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Introduction
We describe the Scyllarus system, which performs Intrusion
Detection System (IDS) fusion, using Bayes nets and qual-
itative probability.1 IDSes are systems that sense intrusions
in computer networks and hosts. IDS fusion is the prob-
lem of fusing reports from multiple IDSes scattered around
a computer network we wish to defend, into a coherent over-
all picture of network status. Scyllarus treats the problem of
IDS fusion as an abduction problem, formalized using Bayes
nets and Knowledge-based Model Construction (KBMC).
Because of the coarseness of the data available, Scyllarus
uses a qualitative framework, based on System-Z+. Qual-
itative Bayes nets allow Scyllarus to exploit the strengths
of probabilistic reasoning, without excessive knowledge ac-
quisition and without committing to a misleading level of
accuracy in its conclusions. The Scyllarus system gave ex-
cellent results on a medium-sized corporate network, where
it was in continuous use for approximately four years, and
was validated in a DARPA-funded assessment. Under US
Federal government funding, we are now working to adapt
Scyllarus to analyze detection reports from sensors moni-
toring very high speed (10 - 100 Gb/second) networks in a
project called “SMITE.”

Intrusion detection
The function of Scyllarus is to take reports from multiple
intrusion detection algorithms and fuse them into a coher-
ent picture of the state of the defended network (together
with some information about the environment in which that
network operates). To perform this task, Scyllarus uses
Bayesian (probabilistic) reasoning, primarily to answer two
(interrelated) questions:

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1The Scyllarus system is named after the Mantis shrimp, an
animal that detects its prey with one of the world’s most com-
plex retinas. It is also one of the most formidable animals, for
its weight, smashing its prey with heavily calcified clubs. “Mantis
shrimp can break through aquarium glass with a single strike from
this weapon.”(Wikipedia 2008)

1. Is the notification (are the notifications) that Scyllarus has
received from the algorithms likely to reflect a false posi-
tive?

2. Is there a benign explanation that can explain away the no-
tification or notifications that Scyllarus has received? For
example, a flood of SMTP messages with duplicated con-
tent from a particular host might be a sign that that host
has been compromised and turned into a spam bot. How-
ever, it’s also possible that the host is a bona fide mailing
list server, and it’s just sending out the day’s digest mes-
sages.

Because the domain does not afford us access to good statis-
tics, we do not use conventional Bayesian reasoning. In-
stead, we use a qualitative abstraction of probabilistic rea-
soning, very similar to the big-O scheme familiar to com-
puter scientists, System-Z+ (Goldszmidt and Pearl 1996).

Existing IDSes are not designed to work together, as part
of a suite of sensors. Instead, each program generates a sep-
arate, and often voluminous, stream of reports, and fusing
them into a coherent view of the current situation is left
as an exercise for the user. Scyllarus overcomes the lim-
itations of both individual IDSes, and unstructured groups
of IDSes. Instead of simply joining together multiple alert
streams, Scyllarus provides a unified intrusion situation as-
sessment. Critical to this unification is Scyllarus’s Intrusion
Reference Model (IRM), which contains information about
the configuration of the site to be protected (including the
IDSes), the site’s security policies and objectives, and the
phenomena of interest (intrusion events).

Data reduction is a primary goal of Scyllarus. IDS own-
ers regularly either ignore or partially disable them, unable
to absorb the massive stream of reports. To get a sense of
the gravity of this problem, see Figure 1, which shows how
Scyllarus was able to winnow the flow of reports in a small
corporate network.

Often the most damning weakness of an IDS is a high
false positive rate. In general, with any sensor, one must
pay in false positives for whatever is gained in sensitivity.
One way to overcome this limitation is to assemble a suite
of sensors. This can be a very efficient way to overcome the
problem of false positives, as long as we can find sensors
that fail relatively independently.
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Figure 1: Scyllarus workload reduction.
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Figure 2: Preliminary results in information filtering for
SMITE.

SMITE project

The Scyllarus project was begun at Honeywell in 1999 and
has been intermittently active since then. Current develop-
ment is being done in the context of the SMITE system, a
BBN project funded by DARPA’s2 Scalable Network Mon-
itoring (SNM) program. The SNM program’s goal is to
develop new approaches to network-based monitoring that
deliver performance capabilities orders of magnitude better
than conventional approaches, regardless of the network’s
size and computational burden. BBN’s approach deploys
pipelined systems as data collectors on networks with multi-
gigabit speeds. Special-purpose algorithms are being devel-
oped that are able to detect intrusion-relevant events while
keeping up with the network flow. The events are aggregated
and fused by Scyllarus. Current work on Scyllarus aims at
optimizing it to be able to keep up with the flow of events
from the hardware-based SMITE sensors, expected to cover
2 to 3 orders of magnitude more traffic. Preliminary results
are shown in Figure 2.

2DARPA is the U.S. Defense Advanced Research Projects
Agency.

Scenario of Use

In this section, we provide a brief scenario of report fusion,
to make the earlier discussion more concrete. Note that this
example was constructed for expository purposes; it does
not correspond precisely to any actual computation. Con-
sider a single sensor reporting that a server in the defended
network has opened one or more new ports to external con-
nections (Figure 3). It is possible that the port has been
opened by some malware installed on the machine, and that
the server is compromised.

The malign explanation is not the only possible one, how-
ever. Figure 3 shows that there is an alternative, benign ex-
planation. It is possible that what has really happened is
that a new service has been installed on this host (“Legit Svc
Added”) — that would account for new ports being opened.
However, if a new service was legitimately added, we would
also expect to see a change in the system’s (overt) config-
uration, but we are not seeing that. On balance, the “com-
promised host” explanation is considered possible, but not
especially likely.

Figure 4 shows how the situation might evolve with the
arrival of more evidence for intrusion. Here we see that not
only is the host in question accepting connections to a new
port, but we have also seen that it is initiating a lot of con-
nections outward, “Initiates Conns,” which we infer from
reports from two sensors. Typically, we would not expect a
server to be initiating outward connections.3 Intuitively, the
pattern of inference is as follows: the new legitimate service
explanation would account for the newly opened ports, but
would not account for the connection initiation. However, a
compromised host (perhaps a host that has been added to a
botnet) would explain both symptoms.

Scyllarus Architecture

The architecture of Scyllarus, divided into four modules, is
depicted in Figure 5. The first is the input module, made
up of the Sensor converters (or “verters”) and the Report
concentrator. The verters take reports from IDSes and other
sensors, translate them into Scyllarus-specific data strucures,
and hand them off to the report concentrator for eventual
storage and analysis. The second is the Cluster Preproces-
sor (CP), which assembles together sets of reports that could
correspond to a single underlying event or process. The CP
collects reports that could tend to either reinforce or discon-
firm particular hypotheses. The CP builds structures that are
similar to belief networks (Pearl 1988). The third compo-
nent, and the last of the active components, the Event Asses-
sor (EA) applies the logic of System-Z+ to evaluate com-
peting explanations (e.g., mailserver versus spam bot) for
the reports. The final core component of Scyllarus is the In-
trusion Reference Model (IRM), a knowledge base describ-
ing the environment in which Scyllarus operates, and which
supports the processing done by the CP and EA.

3with some exceptions such as DNS queries, SMTP transfers if
a mail server, etc.
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Figure 3: Alternative explanations and the observations they might cause.

Scyllarus input processing
The Scyllarus architecture was developed to flexibly accom-
modate reports from a diverse and changing set of sensors
(primarily IDSes). One may plug arbitrary sets of trans-
lators into Scyllarus. These “verters” are small translator
programs that translate IDS reports, which do not come in
standardized formats,4 into a standard Scyllarus input report.
The verters must be written anew for each IDS, but the ef-
fort is not too substantial. For the SMITE project, we have
the advantage of a standard report format (implemented as
a reporting library to be compiled into each of the sensors)
negotiated between the sensor and correlation teams, so that
we need only a single SMITE verter.

After the reports have been translated into Scyllarus for-
mat, they pass from the verters to the Report Concentrator.
The Report Concentrator receives incoming reports from
IDSes and buffers the reports, ensuring that the system re-
mains responsive while not losing data The Report Concen-
trator provides a real-time feed of reports to subscribers, the
most important of which are the event database and the Clus-
ter Preprocessor.

Cluster Preprocessor
The Cluster Preprocessor reads raw reports posted by the
IDSs, and using background information provided by the
IRM, a model of the protected network and a key for in-
trepreting IDS messages, produces clusters of IDS reports
to be evaluated as events explaining the reports. A single
IDS report may give rise to one or more such clusters.

The Cluster Preprocessor follows a simple processing
loop:

4Even when we found sensors that complied with some stan-
dard, such as IDMEF, the standard wasn’t helpful, because it did
not specify semantics sufficiently to allow us to simply accept the
reports.

1. Read the next IDS report from a socket stream connected
to the Scyllarus Report Concentrator.

2. Match the IDS-provided report type to one or more in-
trepretations known to Scyllarus. Each provides a hypo-
thetical event purporting to explain the report. Scyllarus
has models for various common network and host-based
IDSs.

3. Search through already hypothesized events for ones that
would explain each intrepretation of the new report. Cri-
teria for consistency vary from one type of event to an-
other, and are specified in the IRM as a set of “event test”
objects to be satisified. Some basic criteria include:
• occurrence within an acceptable temporal window
• directed at the same target host and/or port
• apparently originating from the same source
• sharing a common user or login session

4. Propose new events as needed when existing ones are in-
consistent with the new report.

5. Assemble new (or recently modified) events into other
larger-scale events. This allows Scyllarus to consider
multi-step attacks. Further model-based tests for consis-
tency are applied to this clustering.

6. Submit new or modified events and their supporting re-
ports for evaluation.

Identifying Independent Subsets of Events The Clus-
ter Preprocessor is driven entirely by incoming reports. It
spools events that need likelihood evaluation to the EA, but
does not halt clustering to wait for assessment to complete,
since this evaluation time may be relatively long–extracting
the most likely interpretations from a very large ATMS net-
work may take seconds.

Instead, the EA runs in a separate thread and evaluates
independent clusters of events as its processing budget al-
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Figure 4: More evidence of intrusion arrives.

lows. The fundamental independence criterion is that the set
of events implicitly defines a directed acyclic graph. Events
are linked to other events and to reports according to the fol-
lowing relationships:
Supporters E → R. This is a relationship between an

event and an IDS report that provides direct evidence for
it. For example, a certain network IDS rule that is trig-
gered by a sequence of bytes commonly found in prop-
agation of the Peacomm trojan could support an event
hypthesizing the malware infection of the target host with
Peacomm.

Components E(whole) → E(component). This is a re-
lationship between events and other events that might be
component parts of them. For example, one component
of a DNS cache poisoning attack is the sending of a flood
of DNS queries.

Manifestations E(underlying) → E(manifestation).
This is a relationship between an event and other events
that might occur because the first event is occurring. For
example, a worm’s propagation might manifest as re-
peated content transmission from the attacking host.

Specializes E(specific) → E(more general). Different
IDS algorithms operate at different levels of resolution.

This link is a relationship between one proposed event
and a more specific proposed event (e.g. induced by a
more precise type of IDS) that could be identical.

The graph is defined by the closure under the above four
links (and their inverses) of the set of events given to the as-
sessor. Typically, this graph will have many connected com-
ponents that are not connected with each other. The con-
nected components are the independent subsets that the EA
operates on separately.

Event Assessor
The Event Assessor uses qualitative probabilistic/Bayesian
reasoning to assess the likelihood of various event hypothe-
ses. In the current Scyllarus architecture, the EA is invoked
by the Scyllarus Cluster Preprocessor. The EA accepts as
input clustered event hypotheses, together with their sup-
porting reports. The EA builds qualitative probabilistic in-
ference networks corresponding to the clustered reports and
events. It uses these networks to compute posterior sur-
prise levels (qualitative likelihoods) for the event hypothe-
ses. These surprise levels are recorded in the event struc-
tures, and may be written into the IRM database for persis-
tent storage.
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Figure 5: Scyllarus architecture

The EA must perform four primary computational tasks:

1. Identify independent sub-graphs in the network defined
by the event and report structures and the links between
them. This is done with depth-first search.

2. Build Bayes networks and identify evidence interpreta-
tions in these networks. The Bayes nets are implemented
as ATMS dependency networks. The ATMS computes in-
terpretations corresponding to the Bayes networks using
its labeling algorithms.

3. Extract the set of most likely interpretations from an
ATMS network. This is done using search algorithms.
We search for interpretations of minimal cost. The solu-
tion used is primarily one of depth-first iterative deepen-
ing, although some special cases are handled differently.

4. Extract surprise levels from the most likely interpreta-
tions. Currently, we simply differentiate between three
classes of events: plausible events, that appear in some
of the most likely interpretations, unlikely or implausible
events, that do not appear in any of the most likely in-
terpretations and likely events, which are plausible events
and, additionally, whose negation never appears in a likely
interpretation. That is, for a plausible event, E, it is also
possible that not(E) is plausible. An event E is likely if E
is plausible and not(E) is implausible. Extracting surprise
levels may simply be done by examining the interpreta-

tions generated in step 3.

Underlying Theory: System-Z+ Qualitative
Probability
We have taken an approach, based on qualitative probabili-
ties, that shares the basic structure of normal probability the-
ory but abstracts the actual probabilities used. We did this
primarily to simplify knowledge acquisition and make it as
simple as possible to incorporate new IDSes into the Scyl-
larus architecture. This approach may also permit cheaper
computations than the normal probability calculus, but that
remains to be seen.

Our approach is based on System-Z+, developed by
Moisés Goldszmidt and Judea Pearl (1996). In System-Z+,
events are given a natural number rank, κ, that corresponds
to their degree of surprise (e.g., a rank of one is more surpris-
ing than zero). The semantics of this scheme comes from a
set of probability distributions in which the probabilities are
polynomials in some infinitesimal ε. In this scheme, the κ
rank corresponds to the exponent of the leading term of the
polynomial. The scheme is similar to the “big-O” notation
used for evaluating computational complexity in computer
science.

In practical terms, the effect of this semantics is to give
System-Z+ a qualitative flavor by providing a “ladder” of
events of qualitatively different orders of likelihood. Of
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course, we sacrifice exactness in doing so; we lose the abil-
ity to talk about events being slightly more or less likely.
However, this sacrifice of exactness is not an issue in the
Scyllarus intrusion detection application.

The EA must combine the judgments of a wide variety
of intrusion detection systems (and potentially other rele-
vant information sources), that use widely varying sources
of information and algorithms. Further, in general we will
not have access to the internals of these sensors. In such
an environment, it is not realistic to expect good models of
the response of these sensors; in particular, exact measures
of P(sensor response—event) are not available. There have
been some attempts to investigate sensor response (e.g., the
studies conducted by Lincoln Labs (Lippmann et al. 2000)),
but the results seem heavily dependent on the context in
which the sensors are deployed.

The issue of prior probabilities also militates against the
use of exact probabilities. In order to use an exact Bayesian
method, we would need not only the detection probability,
P (sensor response|event), and the false alarm probability,
P (sensor response|¬event), but also P (event), a measure
of the prior probabilities of the events that interest us, in
this case the attacks and the benign events that can cause
false positives. Even in the most constrained environments,
the probabilities of the various attacks, are unlikely to be
available to us, and the Scyllarus system is designed for ap-
plication across a wide variety of enterprises. Further, the
probability distributions for benign events are likely to be of
odd forms (e.g., one’s own network-mapping software runs
at particular times of the day). So our solution must tolerate
vague measures of likelihood.

Finally, in this domain, as with most practical applications
of probabilistic updating, the effect of the evidence will usu-
ally overwhelm the effect of the prior likelihoods(e.g., (Prad-
han et al. 1996)). So inexactitude in the quantities specified
will not matter to our final conclusions.

As far as computation is concerned, we may apply the
normal operation of probability theory: conditionalization,
Bayes’ law, etc. However, the arithmetic operations we use
must change. Rather than multiplying probabilities, we add
degrees of surprise. Rather than adding probabilities, we
use min. Goldszmidt and Pearl (1996, p. 59) provide the
following substitutions in their paper:

P (ω) =
P

φ∈ω P (φ) κ(ω) = minφ∈ω κ(φ)

P (ω) + P (¬ω) = 1 κ(ω) = 0 ∨ κ(¬ω) = 0
P (ω|φ) = P (ω ∧ φ)/P (φ) κ(ω|φ) = κ(ω ∧ φ)− κ(φ)

Instead of the probability of an event being the sum of the
probabilities of the primitive outcomes that make up that
event, the degree of surprise of an event is the minimum of
the degrees of surprise of the primitive outcomes that make
it up. Instead of having the probabilities of mutually exclu-
sive and exhaustive events sum to one, at least one of a set
of mutually exclusive and exhaustive events must be unsur-
prising. Finally, we have an analog of Bayes’ law in which
the normalizing operation consists of subtraction rather than
division.

We used Bayesian networks to help us in modeling and
solving the correlation problem. Bayesian networks are

ways of graphically capturing probabilistic reasoning. They
are useful in expert systems because they simplify knowl-
edge acquisition and, by capturing (conditional) indepen-
dences, simplify computation (Pearl, 1988). In particular,
in the domain of intrusion detection, Bayes nets help us cap-
ture several important patterns or probabilistic reasoning:
• Reasoning based on evidence merging;
• “Explaining away” reports by alternative explanations.

E.g., if a benign event accounts for a number of reports,
those reports will be explained away, and no longer pro-
vide support for more alarming hypotheses.

• Abstraction reasoning that employs the subclass/super-
class relationships in the event dictionary.

• Part/whole reasoning, to recognize complex composite
events.

• Distinguishing between judgments that are based on dif-
ferent sensor bases and those that use the same sensor.
This helps us distinguish between cases when two sen-
sors provide support for each other and when we simply
have redundant reports (e.g., two network intrusion detec-
tion systems using exactly the same algorithm that see the
same traffic, at two different points).

A Bayesian network is a directed, acyclic graph (DAG) de-
picting a set of random variables. Edges between nodes
in the DAG represent causal influences. Using a Bayesian
network, we can capture a joint distribution factorized into
unconditional probabilities for root nodes and conditional
probability tables for non-root nodes. The conditional prob-
ability tables contain probability distributions for the child
nodes, conditioned on all the values of their parents.

There are a number of efficient algorithms for finding the
posterior distributions of Bayesian networks, conditional on
observations of some of the random variables. These algo-
rithms may readily be adapted to provide posterior κ rank-
ings instead of probabilities.

System-Z+ and the ATMS
The Scyllarus Event Assessor (EA) does System-Z+
Bayes net inference by representing the Bayes nets in a
Assumption-based Truth Maintenance System (ATMS) with
weighted assumptions, and finding minimum cost environ-
ments for the ATMS networks. We adopted the ATMS ap-
proach simply because the ATMS code was readily avail-
able, and we expected later to replace the ATMS with a
special-purpose System-Z+ Bayes net evaluator. However,
with the exception of some pathological cases, which we
handle specially, System-Z+ inference has never been a bot-
tleneck in Scyllarus.

An ATMS (deKleer 1986) is a propositional logic
database with data dependencies or justifications, that record
the derivation of the literals from distinguished assumptions.
ATMSes can be used to encode Bayes networks (Charniak
and Goldman 1988; Provan 1989). Each value assignment
to a random variable in the Bayes net is represented by a
literal. Each conditional or unconditional probability in the
Bayes net is represented by an assumption. For example,
in a Bayes net with the (boolean) nodes A,B, C and edges
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A → C,B → C, there will be literals lA, lB , lC , lA, lB , lC
and assumptions:

aA, aA,
aB , aB ,

aC|AB , aC|AB , aC|AB , aC|AB ,
aC|AB , aC|AB , aC|AB , aC|AB

There will also be justifications representing the probabilis-
tic entailments. For example, 〈aA → lA〉 and 〈aA → lA〉
illustrate the representation of root nodes and unconditional
priors in the Bayes net. Posterior probabilities can be com-
puted by collecting the set of ATMS environments consistent
with the observation set and normalizing the prior probabil-
ities accordingly. Computing System-Z+ κ values may be
done in a similar way, with some differences to account for
the differences in the calculi.

Intrusion Reference Model
The process of knowledge-based model construction is
driven largely by extensive models of existing IDSes. The
task of putting the various sorts of IDS reports on a com-
mon semantic footing has proved more challenging than ex-
pected. There is little consistency in terminology between
(or even within) IDSes and often quite different principles
of detection are employed, making nominally similar mes-
sages less than fully comparable.

An extensive ontology for expressing the IRM has
evolved over several versions of Scyllarus to become the
foundation of our approach to this problem. All of the IRM
concepts are expressed in this modular ontology, maintained
in the Protégé (Noy et al. 2001) tool. Part of this ontology is
used to model the protected computers and network, while
other parts are devoted to the characterstics of the defenses.
In particular, an IDS ontology module exists in the IRM for
each sort of IDS supported. These models pertain both to hy-
pothesis formation and evaluation, so we will discuss them
briefly here.

Each type of IDS is capable of emitting a range of differ-
ent reports describing some aspect of a possible intrusion it
has observed. Commonly these different messages will be
derived from different discrete elements such as rules or de-
tection modules within the IDS. Some have a repertoire of
just a few messages (e.g. firewalls) while others have thou-
sands (e.g. Snort). Scyllarus maintains an explicit model of
each message generating element.

Each message-generating element in a supported type of
IDS has one or more models in the IDS specific ontology
module. These models, which we call report signatures, are
causal interpretations of the report in terms of the ontology.
A signature is a template that describes a possible attack or
other event that may give rise to the given sort of report. It
uses several extensive hierarchies of IRM concepts to do so.
The first, is a taxonomy of operations. Operations are ele-
mentary actions on the protected system that may be under-
taken for good or ill, such as reading a file, starting a process,
or executing a step in a protocol. Scyllarus has an a-kind-of
hierarchy listing hundreds of operations. A different IRM
taxonomy models the possible intentions of a causal agent.

The intent may be specified in a report signature to cast a
benign or malevolent interpretation of the operation. The in-
tent classification also provides a rough measure of the seri-
ousness of the event. Modeled intentions vary from specific
sorts of denial of service, the seizing of privileges, as well
as administrative (wholesome) intentions such as “achieve
file-server archival backup to tape.”

Many signatures also cite specific victim software or sys-
tems, vulnerabilities (Scyllarus incorporates CVE and other
classification schemes), or certain “malware” (malicious
programs) that are implicated. An important part of the sig-
nature model is the qualitative false positive rate of gener-
ating element, and the presumed rarity of the interpretation.
Various other details of the representation are omitted here
for brevity.

Experience
Scyllarus was used to monitor an operational network of
over 500 workstations and servers using three different types
of network intrusion detector and two different types of host
intrusion detectors located at various points in the network
over a period of 4 years, at which time the sensors were relo-
cated to a small test network with limited access to network
traffic.5 Over the period of its use, Scyllarus proved itself to
be a substantial advance in the state of the art for IDS fusion.

Scyllarus routinely handled quiet day traffic of 10,000
– 20,000 IDS reports per day. On more “exciting” days,
the traffic was considerably heavier; e.g., on the day of
the release of the Code Red worm, Scyllarus received more
than 1,000,000 reports. Our current efforts aim at networks
where upwards of a million sensor reports might be expected
on a normal day.

We tested Scyllarus with controlled exploits on our net-
work and the system has responded appropriately. We were
also able to detect an episode of penetration testing con-
ducted without warning by an independent security team.

In 2003, the ability of Scyllarus attacks was demonstrated
in an evaluation conducted as part of the DARPA Cyber
Panel program (Haines et al. 2003). In this evaluation, a
number of network attacks were launched by a dedicated
Red Team in a simulated warfare planning environment.

Scyllarus addresses the information overload faced by
IDS users. See Figure 1 for representative data on Scyl-
larus’s report filtering on a small corporate network. Our
current efforts are aimed at extending this performance to
ultra high-speed networks, and the preliminary results, as
seen in Figure 2, show great promise.

Related Work
SecurityFocus has developed the Attack Registry and Intel-
ligence Service (ARIS) (ARIS 2003). The ARIS extractor
collects IDS reports from four different IDSes, formats them
in XML, and presents them in an incident console. How-
ever, it makes no attempts to fuse the reports or weigh the
evidence for and against them.

MetaSTAT is a fusion system that is built on a set of STAT-
based IDSes (Vigna, Kemmerer, and Blix 2001). STAT is a

5Walt Heimerdinger, personal communication
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signature-based IDS that detects events by matching against
extended finite-state event models. MetaSTAT uses finite-
state models of across-sensor events to consume at a higher
level the events generated by lower-level sensors. MetaS-
TAT does not attempt to judge the plausibility of different
events.

EMERALD/eBayes (Valdes and Skinner 2001) fusion is
the most similar to Scyllarus. The eBayes sensors are
Bayes net-based, and the correlation approach allows “up-
stream” sensors to adjust the priors on “downstream” sen-
sors. eBayes fusion is limited to clustering together alerts
that meet a similarity criterion; they do not have models of
high-level events as in the Scyllarus IRM.

Prelude Correlator (Vandoorselaere 2008) is part of the
open source Prelude IDS information system, and allows
users to analyze reports sent to Prelude from compatible
IDSs. Users provide rules written in Lua (Ierusalimschy,
de Figueiredo, and Celes 2006), a scripting language in-
spired by Scheme and Icon. Its function is closest to the
Scyllarus clustering preprocessor, but knowledge resides in
stateful rules instead of an ontology of attacks.

A commercial product, Arcsight Enterprise Security
Manager (ArcSight 2008), also ties correlated IDS reports
to an installation’s security goals and vulnerability informa-
tion.

Conclusions
The Scyllarus system is an AI application that handles high
speed online fusion and filtering of network intrusion de-
tection data. Its reasoning involves a combination of expert
domain knowledge and reasoning under uncertainty. Its de-
sign reflects two key strategies. First, it manages the domain
knowlege about the peformance of individual intrusion de-
tection systems and the defended network using a generic
ontology, allowing reports from a wide variety of intrusion
detection systems to be described in a common framework.
Second it simplifies the reasoning under uncertainty problem
through a qualitative probablilty scheme, System-Z+, which
demands little in the way of subjective estimation from ex-
perts configuring Scyllarus, but provides adequate resolution
for this fusion problem. Current testing is providing encour-
aging results on the ability of Scyllarus to scale to monitor-
ing future high-speed networks.
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