Mode					4	A ✓				✓		
	tl bos 4b						2	A 🗹						
	ti_bga_+b						1	A 🗹		 ✓ 		⊻		
	tl_bga_2b						3	A 🗹	✓	⊻	⊻	⊻		
	at a trade a surf	M-1-					3	в 🗹	⊻	⊻	\checkmark	\checkmark		
ti_sar	Irj_starboard	Mode					1	в 🗹	∠	☑	☑	₹		2
	tl_bga_1a	Mode												
	ti boa 3a	Mode				Mode			U					
	n_bgu_bu	Houe			l]	mode			_					
	tl_bga_3b									\sim				
	tl_bga_1b									Ý				
										5 4A: 265		SARJ_Starboard: 297	' 1A: 314	
tl_pov	ower_bga_2a													
tl_pov	ower_bga_4a	PowerOutput				PowerOutput			Ų ▼					
	•	чн. ээн ээ	ANJ_PUIL 00	SMRJ_SU	arbuaru. 205	IM: 200					- I K			
		90	°	18	°	270								
					270 0		180							
											5			
										1	X			
	270 180 1				180	180 90								
		2A: 175 S	ARJ_Port: 68	SARJ_St	arboard: 283	3A: 108			API Port: 22	5 24.84		SAPI Starboard: 20	7 24:12	
	,							3/	ng_ron. 32	J 2A. 84		SANJ_Starboard, 29	, SK. 12	
EYKL	AVÍK	K UNIVER	SITY											455
— — — — <i>— — — — — — — — — — — — — — — </i>	κάιιν	N Í REVKLAV	<u>с</u> ттт ік											155
ПАЗК	K U L I N	N I KLIKJAV												

SACE Architecture

FUTURE WORK

What next? Where are we going?

What is ahead?

- Additional role in human space flight
- Upcoming MSL mission to Mars
- Role in robotics architecture
- Potential use in many applications
 - Controlling non-playing characters
 - Handling communications planning
 - Assist with power system operations
 - Manage automatic sensors

REYKJAVÍK UNIVERSITY

Non-playing Characters in Games

Power System Operations

REYKJAVÍK UNIVERSITY HÁSKÓLINN Í REYKJAVÍK

Automated Sensors

But, EUROPA is not perfect

- Hard to deal with violations in plan
- Resources tricky, especially in search
- General heuristics not good yet
- Large and complex software
- Partial explanation:

REYKJAVÍK UNIVERSITY

- Very expressive and general

Key challenges

- Packaging of "practical planning" tools
 - EUROPA is available as open source
 - But, much more work is needed
 - Very hard to use "out of the box"
- Applicability to "end users"
 - Development requires planning expertise
- User interface support
 - Explanations, reports, etc.

Key challenges

- Search control
 - Not just for finding complete plans
- Easier configurability
 - Specification of reasoning scope
 - Preferences and exceptions
- Modeling

REYKJAVÍK UNIVERSITY

- Requires expertise and "insider information"
- Needs to become realm of engineers

Continued development

- Heuristics
 - Some progress being made recently
- Resources
 - Fairly good handling in grounded cases
 - Difficult in partial commitment cases
- Simplification
 - Modularization and accessability
- Unification with other systems
 - Both within state variable planning and with classical planning approaches

REYKJAVÍK UNIVERSITY HÁSKÓLINN Í REYKJAVÍK

