

Improving relaxed-plan-based heuristics via simulated

 execution of relaxed-plans

Dunbo Cai1, Minghao Yin2, Jianan Wang3

1College of Computer Science and Technology, Jilin University, Jilin, China
2School of Computer, Northeast Normal University, Jilin, China

3Network Information Center, Northeast Normal University, Jilin, China
dunbocai@gmail.com, ymh@nenu.edu.cn, wangjn@nenu.edu.cn

Abstract
Relaxed plans, in the ignoring action’s delete list relaxation
mode, have been used as a good approximation of the goal-
distances of search states. Recently, many researchers tried
to improve relaxed plan based (RPB) heuristics by taking
information from action’s delete lists and got promising
results. However, it is still a crucial point to keep the
improved heuristics with low computational cost while
discovering more information. We propose to improve RPB
heuristics by gathering information from a simulated
execution of relaxed plans. Based on the simulation, we
combine the number of unsatisfied action’s preconditions
and top level goals as a penalty to a RPB heuristic. The
penalty is sensitive to both the order and negative effects of
actions in a relaxed plan and requests low overhead in
computation in most cases in our experiment. Preliminary
results show that our methods improve the FF’s heuristic
over several domains.

 Introduction
Deriving heuristic functions from relaxed problems has got
big success in domain independent satisficing planning
(Bonet and Geffner 2001; Hoffmann and Nebel 2001;
Helmert 2004). “Ignoring delete lists” is a popular way of
making such relaxations. Based on the relaxation, the RPB
heuristic in FF (hFF) (Hoffmann and Nebel 2001) and the
set-additive heuristic (Keyder and Geffner 2007) still show
relative power to the recently proposed Causal Graph
based heuristic hCG (Helmert 2004) and the context-
enhanced additive heuristic hcea (Helmert and Geffner 2008)
that take account of actions’ delete effects to some extent.
Particularly, hFF is capable of capturing positive
interactions among sub-goals, which can not be easily
reasoned in the intrinsic additive heuristics, such as hCG
and hcea. Hence, there is a lot of recent work towards
improving RPB heuristics by taking into account the delete
effects of actions in several ways, e.g., the learning based
approach by Yoon et al. (2007); the TSP heuristic (Keyder
and Geffner 2007) and the Occlusion Penalties (Baier
2007).

 In this paper, we propose a simple and general way to
consider negative interactions among sub-goals based on
information from a relaxed plan. We simulate the
execution of a relaxed plan while accounting for actions’
delete effects, and combine the number of unsatisfied
actions’ preconditions and top-level goals as a simulated
execution penalty (SEP) of the relaxed plan. The SEP and
the original heuristic value together provide a new
estimation of the goal distance of a state. Note that our idea
can be applied to any kind of relaxed plans to take account
of actions’ delete effects, such as those generated by
classical planning heuristic functions hFF or the set-additive
and the conformant planning heuristic function of
Conformant-FF (Brafman and Hoffmann 2008). The
underlying components include how to define the
semantics of actions’ application on (approximate) states
and how to synthesize the penalty. In this paper we
propose semantics for the simulation of classical relaxed
plans (in section 3). As there are several ways to synthesize
the penalty: qualitatively with thinking optimistically or
quantitatively with thinking pessimistically, we’ll provide
empirical results on both. In addition, we’ll show that our
approach is sensitive to the order of actions in a relaxed
plan and hence different from the approach in (Baier 2007).
The simulation of relaxed plans could serve as a criterion
for knowing how close a relaxed plan is to a real plan in
terms of the actions and the order of actions.
 We apply our approach on hFF, and get two heuristic
functions called hPEO-FF and hPEP-FF. Experimental results
on benchmarks domains show that hPEP-FF gains remarked
improvement on hFF on several domains.

The paper is organized as follows. The next section
introduces backgrounds of planning. In section three we
motivate our approach by an example, and then define the
semantics for executing classical relaxed plans and the
aggregation of penalties. Following that, we give the
experimental results of our approach on several benchmark
domains. We make some discussions and conclude at the
end.

38

Background
A planning task is T = (F, O, I, G), where F is the set of
atoms involved, O is the set of actions, I ⊆ F is the initial
state, and G ⊆ F is the goal conditions. We follow the
representation of actions in (Hoffmann and Nebel 2001).
An action o ∈ O is of the form (pre(o), add(o), del(o)),
where pre(o), add(o) and del(o) are subsets of F and
denote preconditions, add list and delete list of o
respectively. A state s is a subset of F. An action o is
applicable in s if pre(o) ⊆ s. Here, we assume each action
with cost 1. The planning problem on T is to find a
sequence of actions that maps the initial state I into a goal
state sG that satisfies sG ⊆ G.
 The delete-relaxation of T = (F, O, I, G) is T′ = (F, O′, I,
G) where A′ = {(pre(o), add(o), ∅)| (pre(o), add(o), del(o))
∈ A}. The cost of T is estimated by the length of a plan of
T′, which is computed by the relaxed GraphPlan in hFF
(Hoffmann and Nebel 2001) or by mathematical equations
in the set-additive heuristic (Kedyer and Geffner 2007).
 The RPB heuristics can capture the so-called positive
interactions among goals: if there is an action o that adds
two facts p and q and is applicable in a state s, then the cost
of reaching p and q from s is estimated by the RPB
heuristics as 1. In contrast, the additive heuristics may
count o twice in the above example, which is not
reasonable. However, as delete-lists of actions are ignored,
RPB heuristics cannot reason about negative interactions
among sub-goals. Take a simple example. There is an
action o′ that adds a goal fact p and deletes a goal fact q. If
q was reached and o′ is used to achieve p then q is
destroyed and should be re-achieved with an additional
cost. RPB heuristics will ignore the additional cost and
hence misguide a search algorithm in some cases as
discussed in (Helmert 2004). In the following section,
we’ll use the delete effects of actions in relaxed plans to
take account of such additional cost, which can also
uncover problem structures to some extent.

Figure 1: Blocksworld Example.

Enhancing RPB heuristics with penalties
We firstly illustrate our idea by the example in Fig. 1. In
the planner FF, a relaxed plan for the state s is :
<{unstack(A,B)},{unstack(B,C)},{pickup(C)},{stack(C,A)
}>. Thus, the heuristic value for s is 4, which under-
estimates the real optimal goal-distance that is 8. To
improve the estimate, we’d like to know how much
additional cost should be paid to extend the relaxed plan be
a real plan. We could estimate the cost by a run of the
relaxed plan with recording the number of unfulfilled

preconditions (flaws) of actions in the relaxed plan. Table 1
lists the actions in order in the relaxed plan and also the
global goals. Let’s make a run of the relaxed plan and see
what happens. The preconditions of the first action
unstack(A,B) are all fulfilled in the state s. After executing
unstack(A,B) with both its add list and delete list on s, we
get an approximate state s’ where the fact handempty is
deleted. For the second action unstack(B,C), its
precondition handempty is not fulfilled in s’. To fix the
flaw, we need a sequence of actions that can apply after
unstack(A,B) and adds handempty (in this case,
putdown(A) can do the job). With the fix, we may execute
unstack(B,C) on s’ with adding the add list and deleting the
delete list of unstack(B,C). Following this way, we may
found: the third action pickup(C) has handempty
unfulfilled; the forth action stack(C,A) has clear(A)
unfulfilled and finally the global goal on(A,B) is not
fulfilled. Totally, we need 3 additional actions to fix the
flaws in actions’ preconditions and 1 action for the goal
on(A,B). With these information, we propose to update the
heuristic value of s be 4+(3+1)=8. We call the cost 3+1 as
a penalty for the RPB heuristic.
 We should note that getting the optimal estimation in the
above example is a coincidence anyway. However, the
simulated run of the relaxed plan in Table 1 really
uncovers some negative effects of actions. Especially, our
approach considers the availability of the hand, which is
ignored in the relaxed problem.

Table 1: Actions in a relaxed plan.

Simulated Execution of Relaxed-Plans
Given a planning task T = <F, O, s, G> and a relaxed plan
for s of the form π = <a0, …, an-1>. The simulated
execution of π is a sequence of state <s0, s1, …, sn>, where
s0 = s, si = si-1 + pre(ai-1) + add(ai-1) – del(ai-1) for i = 1..n.
Note that the simulated execution is different from real
execution of ai-1 on si-1: si = si-1 + add(ai-1) – del(ai-1), to
reflect the existences of fixes. We assume that there are
always some sequence of actions add the unfulfilled
preconditions of ai-1 in si-1: pre(ai-1) - si-1.
 We assume a relaxed plan is a sequence of actions. The
order of actions in the relaxed plan is set by the underlying
algorithms constructing the relaxed plan. We’ll explain this
on hFF later. Also note that, we may need an exponential
number of actions to achieve one unfulfilled precondition
of an action. So, we make further simplifications in the
following section to aggregate penalties.

Aggregate Penalties
From the definition of the simulated execution, if ai is not
applicable on the state si-1, we assume there are some

unstack(A,B) unstack(B,C) pickup(C) stack(C,A) Global
goals

pre:
clear(A)
on(A,B)
handempty

pre:
clear(B)
on(B,C)
handempty

pre:
clear(C)
handempty

pre:
holding(C)
clear(A)

pre:
on(A,B)
on(C,A)

C

B

A C

B

A

Initial State Goal

39

additional actions that can reach facts in pre(ai-1) – si-1. If
there are more than one unfulfilled preconditions, we
propose two ways to estimate the number of actions that
are needed. If thinking optimistically, we could use one
action to achieve all the unfulfilled preconditions. If
thinking pessimistically, we could use one action to
achieve one such precondition only. According to these
two options, we define the penalties of relaxed plans in the
following two ways.
 For convenience, we add a dummy action into T = <F,
O, s, G> to represent goals: aG with preconditions G, an
add list {g} and an empty delete list. The penalty of a
relaxed plan π = <a0, …, an-1> for T is:

0..
(,) (,)i ii n

P s ER s aπ
=

= ∑ (1)
where si is generated in the simulated execution of π and an
= aG, and

0 ()
(,)

1
i i

i i

if pre a s
ER s a

else
⊆⎧

= ⎨
⎩

 (2)

or
ER(si,ai) = |pre(ai) - si| (3).

If be optimistic, we use equations (1) and (2); otherwise we
use equations (1) and (3). However, thinking optimistically
may seem not realistic in domains where a set of facts can
not be reached at the same time by any action. Our future
work would consider to use a sequence of actions to fix a
flaw when aggregating penalties.

Penalty-enhanced RPB heuristics
Given a RPB heuristic function h, for a state s and a
relaxed plan π defined by h for s, we define the penalty-
enhanced version of h as:

hPE(s) = h(s) + P(s, π) (4).
The penalty-enhanced RPB heuristic uses both the solution
length of a relaxed plan and the cost of fixing the flaws in
our “simulated execution of the plan”. Hence, it has the
potential to be more informative. P(s, π) can be calculated
in time O(n|F|), where n is the number of actions in the
relaxed plan and F is the set of atoms in the planning task.
 Our approach can be applied to any kind of RPB
heuristic that defines a relaxed plan while making
estimations of states. And, it will be interesting to see what
will happen when our approach applied to several RPB
heuristics, as the penalty P(s,π) depends on the order of
actions in a relaxed plan. In the next section, we provide
results on the well-known heuristic hFF.

Experimental Evaluation
We applied our approach on FF, and tested nine
benchmark domains. We implemented the two versions of
our approach with the code of FF-2.3 1 : the optimistic
version hPEO-FF(s) = hFF(s) + P(s,π) with P(s,π) defined by
equations (1) and (2); the pessimistic version: hPEP-FF(s) =
hFF(s) + P(s,π) with P(s,π) defined by equations (1) and (3).

1 http://members.deri.at/~joergh/ff.html

The search algorithms are Enforced Hill-Climbing (EHC)
and Greedy Best-First (GBF), where we try EHC first and
can GBF after EHC fails. The nine tested domains are:
Assembly, Blocks (with 4 operators), Schedule, FreeCell,
Depot, Rovers, Airport, Pips-notankage, and Trucks. All
the instances in every domain are from the test suites of
recent IPCs (1-5). The test was done on a computer
running Linux with a 3.2GHz Intel Xeon CPU. The time
limit is 300s and the memory limit is 512M. We report
here the results of hFF, hPEO-FF and hPEP-FF, in terms of the
failing rate, average node-expansions and average search-
time over commonly solved instances.
 The relaxed plans computed by FF following some
strategies, such as “noop-first” and “actions with least
difficulty first” (Hoffmann & Nebel 2001). These
heuristics are proved to be useful. However, they are
greedy to put actions at their earliest applicable time points
in the relaxed problem. For example, given three locations
A, B, C where A is connected to B and C, but B and C are
not connected. If we want to traverse B and C from A to
finish some logistic task, it is not reasonable to execute
move(A,B) and move(A,C) both at the first time point. If
we can order these actions in a more reasonable way
(Keyder and Geffner 2007), then other actions, such as
“loading packages”, may be ordered accordingly in some
way. This is one of our future working directions.
 Before reporting the detailed data, we give a brief
summary on the result. In the results, hPEO-FF and hPEP-FF
show different performance on nearly a half of the testing
domains. From the overall results, we see that hPEP-FF is
much better than hPEO-FF. Compared to hFF, hPEP-FF and
hPEO-FF have a slight increase in failing rate, but show
remarked improvements in efficiency on 6 and 5 domains
respectively.

 Number of unsolved Instances
Domains hFF hPEO-FF hPEP-FF
Assembly (24) 0 0 0
Blocks (35) 4 3 0
Schedule (150) 17 19 26
FreeCell (20) 0 2 2
Depot (22) 2 3 3
Rovers (40) 4 0 0
Airport (34) 5 6 2
Pipes-no (34) 4 8 6
Trucks (30) 19 19 19
Total (389) 55 60 58

Table 2: Number of unsolved instances by domain.

 Table 2 shows the failing rate of the tested heuristics.
From the table, we can see that hPEO-FF and hPEO-FF hFF fails
a little more than hFF. hPEO-FF is better than hFF on Blocks
and Rovers. hPEP-FF is better than hFF on Blocks, Rovers
and Airport. The three heuristic have difficulty in solving
instances from the harder domains: Schedule (in IPC-2),

40

Pips-notankage (in IPC-4) and Trucks (in IPC-5) within the
given resource limits. We note that, in the Blocks and
Rovers, hFF fails on some large instances, which are all
solved by hPEP-FF. In other domains, the three heuristics
often fails on large instances due to the limits on the
resource. Our new heuristics also fails on some instances
of moderate size that are solved by hFF.

 Average Node-expansions
Domains hFF hPEO-FF hPEO-FF/hFF hPEP-FF hPEP-FF/hFF

Assembly 204.25 188.83 0.92 188.54 0.92
Blocks 11209.70 705.94 0.06 225.90 0.02
Schedule 238.07 93.70 0.39 95.93 0.40
FreeCell 812.24 2621.59 3.23 651.24 0.80
Depot 12281.90 3293.56 0.27 3997.72 0.33
Rovers 3440.81 681.03 0.20 498.44 0.14
Airport 39464.80 5933.89 0.15 2748.81 0.07
Pipes-no 6696.09 10669.40 1.59 7974.64 1.19
Trucks 94835.70 219094.00 2.31 166678.00 1.76

Table 3: Average Node-expansions on commonly solved
instances by domain.

 Average Search-time (s)
Domains hFF hPEO-FF hFF/hPEO-FF hPEP-FF hFF/hPEP-FF

Assembly 0.19 0.15 1.27 0.15 1.27
Blocks 0.45 0.03 15.00 0.01 45.00
Schedule 0.28 0.09 3.11 0.09 3.11
FreeCell 1.40 6.15 0.23 0.86 1.63
Depot 4.58 2.65 1.73 2.54 1.80
Rovers 9.76 1.61 6.06 1.02 9.57
Airport 10.59 1.81 5.85 1.08 9.81
Pipes-no 2.49 4.65 0.54 4.03 0.62
Trucks 8.74 54.08 0.16 31.65 0.28

Table 4: Average Search-time on commonly solved
instances by domain.

 Table 3 shows the performance in terms of average
node-expansions on “commonly solved instances” (those
instances that are solved by the three heuristics). hPEO-FF
shows big improvement on hFF in Blocks, Schedule, Depot,
Rovers, and Airport and a slight improvement on
Assembly. Further, hPEP-FF has the same advantage and
does better than hFF on FreeCell. Compared to hFF, the save
in average node-expansions of our penalty-enhanced
versions is more than 50% in Blocks, Schedule, Depot,
Rovers, and Airport. In FreeCell, Pips-notankage and
Trucks, hPEO-FF and hPEP-FF are worse than hFF, which may
indicate that the penalty computed by our approach is
crude in domains with complicated problem structures.
 Table 4 lists the average search-time of the tested
heuristics. The table shows that the save in node-
expansions makes hPEO-FF and hPEP-FF gain much
improvement in search-time. In Blocks, Rovers, and

Airport, hPEP-FF speeds up the search algorithm
considerably, compared with hFF. From table 3 and 4, we
can conclude that the computation of penalties requires
very low overhead in many cases.

Conclusions
We proposed a method to improve the RPB heuristics. The
basic idea is based on that relaxed plans are usually useful
guidance for constructing real plans. With actions’ delete
effects, we define the simulated execution of relaxed plans,
and then aggregate penalties from the number of
unfulfilled actions’ preconditions and goals. The penalty
serves as an estimate of the cost of extending a relaxed
plan to a real plan. Preliminary results show that our
approach improves the heuristic function of FF a lot on
several domains, but also has difficulty to scale up in some
domains with complicate problem structures.
 The future work would be improving our approach by
accounting some domain information in aggregating
penalties and test our approach with the pure Greedy Best-
First search algorithm to see the improvement in terms of
accuracy. We’ll also apply our approach to other RPB
heuristics, such as the set-additive heuristic by Keyder and
Geffner (2007) and the heuristic based on relaxed plan
with low conflicts (Baier 2009).

Acknowledgements
We thank Hoffmann J. for sharing the code of FF-2.3. We
also thank the reviewers for their very helpful comments.

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. AI 129(1–2):5–33.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR
14:253–302.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Proc. ICAPS’04.
Keyder, E., and Geffner, H. 2007. Set-Additive and TSP
heuristics for planning with action costs and soft goals. In
Proc. ICAPS’07 workshop on Heuristics for Domain-
Independent Planning.
Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In Proc. ICAPS’08.
Yoon, S.; Fern A.; and Givan, R. 2006. Learning heuristic
functions from relaxed plans. In Proc. ICAPS’06.
Baier, J. A. 2007. Improving relaxed-plan-based heuristics.
In Proc. ICAPS’07 workshop on Heuristics for Domain-
Independent Planning.
Brafman, R., and Hoffmann, J. 2004. Conformant planning
via heuristic forward search: A new approach. In Proc.
ICAPS’04.

41

Baier, J. A., and Botea, A. 2009. Improving planning
performance using low-conflict relaxed plans. In Proc.
ICAPS’09.

42

