
Combining Heuristic Estimators for Satisficing Planning

Gabriele Röger and Malte Helmert
Albert-Ludwigs-Universität Freiburg

Institut für Informatik
Georges-Köhler-Allee 52
79110 Freiburg, Germany

{roeger,helmert}@informatik.uni-freiburg.de

Abstract

The problem of effectively combining multiple heuristic esti-
mators has been studied extensively in the context of optimal
planning, but not in the context of satisficing planning. To
narrow this gap, we empirically examine several ways of ex-
ploiting the information of multiple heuristics in a satisficing
best-first search algorithm, comparing their performance in
terms of coverage, plan quality and runtime. Our empirical
results indicate that using multiple heuristics for satisficing
search is indeed useful and that the best results are not ob-
tained by the most obvious combination methods.

Introduction
Heuristic forward search is one of the most popular ap-
proaches in classical planning. In the last decade, re-
searchers have put a lot of effort into the development of
new heuristics so that a wide range of heuristics are avail-
able these days. None of these heuristics consistently out-
performs all others across all benchmark domains. There-
fore, it appears worthwhile to use the information of several
heuristics during search instead of only one.

In the case of optimal planning, which most commonly
means using A∗ with an admissible heuristic, arbitrary ad-
missible estimates can simply be combined by using their
maximum. The resulting heuristic dominates all individ-
ual ones, which usually translates into a reduction of the
state evaluations required to solve the task. Often, even bet-
ter combinations are possible: using action-cost partition-
ing methods (Haslum, Bonet, and Geffner 2005; Katz and
Domshlak 2008), we can add heuristic estimates in an ad-
missible way, dominating their maximum. The main draw-
back of these techniques is that efficiently finding good cost
partitionings remains a widely open research problem de-
spite significant recent progress (Katz and Domshlak 2008).

In the case of satisficing planning, where greedy best-first
search is the most common approach, the setting for combin-
ing heuristic values is quite different: the heuristics do not
have to estimate the true distance to the goal in any quantita-
tively meaningful way, since greedy search only cares about
their relative values: states further from the goal should re-
ceive larger estimates than states close to the goal. Since
there is no need to respect a criterion like admissibility, we
can combine estimates of several heuristics into a single nu-
meric value in essentially arbitrary ways.

1800s
1000s

100s

10s

1s

0.1s

ru
nt

im
e

instances

Alternation
h

cea
h

CG
h

FF

Figure 1: Runtimes in the Assembly domain. (Ordering of
tasks does not correspond to the original benchmark suite.)

Combining several heuristic estimates in a satisficing
planner can potentially lead to large performance and scala-
bility improvements. Figure 1 shows a striking example of
this. The graphs show the runtime, in seconds, for solving
instances of the IPC-2000 Assembly domain using the FF
heuristic hFF (Hoffmann and Nebel 2001), the causal graph
heuristic hCG (Helmert 2004), and the context-enhanced ad-
ditive heuristic hcea (Helmert and Geffner 2008). None
of the individual heuristics solves more than 15 instances.
However, their combination (labeled “Alternation” in the
figure) solves 29 out of 30 instances, including 13 instances
not solved by any of the three heuristics it is based on.

The question, then, is how to combine the individual
heuristic estimates to achieve the best possible performance.
One obvious way to do so, by analogy to optimal planning,
is to take their maximum or sum. However, for the Assem-
bly example this does not turn out to be very useful: none
of the heuristics that can be obtained by taking two or three
of the candidate heuristics and computing their maximum or
sum solves more than 13 of the 30 tasks within usual time
and memory limits (30 minutes, 2 GB), so they are all out-
performed by the FF heuristic used alone.

An alternative idea is to use weighted sums, but this im-
mediately raises the question of how to determine suitable

43



open := new open-list
open.insert(sinit)
closed := ∅
while not open.empty():

s = open.remove-best()
if s /∈ closed:

closed := closed ∪ {s}
if is-goal(s):

return extract-solution(s)
for each s′ ∈ succ(s):

if not is-dead-end(s′):
open.insert(s′)

return unsolvable

Figure 2: Greedy best-first search (with duplicate detection).

weights. In the given domain, we experimented with all 33
combinations of the form h(s) = p · h1(s) + (1 − p)h2(s)
where p ∈ {0, 0.1, 0.2, . . . , 1.0} and h1 and h2 are two
heuristics from the given set. None of these combinations
improves over the basic FF heuristic. It might be the case
that better results could be obtained by using weighted sums
of all three heuristics, but then the space of possible weights
quickly explodes combinatorially.

So clearly, there are cases where maximization or sum-
mation is not the best way of combining heuristic estimates
for satisficing planning. Indeed, in Fig. 1, the Alternation
method, described later in this paper, is vastly superior. In
the rest of the paper, we describe several methods for com-
bining heuristic estimates and compare them experimentally.

Greedy Search with Multiple Heuristics
All search methods presented in this paper are variations
of greedy-best first search (Pearl 1984), differing only in
the choice of which state to expand next. Greedy best-
first search is a well-known algorithm, so we only present
it briefly to introduce some terminology (Fig. 2).

Starting from the initial state, the algorithm expands states
until it has found a path to a goal state or until it has
completely explored the state space. Expanding a state
means generating its successors and adding them to the open
list. The open list plays a very important role because its
remove-best operation determines the order in which states
are expanded. In single-heuristic search, it is usually simply
a min-heap ordered by s 7→ h(s), where s is a search state
and h : s → N0 ∪ {∞} estimates the length of the shortest
path from s to any goal state. Hence, states with a low es-
timate are expanded first. If states share the same estimate,
they are usually ordered according to the FIFO principle.

This paper deals with the question of how to use the es-
timates of multiple heuristics h1, . . . , hn within this algo-
rithm. In principle, the methods we present only differ in
which states are selected by the remove-best operation.

We can see the open list as a collection of buckets (Fig. 3),
each associated with an estimation vector (e1, . . . , en) and
containing all open states s with (h1(s), . . . , hn(s)) =
(e1, . . . , en). (We assume that is-dead-end(s) evaluates to
true iff any of the heuristic estimators regards s as a dead end

h2

h1 1

1

2

2

3

3

4

4

5

5

6

6

T1, P,
A

A

M, S,
P

M

S, T2,
P, A

Figure 3: Buckets of an open list with heuristics h1 and h2.
The symbols within some of the buckets are explained later.

by mapping it to ∞, so estimates ei of states in the open list
are always finite.) All combination approaches we present
can be understood as first selecting a bucket to expand a state
from, and then picking a state from this bucket according to
the FIFO principle. Hence, an approach can be largely char-
acterized in terms of its candidate buckets, i. e., the buckets
that are possible candidates for expansion at each step.

For example, the candidate buckets for the maximum
method are exactly those where max {e1, . . . , en} is min-
imized. In Fig. 3, this means that either the bucket with
estimation vector (4, 2) or the bucket with estimation vec-
tor (4, 4) is chosen. Which of these buckets is actually se-
lected again depends on FIFO tie-breaking: the bucket with
the “oldest” state is given preference. Of course, an actual
implementation of the method should not maintain separate
buckets for each estimation vector, but rather use a one-
dimensional vector of buckets indexed by max {e1, . . . , en}.

Maximum and Sum
The first combination methods we discuss are the already
mentioned maximum and sum approaches. The candidate
buckets for the maximum approach are those which mini-
mize max {e1, . . . , en}, and the candidate buckets for the
sum approach are those which minimize e1+· · ·+en. In the
example of Fig. 3, these buckets are marked with an M for
the maximum approach and S for the sum approach. Among
all states in these buckets, the oldest one is expanded first.

The maximum and sum methods are very easy to imple-
ment: since they reduce each estimation vector to a single
numeric value, a standard single-heuristic open list can be
used. However, we will later see that maximum and sum
are among the weakest methods for combining heuristic es-
timates and rarely offer a compelling advantage over using
one of the component heuristics individually. One explana-
tion for this is that they are easily misled by bad informa-
tion. If one of the component heuristic provides very in-
accurate values, then these inaccuracies affect every single
search decision of the sum method, because each heuristic
directly contributes to the final estimation. For the maxi-
mum method, large inaccurate values from one heuristic can
completely cancel the information from all other heuristics.

Of course, one can try to balance a disproportionate in-

44



fluence of a single heuristic by applying weights to the dif-
ferent estimates, but it is not clear how reasonable weight
values can be determined automatically, or if weighting can
help overcome the fundamental problems of these methods
at all. One approach we experimented with is to calculate
weighted sums with weights determined from the estimates
of the initial state, trying to “balance” the contribution of
each heuristic. However, this approach did not show any
positive effect on planning benchmarks. One possible ex-
planation for this is that such a normalization not just levels
the influence of bad estimates, but also of good estimates.

Because initial experiments were discouraging and it is
not clear how to assign reasonable weights, our empiri-
cal evaluation does not include the case of weighted sums.
However, we do report experiments with the unweighted
sum and maximum methods, which serve as baselines for
the other approaches, to be introduced next.

Tie-breaking
From our experiments with the addition and sum methods,
we got the impression that aggregating the heuristic esti-
mates into one value tends to dilute the quality and char-
acteristics of the individual heuristics. Therefore, in the fol-
lowing we concentrate on methods that preserve the individ-
ual estimates. One obvious approach is to rank the heuristics
and to use the less important ones only for breaking ties. The
idea behind this is that the search is mainly directed by one
good heuristic and only if there are several states with the
same minimum estimate do we successively consult other
heuristics until we have identified a single most promising
state. If two states have exactly the same estimation vector,
they are again expanded according to the FIFO principle.

Tie-breaking always selects a single candidate bucket. In
the example of Fig. 3, this bucket is labeled as T1 for the
case where h1 is the main heuristic and h2 is used to break
ties, and it is labeled as T2 for the opposite case.

We considered two implementations of the tie-breaking
method. One natural approach is to calculate only the main
heuristic and to order the open list according to these esti-
mates. Upon each remove-best operation, we check if sev-
eral states share the same minimum estimate. Only then do
we successively calculate the tie-breaking heuristics, until
we have identified a single state to expand. The advantage
of this approach is that a heuristic estimate for a tie-breaking
heuristic is never computed if it is never needed.

However, in typical planning tasks the range of encoun-
tered heuristic values is much smaller than the size of the
search frontier, and there are usually many states with the
same estimate of the main heuristic. Therefore, the disad-
vantage of this approach is that we must perform the same
tie-breaking calculations again and again, which is costly
even if heuristic values are cached after their first computa-
tion. While additional data structures may reduce the effort
of these recomputations, this causes overhead, and it is not
clear if it is worth the additional implementation complexity.

For this reason, we use a different implementation of tie-
breaking: for each state inserted into the open list, we calcu-
late the estimates of all heuristics and directly sort it to the

appropriate position. With this approach, we can again im-
plement the open list as a min-heap, ordering states lexico-
graphically by their estimate vector. Our experimental data
suggests that the cost of always computing all heuristics is
not problematic at least in the cases we consider. (One im-
portant mitigating factor is that in our case, the main heuris-
tic is more computationally intensive than the tie-breaking
heuristics and hence tends to dominate overall runtime.)

Note that both implementations differ only in the time that
is needed for inserting and removing states from the open list
and in the space requirements for the open list data structure,
but behave equivalently in all other aspects. In particular,
there is no difference in the number of expanded states.

A major drawback of tie-breaking is that we have to define
a ranking of the heuristics. For our experiments, we decided
to order the heuristics according to their (empirical) qual-
ity in single-heuristic search. It is apparent that combining
multiple heuristics via tie-breaking does not fully exploit the
available information: we only use the additional estimates
if the main heuristic does not distinguish two states. If it
does, even if it performs very badly, we ignore the estimates
of the additional heuristics. Hence, the approach is clearly
not robust against bad estimates of the main heuristic.

Finally, we note that unlike the previous approaches, tie-
breaking is unaffected by changing the “scale” of the com-
ponent heuristics. Increasing estimates by an additive or
multiplicative constant or applying any other strictly increas-
ing transformation to a heuristic function does not affect the
choices of the tie-breaking method. We see this as a strength
rather than a weakness because it offers a certain robustness
against systematic errors in heuristic estimates.

Selecting from the Pareto Set
We now present a method that, like tie-breaking, is robust to
transformations of heuristic estimates, but does not require
us to arbitrarily favour one heuristic over another. Such a
method can be derived from the concept of Pareto optimality
that is well-known in economics and game theory. Pareto
optimality has been successfully applied in multi-objective
search (Stewart and White 1991), where the goal is finding
a state that is good in terms of multiple objectives whose
measures cannot be meaningfully compared.

In order to introduce this method, we need to define the
notion of dominance. We say that a state s dominates a state
s′ if all heuristics consider s at least as promising as s′ and
there is at least one heuristic that strictly prefers s over s′.

Definition 1. A state s dominates a state s′, written s < s′,
with respect to heuristics h1, . . . , hn if hi(s) ≤ hi(s′) for all
i ∈ {1, . . . , n} and hi(s) < hi(s′) for at least one heuristic.

It is reasonable to require that if state s dominates s′, then
s should be expanded before s′. Hence, we are interested in
the Pareto set of nondominated states, defined as

nondom def= {s ∈ open | @s′ ∈ open with s′ < s}.

In the Pareto approach, the candidate buckets are exactly
those buckets whose states belong to nondom. In the exam-
ple in Fig. 3, these buckets are labeled with P. We see that

45



the set includes many of the candidate buckets of the pre-
vious approaches, but not all of them. In particular, bucket
(4, 4) which is a candidate for the maximization approach is
not Pareto-optimal because it is dominated by (4, 2).

We experimented with two variants of the Pareto ap-
proach. Both variants first randomly select one of the candi-
date buckets and then expand the oldest state in that bucket.
The two variants differ in how the random choice of buck-
ets is performed: in the uniform approach, each candi-
date bucket is chosen with equal probability, while in the
weighted approach each candidate bucket is chosen with
probability proportional to the number of states it contains.

Note that all previous combination methods define a total
preorder on the states. This is somewhat restricting because
estimate vectors where neither dominates the other cannot
always be reasonably compared. However, algorithmically
it is very useful because it allows implementing the open list
as a min-heap. This is not possible in the Pareto approach
because the preorder is not total. For example, in a given sit-
uation the nondominated buckets might have associated esti-
mate vectors of (2, 4, 4) and (4, 4, 2), so that the oldest states
with these heuristic profiles, say s1 and s2, are candidates
for expansion. Now assume that we insert a new state with
heuristic profile (2, 4, 3). This new states dominates s1 but
not s2, so one of the previously “best” states remains a can-
didate for expansions, while another does not. Such effects
complicate the open list implementation for the Pareto ap-
proach, and therefore this approach can carry a much larger
search overhead than the others. Moreover, this overhead
quickly increases with the number of heuristic estimators.

On the positive side, the Pareto method has none of the
disadvantages of the previous approaches: we neither have
to aggregate estimates in an unrobust way, nor do we have to
fix a magic order of the heuristics. Instead, we use all avail-
able ordering information, and whenever we prefer a state
over another one, we can theoretically justify this decision.

Alternation
Like the Pareto method, the final approach we present avoids
aggregating the individual heuristic estimates and makes
equal use of all heuristics. It was originally proposed by
Helmert (2004; 2006) under the name multi-heuristic best-
first search. In the context of this paper, this name could
equally well be applied to the other combination methods,
so we use the term alternation to refer to this method here.

The alternation method gets its name because it alternates
between heuristics across search iterations. The first time a
state is expanded, it selects the oldest state minimizing h1.
On the next iteration, it selects the oldest state minimizing
h2, and so on, until all heuristics have been used. At this
point, the process repeats from h1. The candidate buckets
for the alternation method are those whose estimate vectors
minimize at least one component (labeled with A in Fig. 3).

The alternation method is built on the assumption that
different heuristics might be useful in different parts of the
search space, so each heuristic gets a fair chance to expand
the state it considers most promising. One heuristic might
provide good guidance in one part of the search space, but
be weak in another. A second heuristic might have its strong

and weak areas distributed differently in the search space.
By alternating between the heuristics, it is always possi-
ble to escape a plateau as long as at least one heuristic can
give good guidance. There are two important differences
between alternation and the Pareto approach:
• Alternation only expands states that are considered most

promising by some heuristic. The Pareto approach can
also expand states which offer a good trade-off between
the different heuristics, such as bucket (4, 2) in Fig. 3.

• For states that are most promising to the currently used
heuristic, the alternation method completely ignores all
other heuristic estimates. The Pareto approach also at-
tempts to optimize the other heuristics in such situations.
For example, it would not consider bucket (2, 6) in Fig. 3
because it is dominated by bucket (2, 5).
Alternation can be efficiently implemented by maintain-

ing a set of min-heaps, one ordered by each heuristic. The
approach has been used by several successful planners, in-
cluding Fast Downward (Helmert 2006), using the causal
graph and FF heuristics, and LAMA (Richter, Helmert, and
Westphal 2008), using the FF and landmark heuristics.

Experimental Results
We now turn to the central questions of this paper: is the use
of multiple heuristics for satisficing best-first search actually
useful for typical benchmarks? And if so, which combina-
tion method performs best? To answer these questions, we
conducted experiments with all planning tasks from the first
five international planning competitions, IPC 1–5. We report
results on coverage (number of solved instances), solution
quality, speed, and heuristic guidance (number of state ex-
pansions). We consider three different heuristic estimators:
• hFF: the FF heuristic (Hoffmann and Nebel 2001),
• hCG: the causal graph heuristic (Helmert 2006), and
• hcea: the context-enhanced additive heuristic (Helmert

and Geffner 2008).
We evaluate each approach on all two- and three-element

subsets of these heuristics. For the tie-breaking approach we
fixed the ranking of the heuristics as hcea � hFF � hCG (so
hcea is given the highest priority) based on the coverage these
heuristics achieve on the benchmark set in single-heuristic
search. For the Pareto method we only report results for
the weighted approach, because it performs slightly better
than the uniform approach and the difference between these
variants is low compared to the difference to other methods.

Our implementation is based on the Fast Downward plan-
ning system (Helmert 2006), whose greedy-best first search
algorithm (with deferred evaluation) we extended with im-
plementations of the different combination approaches. As
we are interested in measuring the impact of heuristic com-
binations, not other search enhancements, we did not use the
preferred operator information provided by the heuristics.
All experiments were conducted on 2.66 GHz Intel Xeon
CPUs with a 30 minute timeout and a 2 GB memory limit.

We first present the overall results, shown in Table 1. The
table reports scores according to four metrics: coverage, (so-
lution) quality, speed, and (heuristic) guidance. All scores

46



Coverage Quality Speed Guidance
hFF 73.57 70.03 67.14 53.50
hCG 70.92 64.21 63.82 49.46
hcea 74.69 68.45 66.49 54.80
hFF, hCG

Maximum *75.11 69.00 66.45 *54.77
Sum *74.28 65.72 66.29 *54.64
Tie-breaking 73.30 64.43 65.51 *54.35
Pareto *75.20 66.21 *67.33 *56.35
Alternation *78.64 *72.35 *69.86 *57.87

hFF, hcea

Maximum 74.04 68.03 63.92 53.71
Sum 74.04 66.66 65.62 *55.14
Tie-breaking 73.32 65.87 64.98 54.54
Pareto *76.01 68.87 *67.96 *58.31
Alternation *77.72 *73.18 *69.67 *58.95

hCG, hcea

Maximum 74.27 67.85 65.14 *54.81
Sum *74.93 67.52 65.98 *55.12
Tie-breaking 73.82 66.61 65.01 54.63
Pareto *75.02 67.44 *66.57 *56.36
Alternation *75.43 *69.26 66.47 *55.82

hFF, hCG, hcea

Maximum 73.96 67.74 62.96 53.77
Sum 74.08 65.99 64.82 *55.20
Tie-breaking 73.48 65.46 63.54 54.36
Pareto *76.32 68.58 *67.41 *58.84
Alternation *79.13 *74.37 *69.74 *59.99

Table 1: Overall result summary. The best combination
method for a given set of heuristics and metric is highlighted
in bold. Entries marked with a star indicate results that are
better than all respective single-heuristic approaches.

are in the range 0–100, where larger values indicate better
performance. For each metric, the score is computed by as-
signing a value between 0 and 100 to each task, then aver-
aging the scores for the tasks of each domain to compute
a domain score, and finally averaging the domain scores to
compute an overall score. Unsolved tasks are always scored
as 0, while the score for solved tasks depends on the metric:

• Coverage: Solved tasks receive a score of 100. This met-
ric corresponds to the probability (in percent) that the ap-
proach solves a “typical” benchmark task.

• Quality: Solved tasks receive a score of 100 · l∗/l, where
l is the length of the generated solution and l∗ is the length
of the best solution generated by any of the approaches.

• Speed: Tasks solved within one second receive a score
of 100, and tasks that require the full 1800 seconds re-
ceive a score of 0. Between these extremes, scores are
interpolated logarithmically, so that doubling the runtime
decreases the score by about 9.25.

• Guidance: Tasks solved within 100 state expansions re-
ceive a score of 100, and tasks solved with more than
1,000,000 expansions receive a score of 0. Between these
extremes, scores are interpolated logarithmically, so that
doubling expansions decreases the score by about 7.53.

We now turn to the interpretation of the results of Table 1.

Comparison between combination approaches. Apart
from the comparison between the maximum and sum meth-
ods which perform very similarly, the results suggest a clear
ranking of the different combination approaches.

Alternation generally performs best: it gives the best re-
sults in terms of coverage and quality on all four heuristic
sets, and is best in terms of speed and guidance in all cases
except for one where the Pareto approach is slightly better.

The Pareto approach is clearly second best, always per-
forming better than the remaining approaches in terms of
coverage, speed and guidance. In terms of quality, the max-
imum and sum approaches sometimes obtain better results.

Maximum and sum rank 3rd and 4th. They perform very
similarly to each other in terms of coverage, with no clear
winner. In terms of quality, maximum performs better than
sum; in terms of speed and guidance, the opposite is true.

Tie-breaking clearly ranks last. It always performs worst
according to all metrics except for two cases where it outper-
forms the maximum method in terms of speed and guidance.

Comparison on commonly solved tasks. It is worth not-
ing that planners which solve many tasks also profit for met-
rics other than coverage, because unsolved tasks are scored
as 0. We believe this to be fair: a planner that solves a task
within 30 minutes can be rightfully considered faster than
one which times out. Hence, a better speed score is justified.

Still, it is interesting to also consider the quality, speed
and guidance metrics on the subset of benchmarks solved
by all configurations. While we cannot provide details for
space reasons, we point out that the ranking of approaches
remains the same, although the gaps become narrower. Al-
ternation remains best, Pareto second-best and tie-breaking
worst for all metrics. This ordering is only broken for the
quality metric, where the maximum approach scores higher
than Pareto (a trend that already exists in Table 1).

Comparison to single-heuristic methods. Another clear
outcome of the experiment is that using multiple heuristics
can give significant benefits, especially with the alternation
method. For any set of heuristics and any of the four met-
rics, the alternation method improves the performance over
the best single heuristic from the set, with only one small
exception (speed for the combination of hCG and hcea).

Indeed, adding more heuristics is almost universally a
good idea for the alternation method in our experiment.
There are nine ways to choose a single heuristic or two-
heuristic set and a new heuristic to add, and there are four
metrics to measure. In 34 of these 36 cases, the marginal
contribution of adding the new heuristic is positive.

For the Pareto method, the advantage over single-heuristic
search is less pronounced, but we believe that the method
still offers improvements. While it consistently leads to bet-
ter results in terms of coverage, speed and guidance, its re-
sults in terms of quality are worse than those of the best indi-
vidual heuristics. The best configuration, as for the alterna-
tion approach, is again the one that uses all three heuristics.

For the maximum and sum methods, it is hard to ar-
gue that they offer any compelling advantage over single-
heuristic search, and the tie-breaking method is clearly not
worth using according to our data. It consistently performs

47



Domain hFF hCG hcea Max. Sum Tie-br. Pareto
Airport +6/–2 +15 +3/–7 +3/–4 +4/–6 +7/–2 +4/–3
Assembly +14 +24 +19 +19 +18 +19 +15
Depot –1 +2 +1 +1 +1/–1 +1/–1 –1
Driverlog +1 +1 +1 +1 +2 +1 +2
FreeCell +3/–2 +10/–1 +2/–1 +2/–1 +2/–1 +3/–1 +2/–1
Grid +1 +1
Logistics-1998 +9 –1 –1 –1 –1 –1
Miconic-FullADL +4/–1 +2 –2 –2 –1 –2 +1
MPrime +9 +1 +7 +1 +1 +1
Mystery +3 +1 +2 +2 +2 +2 +1
Openstacks +6 +4 +4 +4 +4
OpticalTelegraphs +3
Pathways +4 +4 +3/–1 +3/–1 +3/–1 +4/–1 +3/–1
Pipesw.-NoTankage +5 +12/–3 +8/–2 +9 +10/–1 +10 +7/–1
Pipesw.-Tankage +2/–6 +5/–3 +3/–3 +4/–3 +2/–2 +4/–3 +2/–3
PSR-Large –2 –1 –1 –2 +1/–1 +1/–1 +1/–1
PSR-Middle +1 +1 +1
Rovers +5 +5 +8 +7 +7 +8 +5
Satellite +4 +2 +1 +1 +1 +1
Schedule +6/–4 +6/–4 +6/–4 +6/–4 +6/–4 +4/–4
Storage –1 +3 +4 +4 +3 +4 +3
TPP +2 +3 +3/–1 +3/–2 +4 +4/–1 –6
Trucks +2 –1 –1 +1 +1
Total +72/–15 +107/–13 +69/–24 +76/–21 +73/–19 +81/–17 +53/–21

Table 2: Tasks solved by Alternation compared to single
heuristics and other combination approaches. Entry +x/−y
means that Alternation solves x tasks not solved by the other
approach and fails to solve y tasks solved by the other ap-
proach. Domains where all methods solve the same set are
omitted. All combination methods use all three heuristics.

worse on all metrics than just using the main heuristic on its
own, with only one exception.

Coverage details. We have established that we obtain the
best results when using the alternation method applied to all
three heuristics. Hence, we conclude our discussion of ex-
perimental results with some detailed data for this particular
approach, in order to see whether its benefits are limited to
a few planning domains or distributed more evenly.

Table 2 reports, for all IPC 1–5 benchmark domains, in
what ways the set of tasks solved by the alternation method
differs from other approaches. We compare to all single
heuristics and to all combination methods that use the same
(full) set of heuristics. The table shows improvements in
many domains. Moreover, there are very few cases where
the alternation method fails to solve a substantial number of
tasks solved by one of the single heuristics, indicating that it
is indeed very robust.

Conclusion
We have argued that the problem of combining heuristic es-
timates for satisficing planning calls for different approaches
than the problem of combining heuristic estimates for opti-
mal planning. We have presented five different combination
methods and compared them experimentally. The alterna-
tion method, which performs best in our experiments, is not
new: under the name multi-heuristic best-first search, it has
been used in the Fast Downward and LAMA planners. How-

ever, prior to our experiments, the alternation method has
never been systematically evaluated, and it was not clear to
what extent it contributes to the performance of these plan-
ners. Moreover, it has never been compared to other ap-
proaches for combining heuristic estimates.

Our results show that aggregating different heuristic esti-
mates into a single numeric value through arithmetic oper-
ations like taking the maximum or sum is not a good idea,
even though it is the common approach for optimal planning.
Our explanation for this is that such aggregation methods are
easily led astray even if only one heuristic generates bad dis-
tance estimates. The Pareto and alternation approaches are
much more robust to such misleading estimates.

In future work, it would be interesting to see if the ben-
efits of using multiple heuristics can be combined with the
benefits of using preferred operator information. Again, this
is an approach that is commonly used, but has never been
evaluated against baseline approaches or alternative meth-
ods. Finally, it would be interesting to see if even better re-
sults can be obtained by including yet more estimators such
as the additive (Bonet and Geffner 2001) or landmark heuris-
tic (Richter, Helmert, and Westphal 2008), or if performance
begins to degrade when four or more estimators are used.

Acknowledgments
The computing resources for the experiments reported in
this paper were graciously provided by Universitat Pompeu
Fabra. We thank Héctor Palacios for his support in conduct-
ing the experiments.

This work was supported by the German Research Coun-
cil (DFG) by DFG grant NE 623/10-2 and as part of the
Transregional Collaborative Research Center “Automatic
Verification and Analysis of Complex Systems” (SFB/TR 14
AVACS). See http://www.avacs.org/ for more information.

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic search.
AIJ 129(1):5–33.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admissible
heuristics for domain-independent planning. In Proc. AAAI 2005,
1163–1168.
Helmert, M., and Geffner, H. 2008. Unifying the causal graph
and additive heuristics. In Proc. ICAPS 2008, 140–147.
Helmert, M. 2004. A planning heuristic based on causal graph
analysis. In Proc. ICAPS 2004, 161–170.
Helmert, M. 2006. The Fast Downward planning system. JAIR
26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. JAIR 14:253–302.
Katz, M., and Domshlak, C. 2008. Optimal additive composition
of abstraction-based admissible heuristics. In Proc. ICAPS 2008,
174–181.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies for Com-
puter Problem Solving. Addison-Wesley.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Landmarks
revisited. In Proc. AAAI 2008, 975–982.
Stewart, B. S., and White, III, C. C. 1991. Multiobjective A∗.
JACM 38(4):775–814.

48




