
Path-based Heuristics
(Preliminary Version)

Nir Lipovetzky
Departament of Technology (DTIC)

Universitat Pompeu Fabra
08018 Barcelona, SPAIN

nir.lipovetzky@upf.edu

Hector Geffner
Departament of Technology (DTIC)
ICREA & Universitat Pompeu Fabra

08018 Barcelona, SPAIN
hector.geffner@upf.edu

Abstract

A path in a classical planning problem is a sequence of causal
links ai, pi, ai+1 that connects a given state with the goal. C3
is a recent based planner that computes paths from the initial
state and uses them to recursively decompose the problem
into subproblems (Lipovetzky and Geffner 2009). Paths are
ranked with an heuristic that takes deletes into account and
is built on top of a base heuristic, in this case, the additive
heuristic. In this work, we use the resulting path-heuristic
to define a state heuristic that we compare with the additive
heuristic in the context of a standard greedy best first state
planner. Interestingly, while the path-heuristic is an order-
of-magnitude more expensive than the additive heuristic, it
results in many less expanded nodes, and often appears to be
cost-effective and produces better plans.

Background
We consider Strips planning problems P = 〈F, I,O,G〉
where F is a set of fluents or atoms, I ⊆ F and G ⊆ F
are the initial and goal situations, and O is a set of (ground)
actions or operators a, each with an Add, Delete, and Pre-
condition list Add(a), Del(a), Pre(a). For convenience,
and without loss of generality, we assume as in partial order
planning that O contains an End action whose precondi-
tions are the real goals of the problem and whose only effect
is a dummy goal g so that G = {g}.

Most forward-state planners use heuristic functions h(s)
for guiding the search in the graph. In particular, the plan-
ner HSP uses the additive heuristic h(s) = h(g), where
h(p) = 0 for atoms p, if p ∈ s, and else is h(p) =
mina∈O(p)[1 + h(a)], where O(p) is the set of actions in O
that add p and h(a) =

∑
q∈Pre(a) h(q) (Bonet and Geffner

2001). The max heuristic hmax is defined in a similar way
but with the addition replaced by maximization. The max
heuristic is equivalent to the heuristic that can be obtained
from a relaxed planning graph (Hoffmann and Nebel 2001)
by assigning to each fluent p or action a the index of the
lowest layer where it appears, starting from layer 0.

The best supporters of a fluent p 6∈ s in either heuristic,
are the actions a ∈ O(p) with smallest h. The heuristic
hFF(s) used in FF is given by the size |πFF(s)| of the re-
laxed plan computed by FF in s. This plan πFF(s) can be
defined recursively in terms of the best hmax supporters, by
collecting backwards from the goal, a best supporter a for

each goal, and recursively, a best supporter for each precon-
dition of a that is not in s (Keyder and Geffner 2008). The
definition in (Hoffmann and Nebel 2001) uses instead a re-
laxed planning graph and NO-OPs, along with a preference
for NO-OPs supporters, which amounts to a preference for
best (hmax) supports.

The notion of paths, introduced in (Lipovetzky and
Geffner 2009), builds on the notion of causal links devel-
oped in the context of partial order planning. A causal link
a, p, b is a triple that states that action a provides the support
for precondition p of b. This is taken as a constraint that im-
plies that a must precede b in the plan and no other action
that adds or deletes p can appear between them (Tate 1977;
McAllester and Rosenblitt 1991).

Paths
The reasons for performing an action usually take the form
of a sequence of causal links, that we call causal chains.
When these causal chains reach the goal, we call them paths.

Definition 1 A sequence a0, p1, a1, p2, a2, . . ., pn, an of
actions ai and fluents pi forms a causal chain if pi+1 is a
precondition of action ai+1 and a positive effect (add) of
action ai for i = 0, . . . , n.

Definition 2 A path is a causal chain that ends with the
End action.

Paths are not plans but rather plan skeletons, where ac-
tions may have to be filled in for achieving all the precondi-
tions of the actions in the path.

A path starting with an action a that is applicable in the
state s is said to be applicable in s. Such a path can be taken
to suggest that a may be relevant for achieving the goal in s
(Nebel, Dimopoulos, and Koehler 1997). Still, as shown in
(Lipovetzky and Geffner 2009), some paths can be shown to
be inconsistent, in the sense that no plan can make them true.
For example, in Tower-n, where blocks 1, . . . , n intially on
the table are to be arranged so that i is on top of i + 1 for
i = 1, . . . , n− 1, the paths

t : pick(k), hold(k), stack(k, k + 1), on(k, k + 1), End

that start with the applicable actions pick(k), k = 1, . . . , n−
1, are all inconsistent in the initial state, except for k = n−1.
This means that every plan that achieves the goal and starts

18

with the action pick(k) for k 6= N − 1, must ’break’ at least
one of the links in the chain. In other words, the reasons for
excluding the execution of such actions in the initial state
is not only heuristic but structural too. There is an efficient
and powerful but incomplete criterion for marking certain
paths as inconsistent. In this work, however, we will not use
such a criterion in a hierarchical planner but rather build on
an heuristic for ranking paths, also developed in (Lipovet-
zky and Geffner 2009), and evaluate it in the context of a
standard forward state planner.

A path-based heuristic
The planner C3 computes paths a0, p1, a1, . . . , , pn, an with
an = End from the current state, and uses them to de-
compose the problem into subproblems: achieving first the
preconditions of a0, then from the resulting state the pre-
conditions of a1 while preserving p1, etc. Moreover, this
decomposition is recursive, and thus if the preconditions of
the first action in the path are true, the action is applied and
otherwise, the problem of achieving them is handled in the
same manner by finding a path to an open precondition of
the first action, and so on.

A key point of the algorithm is the way paths t are ranked
and constructed in a given state s. This is done by means
of a new heuristic h(t|s), built from a known base heuristic,
that estimates the cost of achieving the goal along the path t.
Since the path t is built incrementally, in order to define this
heuristic on paths, we will let t range not only on full paths
that reach the goal through theEnd action, but also over par-
tial paths or chains that do not. The new state heuristic that
we want to define and evaluate here can be roughly stated as
hpath(s):

hpath(s) = min
t
h(t|s) (1)

where t ranges among the paths applicable in s; namely, the
causal chains that connect s with the goal. This is the gen-
eral idea, although later we will restrict the space of paths
to be considered. We take the basic building blocks from
(Lipovetzky and Geffner 2009).

Ranking Chains and Projected States
Let t be a a1, p2, . . . , pn, an be a causal chain. For gener-
ality, we do not assume that the first action is applicable in
s nor that the last action is the End action. We want the
heuristic h(t|s) to estimate the cost of achieving the goal
along this chain. For defining this heuristic, we will esti-
mate the sequence of states s1, . . . , sn induced by the chain
so that si is the state that is estimated to be true right after
the action ai in the chain is done.

For estimating the sequence of states induced by a chain
we use known ideas. We use the expression π(ai; si) to de-
note the relaxed plan that achieves the preconditions of ac-
tion ai from the state si. This relaxed plan is obtained by
collecting the best supporters according to the base heuristic,
recursively backwards from the preconditions of ai (Keyder
and Geffner 2008).

If s0 = s and πi = π(ai, si) is the relaxed plan for achiev-
ing the preconditions of ai from si, then the state si+1 pro-

jected right after applying the action ai is estimated as
si+1 = (((si \Del(πi))∪Add(πi)) \ eDel(ai))∪Add(ai)

(2)
where Add(πi) is the set of fluents added by the actions in
πi, eDel(ai) is the set of fluents e-deleted by the action ai

and Del(πi) refers to a subset of the fluents deleted by ac-
tions in πi.1 This subset is defined as the fluents that are
deleted not just by one action in πi that is a best supporter
of some fluent p in the relaxed plan, but by all the best sup-
porters of p, whether they made it into the relaxed plan or
not. The reason is that the choice of best supporters in the
relaxed plan is rather arbitrary, and deleting a fluent because
an arbitrary best supporter deletes it turns out to be more
critical than adding a fluent that an arbitrary supporter adds.
So these deletions aim to be cautious.

The heuristic h(t|s) for the chain t : a1, p2, . . . , pn, an in
a state s is defined in term of a base heuristic h, that we take
to be the additive heuristic, and the sequence s1, . . . , sn of
states induced by t according to (2)

h(t|s) =
n∑

i=1

[cost(ai) + h(Pre(ai)|si)] (3)

where in the computation of the heuristic h(Pre(ai)|si) for
1 < i ≤ n, all the actions that interfere with the causal
link ai−1, pi, ai in t are excluded (this meaning that actions
that e-delete pi). This estimate is thus just the sum of the
estimated costs of solving each of the subproblems along
the path, assuming that the states si along the path are those
projected and that causal links are respected.

A problem with this estimate, however, is that due to the
use of deletes in the projection and the preservation of causal
links, it’s often infinite. This may reflect that the projected
state sequence is inaccurate, or more often, that the decom-
position expressed by the path t is not perfect. For example,
if a precondition p of an action ai cannot be established from
the state si, yielding h(ai|si) = ∞, it is possible that such
a precondition can be established in the previous subprob-
lem from the state si−1 and maintained into the following
subproblem if the action ai−1 does not e-delete it.

With this in mind, the estimated cost of achieving the goal
through the chain t : a1, . . . , pn, an is defined as

h(t|s) =
n∑

i=1

[cost(ai) + hi(Pre(ai)|si)] (4)

where h1 is equal to the base heuristic h, and hi+1 is
hi+1(p|si+1) = min [h(p|si+1) , hi(p|si) + ∆i(p)] (5)

where ∆i(p) is a penalty term for bringing p from the sub-
problem i along the path t to subproblem i+ 1. We have set
∆i(p) to a a constant, independent of i and p, except when
the action ai e-deletes p where ∆i(p) is set to∞. This is the
same heuristic as in (Lipovetzky and Geffner 2009), even if
the rational for penalizing bad decompositions is less clear
in this setting.

1An action e-deletes p when p must be false after the action;
i.e., when it deletes p explicitly or when it doesn’t add p and has
a precondition that is mutex with p. (Nguyen and Kambhampati
2001; Vidal and Geffner 2005).

19

ha hpath

Domain I S D Ex Ev T S D Ex Ev T Quality
Blocks World 50 50 0 1,912 14,834 13.89 48 45 41 402 126.18 65%

Depots 22 11 3 13,369 165,834 184.69 9 3 45 667 79.20 87%
Driver 20 16 0 548 17,679 28.70 14 6 78 995 20.36 90%
Ferry 50 50 6 65 462 0.06 50 43 29 186 0.57 95%
Grid 5 2 0 72 389 3.12 2 1 22 124 72.81 100%

Gripper 50 50 50 98 2,726 0.39 50 2 121 1,692 33.85 100%
Logistics 28 28 1 75 1,256 0.45 28 11 55 1,031 53.15 87%
Miconic 50 50 20 81 725 0.02 50 50 30 289 0.50 77%
Mystery 30 26 9 60 2,141 13.47 22 12 5 84 38.94 94%

Open Stacks 30 20 0 3,916 126,393 184.55 10 0 75 606 201.43 100%
Rovers 40 17 1 4,791 159,923 125.05 13 4 123 3,106 102.78 98%
Satellite 20 20 14 36 5,066 9.42 12 7 25 1,775 268.79 101%
Storage 30 17 3 2,065 31,449 59.24 14 5 67 739 72.12 97%

TPP 30 15 5 8,982 111,056 110.30 10 5 1,910 21,236 168.31 89%
Zeno Travel 20 19 2 58 3,601 185.12 13 6 17 415 33.28 95%

Totals 475 391 114 2,409 42,902 61.23 345 200 176 2,223 84.82 Average
Percentage 82% 24% 73% 42% 92%

Table 1: Additive heuristic vs. Path-based heuristic in a standard greedy best first search on instances from previous IPCs: I is number of
instances, S is number of solved instances, D is number of instances where search goes straight to the goal, Ex and Ev stand for avg. number
of nodes expanded and evaluated, T is avg time in seconds, and Quality is plan quality ratio; e.g. 200% means plans twice as long as those
reported by ha on avg.

Computing hpath(s)

We have defined the heuristic h(t|s) for causal chains t. We
will use now this heuristic to define a path-based heuristic
hpath(s) over states, defined as mint h(t|s), where t ranges
over a suitable class of paths applicable in s.

In (Lipovetzky and Geffner 2009), the path t is con-
structed by computing the measure mint h(t|s) greedily. In
this work, we use instead the A* algorithm over a graph
whose nodes are causal chains, whose first action applies
in the state s, and whose goal nodes represent (full) paths
that reach the goal through the End action. For unifor-
mity, we take the source nodes in this search to be the chains
a0, p1, a1 where a0 is the dummy Start action, a1 is an ac-
tion applicable in s, and p1 is a dummy atom not deleted
by any action in the problem. Last, the children of a node
t = a0, p1, . . . , pn, an such that an 6= End, are the nodes
t′ = a0, p1, . . . , pn, an, pn+1, an+1 where pn+1 is a precon-
dition of action an+1 added by action an.

For the A* search, in this graph of causal chains, the eval-
uation function f(n) = g(n) + h(n) is defined so that for n
representing the path t = a0, p1, . . . , pn, an, g(n) = h(t|s)
and h(n) = h(End|sn), where h(t|s) is defined as in (4)
and h(End|sn) is the base heuristic with sn being the last
state projected along the chain t.

This search is not guaranteed to yield the exact minimum
mint h(t|s) over all the paths t because the heuristic h(n) =
h(End|sn) is not always a lower bound, even if h(n) = 0
when n represents a path.

Moreover, we consider two pruning techniques for speed-
ing up the search that affect the optimality of the resulting
measure as well.

First, in order to restrict the size of the search graph, we
prune the nodes n representing a path t = a0, p1, . . . , pi, ai

if there is another node n′ representing a path that ends in

the same pair pi, ai such that f(n′) < f(n).
Second, we prune from the search all causal links

ai, pi+1, ai+1 that do not lie along a minimal path from s. A
minimal path a0, p1, a1, . . . , pi, ai is one where the actions
ai are best (hmax) supporters of the fluent pi+1.

The value of the heuristic hpath(s) is then set to the value
f(n) = g(n) of the first goal node n found in the A* search.
This value stands for the heuristic value h(t|s) associated
with some minimal path t from s, and is only an approxima-
tion of the optimal value mint h(t|s) when t ranges over all
paths.

Experiments
In order to test the quality and cost-effectiveness of the
new heuristic hpath, we compared it with the base additive
heuristic ha in the context of a greedy best first state search.
The planners were evaluated with a timeout of 1800 seconds
and a memory limit of 2GB. The experiments were run on
Xeon Woodcrest computers with clock speeds of 2.33 GHz.

The results are shown in Table 1. In terms of coverage,
hpath solves 9% less problems than ha, but at the same time,
the solutions that it obtains are 8% shorter on average (35%
shorter in Blocks). In terms of time, the search with hpath is
slower than with ha because of the higher overhead, yet, this
is compensated by the additional information gained, that
translates in a highly reduced number of expanded nodes.
Indeed, in 42% of the problems, the heuristic hpath takes the
plan straight to the goal without expanding any node off the
solution. This is shown in the D column. The corresponding
number for the ha heuristic is 24%.

Table 2 shows an experiment aimed at making the search
more focused by considering only the actions applicable in a
state that are minimal. These are the actions that head the ap-
plicable minimal paths. Compared to table 1, the coverage is

20

ha hpath

Domain I S D Ex Ev T S D Ex Ev T Quality
Blocks World 50 49 0 2,145 13,931 15.22 43 30 87 889 35.18 65%

Depots 22 12 2 5,670 45,741 50.11 16 4 43 535 50.51 88%
Driver 20 18 1 3,693 30,405 152.34 14 6 3,080 23,318 157.50 93%
Ferry 50 50 4 68 284 0.04 50 49 29 100 0.08 97%
Grid 5 2 0 39 142 1.65 4 1 79 347 276.54 117%

Gripper 50 50 50 101 1,426 0.22 50 50 77 807 1.75 76%
Logistics 28 28 2 70 557 0.22 28 1 219 3,318 25.08 86%
Miconic 50 50 12 46 221 0.01 50 48 35 199 0.05 100%
Mystery 30 25 12 7 49 1.87 21 11 8 58 65.42 96%

Open Stacks 30 20 0 1,195 28,894 99.60 17 0 289 1,259 233.29 100%
Rovers 40 34 4 185 3,664 102.63 26 5 64 955 85.38 97%
Satellite 20 20 9 38 617 1.07 19 17 36 697 11.36 100%
Storage 30 16 4 821 3,996 3.47 8 4 2,346 12,875 228.91 111%

TPP 30 16 5 4,137 28,489 68.00 12 4 564 3,483 27.36 84%
Zeno Travel 20 20 5 59 1,211 81.30 18 9 34 656 171.36 94%

Totals 475 410 110 1,203 10,539 38.29 376 239 466 3,300 91.32 Average
Percentage 86% 23% 79% 50% 94%

Table 2: Additive heuristic vs. Path-based heuristic in a standard greedy best first search considering only minimal actions applicable in a
state: I is number of instances, S is number of solved instances, D is number of instances where search goes straight to the goal, Ex and Ev
stand for avg. number of nodes expanded and evaluated, T is avg time in seconds, and Quality is plan quality ratio; e.g. 200% means plans
twice as long as those reported by ha on avg.

improved, hpath solving 50% of the problems straight to the
goal. The minimality requirement increases the number of
expanded nodes by hpath in Driver and Storage while it de-
creases in TPP, suggesting how suitable it is such a focused
search for certain domains. On the other hand, ha expands
half of the nodes compared to table 1.

There is one additional experiment that we want to con-
sider and include in the final version of the paper if accepted.
It is a variation of the first experiment where the minimality
requirement on causal chains, in the computation of the path
heuristic is dropped. This is likely to result in an additional
overhead but may serve in domains like FreeCell or Sokoban
where the restriction to minimal paths renders many prob-
lems unsolvable. Finally, the experiments presented can be
combined with these experiments to be carried out by us-
ing the ideas of Fast Downward for using helpful (minimal)
actions in the context of a complete search.

Discussion
We have presented a new heuristic for forward state-based
planner and preliminary but encouraging empirical results.
The heuristic is defined on top of a delete-relaxation heuris-
tic and yet takes deletes into account by means of the no-
tion of paths. The other heuristics that take deletes into ac-
count are the admissible hm heuristics (Haslum and Geffner
2000), used mainly in the context of optimal planning, and
the causal graph heuristic (Helmert 2004), that is closely re-
lated to the additive heuristic but is defined over multival-
ued variables and keeps track of side effects pertaining to
each variable’s parents (Helmert and Geffner 2008). The
path heuristic hpath introduced in this paper, keeps track
of side effects through the states that are projected along
paths. From this perspective, it is fruitful to look at the En-
forced Hill Climbing (EHC) search procedure in FF, not as a

search procedure at all, but as lookahead device for produc-
ing a more informed heuristic value for the seed state. This
look-ahead is common in chess playing programs where the
backed-up value is assumed to be more reliable that the root
value. From this point of view, while the EHC lookahead
considers paths in the (local) state space that until a state
with a better value is found, in the path-based heuristic,
the lookahead considers paths in an abstraction, where all
but one of the preconditions and positive effects are thrown
away, but which are evaluated with all the information avail-
able in the original problem. The paths in the state-space
considered in EHC have the benefit that the local states are
true, reachable states. On the other hand, projected states
along the abstract paths considered in the paper, may rep-
resent ’unreal’ states that can’t be reached. However, while
EHC looks over real states in the local neighborhood, the ab-
stract paths are forced to reach the goal, and thus, can probe
much deeper.

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic search.
Artificial Intelligence 129(1–2):5–33.
Haslum, P., and Geffner, H. 2000. Admissible heuristics for op-
timal planning. In Proc. of the Fifth International Conference on
AI Planning Systems (AIPS-2000), 70–82.
Helmert, M., and Geffner, H. 2008. Unifying the causal graph
and additive heuristics. In Proc. 18th Int. Conf. on Automated
Planning and Scheduling (ICAPS-2008), 140–147.
Helmert, M. 2004. A planning heuristic based on causal graph
analysis. In Proc. ICAPS-04, 161–170.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of Artificial
Intelligence Research 14:253–302.
Keyder, E., and Geffner, H. 2008. Heuristics for planning with

21

action costs revisited. In 18th European Conference on Artificial
Intelligence (ECAI-08).
Lipovetzky, N., and Geffner, H. 2009. Inference and decomposi-
tion in planning using causal consistent chains. In Proc. 19th Int.
Conf. on Automated Planning and Scheduling (ICAPS-2009).
McAllester, D., and Rosenblitt, D. 1991. Systematic nonlinear
planning. In Proceedings of AAAI-91, 634–639.
Nebel, B.; Dimopoulos, Y.; and Koehler, J. 1997. Ignoring ir-
relevant facts and operators in plan generation. In Proc. ECP,
338–350.
Nguyen, X. L., and Kambhampati, S. 2001. Reviving partial
order planning. In Proc. IJCAI-01.
Tate, A. 1977. Generating project networks. In Proc. IJCAI,
888–893.
Vidal, V., and Geffner, H. 2005. Solving simple planning prob-
lems with more inference and no search. In Proc. CP-05.

22

