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Abstract

In the recent years the field of automated plan generation
has significantly advanced and several powerful domain-
independent planners have been developed. However, no one
of these systems clearly outperforms all the others in every
known benchmark domain. It would then be useful to have a
multi-planner system capable of automatically selecting and
combining the most efficient planning technique(s) for each
given domain. In this paper we propose a planner, called PbP
(Portfolio-based Planner), which automatically configures a
portfolio of existing planners, possibly using a useful set of
macro-actions for each of them. The configuration relies on
some knowledge about the performance of the planners in
the portfolio and the observed usefulness of sets of macro-
actions, which is automatically generated by a statistical anal-
ysis considering a set of training problems for the domain un-
der consideration. The configuration knowledge for the given
domain consists of a promising combination of planners in
the portfolio, each one with a (possibly empty) set of macro-
actions, and additional information specializing their round-
robin scheduling at planning time. PbP has two variants, one
focusing on speed (PbP.s) and one on plan quality (PbP.q).
A preliminary version of PbP.s entered the learning track of
the sixth IPC, and was the overall winner of this competition
track. An experimental analysis presented in the paper con-
firms the effectiveness of PbP.s, indicates that PbP.q per-
forms better than the IPC6 planners, shows that the learned
configuration knowledge can be very useful for PbP.s/q, and
demonstrates that PbP.s/q can perform much better than the
basic planners forming the portfolio.

Introduction
The field of automated plan generation has recently signifi-
cantly advanced. However, while several powerful domain-
independent planners have been developed, no one of these
clearly outperforms all the others in every known benchmark
domain. It would then be useful to have a multi-planner sys-
tem that automatically selects and combines the most effi-
cient planner(s) for each given domain.

The performance of the current planning systems is typi-
cally affected by the structure of the search space, which de-
pends on the considered planning domain. In many domains,
the planning performance can be improved by deriving and
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exploiting knowledge about the domain structure that is not
explicitly given in the input formalization. In particular, sev-
eral approaches encoding additional knowledge in the form
of macro-actions have been proposed, e.g., (Armano, Cher-
chi & Vargiu 2003; Botea et al. 2005; Coles & Smith 2007;
Newton et al. 2007). A macro-action (or macro) is a se-
quence of actions that can be planned at one time like a sin-
gle action. When using macro-actions there is an important
tradeoff to consider. While their use can speedup the plan-
ning process, because it reduce the number of search steps
required to reach a solution, it also increases the search space
size and this could slow down the planning process. More-
over, the effectiveness of a set of macro actions can depend
on the particular planner using it.

In this paper we propose a planner, called PbP (Portfolio-
based Planner), which automatically configures a portfolio
of domain-independent planners. The configuration relies
on some knowledge about the performance of the planners
in the portfolio and the observed usefulness of automati-
cally generated sets of macro-actions. This configuration
knowledge is “learned” by a statistical analysis and consists
of: an ordered selected subset of the planners in the initial
portfolio, which at planning time are combined through a
round-robin strategy; a set of useful macro-actions for each
selected planner; and some sets of planning time slots. A
planning time slot is an amount of CPU-time to be allocated
to a selected planner (possibly with a set of macro-actions)
during planning.

When PbP is used without this additional knowledge, all
planners in the portfolio are scheduled by a simple round-
robin strategy where predefined and equal CPU-time slots
are assigned to the (randomly ordered) planners. When PbP
uses the knowledge computed for the domain under consid-
eration, only the selected cluster of planners (and relative
sets of macro actions) is scheduled, their ordering favors the
fastest planners for the domain under consideration, and the
planning time slots are defined by the learned knowledge.

It should be noted that in our framework the computed
macro-actions are not always used by the planners that PbP
selects. Assume that a planner P is in the cluster of plan-
ners selected by PbP for solving problems in a domain D.
If in the learning phase PbP observes that a set of macro-
actions computed for P does not improve the performance
of the selected cluster for the training problems in D, then
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the learned configuration does not include these macro ac-
tions for P .

PbP has two variants: PbP.s focusing on speed, and
PbP.q focusing on plan quality. A preliminary implemen-
tation of PbP.s entered the learning track of the sixth in-
ternational planning competition (IPC6) and was the overall
winner of this competition track (Fern, Khardon & Tade-
palli 2008). However, as observed by the IPC6 organizers,
for the IPC6 problems the use of the learned knowledge does
not speedup the competition version of PbP.s significantly.
This behaviour depends on some implementation bugs con-
tained in the preliminary version of PbP.s concerning both
the learning phase and the planning phase, and on the ineffi-
cient use of some Linux shell scripts (evident especially for
small or easy problems).

Recently, we have developed a new version of PbP.s that
is completely implemented in C, does not contain these bugs
and, furthermore, extends the set of the integrated basic
planners with Lama (Richter & Westphal 2008), the plan-
ner which won the deterministic track of IPC6. In the rest of
the paper, PbP.s denotes this newer version.

This paper contains an experimental analysis about
PbP.s/q, which

• confirms the good performance of PbP.s and indicates
that PbP.q performs better than the IPC6 planners,

• shows that the learned configuration knowledge is useful
for PbP.s/q,

• indicates that PbP.s/q performs better than the integrated
planners,

• suggests that our approach effectively configures the port-
folio w.r.t. other possible configurations, as well as the use
of the computed macro-actions for the selected planners
in the portfolio.

The paper is organized as follows. The 2nd section briefly
presents the related work; the 3rd section describes our plan-
ning approach; the 4th section presents the results of our
experimental study; finally, the 5th section gives the conclu-
sions.

Related Work
The idea of configuring and using a portfolio of techniques
has been investigated by several researchers in automated
reasoning e.g., (Gomes & Selman 2001; Huberman, Lukose
& Hogg 1997). Recently, Xu and collaborators (Xu et al.
2008) have proposed SATzilla, an automated approach for
configuring a portfolio of SAT solvers, which is based on
some empirical problem hardness models.

Regarding automated planning, Blackbox (Kautz & Sel-
man 1999) can solve problems using a variety of satisfiabil-
ity engines. Moreover, several state-of-the-art planners, e.g.,
(Hoffmann & Nebel 2001; Gerevini, Saetti & Serina 2003;
Chen, Hsu & Wah 2006), include a “backup strategy” using
an alternative search technique which is run when the main
default method fails.

Vrakas and collaborators (Vrakas et al. 2003) propose
some machine learning techniques for discovering addi-
tional knowledge that associates some features of the plan-

Planner Authors, date
FD Helmert, 2006
Lama Richter & Westphal, 2008
LPG-td Gerevini, Saetti & Serina, 2005
Macro-FF Botea, Enzenberger, Müller & Schaeffer, 2005
Marvin Coles & Smith, 2007
Metric-FF Hoffmann & Nebel, 2001
SGPlan5 Chen, Wah & Hsu, 2006
YAHSP Vidal, 2004

Table 1: Domain-independent planners currently integrated
into PbP.

ning problems with specific values for the parameters of
their planning system. The knowledge learned by PbP is
different, and is used for configuring a portfolio of domain-
independent planners.

The work that is most closely related to PbP is the sys-
tem developed by Howe & collaborators (Howe et al. 1999;
Roberts & Howe 2007). Like PbP, this system solves
planning problems by a round-robin scheduling of domain-
independent planners, but the learned knowledge is very dif-
ferent: the knowledge learned by PbP is specific for the
problems of a given domain, while the knowledge learned
by the Howe & collaborators’ system is domain-independent
and is used, at planning time, to configure the portfolio ac-
cording to some features of the planning problem under con-
sideration. Moreover, the methods for selecting and order-
ing the incorporated planners are different. Their system se-
lects a set of planners through a set covering algorithm over
the solved training problems, and orders them by exploiting
some learned performance models. In PbP the selection is
based on a statistical analysis comparing the CPU-times and
plan qualities of the planners for the training problems in
the given domain, and the ordering is based on the com-
puted planning time slots. Finally, their system does not
compute, analyze or use macro-actions, and does not con-
sider plan quality.

The Portfolio-based Planner (PbP)
In this section, we give an overview of PbP’s architecture
and of the proposed implemented methods for selecting a
cluster of planners and macro-actions for an input domain.

The PbP Architecture
Table 1 shows the eight planners currently integrated into
PbP. The architecture of PbP, sketched in Figure 1, consists
of five main components, which are briefly described below.

Macro-actions computation. For each integrated planner,
PbP computes some sets of macro-actions using the follow-
ing two approaches.

• Wizard (Newton et al. 2007). This system implements
an offline evolutionary method, which computes macros
by genetic operators from plans for a set of training prob-
lem instances of an input domain. The computed macro-
actions are added to the domain formalization as addi-
tional actions, and hence they can be used by all the plan-
ners incorporated in PbP. With this approach, PbP pro-
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Figure 1: A sketch of PbP’s architecture.

duces at most two alternative sets of macro-actions for
each considered planner.

• Macro-FF (Botea et al. 2005; Botea, Müller & Schaef-
fer 2007). The approach incorporated into the Macro-FF
system (Botea et al. 2005) computes the macros by ana-
lyzing the solutions of a set of training problem instances,
so that the macros that appear frequently and that reduce
the required search effort significantly are preferred. This
version of the approach integrated into PbP contains the
enhancements described in (Botea, Müller & Schaeffer
2005; 2007). With this approach, PbP produces at most
five sets of alternative macro-actions for Macro-FF.

Performance measurement. This is the most expensive
computation step in the configuration of the portfolio. PbP
runs each integrated planner with and without the sets of
learned macro-actions for the input training problems and
the planning CPU-time limit T , measuring their perfor-
mance in terms of: number of problems solved within T ,
CPU-time required for the solved training problem, and
quality of the computed solutions. For the incremental plan-
ners, i.e., LPG and Lama, PbP measures the quality of all
the solutions generated for a problem and the corresponding
CPU-times.1

Planning time slots computation. For each integrated plan-
ner, PbP defines the planning time slots as the CPU-times
used to solve the following percentages of problems during
the learning phase: {25, 50, 75, 80, 85, 90, 95, 97, 99}.
A similar method is also used in the round-robin schedul-
ing defined in (Roberts & Howe 2007), but with the tech-
nical difference explained in the following example. As-
sume that the computed planning time slots for planner A
are {0.20, 1.40, 4.80, 22.50, . . .} and that those for planner
B are {14.5, 150.8, . . .}. Then, for this pair of planners,

1An incremental planner produces a sequence of solutions with
increasing plan quality which are generated with increasing CPU
times.

PbP extends the first time slot for A (0.20) to 4.80, i.e., to
the greatest time slot of A which is smaller than the first
time slot of B; similarly for the subsequent time slots. If
the first time slot of A were not extended, the slowest plan-
ner B would initially run for a CPU-time much greater than
the CPU-time initially assigned to the fastest planner A, and
for many problems that planner A quickly solves (e.g., using
one CPU-seconds), PbP would perform significantly slower.

Planner cluster selection & ordering. PbP selects a cluster
of planners in the initial portfolio, each one with a (possibly
empty) set of useful macro-actions, according with the mea-
sured performance and the computed planning time slots.
Moreover, the execution order of the planners in the selected
cluster is defined by the increasing CPU-time slots associ-
ated with the planners. More on this in the next section of
the paper.

Multi-planner by round-robin scheduling. PbP runs the
selected ordered planners (each one using the relative se-
lected set of macro-actions) by a round-robin scheduling al-
gorithm using the computed planning time slots for an input
(test) problem. We developed two versions of PbP, called
PbP.s and PbP.q. Concerning termination of the resulting
multi-planner, PbP.s is interrupted if either a given CPU-
time limit T is exceeded (returning failure), or one among
the selected planners computes a solution (output of PbP.s).
PbP.q’s execution is interrupted if either time T is exceeded,
or all the selected planners terminate. If PbP.q generates no
solution within T , it returns failure; otherwise it returns the
best computed solution.

Selecting a Cluster of Planners and Macro-actions
At configuration time, for each given test domain, PbP con-
siders the execution of all the integrated planners, and selects
a subset of them on the basis of their observed performance
for a training problem set in the domain and a given CPU-
time limit t.

After having run each planner with every computed set of
macro-actions (one run for each set) for the training prob-
lem set of domain D and for CPU-time limit T , PbP ana-
lyzes the results (CPU-times and plan qualities) to identify
the best cluster of planners and macro-actions for D and T .
This is done by simulating, for each cluster C of at most k
planners, each with a (possibly empty) set of macro-actions,
the round-robin execution of the planners in C for solving
the same training problems within T .2 The simulation is
conducted using the data from the previous runs (the plan-
ners are not re-run), possibly ignoring the data of the plan-
ners that always performs worse than another incorporated
planner, and the simulated performances of the clusters are
compared by a statistical analysis based on the Wilcoxon
sign-rank test (also known as the “Wilcoxon matched pairs
test”) (Wilcoxon & Wilcox 1964). The Wilcoxon test has
also been used in (Long & Fox 2003; Gerevini et al. 2009;
Roberts & Howe 2009), but for different purposes. The first
two papers contain details about the test and a discussion on
its adequateness for comparing planner performances.

2k is a parameter that in our experiments was set to 3.
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Domain PbP.s PbP.q

D1 YAHSP (63), FF (33), SGP (33) LPG (0), Lama (100), MFF (20)
D2 Lama (–), Marvin (62.5) Marvin (0), Lama (–), LPG (100)
D3 FF (–), FD (–) Lama (–), LPG (0), FD (–)
D4 FF (0) Lama (–), FF (0)
D5 SGP (50), LPG (100) LPG (50), MFF (40)
D6 FF (–), YAHSP (–) Lama (–) + MFF (100), Marvin (–)

Table 2: Planner clusters and percentages of macros (in
round brackets) selected by PbP for the IPC6 domains
Gold-miner (D1), Matching-BW (D2), N-puzzle (D3),
Parking (D4), Sokoban (D5) and Thoughful (D6). MFF
and SGP abbreviate Macro-FF and SGPlan5, respectively.
“–” indicates that no macro-action was generated.

In PbP, the performance measure considers either the
CPU-time (PbP.s) or the plan quality (PbP.q). The data
for carrying out the test in PbP.s are derived as follows.
For each planning problem, the system computes the differ-
ence between the simulated execution times of the compared
clusters. If a planner cluster does not solve a problem, the
corresponding simulated time is twice the CPU-time limit
(15 minutes, as in IPC6); if no cluster solves the problem,
this problem is not considered. The difference between the
simulated times is normalized by the value of the best simu-
lated time under comparison (e.g., if cluster C1 requires 200
seconds and cluster C2 220, then the difference is 10% in
favour of C1). The absolute values of these differences are
then ranked by increasing numbers, starting from the lowest
value. (The lowest value is ranked 1, the next lowest value
is ranked 2, and so on.) The ranks of the positive differences
and the ranks of the negative differences are summed, yield-
ing two values r+ and r−, respectively. If the performance
of the two compared clusters is not significantly different,
then the number of the positive differences r+ is approxi-
mately equal to the number of the negative differences r−,
and the sum of the ranks in the set of the positive differ-
ences is approximately equal to the sum of the ranks in the
other set. Intuitively, the test considers a weighted sum of
the number of times a cluster performs better than the other
compared one. The sum is weighted because the test uses
the performance gap to assign a rank to each performance
difference.

When the number of samples is sufficiently large, the T-
distribution used by the Wilcoxon test is approximately a
normal distribution, which is characterised by two param-
eters called the z-value and the p-value. The higher the z-
value, the more significant the difference of the performance
is. The p-value represents the level of significance in the
performance gap. PbP uses a default confidence level equal
to 99.9%; hence, if the p-value is greater than 0.001, then
the hypothesis that the performance of the compared sets of
planners is statistically similar is refused, and the alternative
hypothesis that their performance is statistically different is
accepted. Otherwise, there is no statistically significant evi-
dence that they perform differently, and PbP considers that
they perform pretty much similarly.

The results of the Wilcoxon test are used to form a di-
rected graph where the nodes are the compared clusters,

and an edge from a cluster C1 to another cluster C2 indi-
cates that C1 performs better than C2. Each strongly con-
nected component of this graph is collapsed into a single
node representing the elements in the clusters of the col-
lapsed nodes. From the resulting DAG, PbP considers only
the nodes without incoming edges (the graph root nodes). If
there is only one root node, this is the selected cluster, oth-
erwise PbP uses some secondary criteria to select the most
promising cluster among the root nodes. These criteria in-
clude the number of solved problems, the sums of the ratios
between the (simulated) CPU-times of the planners in the
compared clusters, and the first planning CPU-time slots of
the involved planners.

The method used by PbP.q is similar, but it applies to the
plan qualities resulting from the cluster execution simula-
tion. For this simulation, PbP.q also considers the interme-
diate solutions (i.e., those that are generated before the last
one, which has the best quality) and the relative CPU times
computed by the basic incremental planners in the consid-
ered clusters. If these solutions were ignored, the simulated
plan quality for the clusters including incremental planners
could be much worse than the actual quality. For example,
consider the cluster {FF, Lama}, and assume that the CPU-
time of the last solution computed by Lama for a problem p
is close to the limit T . If the intermediate solutions of Lama
were ignored, the estimated plan quality for {FF, Lama}
would be equal to the quality of the plan generated by FF,3
although the quality of the intermediate solutions of Lama
could be much better than the quality of the plan computed
by FF.

Finally, note that if the performances of the incorporated
planners are measured with CPU-time limit T , then the port-
folio of PbP.s/q can be configured for any time limit t ≤ T
by simply ignoring the solutions computed after time t in the
simulation of the planner cluster performance.

Table 2 shows the clusters of planners and the relative
percentages of macros selected by PbP for each IPC6 do-
main (Fern, Khardon & Tadepalli 2008), considering all
macros computed for that domain. Interestingly, for the
IPC6-domains the portfolio configuration resulting from the
learned knowledge is variegated and all the eight basic plan-
ners are helpful (since each of them is selected by PbP.s/q
at least once). Moreover, sometimes PbP.s/q uses (a por-
tion of) the computed macros and sometimes it does not use
them at all.

Experimental Results
In this section, we present the results of an experimental
study about PbP with four main goals:

• Evaluating the efficiency of PbP.s/q in terms of speed
and plan quality by comparing them with the planning ap-
proaches that entered IPC6;

• Testing the effectiveness of the learned configuration

3If Lama is run together with FF, the total running time of
Lama can be much less than the CPU-time limit T , and hence it
does not have enough time to compute the last solution generated
when T CPU-time is available.
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Planner Solved Time score Quality score
(%) (max = 180) (max = 180)

CABALA 1.67 0.003 2.40
DAE1 18.3 0.005 23.7
DAE2 18.3 0.008 23.5
MacroAltAlt 28.9 4.771 37.3
ObtuseWedge 65.0 74.80 76.2
PbP.s 95.6 110.1 110.9
PbP.q 95.0 8.5 167.0
REPLICA 31.7 4.581 19.4
RFA1 47.2 14.87 52.4
RFA2 26.1 4.11 29.1
Roller 30.6 5.31 19.4
Sayphi-Rules 26.1 1.719 20.7
Wizard+FF 56.7 31.89 72.7
Wizard+SGPlan 51.1 32.69 65.8

Table 3: Percentages of solved problems within the IPC6
CPU-limit (15 min), scores for the time and plan quality of
the planners that took part in the learning track of IPC6.

knowledge for PbP.s/q in terms of speed and plan qual-
ity;

• Showing that, overall, there is no single basic planner
incorporated in PbP that performs better than PbP.s in
terms or speed or better than PbP.q in terms of plan qual-
ity;

• Evaluating the accuracy of the strategy used by PbP.s/q
for configuring the portfolio of the considered planners
with respect to other possible configurations, and the us-
age of the computed macros for the planners in the se-
lected cluster.

The set of problems we used for learning the domain
knowledge and the set of problems used for testing PbP
are disjoint. The experimental analysis uses the benchmark
problems of the learning track of IPC6 and a collection of
(hard) problems in the well-known Depots domain (Long
& Fox 2003).

• The IPC6 benchmarks are 720 problems in six do-
mains: Gold-miner, Matching-bw, N-Puzzle,
Parking, Sokoban and Thoughtful. A description
of these domains can be found in (Fern, Khardon & Tade-
palli 2008). We used 540 of these problems for the learn-
ing phase and 180 problems for testing phase.

• Depots is a domain about moving crates between loca-
tions by trucks, and stacking crates onto pallets by hoists.
For each n in {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}, we
randomly generated 105 instances of the Depots prob-
lem with 7 locations, 3 trucks, 7 hoists and n crates; five
of these 105 instances have been used for learning the
knowledge.

The experimental tests were conducted on an Intel
Xeon(tm) 2.6 GHz machine, with 3 Gbytes of RAM. Un-
less otherwise specified, as in IPC6, the CPU-time limit was
15 minutes.

#Probs solved by
IPC6 Domains #Probs PbP.s PbP.s PbP.q PbP.q

+k nok +k nok
Gold-miner 30 30 30 30 30
Matching-BW 30 29 26 30 26
N-puzzle 30 29 26 29 26
Parking 30 25 19 24 19
Sokoban 30 30 30 30 30
Thoughful 30 29 29 28 29
Total 180 172 160 171 160

Table 4: Total number of test problems (2nd column), num-
ber of problems solved by PbP.s with/out the learned knowl-
edge (3rd/4th column), and number of problems solved
by PbP.q with/out the knowledge (5th/6th column) for the
IPC6 domains.

PbP versus the IPC6 Planners
In order to show the efficiency of our approach, we compare
the performance of PbP using the learned knowledge with
the performance of the planners that entered IPC6.4 Since
several IPC6 planners are not available, for this analysis we
consider the official competition data, even though the ma-
chine that we used for testing PbP is slightly slower than the
machine used for IPC6.

Table 3 gives experimental results for the percentage of
solved problems, time and plan quality. The performance
scores in the table were obtained by the same simple evalua-
tion function used for IPC6. If a planner P solves a problem
π with time T (with plan quality Q), it gets a score equal
to T ∗/T (Q∗/Q), where T ∗ is the best time required by the
planners under comparison to solve π (Q∗ is the smallest
number of actions in the plans computed for π); otherwise,
it gets zero score. The time (quality) score for planner P is
the sum of the time (quality) scores assigned to P over all
the competition problems. The results in Table 3 indicate
that PbP.s with the knowledge is much faster than the IPC6
planners (PbP.s solves many more problems, and also has
much greater time and quality scores) and that PbP.q with
the knowledge is clearly the best planner in terms of plan
quality.

Remarkably, PbP.s/q solves almost all IPC6 benchmark
problems within 15 CPU-minutes, and PbP.q almost always
computes the best plan. In contrast, the time score of PbP.q
is low, since PbP.q usually runs more than one planner and
stops only when all the selected planners terminate or the
CPU-time limit is exceeded.

On the Effectiveness of the Learned Knowledge
Table 4 shows the number of problems solved by PbP.s/q
with and without the learned configuration knowledge for
the IPC6 test problems.5

4A collection of short papers describing the IPC6 planners of
the learning track can be found in (Fern, Khardon & Tadepalli
2008).

5When PbP is used without this additional knowledge, all plan-
ners in the portfolio are selected with no macro, equal CPU-time
slots and random execution order.
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Figure 2: Percentage of solved problems of PbP.s with/out
using the learned knowledge w.r.t. an increasing numbers of
crates for Depots domains.

The performance gaps for the considered CPU-time limit
are small. However, we note that with the 15 CPU-minutes
limit, many IPC6 problems are inadequate to observe possi-
ble problem-solved improvements in PbP, because they can
be quickly (relative to the limit) solved by most of the incor-
porated basic planners. We observed that, for CPU-time lim-
its smaller than 15 minutes, PbP.s with the learned knowl-
edge solves many more problems than without the knowl-
edge. For instance, the percentage of problems solved by
PbP.s in 10 seconds is 71, while without the knowledge it is
only 39.

Moreover, we observed significant performance gap even
for large CPU-time limits when testing PbP with a much
harder set of problems. Figure 2 shows an example of such
a gap for our collection of hard Depots problems. The re-
sults indicate that the learned knowledge can be very useful
for PbP.s/q.

We now analyze the impact of using the learned knowl-
edge for speed and plan quality. Figure 3 gives an overall
picture of the performance of PbP.s/q with and without the
learned knowledge using CPU-time limits ranging from 1
second to 1000 seconds. For every considered CPU-time
limit, PbP.s with knowledge is much faster than without it.
In contrast, for large CPU-time limits, there is no significant
difference between PbP.s with and without knowledge in
terms of plan quality. This result indicates that for PbP.s the
learned knowledge is very helpful in terms of speed, while it
does not help to improve plan quality considerably (but the
second observation is not surprising, since this knowledge is
generated ignoring plan quality).

Concerning the results for PbP.q using the IPC6 prob-
lems in Figure 3, we observe that in terms of plan quality
PbP.q with the learned knowledge always perform better
than without it. While the performance improvements are
generally clear, they are much less strong than those ob-
served for PbP.s in terms of speed. The main reason is
that many of these problems can be quickly solved by most
of the incorporated basic planners (and incrementally opti-
mized by LPG and Lama), and PbP.q without knowledge
runs all them. However, there are domains and problems for
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Figure 3: Time scores (upper plot) and plan quality scores
(bottom plot) of PbP.s/q with/out the learned knowledge
w.r.t. an increasing CPU-time limit (ranging from 1 to 1000
seconds) for the IPC6 domains.

PbP.q 5 10 15 20 25 30 35
+k 21.6 40.5 62.3 88.5 118 174 194
nok 21.7 40.9 63.2 101 140 191 213

Table 5: Average number of actions in the plans com-
puted by PbP.q using the learned knowledge (“+k” line) and
PbP.q without the knowledge (“nok” line) for Depots.

Planner ∆Solved (%) ∆Time ∆Quality
DAE1 +17.2 ±0.0 +21.8
DAE2 +8.9 ±0.0 +10.9
MacroAltAlt +1.1 +0.12 ±0.0
ObtuseWedge +17.3 +31.5 +24.0
PbP.s +3.3 +93.4 −0.7
PbP.q +6.7 +7.32 +25.8
Sayphi-Rules +2.2 −6.2 −5.6
Wizard+FF −6.6 +11.7 −15.0
Wizard+SGPlan −1.7 +8.1 −3.1

Table 6: Performance gaps between the IPC6 planners
with/out learned knowledge in terms of % of solved prob-
lems, time and quality scores. The planners that, according
to the IPC6 results, work only with knowledge are omitted.

which very significant improvements can be obtained also in
terms of plan quality.

Table 5 shows the quality of the plans computed by PbP.q
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Figure 4: Time scores (upper plot) and quality scores (bot-
tom plot) of PbP.s/q using the learned knowledge and of the
incorporated planners w.r.t. an increasing CPU-time limit
(ranging from 1 to 1000 seconds) for the IPC6 domains.

with/out knowledge for our collection of hard Depots
problems, which only few incorporated planners solve
within the limit. For more than 35 crates, PbP.q without
knowledge solves no problem, while PbP.q with knowl-
edge solves many problems (e.g., 62% with 40 crates); for
the solved problems with more than 15 crates, on average,
PbP.q with knowledge computes much better plans.

Finally, we compared the impact of using the learned
knowledge in PbP and in the other planners that entered the
learning track of IPC6. The results in Table 6 show that, for
the IPC6 problems, the knowledge learned by PbP has the
most effective impact in terms of speed (considering PbP.s)
and plan quality (considering PbP.q).

On the Accuracy of the Cluster Selection
Figure 4 gives an overall picture of the performance of
PbP.s/q with the learned knowledge w.r.t. the incorporated
planners in terms of speed and plan quality using a CPU-
time limit ranging from 1 second to 1000 seconds. The
marked points on the PbP curves correspond to the dif-
ferent clusters of planners resulting from the configuration
knowledge learned according to the corresponding CPU-
time limit. Overall, for every considered CPU-time limit,
PbP.s with the knowledge is much faster than the incor-
porated planners, and PbP.q generates better quality plans.

IPC6 Domains Max Time score of
score PbP.s Best Worst

Gold-miner 30 29.2 30.0 0.41
Matching-BW 30 24.4 24.0 0.00
N-puzzle 30 16.0 26.0 0.29
Parking 30 20.9 20.9 0.00
Sokoban 30 26.9 27.1 0.00
Thoughful 30 18.1 28.7 0.00
Total 180 135.5 156.7 0.70

Table 7: Maximum time score (2nd column), time score of
PbP.s (3rd column) and of the best/worst clusters (4th/5th
columns) for the IPC6 domains.

These results indicate that, for the IPC6 benchmarks, there
is no basic planner in the considered portfolio that could be
used to obtain an overall performance better than or similar
to the performance achieved by PbP.s for speed and PbP.q
for plan quality.

Table 7 shows, for each IPC6 domain, the speed perfor-
mance of PbP.s with the learned knowledge w.r.t. the best
performing and the worst performing planner clusters. The
data related to “Best” (“Worst”) column is the maximum
(minimum) sum of the time scores for all possible clusters
(with at most three planners) over the set of testing prob-
lems of each IPC6 domain. The time score for PbP.s is of-
ten similar to the score of the best cluster and much greater
(and hence much better) than the score of the worst cluster.
It is also worth noting that the time score of PbP.s without
the knowledge is much worse than the scores of both PbP.s
with the knowledge and the best cluster. This result indicates
that the method used by PbP.s for configuring the portfolio
identifies a good cluster of planners in terms of speed. Fi-
nally, we observed a similar behaviour for PbP.q in terms of
plan quality.

On the Effectiveness of Using Macros
In this section, we give some experimental results aimed at
understanding the usefulness of the computed macro-actions
and the accuracy of the choices made by PbP about using
them for the planners in the clusters identified by the learned
configuration knowledge. For each IPC6 domain with at
least one non-empty set of computed macros and each plan-
ner in the selected cluster (see Table 2), we compared the
performance (in terms of total time scores) of the planner in
the cluster using (a) no macros, (b) the set of macros iden-
tified by PbP.s as useful, and (c) the set of macros among
those computed that makes the planner performs best.

The results of this analysis are in Table 8 and show that,
for the considered benchmark domains and problems, very
often there is a set of macros that is useful (increase speed
performance). Moreover, these experimental results indicate
that the performance obtained by using the set of macros se-
lected by PbP.s is usually similar to performance that could
be achieved when using the best computed set of macros.
The only exception is YAHSP with domain Gold-miner,
for which, however, PbP.s selects a cluster containing two
other planners with very accurate choices in terms of se-
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Planner No macros PbP.s macros Best macros
Gold-miner
YAHSP 4.9 (30) 20.6 (30) 29.0 (30)
FF 2.5 (30) 30.0 (30) 30.0 (30)
SGPlan5 15.0 (17) 28.3 (30) 28.3 (30)
Matching-BW
Marvin 10.9 (16) 9.9 (16) 10.2 (16)
Parking
FF 25.0 (25) 25.0 (25) 6.3 (25)
Sokoban
SGPlan5 11.1 (30) 26.4 (30) 26.8 (30)
LPG 3.4 (29) 30.0 (30) 30.0 (30)

Table 8: Time scores and number of solved problems (in
round brackets) of the planners forming the cluster selected
by PbP.s using no macro, the set of macros selected by
PbP.s, and the best performing set of computed macros. The
domains considered are the IPC6 domains with at least one
non-empty set of computed macros.

lected macros. Interestingly, the sets of macros computed
for FF for Parking is not helpful (making its speed per-
formance significantly worse), and PbP.s correctly detects
this, choosing to run FF without macros.

Conclusions
We have presented PbP, a planner based on an automat-
ically configurable portfolio of domain-independent plan-
ners, which can compute and exploit some additional knowl-
edge about a given planning domain specified with PDDL.
PbP generates this configuration knowledge through an au-
tomated statistical analysis about the performance of the ba-
sic planners in the portfolio and the relative candidate sets
of computed macro actions, using a collection on training
problems in the given domain. This analysis can be seen
as a method by which PbP generalizes the observed per-
formance of the incorporated planners and learned macros
for the training problems to new problems in the same do-
main. The learned knowledge is exploited to select, for the
given domain, a promising combination of planners in the
portfolio, each one with a (possibly empty) set of macro-
actions, and to define additional information specializing
their round-robin scheduling at planning time.

An experimental analysis presented in the paper shows
that the learned knowledge is very useful for obtaining a
good configuration of the portfolio in PbP, especially in
terms speed (using PbP.s), but also in terms of plan qual-
ity (using PbP.q). Moreover, PbP performs better than the
IPC6 planners that entered the learning track of IPC6. Fi-
nally, overall PbP with knowledge performs better than ev-
ery basic incorporated planner, and it effectively chooses a
(possibly empty) set of macros to use for the planners in the
selected cluster.
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