
Requirements on Heuristic Functions
when Using A* in Domains with Transpositions

Nir Pochter and Jeffrey S. Rosenschein
School of Engineering and Computer Science
The Hebrew University of Jerusalem, Israel

{nirp, jeff}@cs.huji.ac.il

Abstract

Heuristic functions play a crucial rule in optimal planning,
and the theoretical limitations of algorithms using such func-
tions are therefore of interest. Much work has focused on
finding bounds on the behavior of heuristic search algorithms,
using heuristics with specific attributes. Recently, it has
been shown that in domains that contain transpositions, even
heuristics that are intuitively considered to be very good, per-
form very badly. We show that a large family of non-perfect
heuristic functions may perform well in such domains, and
demonstrate some properties of a heuristic function that sup-
port success in those domains.

Introduction
Many state-of-the-art planners that optimally solve classi-
cal planning problems use heuristic functions to guide their
search. While planning problems are computationally hard
to solve, heuristics are intended to help the planner solve
the problem quickly, in practice. The importance of heuris-
tics has encouraged researchers to exert much effort on find-
ing methods that automatically create heuristics for a do-
main, based on its description (Katz and Domshlak 2008;
Helmert, Haslum, and Hoffmann 2008).

The extensive use of heuristic functions also gives rise to
questions about the theoretical limits of their use. For ex-
ample, given a domain, can we always find a heuristic func-
tion, which can be calculated efficiently, that will help solve
problems quickly? Or given a heuristic function, how good
a job will it do in the domain? These questions have more
than theoretical importance—if one can prove that it is im-
possible to efficiently find a good heuristic for a family of
domains, then research should focus on other directions.

To analyze the performance of heuristic functions, one
usually defines a family of heuristics (generally those which
are considered intuitively to be good heuristics), and an-
alyzes their average and worst-case behavior. Two popu-
lar families of heuristics are additive heuristics (where the
heuristic is accurate up to an additive constant), and relative
heuristics (where the heuristic is accurate up to a multiplica-
tive constant).

In previous work, heuristics were generally evaluated us-
ing the notion of “accuracy”; that is, given a state, what is the
discrepancy between the heuristic’s estimate for the state’s
distance from the goal, and the state’s real distance from the

goal? In this paper, we will use a different measurement:
the chance that the heuristic function gives a precisely cor-
rect value for the distance to the goal from a random state.
We call this measurement theProbably Accuratemeasure-
ment, orPA(h).1 We will show that in domains that have
transpositions,PA(h) is highly correlated with performance,
and that heuristic functions that areǫ-approximate with the
sameǫ, but have differentPA(h) values, can behave dramat-
ically differently in such domains, when using the A* algo-
rithm (Hart, Nilsson, and Raphael 1968) .

Related Work
Much research has studied the behavior and complexity of
the A* algorithm, using various heuristic functions in do-
mains with certain restrictions.

Pohl (1977) considered heuristic functions that have an
error which is bounded by a constant, in which case the A*
algorithm expands only a linear number of nodes; he also
considered the case of constant relative error. However, his
analysis required some conditions on the domain, which are
often violated specifically in planning domains. First, his
analysis requires that the branching factor be constant. Sec-
ond, it requires that there is only a single goal state. Finally,
it requires that there be no transpositions.

Gaschnig (1977) showed that with the same conditions,
A* using a heuristic function with logarithmic absolute er-
ror will require expansion of a polynomial number of nodes.
Pearl (1984) showed that these results also hold in the av-
erage case. Dinh et al. (2007) have extended these results
for the case of additive error on the heuristic, with fewer re-
strictions on the domain (as multiple goals were allowed).
However, transpositions were still not considered in their
analysis.

Some work has also been done on trying to predict the
number of nodes expanded by the IDA* algorithm (Korf
1985). Korf et al. (2001) showed that IDA* expands at most∑d

i=0 N(i)P (d − i) nodes when the search is bounded by
depthd, whereN(i) is the number of nodes at depthi in the
search tree, andP (v) is the equilibrium distribution.

Zahavi et al. (2008) extended this work by replacing a
static distribution with a conditional distribution (which took
into account certain properties of the search space). They

1We are usingaccuratehere as a synonym for perfect.

13



derived a formula based on the conditional distribution that
also worked with inconsistent heuristics, and using a set of
nonrandom start states. The Korf and Zahavi formulas, are
limited to IDA*. although (Breyer and Korf 2008) showed
empirically that these formulas with minor modifications
can be used to predict the performance of A* as well,

Recently, Helmert and Röger (2008) investigated the be-
havior of A* on domains that contain transpositions, using
analmost perfectheuristic. An almost perfect heuristic is a
heuristic that for each state returns the real distance minus a
constantc (i.e., the almost perfect heuristic ish∗ − c, where
h∗ is the real distance). Their results showed that A* with
an almost perfect heuristic will perform very badly in some
domains that contain transpositions, no matter how smallc
is. We will show that while this is true, a large family of
heuristic functions will perform well in such domains—even
though those heuristics may not intuitively seem superior to
an almost perfect heuristic function, nor surpass it by other
measurements (like average error).

Evaluating Heuristics
While the almost perfect heuristic is significant for theoret-
ical analysis, it is not common to find such a heuristic in
practice. Heuristic functions generally have different errors
in different states. How, then, should we analyze a given
heuristic?

As previously mentioned, one way is to bound the error
that the heuristic function gives for any state in the search
space, either by additive or relative constants. Another way
is to use the expected error of the heuristic on each node.
In this paper, we focus on theprobably accuratemeasure-
ment. We say that a heuristic functionh hasPA(h) = p if
Pr[h∗(v) − h(v) = 0] = p for v which is chosen randomly
using the uniform distribution, and also that the probabil-
ity of v getting a perfect heuristic value is independent of
the probability of any other node getting a perfect heuristic
value. Under this measurement, one heuristic will be con-
sidered better than another if it achieves a perfect estimate
in more states. Specifically, thealmost perfectheuristic has
the lowest possibleprobably accuratemeasurement, since
the former does not give a perfect estimate inany state.
In fact, many heuristic functions that give an additiveǫ-
approximate estimate would be dominated, using thePA(h)
measurement, by heuristic functions that are not additiveǫ-
approximate.

Obviously,PA(h) is not enough by itself to show that a
heuristic is good; in some cases, average error may play a
more important role in performance. However, in the next
section we will show that in domains with many transposi-
tions, this measurement can be crucial.

Transpositions on Shortest Paths
We now evaluate how many nodes will be expanded by a
heuristic withPA(h) = p in a search problem with many
transpositions. We demonstrate that in domains that have a
large number of transpositions, it is important for the heuris-
tic to have a “large enough”p. To show this, we will prove
the expected estimate of such a heuristic where the only

available paths are transpositions, and compare that with the
performance of the almost perfect heuristic.

Our domain will consist of two states,s andt, which are
connected viam distinguished separate paths, each of length
n. That is, fori = 1, . . . , m:

1. s is connected tovi,1

2. Forj = 1, . . . , n − 1, vi,j is connected tovi,j+1

3. vi,n is connected tot.

Our search task will be to find the shortest path froms to t,
using the A* algorithm. First, we claim that using an almost
perfect heuristic, the number of nodes that the A* algorithm
will expand equals the number of states in the search space.

s

t

Figure 1: Example of a domain withm shortest paths of
lengthn

Theorem 1. The A* algorithm using an almost perfect, i.e.,
h∗ − c, heuristic will expandnm + 1 nodes when searching
froms to t on the domain defined above.

Proof. Let us look at some pathpi. Since the start state is
connected to all the paths that lead to the target state, when
it is removed from the open list all its children will be added
to the open list, which includes one node frompi. From
this stage on, if this node is expanded then its son is also on
pi; therefore, at each stage of the execution of A* we have
at least one node that belongs topi on the open list, until
the algorithm stops. Given that the almost perfect heuristic
always estimates the heuristic with a−c constant, thef -
value of the nodeni that belongs topi and is in the open list
is g(ni)+h(ni)=g(ni)+h∗(ni)−c =h∗(s)−c. Since thef -
value ofni is smaller than the real cost, it has to be expanded
before A* terminates. This is true for allni ∈ pi and for all
pi, so all nodes from all paths have to be expanded, giving
usnm nodes, plus the start node, i.e.,nm + 1 nodes.

We will now bound the number of nodes using an admis-
sible heuristic function that hasPA(h) = p, starting with the
following theorem:

14



Theorem 2. When using A* to search froms to t in the do-
main defined above, and given that two nodesni and nj ,
from different optimal pathspi andpj , are in the open list,
andh∗(ni) − h(ni) > h∗(nj) − h(nj), thenni will be ex-
panded beforenj .

Proof.

f(ni) = g(ni) + h(ni)

= g(ni) + h∗(ni) − (h∗(ni) − h(ni))

= h∗(s) − (h∗(ni) − h(ni))

< h∗(s) − (h∗(nj) − h(nj))

= g(nj) + h∗(nj) − (h∗(nj) − h(nj))

= g(nj) + h(nj) = f(nj)

Next we will prove that if the open list contains a node
each from two paths, whereh gives an accurate estimate on
both nodes, then no more nodes will be expanded from the
path with the lowerg-value.

Theorem 3. Given that two pathsp1 andp2 are both opti-
mal, and that noden1 from pathp1 and noden2 from path
p2 were both added to the open list, andg(n2) > g(n1), and
h(n1) = h∗(n1), then no more nodes will be expanded from
path p1 (when using an implementation of A* that breaks
ties by choosing the node with the higherg-value).

Proof. Since the heuristic is admissible, it cannot overesti-
mate the distance to the goal; therefore, thef -value ofn2

has to be smaller than or equal to the real distance from the
start to the target. If it is smaller, then it will be expanded
beforen1, asn1’s f -value is the exact distance (since the
heuristic there is accurate). If the heuristic is accurate on
n2, its f -value will be equal ton1’s f -value, but it will be
expanded first because it has a higherg-value. This process
continues on all nodes that lie onp2 aftern2, until the goal
is reached. When the goal is reached, thef -value is accu-
rate, andn1 will not be expanded because itsf -value is not
lower than the real distance. Therefore, no more nodes from
p1 will be expanded.

Now, we will see what the expected number of node ex-
pansions is, until a node that has a perfect estimate is found:

Theorem 4. When searching froms to t on the domain de-
fined above, and given that PA(h) = p, the expected number
of nodes that will be expanded on a path that has length
L, before the expansion of the first node on that path where
h provides a perfect heuristic or the end of the path was

reached, isL(1−p)L+1−(L+1)(1−p)L+1
p

+ L(1 − p)L.

Proof. Let X be a random variable representing the ex-
pected number of nodes expanded on a path before either a
node on that path that has a perfect heuristic is expanded,
or the path reaches to an end. Fori = 0 . . . L − 1, X
has the same probability function as a geometric variable
with probability p: Pr(X = i) = (1 − p)i−1p. How-
ever, forL, we have to add all the values in which it would
take more thanL turns until success. We thus get that

E(x) =
∑l

i=0 p(1 − p)i−1 ∗ i +
∑

∞

i=l+1 Lp(1 − p)i−1.
We split the expression, and first get that:

L∑

i=0

(p(1 − p)i−1)i

=
p

1 − p

L∑

i=0

(1 − p)ii

=
p

1 − p

L(1 − p)L+2 − (L + 1)(1 − p)L+1 + (1 − p)

(1 − (1 − p))2

=
L(1 − p)L + 1 − (L + 1)(1 − p)L + 1

p

Now we look at the tail:
∞∑

i=L+1

(p(1 − p)i−1) ∗ L = Lp

∞∑

i=L+1

((1 − p)i−1)

= Lp

∞∑

i=0

((1 − p)i+L = Lp(1 − p)L

∞∑

i=0

((1 − p)i)

= Lp(1 − p)L 1

1 − (1 − p)
= L(1 − p)L

This means that all but one path will stop expanding nodes
after an expected number ofe(n, p) nodes, and the one last
path will expandn nodes. We can look at each path as a
random variable with expected value ofe(n, p). Taking m
such variables plus the start node would giveme(n, p) + 1.
However, the leading path will continue until reaching the
end, so all of itsn nodes will be expanded. This gives(m−
1)e(n, p) + 1 + n nodes. This is, however, an upper bound,
as the path that will continue until its end was not chosen
randomly - it was the leading path, therefor the expected
number of nodes that will be expanded from all other paths
is a number that is smaller thane(n, p). This gives us an
upper bound of(m − 1)e(n, p) + n + 1.

Adding the two together we get:

E(X) = L(1−p)L+1−(L+1)(1−p)L+1
p

+ L(1 − p)L

To more easily understand the meaning of this expression,
one can clearly see that it is smaller than1

p
. We will use

this expression often in the rest of the paper; it is therefore
convenient to frame it as a function ofL andp:

e(L, p) ≡ L(1−p)L+1−(L+1)(1−p)L+1
p

+ L(1 − p)L.

Theorem 5. When searching froms to t on the domain
defined above using A*, and given that there arem paths
with lengthn that are optimal, and PA(h) = p, the ex-
pected number of nodes that will be expanded is smaller than
(m − 1)e(n, p) + n + 1.

Proof. After the start node is expanded from the open list,
all of its sons enter the open list. All paths have a state con-
nected to the start state, and therefore all paths will have a
node in the open list until the target is reached through them.
Let us look at pathpi. According to Theorem 4, we know
that the expected number of node expansions before reach-
ing a nodeni ∈ pi that hash(ni) = h∗(ni) is e(n, p). After

15



this happens, according to Theorem 2, no more nodes will
be expanded from this path until all other paths have reached
a node with a perfect estimate (this includes reaching the tar-
get). When this happens, there are two options:

1. There exists a pathpj , such that the nodenj that is onpj

and is on the open list, has a higherg-value. According
to Theorem 3, no additional nodes will be expanded from
pi.

2. pi is the leading path (i.e., has the highestg-value), and
will continue until the end.2

This means that all but one path will stop expanding nodes
after an expected number ofe(n, p) nodes, and the one last
path will expandn nodes. We can look at each path as a
random variable with expected value ofe(n, p). Takingm
such variables plus the start node would giveme(n, p) + 1.
However, the leading path will continue until reaching the
end, so all of itsn nodes will be expanded. This gives(m−
1)e(n, p) + 1 + n nodes. This is, however, an upper bound,
as the path that will continue until its end was not chosen
randomly—it was the leading path. Therefore, the expected
number of nodes that will be expanded from all other paths
is a number that is smaller thane(n, p). This gives us an
upper bound of(m − 1)e(n, p) + n + 1.

Transpositions on Non-Shortest Paths
So far, we have only considered the penalty taken on alter-
native shortest paths. Now, we will look at a broader picture,
namely the penalty paid in transposition on off-track paths—
paths that are not shortest paths to the target.

First, consider the following scenario. The state space
is composed of a start states and a goal statet, and there
is one shortest path froms to t, with lengthn. There are
alsom disjoint paths froms to t with lengthn + 1 (as in
the previous domain, these lengths do not includes andt).
With good tie-breaking and some luck, the almost perfect
heuristic withc = 1 will expand onlyn + 2 nodes (this
will happen if the search follows the shortest path until it
reaches the target). In the case ofc = 2, even luck will not
help: using a similar argument as before, one can see that at
leastn nodes from each non-shortest path will have to be ex-
panded before A* terminates. Again, using a heuristic with
PA(h) = p will give better results on the expected number
of nodes expanded from these paths, even if we do not know
the degree of error it gives on states that do not get a per-
fect estimate. In fact, a weaker demand will suffice here:
instead ofPr[h∗(v) − h(v)) = 0] = p, we will only need
Pr[h∗(s) − h(s) ≤ 1] = p to get these results.

This is true for the transpositions of paths that are longer
than the shortest path by any length. Consider a domain
with two nodes,s and t, that are connected by distinct
paths. There is one shortest path, with lengthn. Also, for
i = 1, . . . , L there aremi distinct paths with lengthn + i.
The task is to find the shortest path froms to t. We will

2We assume that there is arbitrary tie-breaking if there are sev-
eral leading paths. After the first tie-breaking, there is only one
leading path that will continue until it reaches the target.

compare a variant of the almost perfect heuristic to a heuris-
tic function that satisfiesPr[h∗(v)−h(v) < i] = p for each
v that lies on a path which is longer byi than the shortest
path. We call this theProbably Accurate Enoughmeasure-
ment with parameterp, or PAE(h) = p.

t

s

Figure 2: Example of a domain with one shortest path and
many non-shortest paths

Theorem 6. When searching froms to t in the domain de-
fined above using A* and a heuristic function that for each
statestate that lies on a path that is of lengthn + i + 1
gives a value ofh∗(state) − (i + 1), the number of nodes
expanded will be at least

∑L

i=1 nmi + n + 2.3

Proof. Since the start state is connected to all paths, at each
stage at least one node from each path will be in the open
list. Let pi be a path with lengthn + i. Now let us look at a
nodeni that is on pathpi, and is on the open list.

f(ni) =g(ni) + h(ni)

= g(ni) + h∗(ni) − (h∗(ni) − h(ni))

= n + i − (i + 1)

< h∗(s).

This is true for at least the firstn nodes inpi; therefore, at
least the firstn nodes frompi will be expanded. This is true
for all paths. In addition,s need to be expanded once, giving
a total of at least:

∑L

i=1 nmi + n + 1.

Theorem 7. Let h be a heuristic function with PAE(h) =
p. The expected number of nodes that will be expanded is
smaller than

∑L

i=1(e(mi, p)) + n + 1.

3An almost perfect heuristic would appear to give negativeh-
values to states that are closer thanc from the target state. Our
statement of the theorem is adjusted to avoid this apparent problem.

16



Proof. s is connected to all paths; therefore, at all times
there will be one node from each path on the open list. For
each path that is not a shortest path tot, all nodes will be
expanded until a node withf -value larger thanh∗(s) enters
the open list. Letpi be a path with lengthn+ i. Thef -value
of a nodeni that belongs topi is:

g(ni) + h(ni) = g(ni) + h∗(ni) − (h∗(ni) − h(ni))

= n + i − (h∗(ni) − h(ni))

for nodes withg(ni) ≤ n. ni will be expanded if its
f -value is smaller thanh∗(s), and may or may not be
expanded if itsf -value equalsh∗(s) (depending on tie-
breaking). p[f(ni) > h∗(s)] = p[h∗(ni) − h(ni) < i];
therefore, sincePAE(h) = p, the probability thatni will not
be expanded is at leastp, meaning that the expected num-
ber of nodes that will be expanded from pathpi is at most
e(mi, p). From linearity of expectation we get that the to-
tal number of nodes that will be expanded from paths with
lengthn + i is thereforee(mi, p), giving a total of at most∑L

i=1(e(mi, p)) + n + 1 nodes.

Discussion and Future Work
We have shown that the A* algorithm can do well in do-
mains that have transpositions, depending on the percentage
of states for which its heuristic function gives accurate val-
ues, that is,PA(h). Our theoretical result uses this measure-
ment to bound the number of nodes that the A* algorithm
will explore on average.

These results support the argument, that when developing
heuristics for such domains, or creating heuristics that are
domain independent,PA(h) should be taken into account,
and a heuristic with a favorablePA(h) might be preferred,
even if that heuristic provides values of inferior accuracy on
average.

While it is possible to create a heuristic which isPA(h)(a
deterministic or probabilistic one), this heuristic will be in-
consistent, as the error of each state must be independent of
the error of its neighboring states. Even though most heuris-
tics used in planning today are consistent, we believe that
a heuristic that is “close” to being probably accurate might
still have an advantage; this work can lead to a better under-
standing of why certain heuristics do well in some domains
(or families of states within some domains), by analyzing the
number of states in which they give accurate results. In fu-
ture work, we hope to examine this assumption empirically.
Another interesting direction for future work is to drop the
independence condition, and instead take the conditional ex-
pectation into account.

In our proofs we also assumed that the paths only meet in
the last state and are distinct before that point. While this
is not usually the case in planning, this scenario is proba-
bly a sub-problem in many cases, in which case the results
apply for the sub-cases (for example, a search problem that
connects a states to statem via n different shortest paths,
and then connectsm to t via n distinct shortest paths). It
is therefore our conjecture that probably accurate heuristics
can do well in practice in planning domains with transposi-
tions, even if those domains do not exhibit the exact struc-

ture posited in our theorems. In future work, we hope to
experimentally support this conjecture.

References
Breyer, T. M., and Korf, R. E. 2008. Recent results from
analyzing the performance of heuristic search. InThe First
International Symposium on Search Techniques in Artifi-
cial Intelligence and Robotics (STAIR-08).
Dinh, H. T.; Russell, A.; and Su, Y. 2007. On the value
of good advice: The complexity of A* search with accu-
rate heuristics. InProceedings of the Twenty-Second AAAI
Conference on Artificial Intelligence (AAAI 2007), 1140–
1145.
Gaschnig, J. 1977. Exactly how good are heuristics?: To-
ward a realistic predictive theory of best-first search. In
Proceedings of the 5th International Joint Conference on
Artificial Intelligence (IJCAI 1977), 434–441.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. Systems Science and Cybernetics, IEEE Transac-
tions on4(2):100–107.
Helmert, M., and Röger, G. 2008. How good is almost per-
fect? InProceedings of the Twenty-Third AAAI Conference
on Artificial Intelligence (AAAI 2008), 944–949.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2008. Explicit-
state abstraction: A new method for generating heuristic
functions. In Fox, D., and Gomes, C. P., eds.,Proceedings
of the Twenty-Third AAAI Conference on Artificial Intelli-
gence (AAAI 2008), 1547–1550. AAAI Press.
Katz, M., and Domshlak, C. 2008. Structural patterns
heuristics via fork decomposition. In Rintanen, J.; Nebel,
B.; Beck, J. C.; and Hansen, E. A., eds.,Eighteenth Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS 2008), 182–189. AAAI.
Korf, R. E.; Reid, M.; and Edelkamp, S. 2001. Time com-
plexity of iterative-deepening-A*. Artificial Intelligence
129(1-2):199–218.
Korf, R. E. 1985. Iterative-deepening-A*: An optimal
admissible tree search. InProceedings of the Ninth Inter-
national Joint Conference on Artificial Intelligence (IJCAI
1985), 1034–1036.
Pearl, J. 1984.Heuristics: intelligent search strategies for
computer problem solving. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc.
Pohl, I. 1977. Practical and theoretical considerations in
heuristic search algorithms. In Elcock, E. W., and Michie,
D., eds.,Machine Intelligence 8. Ellis Horwood Ltd. and
John Wiley and Sons. 55–72.
Zahavi, U.; Felner, A.; Burch, N.; and Holte, R. C. 2008.
Predicting the performance of IDA* with conditional dis-
tributions. InProceedings of the Twenty-Third AAAI Con-
ference on Artificial Intelligence (AAAI 2008), 381–386.

17




