
Towards Search Control via Dependency Graphs in Europa2

Sara Bernardini
London Knowledge Lab

University of London
23-29 Emerald Street, London WC1N 3QS

s.bernardini@lkl.ac.uk

David E. Smith
NASA Ames Research Center
Moffet Field, CA 94035–1000

david.smith@nasa.gov

Abstract

We develop domain-independent search control for NASA’s
Europa2 planning system based on the construction of De-
pendency Graphs, which succinctly represent the dependen-
cies between the activities of a domain. This approach can
be generalized to other temporal planners whose performance
also relies on careful engineering of the domains and/or hand-
coded domain-dependent search control information.

Introduction
Europa2 (Frank and Jónsson 2003) is a framework for solv-
ing planning and scheduling problems within the constraint-
based temporal planning paradigm, which is characterized
by an explicit notion of time, the use of state variables, and
an emphasis on temporal constraint networks. It has been
the core planning technology for several NASA missions
including MAPGEN, the ground-based daily activity plan-
ner for the Mars Exploration Rover mission (Bresina et al.
2005). Although this planner has been successful in solv-
ing real-world complex problems, it is necessary to carefully
tune the domain models and provide hand crafted control
rules in order to obtain satisfactory performance. The pro-
cess of engineering models and control information is gen-
erally time consuming, error-prone and can lead to models
that are not very robust. It would therefore be useful to have
powerful domain-independent heuristics for this planner.

The problem of relying on domain-dependent knowledge
is not specific to Europa2, but is common to a number of
large temporal planners developed for coping with real ap-
plications, such as ASPEN (Chien et al. 2000) and IxTET
(Ghallab and Laruelle 1994). Since these planners share
some significant features with Europa2, an investigation of
domain-independent heuristics for Europa2 can be benefi-
cial to them as well.

The Activity Transition Graph (ATG) technique presented
in (Bernardini and Smith 2008a; 2007) represents a first step
towards the introduction of automatically generated heuris-
tic estimators for Europa2. This technique builds one transi-
tion graph for each state variable in the domain and then uses
these graphs to compute distance estimates for choosing and
resolving flaws within the Europa2 plan refinement mecha-
nism. Although this method can provide good cost estimates
of completing partial plans, the construction of ATGs relies

on a rather strong assumption on the structure of the do-
mains. The model must describe the full temporal unfolding
of each state variable by specifying precedence relationships
between its values. In particular, for each value v of a state
variable V , the model must specify what values of V can di-
rectly precede and follow v. If this assumption is not satis-
fied, the ATG for this variable will be disconnected, and can-
not be used to extract distance estimates. Two types of do-
mains are particularly unsuitable for ATG calculations: (a)
Domains that look more like scheduling problems than plan-
ning problems, since they present many temporal and re-
source constraints between different state variables and few
causal constraints involving single state variables; (b) Hier-
archical domains, since their behavior is primarily specified
via constraints between values of state variables that lay at
different levels of abstraction. Unfortunately, many Europa2
domains used for practical applications (NASA 2009) fall in
one of these two categories, and so ATG heuristics cannot
be used on them.

In addition, the ATG technique as implemented in
(Bernardini and Smith 2008a; 2007) does not produce accu-
rate estimates on domains that present complex dependen-
cies between different state variables. This is because it ig-
nores such interactions and focuses instead on the evolution
of the single state variables. In these domains, it is necessary
to move from a local to a global strategy, able to reason on
all the variables at once.

In this paper, we introduce a new technique for automat-
ically generating heuristic guidance for Europa2 that over-
comes these problems. Before illustrating the new tech-
nique, we give a brief overview of Europa2. Then, we de-
scribe the Dependency Graphs (DG) heuristic and conclude
by discussing a preliminary evaluation and related work.

Overview of Europa2
Modelling Language: NDDL
In the modelling language NDDL, a planning instance I is a
pair: I = (D,P), where D is the planning domain and P is
the planning problem.

A planning domain D is represented by:

• A set of timelines: T = {T1, T2, . . . , Tn}, which are
multi-valued state-variables capturing the evolution of a
component or quantity over time.

30



• A set of mutually exclusive activities associated with each
timeline Ti: Act[Ti] = {a1(~x1, δ1), . . . , an(~xn, δn)},
where ~xj is the vector of the parameters of the activity
aj and δj = [δmin

j , δmax
j ] is a mathematical interval in N

representing the duration of aj .

• An evolution ruleR[a] for each activity a ∈ D describing
the temporal behavior of a. The rule R[a] is a conjunc-
tion of compatibilities: R[a] = K1[a] ∧ . . . ∧ Kn[a]. A
compatibility K[a] describes the relationship between the
master activity a(~x, δ) and a number of slave activities
Sl[a,K] = {a1(~y1, δ1), . . . , ak(~yk, δk)} (also called a’s
subgoals 1). The slaves can be associated with the same
timeline of a or with different timelines. Formally, a com-
patibility assumes the following form:

K[a] :
n∧

i=0

(gi ⇒
∧

j:aj∈Sl[a,K]

(tj ∧
m∧

k=0

pjk))

which is composed of:

– Guard constraints: a constraint gi is an atomic formula
γ = ci, where γ is a fixed variable called guard and ci
is a constant. It specifies when each conjunct of K[a]
applies. Different values of the guard γ correspond to
alternative temporal behaviors of a. If there is only one
possible behavior for a,K[a] has only one conjunct and
the guard constraint is empty. In this case, the compat-
ibility is called simple, otherwise disjunctive.

– Temporal constraints: a set of constraints tj spec-
ifying the temporal relations between the master
activity a and its slaves. Given a slave aj , a temporal
constraint tj looks like: temp rel aj , meaning
that a and aj should satisfy the relation temp rel ,
which is an interval-based temporal relation in the fol-
lowing set: meets, contains, before, starts,
equals, parallels, starts_before_end,
starts_during, starts_before, starts_after,
contains_start and all their inverses. These rela-
tions are derived from the thirteen temporal relations
defined by (Allen 1983).

– Codesignation constraints: a set of constraints pjk

specifying restrictions over the possible instantiations
of the parameters of the activities participating in a
temporal constraint. Given the master a(~x, δ) and a
slave aj(~yj , δj), a codesignation constraint pjk is of
the form xm rel yjl, where xm ∈ ~x, yjl ∈ ~yj and
rel ∈ {=, 6=}. We assume that pj0 = >.

A planning problem P is a pair P = {H, I}:
• H ∈ N is the end of the planning horizon. In Europa2

time is discretized into integers and the behavior of the
system is planned over the temporal window [0,H].
• I is the initial configuration represented by a set of ac-

tivities placed on their corresponding timelines. For each
activity ai in I, it is possible either to specify the exact

1The notion of subgoal in Europa2 is different from the one
in POCL. In Europa2 a subgoal can precede, overlap or follow its
master, whereas in POCL a subgoal always precedes its master.

position of ai on the timeline or to leave ai floating on
the timeline between the origin and the horizon. Note that
I includes both the initial state and the goal state as they
are defined in classical planning, and also it may contains
intervals at other positions on the timelines.
For Europa2, the planning problem is to completely

populate all the timelines with activities so that there are no
gaps and all evolution rules are respected.

Example: Crew Planning domain.
As an illustration of an NDDL model organized hierarchi-
cally, consider a simplified version of the problem of plan-
ning the daily routine of the crew of the International Space
Station (NASA 2009). Each member of the crew has the fol-
lowing associated timelines: FastingWindow , CrewMember
and CrewPlanner . The timeline FastingWindow simply rep-
resents whether the crew member is fasting or eating and so
has two associated activities, Fasting() and NotFasting(). The
timeline CrewMember represents the activities that a crew
member can perform, which are the following: Sleep(480),
PreSleep(120), PostSleep(180), Meal(60), Exercise(60),
PayloadActivity(id,60,120), PowerActivity(id,60,120) and
ChangeFilter(60). The timeline CrewPlanner represents the
daily routines of one crew member. It simply contains a
sequence of activities DailyRoutine(1440) over the entire
planning horizon. A daily routine prescribes that every day
a crew member must at least sleep, eat, exercise and execute
the “post sleep” activities. These constraints concerning the
activity DailyRoutine(1440) are expressed via the following
evolution rule:
R[DailyRoutine()] =(meets DailyRoutine() ∧

contains CrewMember.Exercise() ∧
contains CrewMember.Meal() ∧
contains CrewMember.Sleep() ∧
contains CrewMember.PostSleep())

Similar temporal/resource constraints regulate the behaviors
of the other activities.

Note that this domain is hierarchical in nature:
DailyRoutine() represents the top level of the hierarchy while
the activities on CrewMember represent lower level details.
Along the same line, we can observe that the evolution rule
of DailyRoutine() shown above is similar to an HTN method.

Search Algorithm
Europa2’s planning algorithm is an instance of plan refine-
ment search; given a domain D and a problem P , the algo-
rithm starts from the initial configuration I and incremen-
tally refines it by adding and ordering activities to the time-
lines and binding variables until a final consistent configu-
ration is found. However, while standard POCL planning
proceeds strictly backward from the goal to the initial state
on the basis of the causal information carried by the oper-
ator specification, the search algorithm in Europa2 works
bidirectionally. This is because: 1) compatibilities specify
general temporal relations between activities, and 2) activ-
ities in the initial configuration can take place at any time
point of the planning horizon.

A partial plan Π consists of three elements:

31



• For each timeline T ∈ D, a set of activities ActΠ =
{t1, t2, . . . , tn}, which are not necessarily contiguous
over time (actions in POCL).

• A temporal networkNΠ representing all the start and end
times of the activities in the plan and the constraints be-
tween them (ordering constraints in POCL).

• A set of flaws FΠ = {f1, f2, . . . , fm}, where a flaw is an
indication of a potential inconsistency in the partial plan.
There are three types of flaws:
– Open condition flaws: They arise when applica-

ble compatibilities are applied, triggering activities as
slaves of masters that are already in the plan Π. Those
slaves, called free activities, are enforced to be in the
plan, but they are not yet associated with any timeline.

– Ordering flaws: They arise anytime an activity is
placed on a timeline and an ordering is required for the
activity with respect to the other activities already on
that timeline.

– Unbound variable flaws: They arise when variables
that have not yet been instantiated appear in the plan
Π. There are two kinds of unbound variables: parame-
ters of activities that are already in the plan and guards
of applicable temporal constraints.

Refining a partial plan means to pick a flaw and resolve it.
The process terminates when the set of flaws is empty. Each
kind of flaw is resolved in a different way.
• Resolvers for open condition flaws

Flaws for free activities can be resolved in two ways:
– Merging A free activity is merged with a matching ac-

tivity already in the plan. The operation of merging
does not result in the addition of any new flaws to the
current plan.

– Activation We introduce a new activity a in the current
plan associating it with the proper timeline, but without
choosing a specific time slot for it. The compatibilities
associated with a are applied and the slaves generated
by those compatibilities are introduced as free activi-
ties. This results in both an ordering flaw, correspond-
ing to the just activated activity, and a number of open
condition flaws, corresponding to the added slaves.

• Resolvers for ordering flaws
After the activation of an activity a, a temporal slot for
placing a over its corresponding timeline is chosen among
the slots that are compatible with its temporal constraints
and maintain the temporal network consistency.

• Resolver for unbound variable flaws
Unbound variable flaws are resolved by specifying a value
in the domain of the variable. If the variable is a guard,
the binding causes the introduction in the current plan of
the slave activities associated with the chosen value.
The basic algorithm in Europa2 is a depth-first search

characterized by flaw selection, flaw resolution and con-
straint propagation steps. Flaw selection identifies which
flaw to resolve next, whereas flaw resolution deals with re-
solving a flaw by subsequently trying all the resolution op-
tions. Operations of plan refinement are interleaved with

constraint propagation on the temporal network underlying
the current partial plan to check its consistency. Note that
this process does not always proceed strictly backward from
the goal or forward from the initial state, but instead it may
proceed bidirectionally.

Search Control for Europa2
In order to effectively speed up search in Europa2, we need
a method of assessing the impact of each possible flaw res-
olution on the cost of completing a partial plan. To do that,
we ground the domain model, parse the resulting grounded
domain and store the information acquired during parsing in
weighted graphs, called Dependency Graphs. Such graphs
are then used by the search component for attributing a cost
to each resolver ri of any flaw f . The resolver’s cost is an
estimate of the distance between the partial plan obtained by
applying ri and the final plan.

Building Dependency Graphs
A DG represents the dependency relationships between the
activities of a domain, regardless of which timeline they
belong to. More specifically, a dependency graph is an
AND/OR graph whose nodes are partitioned into three sub-
sets: activity nodes, which correspond to the activities in
the domain, AND nodes and OR nodes, which together with
the graph transitions represent the structure of the evolution
rules of the domain. In a DG, each activity a is connected
with all its subgoals a1 . . . an – directly or via a path of non-
activity nodes – and the transitions between a and a1 . . . an

are labelled with the corresponding temporal relationships.
The cost assigned to a node a might be a duration or a re-
source usage/consumption depending on the type of the do-
main and problem under consideration.

More formally, given a domain D, a Dependency Graph
for D is a directed graph GD[D] = {V,E, Cv}. The set
V is a set of vertices and is partitioned into three sub-sets:
VAct (activity vertices), VAnd (AND vertices), and VOr (OR
vertices). The set E ⊆ V×V is a set of directed edges. The
function Cv is a weight function that assigns a cost Cv(v)
to each activity vertex v ∈ VAct in the graph. The graph
GD[D] is developed as follows (see Figure 1):

v[a]

v_s
AND

v_i
AND

v_j
OR

v'(a')

v_k
AND

v''(a'')

C_v(v)

C_v(v'')

C_v(v')

temp_rel temp_rel

Figure 1: Building Dependency Graphs

32



1. We create an activity node v ∈ VAct for each grounded
activity a that belongs toD and label it with the cost Cv(v)
We indicate such a node as v(a).

2. For each activity node v ∈ VAct, we create an AND node
vs ∈ VAnd and add a directed edge from v to vs.

3. For each simple compatibility Ki[a], we create an AND
node vi ∈ VAnd and add a directed edge from vs to vi.
For each temporal constraints tj = a temp rel a′ in
Ki[a], we add a directed edge from the AND node vi to
the node v(a′) and annotate the edge with the temporal
relation temp rel between a and a′.

4. For each disjunctive compatibility Kj [a] controlled by a
guard variable γ, we create an OR node vj ∈ VOr and
add a directed edge from the AND node vs to vj . For
each value ck of γ, we create an AND node vk ∈ VAnd

and add a directed edge from vj to vk. Finally, for each
temporal constraint ti = a temp rel a′′ controlled by
the value ck, we add a directed edge from the AND node
vk to the node v(a′′) and annotate the edge with the tem-
poral relation temp rel between a and a′′.

In summary, given an activity a, we associate with it an
AND node that represents the conjunction between all its
compatibilities. Then, we connect the AND node with all its
subgoals. Disjunctive subgoals are grouped via OR nodes.
In contrast to ATGs, we do not develop one dependency
graph for each timeline, but just one dependency graph for
the whole domain. When we handle domains with many
activities and constraints, the graph may become very big
and so difficult to manage. In such cases, we might want
to develop the dependency graph by representing only ac-
tivities that are reachable from the initial state and ignoring
unreachable ones.

FW.fasting

FW.not_fasting

CM.pre_sleep
120

CM.sleep
480

CM.post_sleep
180

CM.dpc
15

CM.meal
60

CM.exercise
60

AND

m

e

m_b

AND

m

e
m

c_b
ANDm

e

CP.daily_routine
1440

AND

c

cc

c

m

Figure 2: Fragment of DG for the Crew Planning domain

Exploring Dependency Graphs
Consider a domainD and a partial plan Π with an open con-
dition or ordering flaw f , corresponding to a free activity
a. Suppose that f has a possible resolution r. We define
the cost of the resolution Cres(r) by using information ex-
tracted from GD[D]. In particular, we visit GD[D] starting

from the node corresponding to a and collect all the activi-
ties that are reachable from a and are not already in the plan
in a set, which we call the Dependency Set, DS[a]. These
activities can be seen as a relaxed plan for a since they need
to be introduced in the plan whenever a is in the plan. We
assign to each activity in DS[a] a cost that depends on the
current partial plan and the resolution r under consideration.
By summing up these costs, we obtain the overall cost of
the set DS[a], which gives us an estimate of the difficulty
– in terms of subgoals to be achieved – of resolving f by
applying r.

We now describe in detail how to obtain a dependency
set for a. Given a dependency graph GD = 〈V,E〉 and the
activity node v(a) ∈ VAct, we extract from GD a subgraph
G′ = 〈V′,E′〉 such that v ∈ V′ and G′ is a closed graph. An
AND/OR graph G = 〈V,E〉 is closed if and only if:
• For each node u ∈ V, if u is an AND node, then all its

successors S(u) are in V.
• For each node u ∈ V, if u is an OR node, then at least

one of its successors in S(u) is in V. There are various
strategies to choose u’s successor, as we explain below.

The graph G′ is called Candidate Subgoal Graph of v. We
are interested only in minimal candidate subgoal graphs of
GD, where minimal means that there does not exist another
candidate subgoal graph G′′〈V′′,E′′〉 of GD such that V′′ ⊆
V′. In addition, if we define the cost of a candidate subgoal
graph G′ as the sum of the costs of the activities in G′, we
want the minimal candidate subgoal graph with the cheapest
cost. We define a Subgoal Graph of v, Gsg[v], as being a
minimal candidate subgoal graph of v having the cheapest
cost. Given Gsg[v], the Dependency Set DS[a] is composed
of the activities corresponding to the nodes of Gsg[v]:

DS[a] = {ai | v(ai) ∈ V ∧ Gsg[v(a)] = 〈V,E〉}
The activities in DS[a] are the minimal set of subgoals that
will eventually be in a final plan Πf , if Πf contains a.

In our experience with Europa2 real-world domains, DGs
have a limited number of OR nodes and so the extraction
of a subgoal graph from them is feasible. However, when
the number of OR nodes in a DG grows, the computation
of a minimal closed subgraph might become infeasible, and
we need to focus on finding just an approximation of it. In
particular, instead of exploring all the successors of each OR
node, we can adopt strategies to select and visit only subsets
of them. Two independent approaches can be used:
• Weighting: it provides a way for choosing between differ-

ent successors of an OR node. We assign a weight to each
successor of any OR node. Then, when we encounter an
OR node while visiting the graph, we sum the weighted
costs of the successors. If we reach an OR node n such
that all its successors have a weight of zero, we stop the
visit of the subgraph rooted in n. There are a number of
possible weighting policies:
i. AND nodes only: We assign a weight of zero to all

the successors of the OR nodes laying at the shallow-
est depth in GD. In such a way, we collect a’s sub-
goals that are dependent on a via AND nodes and ig-
nore OR nodes altogether. Hence, the set DS[a] will

33



contain only the activities that are necessarily depen-
dent on a and ignore disjunctive activities that might
or might not be subgoals of a depending on the values
assigned to the guard variables.

ii. Arbitrary choice: For each node OR in GD, we arbi-
trarily assign 1 to one of its successors and zero to all
the other successors.

iii. Probability mass distribution: We assign a weight of
1 to each OR node at the shallowest depth in GD and
then split this weight equally among its successors. So,
if an OR node has n branches, we assign to each suc-
cessor a weight of 1/n. Starting with the weight 1/n,
we repeat the same operation when the next OR node
is encountered, so as to push the obtained probabilities
down through the graph. The weight of a node repre-
sents the probability that the associated activity will be
in the plan. The costs of the nodes are then attenuated
by multiplying them by the probability.

• Discount Factor: it controls how deep we go in the ex-
ploration of a DG. We use a discount factor as in Markov
Decision Processes to progressively reduce the contribu-
tion of the successor nodes, the deeper we go in the DG
graph. For example, at depth 1, we can give full weight to
the costs; at depth 2, we can weight the costs by a discount
factor d; at depth 3, we can weight the costs by d2, and
so on. At some point the contributions become negligible
and can be ignored.

Cost Estimatation through DGs
We now turn to the use of dependency sets to calculate cost
resolution. Consider again a partial plan Π with flaw f , and
a resolver r corresponding to the free activity a with an as-
sociated dependency set DS[a]. Let Π′ be the partial plan
derived from Π after applying r. We define the cost of the
resolution, Cres(r), as follows:

• Merging the activity a with some existing activity a′ in Π:

Cres(r) = 0

• Placing the activity a in a compatible empty slot s:

Cres(r) =
∑

ai∈DS[a]

Costsg(ai)

where Costsg(ai) of an activity in DS[a] is defined as:

– if ai can be merged with an activity a′ in ActΠ′ :

Costsg(ai) = 0

– if ai is compatible with a free activity a′ in FΠ:

Costsg(ai) = 0

– if ai can be activated and placed on its timeline:

Costsg(ai) = Cv(ai)

– otherwise:
Costsg(ai) = + inf

The first definition corresponds to the intuition that reso-
lution through merging has no cost with respect to the sub-
goals that should be managed after its application. In fact,
it does not modify the partial plan Π except for adding new
temporal constraints. The second definition calculates the
cost of activating a and placing it on the slot s by summing
up the costs of the single subgoals that are dependent on a.
So, this cost reflects the penalty incurred by adding a and all
its subgoals to Π. The costs of a’s subgoals depend on the
new configuration of the timelines after the introduction of a
in the plan Π. In particular, the cost of a single subgoal ai in
DS[a] is zero if an activity a′i compatible with ai is already
in the plan Π′ or it is in the set of flaws of Π, FΠ. In these
two cases, in fact, the cost of r does not depend on the cost
of ai since either the subgoal ai has been already achieved
(it is the plan) or it must be satisfied regardless from the ap-
plication of the resolver r (it is already in the set of flaws). If
these two alternatives do not apply, then the cost of ai should
be considered while calculating the cost of r. The cost of ai

corresponds to Cv(ai), and is set to infinite when ai cannot
possibly be placed in the current plan.

If R[f ] = {r1, . . . , rk} is the set of possible resolutions
for a flaw f , we define the Cheapest Resolution as:

CR(f) = minri∈R[f ]Cres(ri)

By using the CR(f) for a flaw f , we prefer the resolver
that is the cheapest in terms of the subgoals that need to
be achieved because of its application. We prefer merging
to other possibilities and, if merging is not possible, prefer
slots that maximize the reuse of those fragments of the plan
that are already in place, minimize the number of unsatisfied
subgoals, and avoid unsuitable slots.

So far, we have focused on resolution costs for open con-
dition and ordering flaws. However, we can use a simi-
lar mechanism to assign costs to unbound variable flaws
as well. Choosing a resolver for an unbound variable flaw
means choosing a value for a guard variable, which in turn
corresponds to triggering one set of subgoals instead of an-
other. In order to rank the different possible choices for
a guard variable, we need to evaluate how difficult it is
to satisfy the subgoals associated with that choice. Each
subgoal corresponds to a free activity, whose cost can be
estimated by using the technique that we have just pre-
sented. More formally, let us assign a cost to the value
vali of a guard variable γ. Suppose that the free activi-
ties ai1, . . . , ain are triggered by choosing the value vali
for γ. We calculate the dependency set DS[aij ] for each
activity aij and union these sets. The resulting set of sub-
goals is the dependency set associated with the value vali:
DS[vali]. The cost of binding γ to vali is the following:
Cres(vali) =

∑
aij∈DS[vali]

Costsg(aij), where the cost
Costsg(aij) for the activities inDS[vali] is defined as above.
Once we have the cost of each possible binding value vali,
we pick the value associated with the lowest cost and assign
it to the guarded variable.

We can use the same concepts and mechanisms to as-
sign selection costs to flaws in order to guide flaw selection.
However, due to space limitation, we do not describe these
techniques here.

34



Evaluation
The evaluation of domain-independent search control tech-
niques for Europa2 is difficult due to the unavailability of
a broad benchmark set of NDDL domains. We have con-
ducted a preliminary evaluation of the DG technique on
NASA’s domains that are publicly available (NASA 2009).
We focus here on the Crew Planning domain, a domain
against which the ATG technique cannot be used. We show
a simple example of how the DG heuristic can be helpful
for controlling the search. The behavior of the timelines
of the Crew Planning domain is not described by means
of meets and met by constraints involving activities be-
longing to the same timelines, but is specified hierarchi-
cally. The activity DailyRoutine, belonging to the high-level
timeline CrewPlanner , induces the activities Sleep(480),
PostSleep(180), Meal(60), Exercise(60) on the lower-level
timeline CrewMember and, in turn, these activities induce
the activities Fasting([1, +inf)) and NotFasting([1, +inf)) on
the lowest level timeline FastingWindow . Of course, the ini-
tial configuration I can contain activities at any hierarchical
layer.

Figure 3 shows an intermediate partial plan Π for Crew-
Planning and an open condition and ordering flaw f corre-
sponding to the introduction in Π of the activity Meal(60),
slave of DailyRoutine via the constraint contains. Two
slots, sl1 and sl2, satisfy the constraint and are possible re-
solvers of f . The activity Meal(60) has two compatibilities
involving activities on the timeline FastingWindow :

R[Meal()] =(meets FastingWindow.Fasting() ∧
equals FastingWindow.NotFasting())

By exploring the DG graph of this domain (see Figure 2),
we develop the dependency set of Meal():

DS[Meal()] = {Fasting(),NotFasting()}

Considering the configuration of the timelines in Figure
3, we see that Cres(sl2) is zero since we can merge
the subgoals in DS[Meal()] respectively with the activities
Fasting(id=6) and NotFasting(id=5), whereas the Cres(sl1) is
infinite since we cannot satisfy the subgoal NotFasting(). So,
guided by the DG heuristic, we choose sl2 and avoid choos-
ing a resolver that would cause backtracking in one subse-
quent step.

Fasting [id=4]

FastingWindow

Not

Fasting [id=5]
Fasting [id=6]

Payload

Activity [id=2]

CrewMember

DailyRoutine [id=1]

Exercise 
[id=3]

Meal

CrewPlanner

slot_2slot_1

Figure 3: Timelines for the Crew Planning domain

We are setting up an extensive evaluation of the DG tech-
nique. We need to test how the DG estimates vary in cor-
respondance with different exploration strategies of the de-
pendency graph GD. In particular, we have two indepen-
dent dimensions along with to test the technique: (1) how
deep we go in the exploration of the DG; (2) how we assign
weight to different branches of an OR. Along the first dimen-
sion, we have different depth bounds and different discount
factors to test. Along the other dimension, we have differ-
ent weighting policies for OR branches: all zero weights,
random choice, and probability mass distribution. We are
also using domains developed for the International Plan-
ning Competition (IPC) translated from PDDL into NDDL
(Bernardini and Smith 2008b). We believe that the DG tech-
nique will work equally well on them, but this remains to be
proven. In this case, we can compare Europa2 augmented
with the DG heuristics with state of the art temporal plan-
ners, such as CPT (Vidal and Geffner 2006). In addition, we
intend to compare DG heuristics with ATG and hand coded
heuristics. We believe that completing such an extensive ex-
perimental evaluation will lead to a broader understanding
of what heuristics work best on different types of domains
and ultimately will lead to identifying properties for classi-
fying domains and automatically choosing the most suitable
search control approach to apply.

Related Work
In the last ten years, there has been considerable work
in the classical planning community on devising domain-
independent heuristics. Generally, these techniques involve
solving some relaxed form of the planning problem in or-
der to obtain heuristic distance estimates, which are then
used to guide search. Simple but effective ways to obtain
relaxed problems are, for instance, ignoring PDDL operator
delete lists or decomposing the goal set of atoms into smaller
subsets (Bonet and Geffner 2001), (Haslum and Geffner
2000). The computation of some of those heuristics rely
on the explicit construction of a reachability graph (Blum
and Furst 1997), (Hoffmann, Porteous, and Sebastia 2004),
while other methods perform shortest path calculations on
a suitably defined atom space (Haslum and Geffner 2000).
In addition to “distance-based” heuristics, other techniques
have been proposed that work on multi-valued representa-
tions of planning tasks. Fast Downward (Helmert 2006),
for example, extracts a heuristic function by constructing a
causal graph of the domain and a domain transition graph
for each state variable in the domain. The first graph repre-
sents the critical interactions between state variables, while
the second graph describes the dependancies between the
values of a single state variable.

There are several similarities between the above-
mentioned strategies developed for IPC planners and the
method described here. For example, the DG technique ap-
plies an approach similar to ignoring delete lists since it as-
sumes that an activity in the set of the free or activated ac-
tivities can always be reused to resolve any new flaw corre-
sponding to a compatible free activity. In addition, we can
look at the DGs described here as a combination between the
causal and domain transition graphs introduced by Helment

35



since DGs represent the dependencies between the values
of all the state variables in the domain. Finally, it is worth
noting that the application of the weighting policy “AND-
nodes-only” for extracting dependency sets corresponds to
the computation of landmarks for PDDL instances as de-
scribed in (Hoffmann and Nebel 2001). Indeed, just as a
landmark is a fact that needs to be achieved in any solution
plan, a dependency set obtained by following AND nodes
and ignoring OR nodes contains only those activities that
will be necessarily part of any valid plan.

With regard to heuristics specifically devised for Europa2,
in (Bernardini and Smith 2008a; 2007) we describe a method
for controlling search based on the construction of activ-
ity transition graph (ATG). This technique requires that the
domain model specifies for each activity a its meets and
met by constraints with activities taking place on the same
timeline. Given a domain D, for each timeline T in D,
we construct a graph describing the possible transitions be-
tween the activities that can be placed on T . The nodes in
the graph represent the activities in Act[T ]. The meets
and met by temporal constraints between these activities
induce the transitions between the nodes. Each transition
has a cost that identifies the temporal distance between the
activities involved in the transition. Thus, an ATG for a time-
line T represents the internal temporal evolution of T . We
calculate the cheapest path from any activity ai to any other
activity aj by running an all-pairs shortest path algorithm
on each graph and store the cost Costsp(ai, aj) of each short-
est path in a table. This table is pre-computed prior to be-
ginning planning and then used for flaw resolution and flaw
selection. In particular, given an open condition or order-
ing flaw f , if f can be resolved via merging, the cost of the
resolution, Cres(r), is set to zero, since it does not modify
the partial plan except for adding new temporal constraints.
If f is resolved through activating an activity a and plac-
ing it in a slot s between ai and ai+1, which are already
in the plan, Cres(r) = Costsp(ai, a) + Costsp(a, ai+1) −
Costsp(ai, ai+1). This cost estimates how well the activity
a fits in the empty slot s on T . If R[f ] = {r1, . . . , rk} is
the set of resolutions for f , the Cheapest Local Resolution
is defined as: CLR(f) = minri∈R[f ]Cres(ri). By using the
CLR(f), we prefer to place a in the slot where it causes the
smallest increase in the net cost for the timeline T . This
provides a good estimate of cost since it prefers merging to
other possibilities, and slots with low cost paths to higher
cost paths.

Conclusions
We have presented a novel search control technique for Eu-
ropa2 that can be used to guide both flaw selection and flaw
resolution for domains that lack the strong causal structure
of PDDL domains. This technique constructs a dependency
graph that represents the dependencies between the activities
in the domain model. The graph is then explored in order to
gain information about the impact of different flaw resolu-
tions on the current partial plan. The resolver with the lower
impact is chosen to be applied. Although more experimental
work is needed, this seems to be a viable method for guid-

ing search on real-world domains whose structure does not
allow us to use the simpler but less accurate ATG technique.

References
Allen, J. 1983. Maintaining knowledge about temporal
intervals. Communications of the ACM 26(11):832–843.
Bernardini, S., and Smith, D. E. 2007. Developing domain-
Independent search control for EUROPA2. In Proc. of
the Workshop on Heuristics for Domain-independent Plan-
ning, 17th Int. Conference on Automated Planning and
Scheduling (ICAPS’07).
Bernardini, S., and Smith, D. E. 2008a. Automatically
generated heuristic guidance for EUROPA2. In Proc. of
the 9th International Symposium on Artificial Intelligence,
Robotics, and Automation for Space (iSAIRAS’08).
Bernardini, S., and Smith, D. E. 2008b. Translating
PDDL2.2 into a constraint-based variable/value language.
In Proc. of the Workshop on Knowledge Engineering for
Planning and Scheduling, 18th International Conference
on Automated Planning and Scheduling (ICAPS’08).
Blum, A., and Furst, M. 1997. Fast planning through plan-
ning graph analysis. Artificial Intelligence 90:281–300.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2). Special issue on
Heuristic Search.
Bresina, J. L.; Jónsson, A.; Morris, P. H.; and Rajan, K.
2005. Mixed-initiative activity planning for Mars rovers.
In Proc. of the Nineteenth International Joint Conference
on Artificial Intelligence (IJCAI-05), 1709–1710.
Chien, S.; Rabideau, G.; Knight, R.; Sherwood, R.; Engel-
hardt, B.; Mutz, D.; Estlin, T.; B.Smith; Fisher, F.; Barret,
T.; Stebbins, G.; and Tran, D. 2000. ASPEN - Automated
planning and scheduling for space missions operations. In
International Conference on Space Operations.
Frank, J., and Jónsson, A. 2003. Constraint based attribute
and interval planning. Journal of Constraints 8(4):339–
364.
Ghallab, M., and Laruelle, H. 1994. Representation and
control in IxTeT, a temporal planner. In Proc. of the Second
International Conference on Artificial Intelligence Plan-
ning Systems (AIPS-94), 61–67. AAAI Press.
Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. In Proc. of the Fifth Int. Conference
on Artificial Intelligence Planning and Scheduling (AIPS-
00), 140–149.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
Landmarks in Planning. Journal of Artificial Intelligence
Research 22:215–278.
NASA. 2009. Europa2 web page. http://
babelfish.arc.nasa.gov/trac/europa/.

36



Vidal, V., and Geffner, H. 2006. Branching and pruning:
An optimal temporal POCL planner based on constraint
programming. Artificial Intelligence 170 (3):298–335.

37




