
DSE: The DSN Scheduling Engine, A Request-Driven Scheduler for
NASA’s Deep Space Network

Mark D. Johnston, Daniel Tran, Belinda Arroyo, and Chris Page
Jet Propulsion Laboratory/California Institute of Technology

4800 Oak Grove Drive
Pasadena, California 91109

Abstract

This paper describes an application developed to significantly
increase the level of automated scheduling support available
to users of NASA’s Deep Space Network (DSN). We de-
scribe some of the key constraints and preferences of the
DSN scheduling domain and how we have modeled these as
scheduling requests. Algorithms to expand requests into valid
resource allocations, and to resolve schedule conflicts and un-
satisfied requests, have been developed and incorporated into
a distributed system of servers called the DSN Scheduling
Engine (DSE). To explore the usability aspects of our ap-
proach we have developed a graphical user interface that uti-
lizes the DSE. This GUI incorporates several key features to
make it easier to work with complex scheduling requests, in-
cluding progressive revelation of detail, immediate propaga-
tion and feedback of implications, and a “meeting calendar”
metaphor for repeated patterns of requests. This pathfinder
system has been deployed and adopted by one of the JPL
DSN scheduling teams, representing an initial validation of
our overall approach. The DSE is planned to be a central
element of the Service Scheduling Software (S3) web-based
scheduling system now under development for deployment to
all DSN users.

Introduction
NASA’s Deep Space Network (DSN) provides communi-
cations services for planetary exploration missions as well
as other missions beyond geostationary, supporting both
NASA and international users. The DSN comprises three
antenna complexes in Goldstone, California; Madrid, Spain;
and Canberra, Australia. Each complex contains one 70m
antenna and several 34m antennas, providing S-, X-, and K-
band up and downlink services. A more detailed discussion
of the DSN and its capabilities can be found in (Imbriale
2003).

The process of scheduling the DSN is complex and time-
consuming. There is significantly more demand for commu-
nications services than can be handled by the available as-
sets. There are numerous constraints on the assets and on the
timing of communications supports, due to spacecraft and
ground operations rules and preferences. Most DSN users
require a firm schedule around which to build spacecraft

Copyright c© 2009, California Institute of Technology. Govern-
ment sponsorship acknowledged.

Figure 1: The 70m antenna at the Goldstone DSN complex
in California

command sequences, weeks to months in advance. Cur-
rently there are several distributed teams who work with
missions and other users of the DSN to determine their com-
munications needs, provide these as input to an initial draft
schedule, then iterate among themselves and work with the
users to resolve conflicts and come up with an integrated
schedule. This effort has a goal of a conflict-free sched-
ule by eight weeks ahead of the present, which is difficult
and rarely met in practice. In addition to asset contention,
many other factors such as upcoming launches (and their
slips) contribute to the difficulty of building up an extended
conflict-free schedule.

Increased automation support for DSN scheduling has a
long history. LR-26 was a customizable heuristic schedul-
ing system for the 26-meter antennas using Lagrangian re-
laxation and constraint satisfaction search techniques(Bell
1992). Operation Mission Planner (OMP-26) used heuristic
search to allocate 26-meter antennas to missions, and lin-

1



ear programming to adjust track durations(Kan, Rosas, &
Vu 1996). Other investigations are described in (Fisher et
al. 1998; Clement & Johnston 2005; Johnston & Clement
2005).

The current DSN scheduling software project S3 is de-
rived from a 2004 resource allocation process working group
that analyzed the DSN scheduling process and identified a
key set of goals for implementation. One of these goals
centers on the basic entities that drive the schedule. In the
past, and currently, these are the scheduled communications
passes (tracks) or other individual activities that are placed
on the schedule. All of the software to create, manage, and
report the DSN schedule are built around a representation
of the schedule as a collection of activities. The shift to a
request-driven approach is a fundamental shift in representa-
tion, adding a layer above tracks, such that the predominant
control mechanism of users over the schedule is via schedul-
ing requests, rather than the individual scheduled activities.
The net benefits of a request-driven approach outweigh those
of activity-oriented scheduling in several important ways:
• leveraged effort: one scheduling request can generate and

be used to manage many scheduled activities, and one
change to a request can propagate to all activities derived
from it

• automated continuous schedule validation: based on the
request specification, the schedule can be continuously
monitored against constraints and preferences

• traceability: all activities trace to scheduling requests that
describe the purpose and intent of the generated activities

The application described in this paper is focused on
request-driven scheduling, and its implications in terms of
a scheduling request specification or “language”, and on the
supporting scheduling algorithms.

DSN Scheduling Engine
The DSN Scheduling Engine (DSE) is that component of S3

responsible for:
• expanding scheduling requests into individual communi-

cations passes by allocating time and resources to each
• identifying and resolving conflicts in the schedule, both

for resources and for any other violations of DSN schedul-
ing rules

• checking scheduling requests for satisfaction, and at-
tempting to find satisfying solutions

Schedule conflicts are based on the schedule alone, not on
any correspondence to schedule requests, and indicate either
a resource overload (e.g. too many activities scheduled on
the available resources) or some other violation of a schedule
feasibility rule. In contrast, violations are associated with
schedule requests and with their tracks, and indicate that the
request is not being satisfied in some version of the schedule.

Architecture
The DSE is based on ASPEN, the planning and scheduling
framework developed at JPL and previously applied to nu-
merous problem domains (Chien et al. 2000). In the context

User1

UserN
SMA

AMA

ASPEN

JMS

REST 

webapp
User2

UserN

User1

...

DSE

HTTP

Figure 2: The architecture of the DSE/UI pathfinder user
interface

of S3, there may be many simultaneous users, each working
with a different time segment or different private subset of
the overall schedule. This has led us to develop an envelop-
ing distributed architecture (Figure 2) with multiple running
instances of ASPEN, each available to serve a single user
at a time. We use a Java Messaging System (JMS) middle-
ware tier to link the ASPEN instances to their clients, via an
ASPEN Manager Application (AMA) associated with each
running ASPEN process. A Scheduling Manager Applica-
tion (SMA) acts as a central registry of available instances
and allocates incoming work to free servers. This architec-
ture provides for flexibility and scalability: additional sched-
uler instances can be brought online simply by starting them
and having them register with the SMA.

The DSE communicates with clients using an XML-
based messaging protocol, similar to HTTP sessions but
with responses to time-consuming operations returned asyn-
chronously. Each active user has a session (possibly more
than one) which has loaded all the data related to a sched-
ule that user is working on. This speeds the client-server
interaction, especially when editing scheduling requests and
activities, when there can be numerous incremental schedule
changes.

There are a few basic design principles around which the
DSE has been developed, derived from its role as provider
of intelligent decision support to DSN schedulers:
• no unexpected schedule changes:

– all changes to schedule must be requested, explicitly or
implicitly

– the same sequence of operations on the same data will
always generate the same schedule

• even for infeasible scheduling requests, attempt to return
something “reasonable” in response, possibly by relax-
ing aspects of the request; along with a diagnosis of the
sources of infeasibility, this provides a starting point for
users to handle the problem

Algorithms
With these design principles in mind, several automated
scheduling algorithms were developed to generate activities
from scheduling requests. Users may lock requests and ac-
tivities to ensure that they are not modified, and the execu-

2



(a)

(b)

Figure 3: Example of progressive display of detail for re-
quest parameters: the parameters for “splittable” do not ap-
pear (a) unless the option is selected, in which case they fade
into view (b).

tion of these algorithms is under the explicit control of the
user (see GUI description). Also, there are no stochastic ele-
ments to these algorithms, thus ensuring that repeated opera-
tions with the same data always generate the same schedule.
Details of the DSE algorithms and performance are provided
elsewhere.

User Interface
To investigate the capability of the request specification
language outlined above, we have developed a pathfinder
graphical user interface and web application. The user inter-
face incorporates all of the major basic features of schedul-
ing requests, including viewperiod and event management,
and scheduling request creation and editing all scheduling
request features. This UI acts as a DSE client for expand-
ing schedule requests to tracks, identifying and resolving
conflicts, and identifying and resolving request violations.
The main initial simplification was to limit the DSE/UI to
single-mission, single antenna scenarios, a restriction which
has since been lifted.

The overall architecture of the DSE+UI is illustrated in
Figure 2. Multiple users can work with the system at once,
each on their own workstation. Each user has installed a
locally running copy of the GUI client, which stores a lo-
cal copy of all the data needed for scheduling including
viewperiod files, event definitions, scheduling requests, and
schedules. All changes to these data items are mirrored on
a REST-based web application, which also ensures that as-
signed identifiers are globally unique. Users can then share

Figure 4: Example of configuring a recurrent request, here
a simple weekly repetition for 8 weeks total. The preview
Gantt view at the bottom shows the original pattern time
span, along with that of each repeated instance. Tracks in
each repeated copy are constrained by a time linkage of 3 to
6 days end-to-start in this example.

data items via a command to the web application that trans-
fers over all data associated with a given schedule, includ-
ing the scheduling requests and any data needed to properly
interpret them. This enables users to work on different mis-
sions completely independently, yet integrate their requests
into a single schedule at the appropriate time.

The pathfinder GUI was intended to explore and assess
several aspects of user interaction with the scheduler:

1. Progressive revelation of detail: as noted above, schedul-
ing requests can potentially contain many adjustable pa-
rameters, often with interrelationships among them. The
GUI uses an animation technique to fade in or out relevant
parameter choices, as soon as a dependent choice is made
(Figure 3).

2. Immediate display of implications: another aspect of the
potential complexity of scheduling requests is that it is
not difficult to overspecify a request, thus making it im-
possible to satisfy. For example, the duration of schedul-
ing request may not fit within any schedulable time inter-
val allowed by the intersection of viewperiods and timing
event intervals. Rather than wait for later schedule gener-
ation, the pathfinder GUI application adopts a strategy of
1) propagating all known information as far as possible,
with the goal of early diagnosis of any problems, and 2)
visually displaying as much of this propagated informa-
tion as possible.

3. The “meeting calendar” metaphor for repeated patterns
of requests: as noted above, many users formulate their re-
quests as a repeated pattern, with variations. We adopted
the metaphor of a meeting calendar program, with which
most users are familiar, e.g. in which a meeting or ap-
pointment is created and then designated as “recurrent”
(Figure 4).

Once scheduling requests have been created, they may be
combined to generate a schedule by invoking the DSE to ex-
pand the requirements into explicit tracks. The DSE gener-

3



Figure 5: The DSE schedule view showing expanded requests (the list of the left) into tracks (visible in the Gantt view). The
bottom right portion of the figure shows part of a paper schedule worksheet that the DSE has replaced.

ates and returns the scheduled activities, identifies conflicts,
and checks that all requests are satisfied. The user may in-
voke a conflict repair strategy, or requirement violation re-
pair strategy, based on the heuristics described above. The
GUI allows the user to view the schedule, identify conflicts
(shown as red in the Gantt chart view), and see any unsatis-
fied requests (indicated by a red “×” in the request list on the
left). Individual schedule items can be edited, and requests
may be locked (fixed in place) and will not be subsequently
changed by the DSE. An example of the schedule view is
shown in Figure 5.

Deployment
In December 2008 we began an initial deployment to as-
sess how well the concepts described above would work
when exercised in a realistic scheduling context. The JPL
Multi-mission Resource Scheduling Services (MRSS) team
is responsible for scheduling 20 flying or launching missions
(out of a total of about 35). One team member started out us-
ing the software, and based on positive feedback, the team
deployed it in February 2009 to its remaining members.

The MRSS team’s experience with the DSE and
pathfinder GUI has been very positive — the most com-
pelling endorsement is that the team does not want to con-
sider falling back to the mode of operations before the soft-
ware was available. Among the positive features are:
• repeated requests, and the ability to rapidly “clone” exist-

ing requests and edit them to create variations
• the immediate preview capability, providing instant feed-

back even for complex interval timings
• the ability to quickly create day-of-week based event in-

tervals to constrain scheduling

As of June 2009, the MRSS team has built and delivered
over 20 weeks of DSN schedule using the DSE graphical
client application.

The research described in this paper was carried out at
the Jet Propulsion Laboratory, California Institute of Tech-
nology, under a contract with the National Aeronautics and
Space Administration.

References
Bell, C. 1992. Scheduling deep space network data trans-
missions: A lagrangian relaxation approach. Technical re-
port, Jet Propulsion Laboratory.
Chien, S.; Rabideau, G.; Knight, R.; Sherwood, R.; En-
gelhardt, B.; Mutz, D.; Estlin, T.; Smith, B.; Fisher, F.;
Barrett, T.; Stebbins, G.; and Tran, D. 2000. ASPEN - au-
tomating space mission operations using automated plan-
ning and scheduling. In SpaceOps 2000.
Clement, B. J., and Johnston, M. D. 2005. The deep space
network scheduling problem. In Innovative Applications of
Artificial Intelligence (IAAI). Pittsburgh, PA: AAAI Press.
Fisher, F.; Chien, S.; Paal, L.; Law, E.; Golshan, N.; and
Stockett, M. 1998. An automated deep space communica-
tions station. In Proceedings IEEE Aerospace Conference.
Imbriale, W. A. 2003. Large Antennas of the Deep Space
Network. Wiley.
Johnston, M. D., and Clement, B. J. 2005. Automating
deep space network scheduling and conflict resolution. In
ISAIRAS-05.
Kan, E.; Rosas, J.; and Vu, Q. 1996. Operations mission
planner - 26m user guide modified 1.0. Technical report,
Jet Propulsion Laboratory.

4




