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Abstract

Though recent renewed interest in “expressive” temporal
planning, as exemplified by PDDL2.1, has led to advances,
few such planners to date can guarantee optimality, or even
bounded suboptimality, w.r.t. plan makespan. As a step to-
wards improving planners’ awareness of the quality of their
plans, we describe three ways of obtaining lower bound
functions, i.e., admissible heuristics, for plan makespan for
PDDL2.1 problems. Two directly make use of heuristics for
other planning models (conservative temporal and additive
cost planning), thus enabling PDDL2.1 planners to take ad-
vantage of current and future developments of such heuristics.

Introduction
Planning concurrent activities, planning to meet deadlines
or to exploit windows of opportunity, and managing other
temporal constraints are often cited as important capabili-
ties for automated planners to tackle realistic problems. The
PDDL2.1 planning problem modelling language is expres-
sive enough to capture many features of such problems,
though perhaps lacking a bit in modelling convenience.

Currently, it appears the most effective way of plan-
ning for PDDL2.1 is to decouple the logical and tempo-
ral aspects of the problem as far as possible, searching the
space of event (action start and end) sequences and main-
taining only enough temporal information to ensure that
the chosen sequence is schedulable (Long and Fox 2003;
Halsey, Long, and Fox 2004; Cushing et al. 2007a; Coles
et al. 2008). The advantage of this decoupling lies in that
it enables planners to guide search using state space plan-
ning heuristics so as to reduce the number of “steps” taken
to reach the goal, leading to less search and faster plan gen-
eration. The downside is that since the length of the event
sequence is not generally correlated with plan execution
time (makespan), this strategy does not guide search towards
plans with small makespan and leaves the planner unable to
give any guarantees of optimality (or even bounded subopti-
mality), except by exhausting the entire space of plans.

Although it is understood in principle how to com-
bine the temporal expressivity of PDDL2.1 with guaranteed
makespan optimality, most practical planners that generate
makespan-optimal plans have adopted the simpler, “con-
servative”, temporal planning model (e.g. Smith and Weld
1999; Haslum and Geffner 2001; Vidal and Geffner 2004).

Exceptions include TPSys (Garrido and Onaindia 2006),
which works with the PDDL2.1 model and is optimal w.r.t.
makespan for a subclass of problems, though not for the full
range of problems expressible in PDDL2.1, and CPPlanner
(Dinh, Smith, and McCluskey 2003), which is like TPSys
planning graph-based and assumes a model slightly differ-
ent from PDDL2.1, but which is also temporally expres-
sive. Recently, Huang, Chen & Zhang (2009) have proposed
a SAT encoding of PDDL2.1 planning which bounds plan
makespan, and hence can ensure makespan optimality by it-
eratively trying encodings with increasing bounds.

In this paper, we discuss three ways of deriving lower
bound functions (i.e. admissible heuristics) for plan
makespan for PDDL2.1 problems. Through the use of
suitable relaxations, admissible makespan estimators for
PDDL2.1 planning can be constructed from admissible
heuristics for conservative temporal planning and additive
cost plannning. This enables PDDL2.1 planners to take ad-
vantage of recent and future developments in the design of
such heuristics. Thus, we demonstrate that makespan es-
timators for PDDL2.1 do not need to be developed from
scratch. We also show how a PDDL2.1 makespan estimator
can be constructed following the same underlying principle
which has yielded the hm lower bound functions for other
planning objectives.

An admissible heuristic alone typically does not make an
efficient optimal planner. It is even more unlikely to do so
for makespan-optimal planning, since the search spaces as-
sociated with this objective often contain many more dif-
ferent states with (apparently) equal value. A search-based
PDDL2.1 planner will need to incorporate also effective
branching and pruning mechanisms (as exemplified by, e.g.,
the recent work of Coles, Coles, Fox & Long 2009).

However, lower bound functions have other important
uses. For one, they provide a simple way to estimate the
relative quality of a given plan, i.e., how far off optimal it is.
Even this simple use can make suboptimal planners aware
of the quality of the plans they generate, and thus help guide
decisions such as whether to be content with the best plan
found so far. Thayer and Ruml (2009) show that information
from an admissible cost estimate and an estimate of distance
in the search space (not necessarily admissible) can be com-
bined to improve efficiency of bounded suboptimal search.
Incorporating lower bound information into SAT or CSP en-
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codings can also be beneficial (e.g. Vidal and Geffner 2004).
It is difficult to say with any precision how accurate the

makespan estimators defined here are, since there are no
others to compare them with, and not many existing domain
encodings that make full use of PDDL2.1’s temporal expres-
sivity. We present only limited experimental results relating
two of the heuristics with each other. However, these estima-
tors are simple, and thus make a suitable baseline for future
work to improve on.

Temporal Planning In PDDL2.1
PDDL2.1 (Fox and Long 2003) is a durative action formal-
ism, founded on a classical state/transition model. Transi-
tions caused by a durative action, i.e., its effects, are instan-
taneous, and may take place at the start or at the end of the
action. Executability conditions may similarly be required
to hold at the start and/or end of the action, or to hold during
the (interior of the) interval of execution (the latter called
invariant conditions).

The semantics of a durative action a is defined by break-
ing it up into three instantaneous actions, each a classical
STRIPS action described by a (conjunctive) precondition,
add and delete sets: astart and aend represent the start and end
transitions, respectively, of a, while ainv has no effects but
requires the invariant condition of a to hold. In a valid plan,
each occurrence of astart must be uniquely matched to an oc-
currence of aend after an interval of time compatible with
the duration of a. (PDDL2.1 allows action durations to be
constrained to an interval rather than a single value, mean-
ing that the planner may choose the duration within this in-
terval.) An instance of ainv is placed in the space between
each pair of transitions in between astart and aend to ensure
that the invariant condition holds throughout. Instantaneous
actions may take place simultaneously if they are commuta-
tive (i.e., neither adds or deletes an effect or precondition of
another). Non-commutative instantaneous actions must be
separated by a positive but arbitrarily small amount of time,
commonly denoted ε. The placement of these infinitesimal
separations can, in principle, alter the makespan of a plan
(though their relative impact can of course be made arbitrar-
ily insignificant by choosing a sufficiently small value for
ε). In our heuristics we assume ε = 0, which eliminates this
dependency. Though PDDL2.1 semantics requires a strictly
positive value, it is a valid assumption from which to derive
lower bounds.

PDDL2.1 can express problems that can only be solved
by plans with concurrent actions: in this respect, differs
from classical (STRIPS) planning, and the so called con-
servative temporal planning model (discussed in the next
section). The worst case complexity of deciding plan ex-
istence for PDDL2.1 is higher than for classical planning
– EXPSPACE instead of PSPACE – but the worst case can
arise only in problems where an exponential number of in-
stances of the same action must execute concurrently (Rinta-
nen 2007). Cushing et al. (2007a; 2007b) studied conditions
separating temporal planning problems which may require
concurrency in their solutions from ones that do not. The
ones that do not are those that have the following property.

Definition 1 (Cushing et al. 2007a) A PDDL2.1 planning
problem P is inherently sequential iff for every plan S for
P , there exists a causally equivalent1 rescheduling of S that
has no concurrently executing actions.

In addition to – and largely orthorgonally to – its tem-
poral aspects, PDDL2.1 extends classical, discrete, STRIPS
planning with real-valued state variables (“fluents”). The
makespan estimators we define are unaffected by numeric
fluents, except that lower bounds obtained by adapting an
underlying (conservative temporal or additive cost) heuris-
tic obviously depend on how well this heuristic is able to
cope with fluents, and that numeric fluents can confound the
(syntactic) conditions for identifying sequential action sets.

The Conservative Model
The conservative planning model extends classical STRIPS
planning only by attaching a duration to each action. The
model makes minimal assumptions about action execution:
preconditions are required to hold at the start of execution
and must remain non-interfered with, i.e., not destroyed by
a concurrent action, throughout; effects (adds and deletes)
take place at unspecified times in the interior of the inter-
val of execution, and can be relied on to hold only at the
end. This model is less expressive than PDDL2.1, in that
planning problems under this interpretation are always in-
herently sequential (in the sense of definition 1) and there-
fore deciding plan existence remains in PSPACE.

Nevertheless, the conservative model is very useful. In
particular, a number of admissible makespan estimators,
e.g., the temporal hm heuristic (Haslum and Geffner 2001),
and estimators based on variations of the planning graph
(Smith and Weld 1999) or constraint propagation (Vidal and
Geffner 2004), are known for this model.

A difficulty arises when two instantaneous actions exe-
cute simultaneously, and one establishes a precondition of
the other: is this a valid plan? Smith & Weld (1999) and
Haslum & Geffner (2001) both avoid the problem by dis-
allowing instantaneous actions (requiring durations to be
strictly positive); PDDL2.1 avoids it by disallowing the two
actions being scheduled concurrently. Here, we’ll adopt the
convention that a plan is valid in the conservative model if
sets of concurrent instantaneous actions in the plan are non-
interfering, and there exists a sequencing of them that is
valid, in the classical sense. This is adequate for the pur-
pose of deriving admissible makespan estimates, since it is
a permissive (“optimistic”) assumption.

Conservative Relaxation of PDDL2.1 Problems
A subclass of PDDL2.1 problems have the same set of plans
when interpreted according to the conservative model. We’ll
call such problems conservative equivalent. This implies
inherent sequentiality, but the opposite is not true (i.e., it is
a stronger requirement). Figure 1(a) illustrates.

1Causally equivalent plans have the same set of causal links,
and hence the same order between establishers and users of condi-
tions that hold at some point during execution of the plan.
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Figure 1: (a) Optimal plan for a PDDL2.1 problem. (Arrows
between actions denote causal links.) The problem is not
conservative equivalent because this plan is invalid under a
conservative interpretation of the actions. The problem is
inherently sequential because rescheduling actionsA,B and
C in sequence also yields a valid plan.
(b) Optimal plan for the conservative relaxation of the same
problem. The relaxation allows the duration of action B to
be stretched, and thus the goal to be reached in less time.

For any PDDL2.1 problem, P , a conservative equivalent
problem P ′ can be constructed that is a relaxation of P , in
the sense that any plan for P corresponds to a plan for P ′,
with equal makespan (definition 2). Thus, the estimate of
any makespan heuristic that is admissible for the conserva-
tive model applied to the conservative relaxation is a lower
bound for the original PDDL2.1 problem P . This makes
it possible to apply existing admissible makespan heuristics
also to PDDL2.1 problems.

Definition 2 Let P be a PDDL2.1 planning problem.
(i) The conservative relaxation of P is the following prob-
lem P ′: For every action a of P , P ′ has three counters,
#started(a), #expired(a) and #active(a), and three ac-
tions start(a), wait(a) and finish(a).
◦ Preconditions and effects of start(a) are the at-start con-
ditions and effects of a, and the effects #started(a) += 1
and #active(a) += 1. The duration of start(a) is zero.
◦ Invariant conditions wait(a) are the invariant conditions
of a and #started(a) > 0, and the sole effect of wait(a) is
#expired(a) += 1 at-end. The duration of wait(a) equals
the (minimum) duration of a minus 2ε.
◦ Preconditions and effects of finish(a) are the at-end con-
ditions and effects of a, the condition #expired(a) > 0 and
the effects #started(a) −= 1, #expired(a) −= 1 and
#active(a) −= 1. The duration of finish(a) is zero.
The initial state of P ′ is the same as that of P , with all coun-
ters initiallised to zero, and the goal of P ′ is the goal of P
plus the requirement #active(a) = 0 for every action a.
(ii) The propositional relaxation of P ′ is a problem P ′′ ob-
tained by replacing in P ′ each counter #c with propositions
#c > 0 and/or #c = 0, as required to express action con-
ditions and goal. Actions that increment #c add #c > 0
and delete #c = 0, while actions that decrement #c add
#c = 0.

Definition 2(i) leaves open how counters are represented in
the planning problem. In PDDL2.1, they may be repre-

sented by numeric-valued fluents. If the maximum value
each counter can reach is bounded, they may be represented
by sets of propositions. Interestingly, due to the restricted
form of conditions on the counters (only the goal tests for
equality with zero), P ′ even with unbounded counters falls
within a class of problems that are decidable (Mayr 1984).

Theorem 3 Let P be a PDDL2.1 planning problem, P ′
the conservative relaxation of P and P ′′ the propositional
conservative relaxation of P : P ′ and P ′′ are conservative
equivalent and relaxations of P .

The conservative relaxation enforces all of PDDL2.1’s re-
quirements for plan validity except the upper bound on
action duration, since the start, middle and end of each
PDDL2.1 durative action is split into separate actions which
are not forced to follow each other consecutively. Although
enforcing minimum action durations is normally more im-
portant for obtaining accurate lower bounds on makespan,
there are situations in which the relaxation allows shorter
plans than the original problem. Figure 1(b) illustrates.

Relaxed Regression Heuristics for PDDL2.1
Admissible makespan estimators for the conservative tem-
poral planning model have been constructed based on dif-
ferent principles, such as planning graphs and the hm relax-
ation. Those same underlying principles can be applied to
the PDDL2.1 model. As an example, we consider the “re-
laxed regression” idea that underpins the hm heuristic.

The hm heuristic is defined as the (point-wise greatest)
fixpoint of the equation

hm(c) =

 0 if c holds initially
minR(c,d,c′) h

m(c′) + d if |c| 6 m
maxc′←c,|c′|6m hm(c′) if |c| > m

whereR(c, d, c′) is the regression relation, i.e., c′ is a condi-
tion such that if c′ can be achieved at some cost t, then c can
be achieved at cost t+ d, and c′ ← c is a relaxation relation,
i.e., c′ is a “simpler” condition implied by c. The definition
also depends on a measure of condition size, |c|. In classical
(additive cost) planning, conditions are conjunctions (sets)
of atoms, R(c, d, c′) holds iff c′ = (c − add(a)) ∪ pre(a)
for some action a such that del(a)∩ c = ∅ and d = cost(a),
and the relaxation relation is ⊆.

For conservative temporal planning, conditions take the
form of a pair c = (E,F ), where E is an atom set (sub-
goal to be achieved) and F a set of concurrently planned
actions with start times relative to the time at which c is
achieved, regression allows for concurrent actions (compat-
ible with those in F ) and no-ops, and the relaxation relation
considers several ways of reducing (E,F ) to a simple atom
conjunction, to which ⊆ is applied. (For example, action a
starting at δ time units before condition c implies condition
pre(a)∪c at time +δ. The heuristic is described in detail by
Haslum, 2006.)

In PDDL2.1, conditions need to be sets of atomic point
and interval conditions and effects, distributed in time rel-
ative to some point, which we arbitarily choose to be the
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earliest among them. An atomic point condition, i.e., p true
at t, can be achieved by an action a that starts at (or before)
t, if a adds p at-start, or at t − dur(a), if a adds p at-end.
For a to start at t, its at-start and invariant conditions must
be achieved by t, and its at-end conditions by t + dur(a).
This implies each atomic condition at the respective points.
Taken together, we have the following definition of h1 for
PDDL2.1 temporal planning:

h1(p) = 0 if p holds initially
h1(p) = min

(
mina:p∈start-add(a) h

1(a),
mina:p∈end-add(a) h

1(a) + dur(a)
)

h1(a) = max
(
maxq∈start-cond(a)∪inv(a) h

1(q),
maxq∈end-cond(a) h

1(q)− dur(a)
)

Like h1 heuristics for other kinds of planning, this is a weak
bound. However, it does yield the optimal estimate for the
example in figure 1(a), which conservative temporal h1, ap-
plied to the conservative relaxation in figure 1(b), does not.
PDDL2.1 versions of the general hm heuristic can be simi-
larly defined, though they become more complex.

Bounded Concurrency
Recently, swift advances have been made in the design of
accurate admissible heuristics for planning with additive ac-
tion costs (e.g. Karpas and Domshlak 2009; Helmert and
Domshlak 2009). When no concurrency is possible, the ad-
ditive objective function, taking minimum duration as ac-
tion cost, equals makespan. In general, a lower bound on
makespan can be derived from an admissible estimate of
“sum of durations” whenever the amount of possible con-
currency can be (non-trivially) bounded. Clearly, this is not
possible for every planning problem. Consider, for exam-
ple, the resource production problem described by Chan et
al. (2007), where more resources allow more concurrency,
which in turns allows faster production of even more re-
sources, which further increase concurrency. But the method
can yield a good makespan estimate in problems that fea-
ture some form of statically limited and highly contended
resource. As an example, results are presented for instances
of the Satellite domain.

The key concept is that of a sequential action set (defini-
tion 4). Intuitively, this is a set of actions that can not appear
concurrently in any plan that is optimal w.r.t. additive cost
(sum of durations). The maximum concurrency among some
set of actions in any such plan can then be bounded by the
number of sequential action sets needed to cover the actions.
Most admissible heuristics for additive cost assume sequen-
tial plans, so if the PDDL2.1 problems requires a concurrent
solution, the heuristic may consider it unsolvable and return
an estimate that is too high (typically,∞). If the problem is
not (known to be) inherently sequential, the heuristic can be
applied to a conservative relaxation of the problem instead.

Definition 4 Two actions a and b that can never execute
concurrently in any valid plan are called non-concurrent.

Two actions a and b such that whenever a and b appear
concurrent in a valid plan, one of them can be removed with-
out invalidating the plan, are called concurrent redundant.

A sequential action set is a set of actions A such that for
any two actions a, b ∈ A (including where a and b are the
same action), a and b are either non-concurrent or concur-
rent redundant.

That two actions “execute concurrently” here means that
there is a point common to the interior of their intervals
of execution. In PDDL2.1, it is possible to write actions
whose end points may be concurrent while at the same time
no overlap between the interiors of their execution intervals
is possible. We do not consider these actions to be able to
“execute concurrently”, because the amount by which they
overlap is infinitesimally small, so the increase in makespan
required to properly separate them is negligeable.

The exemption of concurrent redundant actions is moti-
vated by the fact that they appear in existing benchmark do-
mains, though in most cases it seems such actions could be
reformulated so as to be non-concurrent instead, without vi-
olating the intent of the domain definition. The key prop-
erty of concurrent redundant actions is that as a source of
possible concurrency they can be ignored when considering
optimal plans.

Lemma 5 Let P be a PDDL2.1 planning problem and let S
be a plan for P . There exists a plan S′ for P that contains no
concurrently executing concurrent redundant actions, such
that neither the makespan nor the sum of action durations of
S′ is greater than that of S.
Proof: If S contains a pair of concurrent redundant ac-
tions executing over overlapping intervals of time, by def-
inition one of them can be removed without invalidating the
plan. This is repeated until no such pair remains. Neither
makespan nor sum of action durations can be increased by
removing actions from the plan. 2

Theorem 6 Let P be an inherently sequential PDDL2.1
planning problem, and A1, . . . , An a collection of (not nec-
essarily disjoint) sequential sets of actions in P . Let U =
A1 ∪ . . . ∪ An. For any heuristic function h that is admis-
sible w.r.t. additive cost, taking the cost of each action in U
to equal its minimum duration and the cost of each action
not in U to be zero, and for any state s and condition c of
P , h(s, c)/n is a lower bound on the makespan of any plan
achieving c from s (with s and c as the initial state and goal
condition, respectively, of P as a special case).
Proof: Let S be a plan for c from s, of minimum makespan
T . By lemma 5, there exists a plan S′, of equal or lesser
makespan, which contains no concurrently executing con-
current redundant actions.

At no point during execution of S′ can more than n of the
actions in U be in progress: if there were more, at least two
of them would have to belong to the same sequential action
set, which is impossible since concurrent redundant actions
have been eliminated. Therefore, the sum of durations of
actions belonging to U in S′ is at most nT , and since h
is admissible w.r.t. additive cost, h(s, c) ≤ nT . Hence,
h(s, c)/n ≤ T . 2

There is a trade-off between the number of sequential action
sets and the set of actions whose durations are counted (U ).
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Figure 2: Concurrent redundant actions: (a) illustration of
condition R1; (b) an example from the Satellite domain.

Several strategies for deciding which to use are conceivable:
one is to select a minimum number of sets to cover all ac-
tions in the problem, another is to search (e.g., greedily) for
a set of sequential action sets that maximises the estimate.
Which method yields the best result naturally varies between
problems.

Finding Sequential Action Sets
To apply the h/n estimate, a collection of sequential action
sets must be known. This may be part of the problem de-
scription, if it is formulated in a language that models con-
currency by parallel composition of sequential subsystems
(as is the case for many model checking formalisms, e.g.,
the Promela language of the SPIN model checker). For an
action-centered language like PDDL2.1, however, sequen-
tial action sets must be found by analysis of the domain
and problem descripions. We demonstrate only a few simple
conditions for proving action sets sequential. Putting them
together into an algorithm is straightforward. These con-
ditions are not exhaustive: it is easy to find examples that
they do not cover. In particular, as they are “syntactical”
in nature, their applicability is sensitive to the problem for-
mulation. It is often possible to formulate the actions of a
planning domain in different ways that are equivalent, in the
sense of admitting equivalent plans, but such that the extrac-
tion of sequential action sets works for one formulation but
not another. This difficulty is common to all reasoning that
relies on the form of action definitions.

Actions that are not relaxed reachable or relevant (in the
sense of being reachable by back-chaining from the goal)
can be ignored, as an optimal plan without such actions al-
ways exists. A relevant effect is an effect that may contribute
to achieving a condition of a (relevant) action or a goal.

The first thing required is a test for concurrent redundancy
between actions, in particular to detect when an action is
concurrent redundant with itself.
R1. Two actions, a and b, are concurrent redundant if they
have the same relevant at-start and at-end effects, none of
which are cumulative numeric effects, and any event (action
start or end) that can negate any of those effects either de-
stroys, or has a precondition that is mutex with, the invariant
conditions of a and b.
Proof: Suppose a and b execute over partially overlapping
intervals, as shown in figure 2 and that both add p at-start
(resp. q at-end). No event deleting p (q) can take place in
the time between the points where the two actions add it
(shaded areas in figure 2) because the invariant condition of

at least one of a and b has to hold throughout. Hence, if the
later action is removed, p (q) persists until the point where it
would have been added the second time. 2

Next, we’ll need the concept of a mutex condition set: a
set of conditions, X = c1, . . . , ck, at most one of which
holds in any reachable state. This is a simple generalisa-
tion of the well-known “at-most-one” invariant, in which all
conditions are single atoms. If X and Y are mutex condi-
tion sets then so is X × Y = {cx ∧ cy | cx ∈ X, cy ∈ Y }.
Note that any singleton set is a mutex condition set. We say
that a sequential action set A is associated with mutex con-
dition set X iff A contains all actions that add some atom
appearing in X and each action in A is non-concurrent or
concurrent redundant with any action which invariant con-
dition implies some c ∈ X . This is a stricter requirement
than A being a sequential action set, but useful in the pro-
cess of identifying larger sequential sets.
S1. The action set {a} is sequential if a is non-self-
concurrent or concurrent self-redundant.
A1. Let X be a mutex condition set and A(X) the set of all
actions that add some atom appearing in X . If every action
in A(X) requires some c ∈ X at-start, deletes c at-start and
only adds some c′ ∈ X at-end (if at all), then A(X) is a
sequential action set, and associated with X .
A2. Let p be a proposition such that ¬p is not relevant (i.e.,
does not appear in any (relevant) actions condition or the
goal) and A(p) the set of all actions that add p. If A(p)
is a sequential action set, and each action in A(p) has no
other relevant effects, adds p at-end, and is concurrent self-
redundant according to R1, then A(p) is associated with the
mutex set {¬p, p}.
C1. If A and B are sequential action sets, such that any pair
of actions a ∈ A and b ∈ B have mutex invariant condi-
tions, then A ∪ B is a sequential action set. Moreover, if A
and B are associated with mutex condition sets X and Y ,
respectively, then A ∪B is associated with X × Y .
C2. If A is a sequential action set associated with mutex
condition set X and B is a sequential action set such that
every action in B requires some c ∈ X over-all, then A∪B
is a sequential action set. Moreover, if B is associated with
mutex condition set Y thenA∪B is associated withX×Y .

The first three conditions provide basic building blocks,
while C1 and C2 allow for sequential action sets to be com-
bined into larger sets. If condition A2 looks like a com-
plicated special case, that is because it is: if the domain is
reformulated so that actions that add p perform an explicit
durative transition from ¬p to p, A1 applies instead. For
well structured domains, conditions A1 and C2 are likely to
be sufficient.

Partially Dependent Action Sets
The h/n makespan estimate optimistically assumes that the
sum of action durations lower-bounded by h can be evenly
distributed over the n action sets. Typically, this is not the
case. With a more detailed analysis of the “reasonable” ac-
tion sequences in each set it is sometimes possible to lower
the divisor, and thus increase the makespan estimate.
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Definition 7 Let A and B be sequential action sets, A is
associated with a mutex condition set X , and b1, . . . , bk a
sequence of actions in B. The sum of durations of actions
bi in the sequence that have an invariant condition which
implies some c ∈ X divided by the total duration of the se-
quence is the dependency ratio (on A) of the sequence. The
minimum over all sequences of actions inB that may appear
in an optimal (w.r.t. makespan) plan is the dependency ratio
of B on A.

Note that if every action in B has an invariant condition on
X , the dependency ratio is 1. The union of the two sets is
then a sequential action set (cf. condition C2).

Theorem 8 LetA andB be sequential action sets, such that
B depends on A with ratio r. Let S be a plan with minimum
makespan T . The sum of durations of actions in S belonging
to A and B is at most (2− r)T .
Proof: By lemma 5, we can assume that S contains no con-
currently executing redundant actions. Let b1, . . . , bk be the
sequence of actions inB that appear in S. The total duration
of this sequence is at most T . Because its dependency ratio
on A is at least r, for at least rT of the duration of the plan
no action in A is executing. Thus, the sum of durations of
actions in A that appear in S is at most (1 − r)T , and the
sum over both A and B at most (2− r)T . 2

Thus, A ∪ B can be seen as a “semi-sequential” action set
with a “weight” equal to 2 − r, where a sequential set has
weight 1. Instead of dividing the value of the additive cost
heuristic h by the number of sets, n, we can divide it by
their total weight, and still obtain an admissible makespan
estimate.

To find the true dependency ratio of B on A would re-
quire us to examine all makespan-optimal plans, which is
clearly infeasible. But an underestimate of the ratio may be
obtained by minimising over a superset of sequences of ac-
tions in B. Let state(B) denote the set of propositions that
are added by and only by actions inB and that appear in con-
ditions of actions in B, i.e., state(B) is the state abstraction
that is fully controlled by actions in B and plays a part in
determining executability of those actions. Futhermore, let
B′ ⊂ B contain actions that have an effect relevant to some
action not in B or to the goal. The sequence of actions in B
appearing in a (non-redundant) makepan-optimal plan must
be executable, starting from the initial state, in the abstrac-
tion onto state(B); end with an action in B′; and, if the
sequence loops w.r.t. state(B), each loop must contain an
action in B′. Thus, the minimum dependency ratio of all se-
quences is lower-bounded by the minimum over (1) all non-
looping, w.r.t. state(B), sequences ending with an action in
B′, and (2) all reachable simple loops, w.r.t. state(B), con-
taining at least one action in B′, and thus can be found by
a simple depth-first search. However, the complexity of the
search is exponential in the size of state(B).

Preliminary Experimental Results
We illustrate the potential (and some flaws) of the h/n
makespan estimate with 30 problems of the IPC 2002 Satel-
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Figure 3: Comparison of makespan estimates in the Satel-
lite domain. Lines show best-fit (sum squared error) linear
models for each data set.

lite Timed domain. Problem were created using the IPC gen-
erator 2 and have 1–2 satellites and 2–19 goals. The additive
cost heuristic h is Helmert’s & Domshlak’s (2009) landmark
cut heuristic. Two strategies for selecting sequential action
sets are tried: one selects minimum sets to cover all actions
in the problem, while the other chooses a collection of sets
covering the actions that add a goal proposition, maximising
the estimate over all such collections. The baseline is tem-
poral h2 applied to the propositional conservative relaxation.

Figure 3(a) shows the result. The picture is somewhat
noisy, due to large random variations in action durations.
Therefore, linear models (min sum squared error fit) for each
set of data are also shown. Yet, it can be observed that the
h/n estimate trends upwards as the ratio of the number of
problem goals to the number of satellites (which determines
the level of concurrency in this domain) increases, while the
temporal h2 estimate stays flat. Also, for this domain at
least, selecting subcovers yields a better estimate than cov-
ering all actions.

Figure 3(b) shows the impact of dependency ratio analysis

2http://planning.cis.strath.ac.uk/
competition/domains.html

28



(for the full action set cover strategy only). It does improve
the makespan estimate, but only marginally.

Conclusions
We have described three ways of obtaining lower bound
functions for plan makespan for PDDL2.1 problems. Two
of them directly make use of heuristics for other planning
models (conservative temporal and additive cost planning),
so that recent and future improvements of such heuristics are
immediately available also for planning in PDDL2.1.

Admissible heuristics alone are unlikely to make an effi-
cent makespan-optimal planner, but they are one important
building block in making PDDL2.1 planners better aware of
the quality of plans they construct. It remains to explore
what are the best ways to make use of this information in a
planner. How accurate the makespan estimators are is also
an open question. As we have shown, the h/n estimate
can be better than the (conservative relaxed) h2 makespan
heuristic for problems with limited and highly contended re-
sources, but also has serious weaknesses: the assumption
that the sum of action durations distributes evenly is overly
optimistic, and the identification of sequential action sets is
highly sensitive to problem formulation.

Sequential action sets may also have further uses. For ex-
ample, given a makespan bound T and a sequential action
set A, it is possible to find the longest sequnce of actions in
A with a total duration of at most T (although it is NP-hard;
Aho 2000). Thus, from a covering collection of sequen-
tial action sets an upper bound on the length of any event
sequence that can possibly result in a plan with makespan
less than T can be obtained by summing the lengths of such
longest sequences. This can help also a planner that searches
the space of event sequences prove plan optimality.
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