
Reachability Heuristics for Planning in Incomplete Domains

Jared Robertson & Daniel Bryce
{jrobertson, daniel.bryce}@usu.edu

Utah State University

Abstract

Engineering complete domain descriptions is often very
costly because they are prone to errors of omission or
commission. While many have studied knowledge ac-
quisition, relatively few have studied the synthesis of
low risk plans when actions may have missing or in-
correct preconditions or effects. In this work, we fo-
cus upon omitted features (i.e., preconditions and ef-
fects) of actions, where the action features are in one of
three groups: those that are i) known to be included,
ii) known not to be included, and iii) not known to
be either. Prior work has evaluated the correctness of
complete plans synthesized with the incomplete domain
theory, but no prior work has studied how a planner can
lower the risk of failure by reasoning about its knowl-
edge of the incompleteness. That is, by guiding search
in terms of the potential risks of partial plans it should
be possible to find lower risk plans.

We present and empirically evaluate a forward heuris-
tic search planner called FFRISKY, which computes esti-
mates of plan risk on planning graphs. Aside from be-
ing the first to address the problem, the unique aspect
of the planner’s heuristic is how it selectively propa-
gates the risk to balance between risks incurred sup-
porting propositions and generating risks that will ef-
fect propositions supported later. We compare FFRISKY
with a control planner that uses the FF heuristic to
measure plan length and ignore risk.

Introduction

The knowledge engineering required to create complete
and correct domain descriptions for planning problems
is often very costly and difficult (Kambhampati, 2007).
Machine learning techniques have been applied with
some success (Wu, Yang, and Jiang, 2007), but still
suffer from impoverished data and limitations of the al-
gorithms (Kambhampati, 2007). In particular, we are
motivated by applications in instruct-able computing
(Mailler et al., 2009) where a domain expert teaches an
intelligent system about a particular domain, but can
often leave out whole procedures (plans) and aspects
of action descriptions. In such cases, the alternative to
making domains complete, is to plan around the incom-

pleteness. That is, by assuming that enough knowledge
of the domain exists to find a causally correct plan, we
find low-risk plans that are most likely to succeed given
the knowledge of how the domain is incomplete.

While prior work (Garland and Lesh, 2002) has cate-
gorized risks to a plan’s correctness and described plan
quality metrics in terms of the risks, no prior work
has sought to deliberately synthesize low-risk plans.
Specifically, the prior work of Garland and Lesh (2002)
(henceforth abbreviated, GL) identifies four types of
plan risks: possible open preconditions (due to in-
complete knowledge of preconditions), possible clob-
bers (due to incomplete knowledge of delete effects),
unlisted effects (due to incomplete knowledge of add
effects), and false preconditions (due to the known do-
main model). GL develop an algorithm that steps back-
ward through the plan to identify the critical risks –
those risks that are a single source of failure for the
plan. Critical risks prevent the plan from achieving
vulnerable conditions. Vulnerable conditions are pre-
conditions or goals where all sources of support share
the same risks. The number of critical risks is an im-
portant measure of plan quality, that, unfortunately, no
known planners seek to minimize.

We present a forward heuristic planner, called
FFRISKY, that computes estimates of future plan risk
on planning graphs. There are two interesting features
of FFRISKY described in this work, its search node rep-
resentation and heuristic. In both aspects, FFRISKY

maintains information about the set of potential risks
to achieving state propositions and the set of critical
risks realized by the plan. FFRISKY carries possible risks
to propositions forward so that if actions require the
propositions as preconditions (thus making the risks to
each proposition critical), it is possible to locally com-
pute the critical risks without examining the entire plan
(as one might using the algorithm of GL). We describe
the propagation of possible risks and the calculation of
critical risks both in the search space and within re-
laxed planning graphs. The number of critical risks in
the plan prefix is the quality of a partial plan, and the
number realized in achieving the goals in the planning

1

graph is the heuristic.
We evaluate FFRISKY in several instances of modified

IPC domains against a control planner that uses a sim-
ilar search algorithm, but optimizes plan length with
the FF heuristic (Hoffmann and Nebel, 2001). The re-
sults indicate that FFRISKY can find much lower risk
plans, at the expense of plan length (reducing risk of-
ten involves using multiple actions to achieve the same
subgoal). Moreover, FFRISKY must often generate more
search nodes than the control planner, but incurs only
a small additional cost in computing its heuristic. In
the following, we provide background on the represen-
tation of the planning problems studied, definitions of
plan risks, our search formulation, heuristic computa-
tion, empirical evaluation, related work, and conclu-
sion.

Background

A complete planning domain Dtrue defines the tuple
(P , A, I, G), where P is a set of propositions, A is
a set of complete action descriptions, I is the initial
state, and G is a set of goals. An incomplete planning
domain D, corresponding to Dtrue, defines the tuple
(P , Ã, I, G), where Ã is a set of incomplete action
descriptions. (We use “∼” throughout to denote
incomplete aspects of the incomplete domain theory).
Action Representation: Complete action descrip-
tions follow the standard STRIPS representation
(Fikes and Nilsson, 1971), where each action a ∈ A
defines the tuple (pre(a), add(a), del(a)), where the
precondition, add effects, and delete effects are sets of
propositions. Incomplete action descriptions extend
the representation of complete actions to account
for possible preconditions and effects, such that each
incomplete action ã ∈ Ã defines the tuple (pre(ã),

p̃re(ã), add(ã), ãdd(ã), del(ã), d̃el(ã)), where pre(ã)
is the set of known preconditions and p̃re(ã) is the
set of possible preconditions, similarly for known and
possible add and delete effects. We differ syntactically
from GL with our action descriptions because we
choose to represent the true and possible precondi-
tions, where GL represents the true and impossible
preconditions (via local closed world statements).
The two representations are equivalent because the
impossible preconditions are all other propositions not
mentioned in the true or possible preconditions, and
similarly for effects.
Plan Semantics: A complete action is applicable to a
state, appl(si, ai) if pre(a) ⊆ si. Applying a complete
action ai to a state si results in a successor state
si+1 = succ(si, ai) = si\del(ai) ∪ add(ai). A feasible
plan is a sequence of complete actions (a0, ..., an−1)
that achieves the goals G, that is s0 = I, G ⊆ sn, and
each action is applicable, appl(si, ai).
Similarly, an incomplete action is applicable to a
state appl(si, ãi) if pre(ãi) ⊆ si (i.e., we do not

require that possible preconditions are satisfied be-
cause unsatisfied preconditions are incorporated into
the measure of plan risk). Applying an incomplete
action ãi to a state si results in a successor state

si+1 = succ(si, ãi) = si\del(ãi) ∪ add(ã) ∪ ãdd(ã).
Our semantics for incomplete actions are optimistic

because we do not require that possible preconditions
are satisfied and we include the possible add effects
when computing successor states. A feasible plan with
incomplete actions, like a plan with complete actions,
must achieve the goals G, per above.
While a plan with incomplete actions must be
causally correct (wrt. the optimistic semantics), such
that each action is applicable in the plan and the
goals are satisfied, its quality is determined by risks
to its correctness (wrt. the complete semantics).
As we define in the following, a plan’s quality is the
number of risks that are critical to its success or failure.

Plan Risks

A risk is a potential source of execution failure due to
incompleteness of the action model. A critical risk is
not guaranteed to cause plan failure, but it does guaran-
tees the possibility of failure (Garland and Lesh, 2002).
We denote the set of all plan risks by R. The risks are:

• PossClob(ai, x) :: action ai might have the effect ¬x,
and there exists action aj , for i < j that has precon-
dition x in D and no action between ai and aj has
effect x in D.

• PrecOpen(ai, x) :: action ai might have an unlisted
precondition x that will not be true when ai is exe-
cuted in a0, . . . , an.

• UnlistedEffect(ai, x) :: ai might have effect x that
is not listed in D.

We do not track false precondition risks, as described
by GL, because they imply that either the plan is not
causally correct wrt. D, or that an unlisted effect is
used to support the precondition. If an unlisted effect
is used to support a precondition, then introducing a
false precondition risk counts the risk twice.

We also differ from GL by counting a PrecOpen risk
for each possibly open precondition of an action, instead
of a single PrecOpen risk for the action. This choice is
influenced by two concerns: having more open precondi-
tions should be undesirable, and because we represent
the possible preconditions rather than the impossible
preconditions, we can easily calculate which possible
preconditions are not satisfied.

Forward State Space Risk Maintenance

In order to search for low-risk plans, we require a search
formulation that supports efficient computation of the

2

number of critical risks to the plan. While it is straight-
forward to use a plan space search and use the algo-
rithms suggested by GL to compute risks (modulo our
differing definitions), we develop a state space search
formulation that supports additive computation of plan
quality. That is, our state space search computes the
plan risks in terms of the most recent plan step.
Search Nodes: Each search node q is the tuple (s,
rs, cq), where s is the state, r is a function mapping
state propositions to sets of possible risks, and cq is a
set of critical risks realized by the paths leading to the
node. The risk function rs : P → 2R is defined over
all propositions p ∈ s, mapping each to a subset of the
risks R realized by the action sequence leading to the
search node. The set of critical risks cq ⊆ R is the set
of risks that will cause plan failure, and the cardinality
of c is the quality of all plans reaching the node (i.e.,
the g-value).
Node Expansion: Search nodes are computed as fol-
lows. The root node, where s = I, defines rs(p) = {}
for each p ∈ s and c = {}. In other words, the root node
does not associate and possible or critical risks with the
initial state.

Given a node q = (s, rs, cq) and applicable action ã,
the successor node is defined q′ = (s′, rs′ , cq′), where
s′ = succ(s, ã).
The set of possible risks associated with each propo-
sition in the successor state represent the risks con-
tributed by all sources of support to the proposition.
In sequential planning, as herein, there are two sources
of support: the persistence of the proposition from the
prior state and the add effects of the applied action.
Risks to a proposition can only become critical if they
are contributed by all sources of support. Therefore,
the possible risks for each proposition are obtained by
the following expression, where we take the intersection
of the persisted risks, and the risks contributed by the
action, rs′ (p) =

rs(p)∩

(
⋃

p′∈pre(ã)

rs(p
′) ∪

⋃
p′∈ fpre(ã):p′∈s

rs(p
′) ∪ rs,ã(p)

)
.

The risks contributed by the action include all risks
to the action’s precondition and all risks generated
by the action rs,ã(p) that are relevant to the propo-
sition. The risks contributed by the action rs,ã(p) in-
clude a PrecOpen(ã, p′) risk if there is a possible pre-
condition in p′ ∈ p̃re(ã) that is not supported by s, an
UnlistedEffect(a, p) risk if p is a possible add effect;
or a PossClob(~a, p) risk if p is a possible delete effect.
The critical risks cq′ realized by the plan prefixes reach-
ing q′ is defined as the prior critical risks and all possible
risks to the action’s preconditions,

cq′ = cq ∪
⋃

p∈pre(ã)

rs(p).

The g-value of the search node is defined as the number
of critical risks of the plan(s) reaching the node,

g(q′) = g(q) + |cq′\cq| = |cq′ |.

Propagating Risk in Planning Graphs

Similar to propagating risks that effect vulnerable con-
ditions within the search space, we can compute a
heuristic measure of the critical risks effecting goal
achievement within relaxed planning problems. The
planning relaxation provided by planning graphs lets
us propagate risks and lower bound the actual number
of critical risks.
Planning Graph Heuristics: A relaxed planning
graph RPG is a layered graph of sets of vertices
(P0,A0, ...,Ak−1,Pk). The planning graph built w.r.t.
a state s defines P0 = s, At = {a|pre(a) ⊆ Pt}, and
Pt+1 = {p|a ∈ At, p ∈ add(a)}. A simple heuris-
tic, hmax for the number of actions to achieve the goal
G from s is equivalent to the minimum level t where
the goals are reached, hmax = mint:G⊆Pt

t (Bonet and
Geffner, 1999). The FF heuristic hff (Hoffmann and
Nebel, 2001) solves this relaxed planning problem by
choosing actions from At to support the goals in Pt+1,
and recursively for each action’s preconditions, in order
to count the number of chosen actions as the heuristic.

When planning with incomplete domains, we would
like to minimize the number of critical risks. A heuristic
should measure the number of new critical risks encoun-
tered while trying to achieve the goal. We can propa-
gate measures of risk over the relaxed planning graph to
determine the risks to achieving the goals at each level t.
However, like our search formulation, we need to track
both the possible risks to, and the (realized) critical
risks in, achieving propositions. As in the search space,
those risks to achieving a proposition become critical
(i.e., are realized) when they are used to support an ac-
tion. However, because the planning graph represents
all reachable propositions, we associate a set of critical
risks with each proposition, where in the state space we
associated a set of critical risks with each state. The
critical risks associated with goal propositions are used
to compute the heuristic. We propagate possible and
realized critical risks differently because the former set
is used to compute the latter set. The following in-
tuitions dictate the propagation semantics for possible
and realized risks:

• Possible risks to propositions in the evaluated state
become critical when used to support actions in the
planning graph.

• All possible risks to an action’s preconditions become
critical when the action appears. Therefore, the pos-
sible and realized risks to executing an action are
identical.

• The critical risks to executing an action include those
realized via the action’s preconditions (which were
previously only possible) and those realized by ac-
tions supporting the preconditions.

• If an action is used to support a proposition, then the
possible risks to the proposition include an unlisted

3

effect risk (if supported by a possible effect) and the
possible risks to the action, the critical risks to the
proposition include the risks that were critical to the
action.

A relaxed planning graph with propagated risks

R̃PG is a layered graph of sets of vertices
(P̃0, Ã0, ..., Ãk−1, P̃k), a possible risk function r

R̃PG
:

{Ã, P̃} × N → R, that maps each vertex to a set of
possible risks to achieving it, and a critical risk func-
tion c

R̃PG
: {Ã, P} × N → R denoting risks realized

in achieving a proposition or the preconditions of an
action.

Initial Proposition Layer: The R̃PG built for a state
s defines the layers and risks for each vertex, such that
the initial proposition layer contains all propositions in
the state P̃0 = s, the possible risks associated with
each proposition are those of the state r

R̃PG
(p, 0) =

rs(p), and there are no realized critical risks for any
proposition c

R̃PG
(p, 0) = {}.

Action Layer: Action layers contain those actions
whose preconditions are satisfied in the proposition
layer Ãt = {ã ∈ Ã|pre(ã) ⊆ P̃t}. The possible risks
associated with each action include any open precondi-
tion risks and those risks to the action’s preconditions,

r
R̃PG

(ã, t) ={OpenPrec(ã, p)|p ∈ p̃re(ã), p 6∈ P̃t}∪
⋃

p∈pre(ã)

r
R̃PG

(p, t).

The critical risks to executing the action include all
possible risks to the action and all critical risks realized
by supporting the preconditions,

c
R̃PG

(ã, t) = r
R̃PG

(ã, t) ∪
⋃

p∈pre(ã)

c
R̃PG

(p, t).

Proposition Layer: The subsequent proposition layer
contains all propositions appearing in the true or pos-
sible add effects of an action (including noop actions),

P̃t+1 = {p|p ∈ add(ã) ∪ ãdd(ã), ã ∈ Ãt}. The possi-
ble risks to achieving a proposition p at t + 1 are de-
termined by the set of chosen supporting actions S̃t(p)
(described below), which may be any non-empty subset
of the actions in level t that support p. Given the set
of supporters S̃t(p), the possible risks to achieving the
proposition include risks from two types of supporters:
a true supporter (p ∈ add(ã)) and a possible supporter

(p ∈ ãdd(ã)). The true supporters contribute possible
risks to executing the supporting action and the possi-
ble supporters contribute the same risks and any risks
related to having possible effects (i.e., unlisted effects),

r
R̃PG

(p, t + 1) =

⋂

ã∈S̃t(p):p∈add(ã)

r
R̃PG

(ã, t)∩

 ⋂

ã∈S̃t(p):p∈gadd(ã)

r
R̃PG

(ã, t) ∪ {UnlistedEffect(ã, p)}

 .

The critical risks realized by supporting a proposition
include all critical risks to to executing the supporting
actions,

c
R̃PG

(p, t + 1) =
⋃

ã∈S̃t(p)

c
R̃PG

(ã, t).

The set or supporting actions S̃t(p) can be defined mul-
tiple ways, each having an impact on which possible
and critical risks are propagated. As in the search
space, using multiple actions to support a proposition
may remove possible risks to achieving the proposition,
but each action may introduce critical risks. Clearly,
there exist trade-offs in choosing supporters for proposi-
tions, both in the search space and the relaxed planning
graph.
Choosing Supporters: While only a single action
may be required to causally support a proposition, us-
ing multiple supporters can mitigate the propagation of
possible risks by ensuring that not all sources of sup-
port are subject to the same risks. However, includ-
ing more actions can immediately realize more critical

risks. That is, by including more supporters, the set
r
R̃PG

(p, t + 1) may shrink, but the set c
R̃PG

(p, t + 1)

may grow. The measure of interest |c
R̃PG

(p, t + 1)| in-
dicates the cost in terms of critical risks to achieve a
proposition, but the set of possible risks r

R̃PG
(p, t + 1)

translates to potential critical risks for propositions ap-
pearing later in the planning graph. Thus, the tradeoff
to selecting supporters is between incurring immediate
cost and incurring future cost. This tradeoff is the crux
of the problem in planning with risks: actions selected
to remove risks often introduce new risks, but it is not
clear whether introduced risks will become realized un-
til the plan is complete.

We use the following greedy approach to selecting
supporters for a proposition. We first choose the sup-
porting action that introduces the fewest number of
critical risks, and break ties by minimizing the num-
ber of possible risks. To the set of chosen supporters,
we add the action whose intersection with the set of
possible risks is smallest, breaking ties with the num-
ber of new critical risks introduced. In this fashion, we
start by minimizing the number of immediate critical
risks and add actions until the number of future possi-
ble risks will not decrease further.
Heuristic Computation: The R̃PG reaches a fix-
point, when the critical risk function does not change,

c
R̃PG

(p, t) = c
R̃PG

(p, t + 1). The heuristic hl̃evel mea-

4

FFRISKY Control
Prob T/N/L/Q T/N/L/Q
DL1 0.57 / 11 / 9 / 0 0.18 / 12 / 9 / 0
DL2 33.65 / 999 / 21 / 1 0.47 / 51 / 20 / 2
DL3 204.60 / 6001 / 18 / 1 5.60 / 574 / 16 / 4
DL4 1416.59 / 27733 / 11 / 1 5.41 / 942 / 18 / 2
DL5 No Sol. 20.33 / 1071 / 16 / 4
R1 13.45 / 543 / 18 / 0 0.34 / 34 / 12 / 3
R2 6.55 / 833 / 12 / 2 2.03 / 311 / 12 / 2
R3 15.63 / 1099 / 9 / 0 2.68 / 208 / 10 / 1
R4 19.90 / 76 / 12 / 2 3.08 / 345 / 10 / 3
R5 989.55 / 4627 / 25 / 1 23.44 / 630 / 22 / 3

Table 1: Results For FFRISKY and the control planner.

sures the realized critical risks to achieving the goals at
the fixed point level t, such that

hl̃evel = |
⋃

p∈G c
R̃PG

(p, t)|.

Empirical Evaluation

The empirical evaluation is divided into three sections
that describe the domains used for the experiments, the
test setup used, and a presentation and discussion of the
results. We compare Frisksy with a control planner
that uses A* search and the FF heuristic to search in
terms of plan length. The questions that we would like
to answer include:

• Does FFRISKY find lower risk plans than the control
planner?

• Does the FFRISKY heuristic scale to find non-trivial
plans?

• Does reducing risk imply that plans have greater
length?

Domains

We modified two well-known IPC domains: Rovers and
DriverLog. Rovers involves a rover that must traverse
between several locations, take samples, take pictures,
and communicate data. In the Rovers modifications
most actions have a possible delete effect on calibrated
cameras and communicating data back to the lander
has a possible precondition that the lander is visible.
DriverLog involves several trucks, drivers, and packages
where drivers board and drive trucks and packages are
loaded and unloaded. The DriverLog modifications in-
volve possible effects that the driver breaks down when
driving and the driver can fix the car with a possible
fix effect. In DriverLog, there is also a possible pre-
condition to boarding the truck that it is empty, and
disembarking has a possible effect that it is empty – this
means that the truck can have more than one driver,
but it is possible in the true domain that there can be

only one driver per truck.1

Test Setup

The tests were run on a machine running Linux with
a 3 Ghz Xeon processor and a memory limit of 1GB.
All code was written in Java and run on the 1.5 JVM.
Both FFRISKY and the control planner share the same
A* implementation, but use different search node repre-
sentations. Both planners also use the same FF heuris-
tic implementation, but FFRISKY uses the FF heuristic
and the partial plan length to break ties between nodes
that have the same f-value (when computing risks).

The planners are compared by four measures: total
run time in seconds (T), the number of nodes expanded
(N), the solution plan length (L), and the solution plan
quality as the number of critical risks (Q).

Results

The results depicted in Table 1 compare FFRISKY to the
control planner on several problems (listed in each row).
The data presented for each planner are the measures
mentioned above. Instances in the DriverLog domain
are prefixed by “DL” and instances in the Rovers do-
main are prefixed by “R”.
Rovers: The Rovers domain involves relatively fewer
risks than the DriverLog domain, but we continue to
see improvement in the number of critical risks with
FFRISKY. In all cases, FFRISKY finds plans with fewer
risks. The heuristic used by FFRISKY appears to be
fairly weak because of the high number of additional
expanded nodes, and the heuristic considerably raises
the per node cost. Yet, there are cases, like R4, where
FFRISKY finds a plan in fewer nodes. It does appear that
reducing risk increases plan cost, except in R3, where
FFRISKY dominates in all but search time. Generally,
FFRISKY does not require many additional actions to
improve risk.
DriverLog: The DriverLog domain exhibits trends
that are similar to Rovers. FFRISKY requires more
search nodes, but always finds better risk plans in some-
times fewer plan steps. It appears that FFRISKY has
a weaker heuristic in this domain because it requires
a higher proportion of search nodes over the control
planner than in Rovers and fails to solve DL5. The ad-
ditional nodes is also likely to the plans admitting more
risks.
Summary: While our sample size is relatively small,
FFRISKY does appear to reduce risk over the control
planner and can scale reasonably well (without other
search enhancements, such as those used in FF and
other planners). Interestingly, there are cases where
FFRISKY finds plans with fewer risks and a lower plan
length than the control planner, but these seem to

1The domains and instances are available at:
http://www.cs.usu.edu/̃danbryce/supplementary/IncDoms.tgz.

5

be rare. We anticipate better scalability by using re-
laxed plans extracted from the risk propagated plan-
ning graph, but are encouraged by these preliminary
results.

Related Work

Planning with risks is noticeably similar to planning
with incomplete information (Bonet and Geffner, 2000),
where the action descriptions instead of the state are
incomplete. The action incompleteness could be mod-
eled as state incompleteness and our plans might be
conformant. However, conformant planning techniques
are not readily applicable because plans with risks will
not be able to guarantee goal satisfaction, rather, only
partial satisfaction. This is because plans with risks
are weak (Bertoli et al., 2001), and there is generally
no preference ordering over weak plans (i.e., there is
no meaningful degree of weakness). Moreover, trans-
lating the problem to planning under uncertainty may
decrease practical or theoretical performance, a topic
that we are investigating.

Our investigation is an instantiation of model-lite
planning, proposed by Kambhampati (2007), that fo-
cusses on incomplete domain theories. As pointed out
by Kambhampati (2007), constraint-based hierarchical
task networks are another approach to avoiding the
specification of all preconditions and effects by design-
ing methods and constraints that lead to the same
plans that would be realized by the underlying, implicit
causal links.

As previously stated, this work is a natural extension
of the model for evaluating plans in incomplete domains
(Garland and Lesh, 2002). Our methods for comput-
ing risks are slightly different in that we compute risks
in the forward direction, are more specific about which
open precondition risks occur (basing them on precon-
ditions and not just the action itself), and drop the
risks for false preconditions (because we require plans
are causally correct in the incomplete domain). In ad-
dition to calculating risks of partial plans, we have also
presented a relaxed planning heuristic that propagates
risks on planning graphs.

Conclusion

We have presented the first work to address planning
in incomplete domains as heuristic search to minimize
critical plan risks. Our planner, FFRISKY, i) performs
forward search while maintaining sets of possible risks
to state propositions and a set of realized critical risks,
and ii) estimates the future critical risks incurred by
propagating risks on planning graphs. We have shown
that, compared to a planner that essentially ignores as-
pects of the incomplete domain, FFRISKY is able to scale
similarly but find much better quality plans.

Future work on this topic will focus on additional
heuristics for estimating risk that incorporate possible

clobberer risks and other negative interactions. One di-
rection for extending the heuristics will use interaction
propagation to measure the cost added by possible or
real mutexes (Bryce and Smith, 2006). We also intend
to compare against the approach mentioned above that
translates the incomplete action descriptions into in-
complete states and uses a conformant planner. Direc-
tions for extending our model of incompleteness include
adding probabilistic measures of various action features
existing in the true domain and how incompleteness can
be integrated with uncertain/stochastic action effects.
Acknowledgements: This work was supported by the
DARPA Bootstrapped Learning contract HR001-07-C-
0060.

References

Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso,
P. 2001. Planning in nondeterministic domains under
partial observability via symbolic model checking. In
Proceedings of IJCAI’01.

Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. In Proceedings of ECP’99.

Bonet, B., and Geffner, H. 2000. Planning with incom-
plete information as heuristic search in belief space. In
Proceedings of AIPS’00.

Bryce, D., and Smith, D. E. 2006. Using interac-
tion to compute better probability estimates in plan
graphs. In ICAPS 2006 Workshop on Planning Under

Uncertainty and Execution Control for Autonomous

Systems.

Fikes, R., and Nilsson, N. 1971. STRIPS: A new ap-
proach to the application of theorem proving to prob-
lem solving. In Proceedings of Second International

Conference on Artificial Intelligence, 608–620.

Garland, A., and Lesh, N. 2002. Plan evaluation with
incomplete action descriptions. In AAAI.

Hoffmann, J., and Nebel, B. 2001. The FF planning
system: Fast plan generation through heuristic search.
Journal of Artificial Intelligence Research 14:253–302.

Kambhampati, S. 2007. Model-lite planning for the
web age masses: The challenges of planning with in-
complete and evolving domain theories. In Proceedings

of AAAI’07.

Mailler, R.; Bryce, D.; Shen, J.; and Orielly, C. 2009.
Mable: A framework for natural instruction. In Pro-

ceedings of AAMAS’09.

Wu, K.; Yang, Q.; and Jiang, Y. 2007. Arms: an au-
tomatic knowledge engineering tool for learning action
models for ai planning. Knowl. Eng. Rev. 22(2):135–
152.

6

