
Planning in a Smart Home: Visualization and Simulation

Alexander Lazovik and Eirini Kaldeli and Elena Lazovik and Marco Aiello
Distributed Systems Group

Dep. of Mathematics and Computing Science
University of Groningen

Nijenborg 9 – 9747AG Groningen
The Netherlands

Abstract

The area of pervasive systems is characterized by high het-
erogeneity, with thousands of autonomous devices living to-
gether, and requiring high level of interoperation. In particu-
lar, domotics is concerned with the pervasion of technology
into housing, in order to make homes more pro-active and
improve the level of security and comfort of their inhabitants.
In this work, we bring intelligence into smart homes, that is,
homes that contain interactive and pro-active devices, and are
able to adapt their behavior to the needs of the home inhab-
itants through extensive interoperation and user interaction.
For example, the windows can be opened automatically to
regulate the air condition or as a reaction to gas leak. To
deal with such complex scenarios we use a planning system
that synthesizes plans on-the-fly, based on goals given by the
home inhabitants.

General architecture
A general architecture of the system is shown in Figure 1.
The goal is specified through one of the supported inter-
faces, which may include a brain-computing interface, a mo-
bile device, a voice-recognition application, and other pieces
of software. Given a goal, the planner collects through the
context module the information about the current state of
the house, i.e. the available services as exposed by the de-
vices and their current states. The data concerning the cur-
rent state may be prefetched for better performance.

A plan that satisfies the specified goal is synthesized, and
then passed to the orchestration component which is respon-
sible for the plan execution. To execute a particular action,
the orchestration component finds one of the possible ser-
vices that implement the desired action. Some extra con-
straints may be associated in this case to reduce possible
instantiations. For example, an alarm action may instanti-
ate the corresponding implementation which is close to the
user, e.g. by showing a message on the TV screen if the user
is watching it, or by invoking the alarm of the alarm clock if
the user is sleeping in his bed.

The user himself is represented as one of the services at
the pervasive layer. That is, whenever an interaction with the
user is needed according to the plan, the orchestration com-
ponent invokes one of the services that represent the user.

Maintaining separate components for context and or-
chestration allows us to develop planning algorithms in a

Figure 1: Global view

domain-independent fashion, thus making our work also
applicable to a wide range of other domains that require
high heterogeneity, e.g. automated web service composi-
tion (Kaldeli, Lazovik, and Aiello 2009).

The actual services (represented either by a visualization
and simulation environment, bottom-right in Figure 1, or
installed in the actual hardware, bottom-left) are accessed
through a separate pervasive layer. The pervasive layer al-
lows us to decouple plan execution from the infrastructure
and implementation details, regarding where and how the
actual services are accessed and invoked. This way, the ac-
tual devices installed in a smart home can be easily replaced
by services represented in the simulation environment, as
well as the other way around. This makes our framework
suitable for testing and simulating different smart homes
scenarios, since it allows for a seamless service transition
between the actual world and the visualization environment.

The planner component
The main goal of the planner component is to provide for
a domain-independent planner, with emphasis on extended
goals, non-determinism, failure recovery, and incomplete
knowledge - features important for real life planning prob-

13



Figure 2: Planner internal architecture

lems such as smart homes. Though the planner is presented
in the context of smart homes, it is domain-independent, and
its techniques can be applied in a number of other topics
with similar requirements, e.g. automated web service com-
position (Kaldeli, Lazovik, and Aiello 2009) and, to a less
extent, e-government regulations systems (web b).

The algorithms we currently use are based on an encod-
ing of planning problems to constraint satisfaction (using
Choco 1 as a constraint solver) or boolean satisfiability prob-
lems (using SAT4J 2 as a SAT solver).

Figure 2 shows how the planner interacts with other com-
ponents. It receives the goals from the user, and the domain
description from the context module. Then, the goal and the
domain are converted into a CSP (or SAT) problem, whose
solution corresponds to the synthesized plan. The plan is
then given to the orchestration component, which is respon-
sible for its execution.

Sometimes, even valid plans cannot be executed due to
some change in the environment. For example, a per-
son may have in the meantime rearranged something in
the house, and therefore the orchestration component can-
not execute the plan any more. In this case, the plan is
given back to the planner for revision. The planner senses
again the environment through the context component, per-
forms re-planning, and gives the anew computed plan to
the orchestrator. The need for interleaving planning and
execution is also associated with the fact that sometimes
the context component cannot sense the whole home. For
some sensing actions to be realized, a number of other ac-
tions have to be executed first, e.g. the video camera can-
not record anything at night if the lights are not already
turned on. In such a scenario, the system has to exe-
cute some “prerequisite” actions first, to collect the nec-

1http://choco.sourceforge.net
2http://www.sat4j.org

essary information that allows it to proceed with the syn-
thesized plan. More information about the planner compo-
nent can be found in (Kaldeli, Lazovik, and Aiello 2009;
web a).

Visualization and simulation environment
One of the greatest difficulties in developing middleware for
smart homes is that this kind of systems are extremely diffi-
cult to verify. Proper testing with a number of different sce-
narios would require a dedicated physical home, furnished
and equipped with expensive devices. We propose to reduce
the testing costs by replacing the actual home services with
virtual stubs, that behave as if the corresponding hardware
was actually installed in the house. The main purpose is to
visualize the environment and behavior of a smart home, to
give the user the impression of being in a real home, and to
get some useful feedback. To this end, we extend Google
SketchUp3 with a set of tools that extend its visual house
representation with virtual interactive home Web Services,
which support SOAP messages. This allows us not only to
visualize the potential smart home, but also to provide a full
featured simulation of any possible domotics scenario. In
addition, it is possible to model the user and its interaction
with the home. The realized simulation and visualization
environment is named ViSi (Smart Home Visualization and
Simulation) (vid ).

The simulation environment can be used in conjunction
with some actual hardware that supports the Web Service
stack. For instance, we have included in our test a controller
of a fridge implementing WSDL and SOAP over HTTP on
an Ethernet connection. Figure 3 provides an overview of
the implementation: the visualization component is written
as a set of plug-ins for Google SketchUp, while the commu-
nication mechanism is based on a SOAP implementation in

3http://sketchup.google.com.

14



Figure 3: Sketchup architecture

Icon Goal

TV vital tv is ON AND personLoc is AT TV
AND lamp1 is ON AND lamp2 is ON

Hot vital livingRoomWindow is ON

Gas leak vital tv is NOTIFYING
AND kitchenWindow is ON

Repair vital gasSensor is OFF AND tv is PAUSED
Check vital beers > 0 AND fridgeDoor is OFF

Beer vital beerLoc is AT PERSON
AND fridgeDoor is OFF

Table 1: Pre-defined goals description

Ruby. The client is language-independent and can be written
in any language that supports the Web Service stack. In this
demo, the orchestration component transforms the actions
computed by the planner into Web Service invocations.

The realized simulation and visualization framework ViSi
is not limited to domotics applications. Google SketchUp is
a domain-independent drawing tool, and our framework can
be used to simulate and visualize application from a num-
ber of different areas, e.g. telecommunication networks, dis-
tributed systems etc. In fact, we plan to use the ViSi frame-
work for a peer-to-peer voltage distribution system in the
energy sector. More information on the visualization and
simulation tool is provided in (Lazovik et al. 2009).

Demo case study
In the demo we have some pre-defined goals, which corre-
spond to possible user wishes within the house. The pro-

vision of pre-defined goals reflects the expected use of the
system by users who have no knowledge or abilities to pro-
vide correct AI planning goals. For example, if the system
is used in hospitals by people that are connected to the sys-
tem through brain-computing interfaces, a single command
represents the corresponding pre-specified goal. Of course,
users can specify the goals themselves as well, if they want.

An input panel including 6 pre-defined sample commands
is shown in Figure 4. Each icon corresponds to one of
the goals defined in Table 1. The second column of the
table represents the description of the desired final state
of the system. More information on the goal semantics
can be found in (Lazovik, Aiello, and Papazoglou 2005;
Kaldeli, Lazovik, and Aiello 2009).

Figure 4: Sample goals

15



Acknowledgements
This research is supported by the EU through the
STREP project FP7-224332 Smart Homes for All,
http://www.sm4all-project.eu.

References
Kaldeli, E.; Lazovik, A.; and Aiello, M. 2009. Extended
Goals for Composing Services. In Int. Conf. on Automated
Planning and Scheduling (ICAPS-09).
Lazovik, A.; Aiello, M.; and Papazoglou, M. 2005. Plan-
ning and monitoring the execution of web service requests.
Journal on Digital Libraries.
Lazovik, E.; den Dulk, A.; de Groote, M.; Lazovik, A.;
and Aiello, M. 2009. Services inside the Smart Home: A
Simulation and Visualization tool. In Int. Conf. on Service
Oriented Computing (ICSOC-09). to appear.
ViSi demo. www.sm4all-project.eu/index.
php/activities/videos.html.
RuG planner. http://www.sas-leg.net/flair.
trac/wiki/Planner.
Software As Service for Local eGovernments (SAS-LeG).
http://www.sas-leg.net.

16




