
Learning Weighted Rule Sets for Forward Search Planning

Yuehua Xu
School of EECS

Oregon State University
xuyu@eecs.oregonstate.edu

Alan Fern
School of EECS

Oregon State University
afern@eecs.oregonstate.edu

Sungwook Yoon
Palo Alto Research Center
sungwook.yoon@parc.com

Abstract

In many planning domains, it is possible to define and
learn good rules for reactively selecting actions. This
has lead to work on learning rule-based policies as a
form of planning control knowledge. However, it is
often the case that such learned policies are imper-
fect, leading to planning failure when they are used for
greedy action selection. In this work, we seek to de-
velop a more robust form of rule-based control knowl-
edge, attempting to leverage the perceived utility of
rules while allowing for imperfection. Specifically, we
consider learning sets of weighted action-selection rules
for a target planning domain, which are used to as-
sign numeric scores to potential state transitions. These
scores can then be used to guide forward search strate-
gies for solving problems from the target domain. This
approach allows for information from multiple rules to
be combined to help maintain robustness to errors. Our
learning approach is based on a combination of a heuris-
tic rule learner and RankBoost, an efficient boosting-
style algorithm for learning ranking functions. We fur-
ther show how to improve performance by incorporat-
ing FF’s heuristic and tuning the rule weights learned by
RankBoost using a perceptron-style algorithm. Our ini-
tial empirical results show significant promise for this
approach in a number of domains.

Introduction
Heuristic search is a fundamental approach to solve plan-
ning problems, on which a number of state-of-the-art plan-
ners have been built (Bonet and Geffner 1999; Hoffmann
and Nebel 2001). The success of these planners is due to
the development of domain-independent heuristics that work
well across different planning domains. However, there still
exist many domains where the domain-independent heuris-
tics are deficient, inspiring investigation on learning mecha-
nisms for heuristic search planning.

Recent work (Yoon, Fern, and Givan 2008; Xu, Fern, and
Yoon 2009) has made progress on learning domain-specific
heuristics for a target domain, based on prior planning expe-
rience. In particular, (Yoon, Fern, and Givan 2008) applied
linear regression to learn a linear approximation of the dif-
ference between the relaxed plan length heuristic and the

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

observed distances-to-goal of the states on example solution
paths. That work also defined a feature space and an ap-
proach for learning the features used in the linear approxi-
mation. More recently, (Xu, Fern, and Yoon 2009) tightly
combine weight learning with the actual search procedure,
tuning the feature weights to correct observed search errors
on training problems. That work, however, did not include
a feature learning mechanism, requiring features to be pro-
vided to it before learning. The work in this paper extends
(Xu, Fern, and Yoon 2009) to automatic feature learning.

While the above prior work has shown promising results,
they are limited to learning control knowledge in the form
of heuristics, i.e. ranking functions that only capture infor-
mation about states. Rather, in this work, we will investi-
gate an alternative approach of learning ranking functions
on state transitionsthat can take information about both
states and actions into account. Our approach is motivated
by prior work (Khardon 1999; Martin and Geffner 2000;
Yoon, Fern, and Givan 2002), where decision-lists of action-
selection rules were learned in order to define reactive poli-
cies for planning domains. Given a good reactive policy, the
planning problems from the corresponding domain can be
quickly solved without search. While action-selection rules
are an intuitively appealing form of control knowledge and
give good results in some domains, experience has shown
that in many domains the learned reactive policies are often
imperfect and result in poor planning performance.

In this paper, we attempt to learn and use action selec-
tion rules in a more robust way. In particular, we use sets
of weighted rules to define a ranking function on state tran-
sitions, which can then be used to guide a search process.
Rules are viewed as binary features on transitions, so that
the ranking of a potential transition is equal to the sum of
active-rule weights for that transition. By combining mul-
tiple action selection rules, robustness is improved. In this
paper, we focus on learning and using such weighted rule
sets to efficiently solve planning problems in the context of
greedy search. It is important to note, however, that all of the
algorithms in this paper can be easily generalized to the case
of breadth-first beam search, which allows for the amount of
search to be controlled through the beam width parameter.

It is worth contrasting our approach with other recent
work that attempts to overcome the brittleness of learned
rule-based policies by integrating them directly into best-

45

first search (Yoon, Fern, and Givan 2008). In this ap-
proach, when a node is expanded during the search, instead
of adding just its successors to the priority queue, the re-
active policy is executed for a number of steps and nodes
generated on the trajectory along with their neighbors are
added to the queue. By incorporating reactive policies into
search, the action selection rules are used in a more robust
way and in a number of domains improvement was observed
over best-first search without the policy.

One aspect of the approach of (Yoon, Fern, and Givan
2008) is that the policy is learned completely independently
of the search process. In particular, there is no mechanism
for directly trying to improve a policy to correct for observed
search errors. In contrast, the primary learning approach in
this paper is directly driven by observed search errors, fo-
cusing its attention on parts of the search space that are ob-
served to be most difficult. A second aspect of (Yoon, Fern,
and Givan 2008) is that it is difficult to place a bound on the
time required for the search to uncover a solution when it
solves a problem. In contrast, one of our primary goals is to
learn control knowledge and use search strategies that allow
for clear and practical bounds on the runtime in cases where
the solution is found at a particular depth. This is the reason
for our focus on breadth-first beam search, which has the
desired property, and specifically greedy search (i.e. beam
width equals to one) in this paper.

The remainder of the paper is organized as follows. First,
we give our problem setup for learning rule-based ranking
problems. Second, we formulate our learning problem as a
ranking problem and describe how to apply a boosting-style
algorithm to solve it. Next, we present how to integrate this
initial solution into the search process, followed by the de-
scription of our rule learner. We finally present experimental
results and conclude.

Problem Setup
A planning problem is a tuple(s0, A, g), wheres0 is the ini-
tial state,A is a set of actions, andg is a set of state facts rep-
resenting the goal. A solution plan for a planning problem is
a sequence of actions(a1, . . . , al), where the sequential ap-
plication of the sequence starting in states0 leads to a goal
states∗ whereg ⊆ s∗. In this paper, we view planning prob-
lems as directed graphs where the vertices represent states
and the edges represent applicable actions, which will result
in state transitions. Planning then reduces to graph search
for a path from the initial state to the goal.

Greedy Search
Different search strategies can be used to solve the planning
problem, with the guidance of a heuristic or ranking func-
tion. As an initial evaluation of our rule-based ranking func-
tions, in this paper, we consider the most basic and efficient
strategy — greedy search.

Greedy search can be viewed as a special case of breadth-
first beam search with beam width one. In greedy search,
the beam contains only one unique node, which is ranked
highest among all children of its parent. This ranking is usu-
ally done via a heuristic function on states, however, in this

work the ranking will be done via a function that ranks state
transitions from a parent to a child. At each step of greedy
search, the current search node is expanded and the child of
the transition with the highest rank is then selected to be the
current node. This process continues until a goal node is
discovered, at which point a solution plan has been found.

Obviously, greedy search prunes away most nodes in the
search space and thus the quality of the ranking function is
critical to its success. By extending to breadth-first beam
search with beam widths greater than one, it is possible to
improve robustness to imperfect ranking functions. While
we focus on greedy search in this paper, it is important to
note that all of the algorithms extend easily to general bread-
first search, and will be a topic of future work.

Rule-based Ranking Function
We consider ranking functions that are represented as linear
combinations of features. In prior work (Yoon, Fern, and
Givan 2008; Xu, Fern, and Yoon 2009), taxonomic syntax
was used to define features over state-goal pairs, resulting
in a ranking function that for any pair(s, g) evaluated how
goodswas with respect to the goalg. In this paper, since we
are interested in learning rankings functions for state transi-
tions rather than just states, we introduce a new space of
features which are defined by action-selection rules and thus
can capture the property of state transitions.

Following prior work (Yoon, Fern, and Givan 2008) that
used taxonomic syntax to define action-selection rules for
reactive policies, each of our action-selection rules has the
form:

u(z1, . . . , zk) : L1, L2, . . . , Lm (1)

whereu is a k-argument action type, thezi are argument
variables, and theLi are literals of the formz ∈ E where
z ∈ {z1, . . . , zk} andE is a taxonomic class expression.
Given a state-action pair(s, g), each class expressionE rep-
resents a set of objects in the states, so that each literal
can be viewed as constraining a variable to take values from
a particular set of objects. For example,holding is a tax-
onomic class expression in the Blocksworld domain and it
represents the set of blocks that are being held in the cur-
rent state. More complex class expressions can be built via
operations such as intersection, negation, composition, etc.
For example, the class expressionontable∩gontable repre-
sents the set of objects/blocks that are on the table in both the
current state and goal. We refer the reader to (Yoon, Fern,
and Givan 2008) for details of taxonomic syntax, noting that
the details are not essential to the main contribution of this
paper. Given a state-goal pair(s, g) and a ground actiona
wherea = u(o1, . . . , ok), the literalzj ∈ E is said to be true
if and only if oj is in the set of objects that is represented by
E. We say that the rulesuggestsactiona for state-goal pair
(s, g) if all of the rule literals are true fora relative to(s, g).

Given a rule of the above form, we can define a corre-
sponding feature functionf on state transitions, where a
state transition is simply a state-goal-action tuple(s, g, a)
such thata is applicable ins. The value off(s, g, a) = 1
iff the corresponding rule suggestsa for (s, g) and otherwise
f(s, g, a) = 0. An example rule in the Blocksworld domain

46

is: putdown(x1) : x1 ∈ holding, which defines a feature
function f , wheref(s, g, a) = 1 iff a = putdown(o) and
holding(o) ∈ s for some objecto, and is equal to zero for
all other transitions.

Assume we have a set of rules giving a corresponding set
of feature functions{fi}, the ranking function is then a lin-
ear combination of these rule-based features

F (s, g, a) =
∑

i

αi · fi(s, g, a)

where αi is the corresponding real-valued weight offi.
From this it is clear that the rank assigned to a transition
is simply the sum of the weights of all rules that suggest
that transition. In this way, rules that have positive weights
can increase the rank of a transition, and rules with negative
weights can decrease the rank.

Learning to Plan
Given a target planning domain, our goal in this paper is
to learn a ranking function represented as a weighted rule
set that can quickly solve problems in the domain using
greedy search. The learning problem provides a training
set of pairs{(xi, yi)}, where eachxi = (si0, A, gi) is a
planning problem from the target planning domain and each
yi = (si0, si1, . . . , sil) is a sequence of states correspond-
ing to the solution path from the initial statesi0 to a goal
sil ⊇ gi. Here we have assumed, without loss of generality,
that all solutions have lengthl to simplify notation.

Given such a training set the learning goal is to learn a set
of rules along with their weights so that when used to rank
state transitions, greedy search will uncover the solutions
in the training set (or some variant of them, see next sec-
tion). There is an implicit assumption that the set of training
problems are representative of the problem distribution to
be encountered in the future, so that learning will be biased
toward the most relevant problem space. In addition, the so-
lutions in the training set should reflect good solutions, since
learning will attempt to mimic those solutions.

Learning Weighted Rule Set
In this section, we first formulate the learning problem for
planning as a ranking problem, and then describe a boosting-
style algorithm to learn the weighted rule set.

The Ranking Problem
A ranking learning problem consists of a set of instancesI
and a feedback functionφ : I × I → {−1, 0, 1}. Given any
v1 ∈ I andv2 ∈ I, φ(v1, v2) = 1 indicates thatv1 should be
ranked higher thanv2, while φ(v1, v2) = −1 indicates that
v2 should be ranked higher thanv1. If φ(v1, v2) = 0, there
is no constraint on the ordering ofv1 andv2. For the ranking
problem, the learning objective is to learn a ranking function
F over I that minimizes the number of misranked pairs of
nodes relative to the feedback function (Freund et al. 2003).
Here we say thatF misranks a pair ifφ(v1, v2) = 1 and
F (v1) ≤ F (v2), or φ(v1, v2) = −1 andF (v1) ≥ F (v2).
The hope is that such a learned function will generalize to
correctly rank instances outside of the training instances in

I. It is typical to learn linear ranking functions of the form
F (v) =

∑
i αi · fi(v), where thefi are real valued feature

functions that assign scores to instances inI. Theαi are
real-valued weights indicating the influence of each feature.
In this paper, the instance spaceI will contain state transi-
tions from a planning domain and our features will be the
rule-based features described above.

Our first approach to learning a ranking function for plan-
ning is to convert it to a traditional ranking problem as de-
scribed below. Given a training set{(xi, yi)} for a plan-
ning domain, we consider each nodesij along each solu-
tion trajectoryyi and letCi(j+1) be the set of all candidate
transitions out ofsij , where a transition froms to s′ via ac-
tion a will be denoted by(s, a, s′). The set of instances for
the ranking problem is thenI = ∪i ∪

l
j=1 Cij . For sim-

plicity and without loss of generality, assume that for any
sij there is exactly one transitiontij = (si(j−1), a, sij) to
sij in Cij , which is the transition observed inyi. The sim-
plest way to define the feedback function is to require thattij
be ranked higher than other transitions inCij . Specifically,
φ(tij , t) = 1 andφ(t, tij) = −1 for any t ∈ Cij such that
t 6= tij and letφ equal to 0 for all other pairs. Any ranking
function that does not make any errors on this ranking prob-
lem will allow for greedy search to produce all solutions in
the training set.

In real applications, however, finding such a perfect rank-
ing function is often impractical. Especially in automated
planning, where there can be many equally good solution
trajectories to a planning problem other than those in the
training set, e.g. by exchanging the ordering of certain ac-
tions. In such cases, it becomes infeasible to require that the
specific transitions observed in the training data be ranked
higher than all other transitions inCij since many of those
other transitions are equally good. To deal with this issue
we attempt to determine which other transitions inCij are
also good transitions. To do this we use the heuristic al-
gorithm described in (Veloso, Pérez, and Carbonell 1991)
to transform the given solution trajectories to partially or-
dered plans. The partially ordered plans contain the same
set of actions as the totally ordered plan given by theyi

but only include the necessary constraints on the action-
ordering. Therefore, every partially ordered plan represents
a set of solution paths.

With the partially ordered plans, we can now define the
feedback function in a more general way. Letδ(t, xi) be
a boolean function that determines whether a given transi-
tion t = (s, a, s′) is on the partially ordered plan forxi.
δ(t, xi) = true indicates that there exists a solution path
consistent with the partially order plan that goes throught.
Given this we can arrive at an improved feedback functionφ
as given below.

• For each pair(t1, t2) ∈ Cij ×Cij , if δ(t1, xi) = true and
δ(t2, xi) = false, thenφ(t1, t2) = 1 andφ(t2, t1) = −1;

• For all other cases,φ(t1, t2) = 0.

This function indicates that for every state on the a solu-
tion pathyi, its outgoing transitions that can lead to a so-
lution, according to the partially ordered plan, should be
ranked higher than those can not. Assume that a ranking

47

function similar to the feedback function is found, it is rea-
sonable to believe that it will allow for greedy search to per-
form well, though this is unfortunately not guaranteed. The
reason for this is that the only transitions included inI are
those that originate at nodes on the totally ordered training
solutions (i.e. the union of transitions in theCij). Thus, the
learned ranking function might lead a greedy search to take a
transition that leads off of the training solution, where it has
not been trained and hence no guarantees can be made about
its performance. One way to solve this problem would be to
include all possible transitions in the set of instancesI and
to attempt to rank all transitions consistent with a partially
ordered plan higher than all others. Unfortunately, there can
be an exponentially large set of transitions consistent with a
partially order plan, making this option intractable in gen-
eral. Thus, for our first approach, we simply accept this
potential pitfall of working with the reduced transition set
I described above. We will address this pitfall in our second
iterative approach described in the next section.

Learning with RankBoost
By converting our learning-to-plan problems to ranking
problems we can now consider apply existing learning al-
gorithms for ranking. RankBoost is a particularly effective
boosting-style algorithm that combines a set of weak learn-
ers in order to accurately rank a set of instances (Freund et
al. 2003). Given a set of instancesI and a feedback func-
tionφ : I×I → {−1, 0, 1}, RankBoost defines a probability
distributionD overI × I.

D(v1, v2) = Z ·max{0, φ(v1, v2)}, v1 ∈ I, v2 ∈ I (2)

whereZ is a normalization factor chosen such thatD will
be a distribution. The learning objective of RankBoost is to
find a ranking functionF that minimizes the ranking loss,

rLossD(F) =
∑

v1,v2

D(v1, v2) · ψ(F (v1) ≤ F (v2))

whereψ(·) returns 1 if the term inside is true and returns
0 otherwise. Whenφ(v1, v2) = −1 or 0, D(v1, v2) = 0.
When φ(v1, v2) = 1, D(v1, v2) = Z. Therefore, the
ranking loss can also be written asrLossD(F) = Z ·∑

φ(v1,v2)=1 ψ(F (v1) ≤ F (v2)). Note thatφ(v1, v2) = −1

impliesφ(v2, v1) = 1. All pairs of instances that have a non-
trivial ranking ordering are considered in the loss function.
SinceZ is a constant, the learning objective of RankBoost
equals to minimizing the number of pairs of instances that
are misranked byF according to the feedback functionφ.

RankBoost is an iterative algorithm that adds one feature
to a linear ranking function on each iteration so as to contin-
ually improve the rank loss. To do this, each round calls a
weak learning algorithm to learn a feature that is focused on
correctly ranking instance pairs have been most difficult to
rank correctly in previous iterations. In our case, the weak
learner will learn rule-based features and aftern iterations
of RankBoost we will have a weighted rule set of sizen.

More specifically, as shown in Figure 1, the RankBoost al-
gorithm maintains a distribution over all pairs of instances,

RankBoost (I, D, k)
// I is the set of instances.
// D is the input distribution overI × I.
// k is the number of iterations.
D1 = D
for i = 1, 2, . . . , k :

fi ← Rule-Learner (I, Di)
// Learning a ranking feature using distributionDi

Chooseαi ∈ R
for each pair(v1, v2) ∈ I × I

Di+1(v1, v2) = Di(v1,v2)exp(αi(fi(v2)−fi(v1)))
Zi

whereZi is a normalization factor
return F =

∑k

i=1 αi · fi

Figure 1: The RankBoost algorithm (Freund et al. 2003).

indicating the importance of these pairs to being ranked
correctly by the next learned feature. Initially it is the
distribution D defined in Equation 2. This distribution
is passed to the weak learner, which attempts to return
a featurefi that achieves a good ranking loss with re-
spect to the current distribution. After learningfi, Rank-
Boost selects a weightαi in order to minimizeZi =∑

v1,v2
Di(v1, v2) exp(αi(fi(v2) − fi(v1))). The distribu-

tion then gets updated in a way that the distribution value for
correctly ranked pairs will be decreased and the distribution
value for incorrectly ranked pairs will be increased. As a
result, the next learning iteration will emphasize pairs that
have been misranked more often in previous iterations.

RankBoost has strong theoretical properties, similar to
those of traditional boosting algorithms. In particular, un-
der certain assumption about the weak learning algorithm,
RankBoost can be guaranteed to decrease the ranking loss
on the training data on each iteration and the generalization
error of the learned ranking function can be bounded (Fre-
und et al. 2003). Our specific approach for weak learning
and setting the weight values follows that of (Freund et al.
2003) where a specialized formulation was presented for bi-
nary features, which is the case for our rule-based features.
In particular, the weak learner attempts to learn a feature that
maximizes|r|, wherer =

∑
v1,v2

D(v1, v2)(f(v1)−f(v2))
The corresponding weightαi for a learned feature is then
set toαi = 1

2 ln(1+r
1−r

). While applying the RankBoost algo-
rithm to our planning framework, we only made two modi-
fications motivated by our application domain of planning.

First, we modified RankBoost so that it could take into ac-
count prior knowledge provided by an initial heuristic func-
tion over states. This is motivated by the fact that prior work
(Yoon, Fern, and Givan 2008; Xu, Fern, and Yoon 2009) has
found it quite useful to incorporate state-of-the-art heuristics
such as relaxed-plan length (Hoffmann and Nebel 2001) into
the learned control knowledge. Space limits preclude details
of this modification to RankBoost, but the essential idea is
to initialize the learned ranking function to be the provided
heuristic, in our case relaxed-plan length, and to modify the
initial distribution appropriately. The learned ranking is then
equal to the heuristic plus a linear combination of learned
features that attempt to correct the heuristic.

48

Our second modification is to further tune the weights of
the ranking function returned by RankBoost. In RankBoost,
the weight are selected in order to minimize the ranking loss.
However, this does not always correspond exactly to the
best weights for maximizing planning performance. Thus to
help improve the planning performance, we consider using a
perceptron-style algorithm to optimize the weights. Initially
the weight of each featurefi is set according to RankBoost.
The algorithm then iteratively conducts greedy search and
updates the weights to correct the search errors that have
been made. For details about the weight learning algorithm,
we refer to prior work (Xu, Fern, and Yoon 2009).

Iterative Learning in Search

In last section, we applied the RankBoost algorithm to learn
a weighted rule set for solving planning problems. As noted
above, theoretically there is no guarantee on the perfor-
mance of the learned weighted rule set due to the fact that
the transitions included inI are only a small fraction of all
possible transitions, in particular those transitions that orig-
inate from states in the training solution paths. For any tran-
sitions outside ofI, the learning problem does not specify
any constraints on their rankings. Thus, when the learned
ranking function leads greedy search to parts of the search
space outside ofI the search is in truly unchartered territory.

Our approach to help overcome this issue is to integrate
the above RankBoost approach with the search process. In
particular, the goal is to form ranking problems whose set of
transitionsI are a better reflection of where a greedy search
using the currently learned ranking function is going to go.
In particular, it is desirable to include transitions inI where
the current ranking function leads greedy search to make
mistakes, where a mistake is flagged whenever the greedy
search results in a transition that falls outside of the partial
order plan of a training example. This allows for learning to
focus on such errors and hopefully correct them.

More specifically, Figure 2 gives pseudo-code for our
improved approach to learning ranking functions for plan-
ning. The top level procedure repeatedly constructs a rank-
ing problem by callingConstructRP, calls RankBoost to
learnk new features on it, and then further optimizes the fea-
ture/rule weights using our perceptron-style algorithm. The
key aspect of this approach is that each ranking problem gen-
erated byConstructRP depends on the performance of the
currently learned ranking functionF when used for greedy
search. In particular, given the current ranking functionF
ConstructRP simulates the process of greedy search using
F and adds transitions along the simulated path toI along
with the corresponding ranking information as specified by
δ (see previous section), which determines whether transi-
tions are on the partially-ordered plan of a training problem
or not. However, if the greedy search should ever follow an
erroneous transition according toδ the search will be artifi-
cially forced to follow the highest ranked good transition. In
this way the resulting ranking problem focuses on the tran-
sitions that are relevant to the current greedy search and in
particular those parts where errors are made. Currently there
are no convergence results for this learning approach, which

IterativeLearning ({xi}, δ, k, H)
// xi = (si0, A, gi) : planning problem
// δ : partial-order plan indicator function (see text)
// k : # of RankBoost iterations for each ranking problem
// H : heuristic function to initial ranking function
F ← H //initialize the ranking function
repeat until no improvementor iteration limit

(I, D)← ConstructRP ({xi}, δ, F)
// Construct a ranking problem
F ′ ←RankBoost (I, D, k)
F ← F + F ′

F ←WeightLearning(F)
return F

ConstructRP ({xi}, δ, F)
I ← ∅
D ← 0
for eachxi = (si0, A, gi)

s← si0

repeat until s ⊇ gi // goal achieved
C ← all transitions(s, a, s′) out ofs
C+ ← {t | t ∈ C ∧ δ(t, xi) = true}
C− ← C − C+

I ← I ∪ C
for eacht+ ∈ C+, t− ∈ C−

D(t+, t−) = 1
Z

(exp(F (t−)− exp(F (t+)))
// Z is a normalization factor

s← destination of highest ranked transition inC+

return (I, D)

Figure 2: The iterative learning algorithm.

is a point of future work. However, this iterative learning
approach can significantly improve empirical performance.

Learning Action Selection Rules
The RankBoost algorithm assumes the existence of a weaker
learner that can be called to produce a ranking feature. In
this section, we briefly introduce the rule learner we used.
As shown in Figure 1, the input to the rule learner is a
pair (I,D), whereI is the set of instances andD is a dis-
tribution over I × I. In our case, each instance inI is
represented as a state-goal-action tuple(s, g, a), on which
the rule-based feature can be evaluated. The learning ob-
jective is to find a rule that can maximize|r| wherer =∑

v1∈I,v2∈I D(v1, v2)(f(v1) − f(v2)). For this purpose,
we adapt the heuristic rule learner described in (Yoon, Fern,
and Givan 2008) to find the best rule that can maximize|r|.
Since the rule space is exponentially large, the approach per-
forms a beam search over possible rules, where the starting
rule has no literals in its body and each search step adds one
literal to the body. The search terminates when the beam
search is unable to further improve|r|.

Experimental Results
We present experiments in seven STRIPS domains:
Blocksworld, Depots, Driverlog, FreeCell, Pipesworld,
Pipesworld-with-tankage and Philosopher. These domains
were selected in order to facilitate comparison to prior work

49

on learning search heuristics (Yoon, Fern, and Givan 2008;
Xu, Fern, and Yoon 2009). In future work, we also plan
to evaluate our performance on the training and testing sets
from the learning track of IPC 2009. We set a time cut-off
of 30 CPU minutes and considered a problem to be unsolved
if a solution was not found within the time cut-off. For our
learning algorithms, the maximum number of learned rules
is limited to 30. The learning algorithm will terminate when
no improvement can be observed or the maximum number
of rules has been reached. Note that the actual size of the
learned rule set is usually smaller than 30 since the rule
learner may output duplicated rules.

For each domain we needed to create a set of train-
ing problems and testing problems on which the weighted
rule set would be trained and evaluated. In Blocksworld,
all problems were generated using the BWSTATES gen-
erator (Slaney and Thiébaux 2001), which produces ran-
dom Blocksworld problems. Thirty problems with 10 or 20
blocks were used as training data, and 30 problems with 20,
30, or 40 blocks were used for testing. For Driverlog, De-
pots and FreeCell, the first 20 problems are taken from IPC3
and we generated 30 more problems of varying difficulty
to arrive at a set of 50 problems, roughly ordered by diffi-
culty. For each domain, we used the first 15 problems for
training and the remaining 35 for testing. The other three
domains are all taken from IPC4. Each domain includes 50
or 48 problems, roughly ordered by difficulty. In each case,
we used the first 15 problems for training and the remaining
problems for testing. The solutions for all training problems
are generated by running FF and beam search with different
beam widths, selecting the best solutions found, and then
transforming these solutions to partially ordered plans as de-
scribed in (Veloso, Ṕerez, and Carbonell 1991).

Description of Tables

Before presenting the results we will first provide an
overview of the information contained in the results tables.
Figure 3 compares the performance of different approaches
we used as well as algorithms in prior work for learning con-
trol knowledge for greedy search (Yoon, Fern, and Givan
2008; Xu, Fern, and Yoon 2009). These algorithms are:

• Yoon08 : three forms of control knowledge were learned
in (Yoon, Fern, and Givan 2008) and were all evaluated
for their ability to guide greedy search. The table en-
tries labeled Yoon08 give the best performance among
the three types of control knowledge as reported in that
work. Results for Yoon08 are only given for our three
IPC4 domains: Pipesworld, Pipesworld-with-tankage and
Philosopher, for which our training and testing sets ex-
actly correspond.

• RPL : greedy search with FF’s relaxed plan length heuris-
tic.

• LaSO-BR1: greedy search with the ranking function
learned by LaSO-BR1 (Xu, Fern, and Yoon 2009). This
is the closet work to our approach, in which the ranking
function is also represented as a linear combination of fea-
tures and used to control greedy search. Furthermore, the

weight learning algorithm in that work is exactly the al-
gorithm we use in this work. The only difference is that
in the prior work features were not learned by LaSO-BR1

and were of a different form. They used taxonomic class
expressions that capture only state information, while our
features are defined on state transitions, including infor-
mation on both state and actions. The features used in
that work were hand-selected from sets of class expres-
sions learned by various other techniques in prior studies.

• RB : greedy search with the weighted rule set that is
learned by our initial RankBoost algorithm. Here we as-
sume no prior knowledge and generate a ranking problem
from which the weighted rule set is learned.

• RB-H : identical to RB except that we view the relaxed-
plan length heuristic as prior knowledge and generate the
ranking problem based on it.

• IRB : greedy search with the weighted rule set that is
learned via our iterative learning approach starting with
no prior knowledge. We choose to learnk = 5 rules for
each ranking problem generated.

• IRB-H: identical to IRB except that we use the relaxed-
plan length heuristic as prior knowledge.

In addition to these algorithms, we also include the perfor-
mance of FF in Figure 3 to give an indication of the difficulty
of the testing problems. Note that FF is a state-of-the-art
planner that is not restricted to greedy search. Each column
of Figure 3 corresponds to an algorithm and each row cor-
responds to a target planning domain. The planning perfor-
mance is first evaluated on the number of solved problems.
When two algorithms solve the same number of problems,
we will use the median plan length of the solved problems
to break the tie. The one that has shorter plans is considered
better. For our four approaches, we present the best results
that were observed during the learning process.

Figure 4 provides more details of the approaches we used.
We add a new column “Learning iterations” indicating how
many times the rule learner is called, i.e. how many rules
are produced in total. Since there exist duplicated rules, we
add a set of four columns that are labeled as “Number of
unique rules”, giving the actual size of the learned rule set
that removes duplications. Now each row corresponds to
the performance of the weighted rule set learned after the
number of iterations specified by that row. Since IRB and
IRB-H learned 5 rules for each ranking problem generated in
each iteration, we compared the results after every 5 calls to
the rule learner. For example, the first row for Blocksworld
corresponds to the weighted rule set learned after 5 rules are
induced. However, after removing duplications, the actual
size of the weighted rule set is 3 for RB and 4 for RB-H.
The next row indicates that the size of the weighted rule set
is 7 for RB after 10 rules are induced.

Performance Evaluation

Figure 3 compares the performance of different planners. In
Blocksworld, Depots, Driverlog, Pipesworld-with-tankage
and Philosopher, FF solves fewer problems than the best

50

Problems solved (Median plan length) FF Yoon08 RPL LaSO-BR1 RB RB-H IRB IRB-H

Blocksworld 10 (77) N/A 13 (3318) 27 (840) 30 (126) 30 (166) 30 (89) 30 (118)

Depots 14 (63) N/A 1 (462) 4 (1526) 15 (661) 11 (129) 0 (-) 23 (433)

Driverlog 3 (119) N/A 0 (-) 0 (-) 0 (-) 3 (2852) 0 (-) 4 (544)

FreeCell 29 (90) N/A 5 (96) 7 (132) 5 (155) 7 (96) 2 (213) 9 (92)

Pipesworld 20 (50) 0 (-) 11 (114) 16 (1803) 7 (1360) 17 (1063) 7 (1572) 17 (579)

Pipesworld-with-tankage 3 (63) 0 (-) 6 (119) 5 (55) 1 (1383) 6 (152) 3 (2005) 5 (206)

Philosopher 0 (-) 0 (-) 0 (-) 6 (589) 33 (875) 33 (363) 33 (875) 33 (363)

Figure 3: Experimental results for different planners. For each domain, we show the number of solved problems and the median
plan length of the solved problems. A dash in the table indicates that the median plan length is not available since none of the
problems can be solved. N/A indicates that the result of the planner is not applicable here.

greedy planner with learned knowledge, which is high-
lighted in Figure 3. For FreeCell and Pipesworld, FF out-
performs the learning approaches. In this case, the learned
knowledge was not powerful enough to allow for greedy
search to outperform FF. Future work will examine the
use of our learned heuristics in non-greedy search such as
breadth-first beam search, which we expect will significantly
improve performance.

Among the learning approaches, IRB-H is the best plan-
ner in all domains except for Blocksworld and Pipesworld-
with-tankage, solving more problems with fairly good plan
length. For Blocksworld, IRB is the best planner and solves
all problems with the best median plan length. RB, RB-
H and IRB-H also solve all problems indicating that the
rule-based control knowledge in this domain is more use-
ful than the relax plan length heuristic and the previously
learned heuristic. In Pipesworld-with-tankage, RPL outper-
forms our planners. But RB-H solves the same number of
problems, with the plan quality being a little worse. The re-
sults show that the learned weighted rule sets significantly
outperform the relax plan length heuristic and the heuristic
in LaSO-BR1 that only captures information about states.
Overall, IRB-H is the best approach and to the best of our
knowledge, these are the best reported results of any method
for learning control knowledge for greedy search.

Performance Across Learning Iterations. Figure 4
gives more detailed results of our learning approaches. As
the learning goes on, the number of rules produced will be
non-decreasing. However, since there exist replicated rules,
the size of the weighted rule set may not change. For exam-
ple, IRB learned only 2 unique rules for FreeCell, regardless
of how many times the rule learner is called. This either
indicates a failure of our rule learner to adequately explore
the space of possible rules, or indicates a limitation of our
language for representing rules in this domain. These issues
will be investigated in future work.

Note that in general, with some exceptions, the planning
performance judged in terms of solved problems and me-
dian plan length improves as the number of unique rules in-
creases. For example, RB solves 3 problems with 13 rules
but 15 problems with 16 rules for Depots. As an excep-
tion, however, consider Philosopher, where IRB-H solves
all problems with the first 3 rules learned. When one new
rule is added, it can not solve any of those problems. It is
very likely that our weighted rule set converges to a bad lo-
cal minima, either because of the weight learning algorithm

or the iteratively boosting algorithm, or both.
Iterative Learning vs. Non-iterative learning. IRB and

IRB-H can be viewed as an iterative version of RB and RB-
H, respectively. In general, with some exceptions, the itera-
tive versions perform better than the non-iterative versions,
particularly for IRB-H. For Blocksworld, all of them have
similar performance, while IRB improves the plan length
over RB. For Depots, the iterative version IRB fails to solve
any problem but contrastingly, IRB-H works much better
than non-iterative version RB-H. For other domains, the it-
erative versions often achieve a better performance.

Effect of Relax Plan Length Heuristic. The only dif-
ference between IRB-H and IRB, as well as the difference
between RB-H and RB, is that we used the relax plan length
heuristic as prior knowledge for the former methods. In Fig-
ure 4, it is shown that the relax plan length heuristic did
help to significantly improve performance in some domains.
For Driverlog, FreeCell, Pipesworld and Pipesworld-with-
tankage, RB-H and IRB-H always solve more problems than
RB and IRB, with the same number of rules induced. In
Depots, RB-H achieves similar performance as RB but IRB-
H solves many more problems than IRB. Blocksworld is a
domain where IRB and RB works slightly better than IRB-
H and RB-H, with better solution length. In Philosopher,
IRB-H and RB-H find better solution paths. Overall, there is
clear value in using the relaxed-plan length heuristic as prior
knowledge.

Summary and Future Work
In this paper, we developed a robust way for using action
selection rules for solving planning problems. Based on
prior work that learns action selection rules, we formulated
a ranking problem and applied a boosting-style algorithm
to solve it. The experimental results show that the learned
control knowledge significantly improves the robustness of
rules over reactive policy. Furthermore, it outperforms both
the state-of-the-art relax plan length heuristic and automati-
cally learned heuristics from recent work.

While initial results are promising, this approach still has
a lot of space to improve. One important direction is to ex-
tend this approach to breadth-first beam search, which al-
lows for more search and possibly more robustness. Another
direction is to investigate the rule learner, finding the reason
why it fails to induce new unique rules for some planning
domains. Also of the interest is to study the convergence of
our iterative learning algorithm. Finally, we plan to consider

51

Learning iterations Number of unique rules Problems solved (Median plan length)

RB RB-H IRB IRB-H RB RB-H IRB IRB-H

Blocksworld 5 3 4 5 5 30(133) 30(151) 30(125) 30(160)

10 7 8 8 10 30(126) 30(166) 30(89) 30(118)

Depots 5 4 5 5 4 0(-) 2(8631) 0(-) 3(115)
10 7 9 8 8 3(9194) 4(954) 0(-) 20(796)
15 9 13 10 9 5(5372) 2(113) 0(-) 16(313)
20 11 17 12 12 2(5193) 7(263) 0(-) 23(433)
25 13 20 14 14 3(3188) 5(678) 0(-) 22(349)
30 16 24 16 15 15(661) 11(129) 0(-) 19(314)

Driverlog 5 4 5 4 5 0(-) 1(1893) 0(-) 3(8932)
10 6 5 5 8 0(-) 3(2852) 0(-) 1(2818)

15 7 6 6 10 0(-) 0(-) 0(-) 3(544)
20 8 8 6 10 0(-) 1(4309) 0(-) 4(544)
25 9 9 6 10 0(-) 3(4082) 0(-) 4(544)
30 10 11 6 10 0(-) 1(632) 0(-) 3(544)

FreeCell 5 2 4 2 5 2(213) 6(104) 2(213) 9(94)
10 4 7 2 5 2(186) 5(112) 2(213) 7(95)
15 7 10 2 6 3(103) 6(143) 2(213) 9(94)
20 11 15 2 6 5(155) 7(96) 2(213) 9(94)
25 11 19 2 6 3(334) 5(90) 2(213) 9(92)

Pipesworld 5 3 4 3 3 4(382) 17(1063) 7(1572) 16(279)

10 7 7 7 7 2(7845) 8(1821) 2(335) 11(307)
15 9 9 9 9 5(2929) 12(1599) 2(335) 17(595)
20 9 12 10 13 3(1369) 11(1423) 5(511) 17(579)
25 11 16 11 15 4(998) 11(2561) 6(883) 17(595)
30 12 19 11 18 7(1360) 12(1423) 6(990) 15(366)

Pipesworld-with-tankage 5 5 5 4 4 0(-) 3(296) 3(2006) 4(126)
10 6 8 5 9 0(-) 3(100) 1(5372) 4(148)
15 9 9 5 10 0(-) 4(98) 1(4735) 4(134)

20 12 12 7 10 1(1383) 6(152) 1(4735) 5(350)

25 16 17 7 10 1(1383) 4(449) 3(2940) 5(206)

Philosopher 5 3 3 3 3 0(-) 33(363) 0(-) 33(363)
10 3 3 4 4 0(-) 33(363) 33(875) 0(-)

15 4 5 4 4 0(-) 33(363) 33(875) 0(-)

20 5 5 5 4 33(875) 33(363) 33(875) 0(-)

Figure 4: Experimental results for different planners and different weighted rule sets. For each domain, we show the number
of unique rules that are learned after the corresponding number of learning iterations. The performance of each learned rule set
is given by the number of solved problems, together with the median plan length of the solved problems. A dash in the table
indicates that the median plan length is not available while none of the problems can be solved.

more general ranking functions, e.g. a ranking function that
combines weighted rule sets with other features that are de-
fined on states.

References
Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. InProceedings of the European Con-
ference on Planning, 360–372.

Freund, Y.; Iyer, R.; Schapire, R. E.; and Singer, Y. 2003.
An efficient boosting algorithm for combining preferences.
Journal of Machine Learning Research4:933–969.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search.Journal
of Artificial Intelligence Research14:263–302.

Khardon, R. 1999. Learning action strategies for planning
domains.Artificial Intelligence113:125–148.

Martin, M., and Geffner, H. 2000. Learning generalized
policies in planning domains using concept languages. In

Proceedings of the 7th International Conference on Knowl-
edge Representation and Reasoning.
Slaney, J., and Thiébaux, S. 2001. Blocks world revisited.
Artificial Intelligence125:119–153.
Veloso, M. M.; Ṕerez, M. A.; and Carbonell, J. G. 1991.
Nonlinear planning with parallel resource allocation. In
Workshop on Innovative Approaches to Planning, Schedul-
ing and Control, 207–212.
Xu, Y.; Fern, A.; and Yoon, S. 2009. Learning linear rank-
ing functions for beam search with application to planning.
Journal of Machine Learning Research10:1349–1388.
Yoon, S.; Fern, A.; and Givan, R. 2002. Inductive policy
selection for first-order MDPs. InIn Proceedings of Eigh-
teenth Conference in Uncertainty in Artificial Intelligence.
Yoon, S.; Fern, A.; and Givan, R. 2008. Learning control
knowledge for forward search planning.Journal of Ma-
chine Learning Research9:683–718.

52

