
A Compilation Method for the Verification of
Temporal-Epistemic Properties of Cryptographic

Protocols

I. Boureanu, M. Cohen, and A. Lomuscio
{ibourean,mcohen1,alessio}@doc.ic.ac.uk

Department of Computing
Imperial College London

London, UK

Abstract. We present a technique for automatically verifying cryptographic pro-
tocols specified in the mainstream specification language CAPSL. Our work is
based on model checking multi-agent systems against properties given in AI log-
ics. We present PC2IS, a compiler from CAPSL to ISPL, the input language of
MCMAS, a symbolic model checker for MAS. The technique also reduces au-
tomatically the state space to be considered by the model checker, thereby max-
imising the number of protocols and sessions that can be verified. We evaluate
the technique on protocols in the Clark-Jacobs library against custom secrecy
and authentication requirements as well as against more advanced properties that
are expressible in this epistemic-based approach.

1 Introduction

Several successes in AI have come from the application of core AI techniques to key
technology-oriented areas, including robotics, vision, networking, scheduling, distributed
applications, etc. In the case of cryptographic protocol analysis, AI has played a major
role as a provider of several theorem proving techniques [1, 2]. However, it is apparent
that a wealth of other AI concepts may usefully be adapted for fruitful application in
this area. One of these is the computationally oriented uses of epistemic logic, or logic
for knowledge [3].

Currently security protocols’ specifications (authentication, non-repudiation, etc.)
are most often given in terms of reachability only, or, in some more advanced ap-
proaches, in linear temporal logic [4]. It has long been recognised, including in much of
the security literature [5], that richer specification languages would permit more pow-
erful and easier to understand specifications. The seminal work in security on BAN
logics [6], where the case for the use of logics for knowledge and related concepts was
attempted, is a case in point. In fact, some security specifications, such as anonymity
properties [7], seem most appropriately expressed only as epistemic properties. While
the original BAN approach lacked a semantics, considerable progress in logic for AI
has been made recently, on both the theory and the model checking of epistemic logic.
This makes an epistemic-oriented verification of security protocols feasible, at least in
principle.

29

Several well-founded theoretical approaches for the use of epistemic logic in se-
curity settings have been proposed recently [8]. However, there has been less concern
so far about the automatic verification of security protocols in an epistemic setting. Of
course model checking of security protocols is an active area of research in security
verification, but only trace properties, typically reachability, are considered there. In
this line of work, our aim is to provide fully-fledged formal techniques and tools for
the automatic verification of epistemic properties for security protocols specified by
well-founded AI-based concepts.

Model checking of epistemic security requirements has been proposed before [9];
however, no consideration for tackling the consequent explosion of the state-space in a
principled way were given, thus making the approaches not viable for comprehensive
deployment. Closer to our line of work is [10] where, an optimised, trace-based seman-
tics for temporal epistemic logic based on interpreted systems [3] was put forward and
a basic bounded model checking algorithm presented. However, [10] focuses on the
bounded model checking case only, and no automated procedure is given to generate
the models to be checked, thereby limiting its possible impact.

This paper presents a fully automatic methodology for checking cryptographic pro-
tocols specified by means of temporal-epistemic logic. Our key contribution is an auto-
matic translation from protocol descriptions given in CAPSL (Common Authentication
Protocol Specification Language) into ISPL (Interpreted Systems Programming Lan-
guage), the input language for MCMAS [11], a BDD-based model checker for multi-
agent systems supporting temporal epistemic specifications.

The translation employs advanced techniques (send/receive matching, initial states
minimisation, etc.) to minimise the resulting state-space of the model, thereby mak-
ing the produced ISPL code very optimised. Additionally we impose a variable limit
on the number of sessions verified, thus minimising the model checking time without
compromising the correctness of the results.

The rest of the paper is organised as follows. In Section 2, in attempt to make the
paper self-contained, we present preliminary technical details and we give references
for further details. Section 3 presents the core principles of the translation from security
protocols descriptions into the semantics for temporal-epistemic logic that we employ
here. In Section 4, we discuss the formalisation of the security requirements supported
by temporal epistemic logic. In Section 5, we give details on the implementation of
the methodology, and we evaluate the technique by discussing experimental results. We
conclude in Section 6.

2 Preliminaries and Paper Overview

In this section, we recall basic notions of security protocol specification and concepts
related to the interpreted systems framework. Furthermore, we outline some of the re-
lated and preliminary work to our approach.

2.1 High Level Description of Security Protocols

A security protocol is a communication protocol aiming to establish certain security-
related goals (e.g., authentication, key establishment, anonymity etc). CAPSL (Com-

30

mon Authentication Protocol Specification Language) [12] is a high-level description
language for describing features and requirements (goals) of security protocols. We give
below an example of a CAPSL file:

PROTOCOL Needham-Schroeder Public Key;
VARIABLES
A, B: Node;
Na,Nb: Nonce;
Ka, Kb: Skey;
DENOTES
Ka = pk(A); Kb = pk(B);
ASSUMPTIONS
HOLDS A: Na; HOLDS B: Nb;
MESSAGES
1. A -> B: {A, Na}Kb;
2. B -> A: {Na, Nb}Ka;
3. A -> B: {Nb}Kb;
GOALS
PRECEDES A: B | Na; PRECEDES B: A | Nb;
AGREE A,B : Na,Nb,A;
END;

The above is a CAPSL protocol description for the well-known Needham-Schroeder
Public Key (NSPK) protocol. The VARIABLES section denotes the data used in the
communication together with their cryptographic type: Ka, Kb are keys, A and B are
principals of the protocol and Na, Nb are nonces. The DENOTES and ASSUMPTIONS
sections encode the initial knowledge of the principals. In the example above, A knows
the nonce Na, B knows Nb, whilst both A knows the public key of B, Kb, and B
knows the public key of A, Ka. The MESSAGES section specifies the rules of the pro-
tocol, i.e., the stream of the messages to be exchanged. The initiator/sender of each
message is encoded, together with its intended receiver and the step in the protocol
execution at which the communication should take place. In the above description, at
step 1, A sends to B a message containing her identity and her nonce Na, all encrypted
with B’s public key. The section GOALS encodes the security requirements: for this
protocol, A should hold Na before B learns it, B should hold Nb before A learns it
and, eventually, both should agree upon these values.

2.2 Protocol Scenarios

In security protocol verification, the notions of role and instantiation are used to capture
the (multisession) deployment of a protocol description.
A (protocol) role for a principal is given by the set of rules specifying that principal
either as initiator or as receiver. In addition to this, and in line with the Dolev-Yao
[13] model, we also consider an intruder role. The intruder can eavesdrop the com-
munication, “jump” protocol steps, impersonate other agents, forge messages into the
communication, usually with the purpose of subverting the security requirements. An

31

instantiation is a function mapping variables in the protocol description to concrete val-
ues over domains. Instantiations are homomorphically extended to messages, rules, and
roles. We write A–role to denote the role for an arbitrary principal A and (alice,A–
role) to denote an A–role instance, where alice is the mapping of A under the applied
instantiation. The notation (alice,A–role) intuitively represents one of the local pro-
cesses of alice executing an A–role, while alice can have several running processes.
A protocol scenario is a protocol description together with a set of role instances.
Protocol scenarios correspond to interleaved multisession executions of security pro-
tocols. To illustrate this, consider a scenario containing (alice,A–role), (bob,B–role),
(alice,B–role). Here, the same role (i.e., B–role) is instantiated more than once and
the same name (i.e., alice) instantiates an A–role as well as a B–role.

2.3 Interpreted Systems, CTLK and MCMAS

The interpreted systems (IS) formalism [3] describes a multiagent system as follows.
We assume a set A = {1, . . . , n} of agents and a special agent called the Environment,
abbreviated E. We associate to each agent i ∈ A, a set Li of possible local states, a
set Acti of local actions and a protocol function Pi : Li → 2Acti , defining for each
local state li the set of actions enabled at li. For the environment, we associate similar
sets: LE ,ActE and a protocol function PE . The transition relation for agent i is defined
by the evolution function ti : Act1 × . . . × Actn × ActE → 2Li×Li . The evolution
function tE of the environment is defined in a similar way. To describe the system as a
whole, we define a set of possible global states G =

∏
1≤i≤n Li × LE , joint protocol

P = (P1, . . . , Pn, PE), joint actions Act = Act1 × . . . × Actn × ActE and a global
evolution function t = (t1, . . . , tn, tE), operating on global states. An interpreted sys-
tem I is a tuple I =

〈
G,P , t, I0, V

〉
, where I0 ⊂ G is a set of initial global states

describing the initialisation of the system and V : G→ 2AP is a valuation function for
a set of atomic propositions, AP .

The CTLK logic combines temporal logic CTL and epistemic logic S5n with Ki (i =
1, . . . , n), n knowledge operators and DA epistemic operator for a group A of agents.
Its BNF syntax is as follows:
ϕ := p|¬ϕ |ϕ ∧ ϕ |Kiϕ |DAϕ |AXϕ |AGϕ |A(ϕUϕ).
Ki represents “agent i knows that ϕ”, DAϕ is read as “in group A, it is distributed
knowledge that ϕ ”, AXϕ stands for “on all possible paths, at each possible next step
ϕ holds”, AGϕ for “along on all possible paths, ϕ holds always” and, A(ϕUψ) is read
as “on all possible paths, at some point ψ holds true and before then, all along the path,
ϕ held true”. We refer to [3, 14] for details.

MCMAS [11] is an open-source, bdd-based symbolic model checker for verifying
temporal-epistemic properties of interpreted systems specified in ISPL (Interpreted Sys-
tems Programming Language). It can handle state spaces of the order of 1030. A self-
explanatory example of an ISPL file, describing a single agent, is given below.

Agent Sample

32

Vars:
state : {val1, val2, val3, val4};
end Vars

Actions = {action1,action2};
Protocol:

(state=val1 or state=val4) : {action1};
(state=val2): {action2};

end Protocol
Evolution:

(state=val3) if (Action=action1) and (state=val1) and
(Env.Action=X); ...

end Evolution
end Agent

As it is apparent from the above, each ISPL program denotes an interpreted system.

3 Protocol Scenarios as Interpreted Systems

In this section, we present our formal approach for mapping a protocol scenario into an
IS.

Our starting point for translating a protocol scenario into an IS is to map each role
instance into a unique agent of the IS and the intruder role into the Environment agent.
We use the notation agA to denote the mapping of an arbitrary A–role instance into
an agent of the IS. In order to give the description of the agent (i.e., local states, lo-
cal protocol, local evolution function), we assume a typed signature and a (free) term
algebra formalising the cryptographic data in a protocol description. Thus, the data
describing a role is modelled by an ordered list of (typed) variables, called store. A
self–explanatory example of the store for an A-role under the above NSPK description
is: (A : Node, B : Node, kA : Skey, kB : Skey, na : Nonce,

nb : Nonce) . However, moving from roles to role instances, we introduce the notion of
views; a view is the order list of values obtained by the uniform application of instanti-
ations on a store. An example of a view for the store above, under some instantiation,
is (alice, bob, pvkalice, pbkbob, r1,⊥), where ⊥ is a special value of “unassigned” vari-
ables. Thus, views capture the dynamics of a role execution: i.e., above, nb is “viewed”
by an A-role instance as ⊥ (“unassigned”) at all steps prior to the one where it receives
a message containing an actual value for nb.
We now proceed to give the key elements of the IS defined by the mapping. We first
give the mapping for the arbitrarily considered agent agA.

33

Local States of agA. A possible local state of agent agA is given by a pair (nr, viewagA
),

where nr is a counter for the number of protocol steps previously executed by the agent
and viewagA

is a view as above.

Actions of agA. The actions available to agent agA are: sendM , receiveM and action
empty, where M is an instantiated message.

Local Protocol of agA. The local protocol of agent agA formalises the A-role. Thus,
for each protocol step numbered nr specified for A, we have: PagA

((nr, viewagA
)) =

{sendM}, if “nr.A → Y : M” is a rule in the instantiated A–role and similarly for
receiving actions1, PagA

((nr, viewagA
)) = {empty}, if there is no rule with step nr

for A in the protocol description.

Local evolution function for agA: setting and matching. The action sendM intu-
itively denotes agA composing M with values in her view and delivering this value-
string to the network. The action receiveM intuitively denotes agA receiving the value-
string M from the network, comparing its sub-strings to her local state (view) and, con-
sequently, accepting or dropping M . We use the notation M : view to symbolise this
composition/validation of M with respect to a given view. We formalise M : view by
introducing three functional symbols: in match, out match and set. Thus, in match
regards the standalone consistency of an instantiated message (i.e., comparisons only
between its sub-strings), out match regards the consistency of an instantiated message
with respect to a view (i.e., certain sub-strings have values compliant to the ones in the
view), set implies assignments of values within the views according to values within
an instantiated message. In the example below we give an intuition of the operational
semantics of these symbols and thus of the local evolution function for agA.
As before, let the view of agA at step 1 in the protocol be (alice, bob, pvkalice, pbkbob, r1,⊥).
In step 2, the agent agA receives some instantiated t = {na, nb}kA

. Upon receipt and
decryption, agA performs out match(na, t): she checks that the sub-string for na in t
matches the value for na in her view. If satisfied, she performs set(nb, t): she sets the
value for nb in her local view to the sub-string for nb in t (say, rbob). Thus, her view
after step 2 becomes (alice, bob, pvkalice, pbkbob, r1, rbob).

We proceed now to give the mapping for the Environment agent E, which —as we
said— maps the intruder.

Local state of E. A possible local state of the Environment agent is given by a set
X of instantiated messages together with a history H of instantiated actions, depicting
the intruder’s participation in the protocol execution.

Actions of E. The actions available to agent E are interceptM , transmitM , and
empty.

1 Y is an arbitrary principal in the description.

34

Local Protocol of E. At any local state, E can perform the action interceptM , im-
plementing its continuous Dolev-Yao surveillance of the network. If the value-string
M is composable at a local state, the action transmitM is enabled. This captures the
Dolev-Yao capability of composing messages and transmitting them to third parties.

Local Evolution Function of E. We formalise the descriptions above, by introduc-
ing the notation X ` M . It denotes that the value-string M is deducible from a set
of instantiated messages X via cryptographic compositions/decompositions under the
term algebra. In these terms, an example from the local evolution function of E is:
tE((X,H), ã) = (X∪M∪{t| {X ∪M} ` t} , H∪agA.sendM), if ãagA

= sendM
and ãE = interceptM , i.e., the Environment updates its local state by recording the
intercepted message, X ∪M ; deduces new values at his updated local state, ` t and
records the action taken by agA, H ∪ agA.sendM .

Initial states. The initial states of the system are given by instantiating stores into
views, where certain variables can be initially left unassigned. In order to obtain smaller
reachable state spaces, we initialise different MAS for a certain IS by circular permu-
tations on the initial values of some variables (i.e., if B ranges over bob1 and bob2 and
A over alice, we initialise a system where alice first talks to bob1 and another system
where she first talks to bob2). We thus obtain different MA systems correspondent to
different “initial setups”.

Thus, by defining all the mathematical objects of the IS above, we provided a model for
mapping a protocol scenario in an interpreted system. In the following, we present cer-
tain CTLK specifications to be verified under this modelling and their role in security
verification.

4 Temporal Epistemic Security Specifications

The GOALS (“secret”, “agree”, etc.) given in CAPSL-descriptions can be translated
into CTL along standard lines (cf. [15]). However, in our CTLK specification language
we can further check other, more complex properties of security protocols. Anonymity,
in particular, has recently been analysed in terms of epistemic logic (cf. [16, 17, 9]).
For example, in the dining cryptographer problem [7] the protocol ensures that after
the announcements the cryptographers know whether or not one of them paid, but if
one did they do not know who did. This can be very easily expressed by considering
a temporal-epistemic specification; the case for 3 cryptographers is reported below but
this can easily be generalised.

¬paid1 → (AX((K1(¬paid1 ∧ ¬paid2 ∧ ¬paid3))∨

(K1(paid2 ∨ paid3) ∧ ¬K1paid2 ∧ ¬K1paid3)))

Indeed specifications of this kind can be effectively model checked if the models are
directly implemented on temporal-epistemic model checkers such as [9, 11] as demon-
strated in [?].

35

However in this paper we are mainly concerned with authentication where we be-
lieve the approach can also be useful.

Authentication. Even if authentication is traditionally expressed as reachability in the
security literature, it naturally pertains to states of knowledge of the principals.

Several authentication properties have been described [18]; for instance, non-injective
agreement between protocol roles A and B requires that whenever an agent playing
role B has completed its local execution, the agent agrees on some local variables with
some agent playing role A and the agent knows that it is so. It is easy to see that natural
variations of these cannot be reduced to reachability only, even if neglecting the natural
interpretation of the epistemic modality. Consider, for example, the weaker requirement
stating that an agent i playing protocol roleB may reach a point where it agrees on local
variables with some agent j playing role A and where agent i knows that it is so:

∧
i:B

EF Ki

∨
j:A

agree(i, j) (1)

where i and j range over agents instantiatingB–role andA–role respectively. Spec-
ification (1) can be seen as a partial form of non-injective agreement, since it implies
that agent i may come to know that it has achieved its agreement goal and perhaps that,
from that point, it may safely continue. Unlike the standard non-injective agreement,
(1) does not easily reduce to a reachability property.

Some authentication protocols intend authentication to be acknowledged, i.e., in-
tend authentication itself to be authenticated. A possible specification for a partial form
of acknowledged authentication is that every agent implementing role B may come to
know that it agrees with some agent implementing roleA who knows that it agrees with
some agent implementing role B:

(∀i : B)EF Ki ((∃j : A) agree(i, j) ∧ Kj (∃k : B)agree(j, k)) (2)

Attack detection. Reachability based analysis of authentication protocols considers
only the knowledge of individual agents in the run. However, examining the distributed
knowledge of a group of agents may bring further insight into other properties of the
protocol. Specifically, a group of agents belonging to the same principal instance, say
alice, can pool their information together through inter-thread communication [19, 20],
by which they might be able to detect an attack on one of them. Indeed, there are authen-
tication protocols that include an attack detection mechanism based on such a pooling
(cf. WMF protocol in [21]). An attack detection of this kind is naturally expressed in
CTLK. For example, we can express whether alice is able to infer she has been attacked
by considering the formula:

AG (attack → EF Dalice attack) (3)

where Dalice is the distributed knowledge of all agents belonging to principal alice
(i.e., all role instances of the form (alice,X–role) for any principal X), and attack

36

encodes that the authentication goal for such an agent is violated. If (3) fails, an attack
undetectable by alice exists even after pooling information together. It seems unlikely
that (3) may be reduced to a plain reachability property.

5 Automatic Compilation of Protocol Scenarios into Interpreted
Systems

In this section, we present an implementation of the mapping in Section 3. Specifically,
we give details for a fully automatic compiler PC2IS — Protocol Compilation to In-
terpreted Systems — that takes a protocol description given in CAPSL and returns a
collection of interpreted systems given in ISPL.

Implementation. Given a protocol scenario, several ISPL files are generated, each file
encoding the protocol deployment under a certain bound on the number of sessions.
The CAPSL GOALS are translated in CTL. Additionally, simple CTLK specifications
for checking authentication ((1) in Section 4) are also produced in ISPL. The plat-
form then proceeds to input repeatedly the generated files to MCMAS for verification.
MCMAS returns the calls either certifying that the specifications are satisfied or by pro-
viding sufficient data for PC2IS to display a counterexample. The counterexample is
a trace in which the specification is not satisfied, i.e., it constitutes a protocol attack.
Furthermore, on a generated ISPL file, advanced CTLK security requirements such as
(2) in Section 4 can be added by the user. PC2IS is developed in JAVA; it is available
at [22].

More in detail, PC2IS comprises four different main modules: utils, parser, un-
marshaller and producer. The module utils is composed by two submodules: the de-
scription submodule and the scenario generator submodule. The description submod-
ule contains XML schemas that encode our protocol signature. The routines in the sce-
nario generator submodule take as input a description file, plus a bound on the number
of protocol sessions and generate several protocol scenarios. The parser module parses
the CAPSL-description input and uses it to generate one collection of XML files for
each of the scenarios generated above. These XML files are valid under the schemas
above (i.e., all protocol data complies to our signature). The unmarshaller module then
converts these XML files into JAVA objects and populates the data structures describing
the interpreted system. Finally, the producer module processes these JAVA structures
into several ISPL files, each encoding an interpreted system, as discussed.

In each ISPL file generated by PC2IS, agents’ local variables represent the views.
The agents’ actions and local protocols contain instantiated send and receive actions.
The agents’ local evolutions contain appropriate matching preconditions, and postcon-
ditions for exchanging messages. Below, we report part of agent (playing role A in
NSPK) coded in an ISPL file generated with PC2IS.

Vars: --ENCODING <VIEWS>
A, B: {alice, bob,...};
N_A, N_B: {n_1, n_2,...}; ...
end Vars

37

Protocol: --ENCODING <ROLES>
A=alice,N_A=n1,step=1:{receive_enc_n1_X_pubkey_alice};
--(an expression as above for every nonce X)
...
end Protocol

Evolution:
N_B=X and step=step+1 --<SET> SEMANTICS
if
Action=receive_enc_n1_X_pubkey_alice and
Env.Action=transmit_enc_n1_X_pubkey_alice and
N_A=n1; --<OUT_MATCH> SEMANTICS
--(a rule as above for every nonce X)
...
end Evolution

The local variables of the Environment agent encode all the actions that the intruder
eavesdrops or executes, as well as the messages deduced by him. The Environment
evolution section encodes this actual deduction.

Vars: -- ENCODE KNOWN VALUES

knows_X:boolean;
--(a line as above for every value X)

end Vars

Protocol: --ALL POSSIBLE DY COMPOSITIONS

knows_X: {transmit_enc_alice_X_pubkey_bob};...
--(a line as above for every nonce X)
...

end Protocol

Evolution: --ALL POSSIBLE DY DECOMPOSITIONS

knows_X=true
if
Action=intercept_enc_alice_X_pubkey_intruder
--(a rule as above for every nonce X)
...

end Evolution

38

For ease of understanding, in the examples above, we have simplified the actual
code generated by PC2IS.

Experimental results. To evaluate the tool PC2IS in a systematic way, we have run
tests on protocol descriptions from a CAPSL-version of Clark-Jacob library [12]. The
Clark-Jacob library is a standard, widely-used repository of authentication and key-
exchange protocols. In Table 1, we summarise the results obtained for some of the pro-
tocols considered against CTL and authentication CTLK requirements directly inferred
from the CAPSL goals.

Table 1. Verification CTL and simple CTLK authentication requirements on compiled interpreted
systems

Protocol Key Guessing Attack Found Nb. of MAS Avg. Time

ISO1PUCCF
no no 13 1
yes “PRECEDES” failed 3 1

ISO2PUCCF
no no 21 2
ye no 9 2
yes “PRECEDES” failed 2 1

ISOSK2PU
no no 14 3
yes “PRECEDES” failed 4 2

ISOSK3PM
no no 23 6
yes one “PRECEDES” + “SECRET” failed 6 4

AndrewRPC - one“PRECEDES” + “SECRET” failed 5 6
NSPK - Lowe attack found 9 1

Table 1 presents some key results for the protocols reported here. The last column
reports the weighted average time (in seconds) for the verification of a given protocol
(or for an attack to be discovered) on a PC based on an Intel Core Duo 1.80Ghz, 1GB
RAM, running Windows XP Pro and MCMAS under Cygwin. We report the weighted
average time as the approach is based on checking repeatedly ISPL files corresponding
to an increasing number of sessions up to a bound, thereby generating a number of IS
(given in the 4th column). In addition we differentiate between scenarios in which the
keys may or may not be compromised (2nd column).

The results obtained were entirely in line of what known in the literature. Without
key learning the first 5 protocols were shown to be correct. If key guessing was allowed,
the system identified an attack and displayed the original GOAL specification failing in
the scenario (appropriately translated). In this case a trace describing the attack was also
displayed by the tool (not shown in the table). The analysis of the AndrewRPC protocol
identified known attacks and so did NSPK. In practice, verification of these protocols
was next to instantaneous thereby reassuring us that the translation as defined produces
models that are sufficiently optimised to be deployed on a very wide range of protocols.

Irrespectively of what appears to be more than satisfactory efficiency, the methodol-
ogy focus on the verification of temporal-epistemic specifications. These are not consid-
ered in the Clark-Jacob library, so, instead, we report below an attack-detection result

39

obtained on NSPK. Consider a principal instance bob running two B sessions; it turns
out that if a Lowe-like attack [23] is made against bob, he can “pool together” the in-
formation from his two sessions and detect an attack on one of them. As discussed
in Section 4, the “pooling together” is achieved by considering the distributed knowl-
edge of bob over all the sessions he is running. More formally, if we can verify that the
specification

AG(¬auth→ EFDbob¬auth)

is satisfied in the protocol thereby guaranteeing that bob would be able to know he has
been attacked.

6 Conclusions and Future Work

In this paper, we presented an automatic methodology for verifying cryptographic pro-
tocols against temporal-epistemic specifications. While not all the technical details
could be presented in this short research note, the translation is based on formal prin-
ciples. Among these we highlight the Dolev-Yao model of the intruder, the precise
conditions on send/receive of messages, the efficient typing for the representation of
messages, and the encoding of roles in IS. Indeed the map defined in Section 3 effec-
tively amounts to an operational semantics of CAPSL programs in terms of IS. In this
sense this paper is inspired by and extends previously advocated approaches such as
[10]. Differently from [10] though, a less stringent definition of matched send-receive
is adopted, and several other optimisations are implemented, including a minimisation
of the number of initial states, and a bounded approach to the verification of multiple
protocol sessions.

We believe the rationale behind the translation to have been validated by the results
obtained with the toolkit PC2IS presented in Section 5. PC2IS, when paired with
MCMAS, could verify very efficiently all protocols we tested from the Clark-Jacob
library. The approach does not seem to be significantly slower than mainstream se-
curity toolkits such as CASPER [24] or AVISPA [25], based on process algebras and
constraint-solving respectively. However, the methodology presented here extends dra-
matically the specifications that may be checked to an AI-inspired temporal-epistemic
language. As summarised in Section 4 and in the attack on NSPK described in the pre-
vious section, this opens the way for the verification of more complex specifications not
normally tackled.

References

1. Cohen, E.: TAPS: A first-order verifier for cryptographic protocols. Proceedings of the 13th
IEEE workshop on Computer Security Foundations (2000) 144

2. Blanchet, B.: An automatic security protocol verifier based on resolution theorem proving.
In: 20th International Conference on Automated Deduction (CADE-20), Tallinn, Estonia
(JULY 2005)

3. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT Press (1995)
4. Ricardo, C., Ari, S., Sandro, E.: PS-LTL for constraint-based security protocol analysis.

Lecture Notes in Computer Science 3668 (2005)

40

5. Syverson, P., Stubblebine, S.: Group principals and the formalization of anonymity. In:
World Congress on Formal Methods. (1999) 814–833

6. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. Technical report, DEC
SRC (1990)

7. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient untrace-
ability. Volume 1. (1988) 65–75

8. Halpern, J., Meyden, R.: A logical reconstruction of SPKI. Journal of Computer Security
11(4) (2003)

9. Meyden, R., Gammie, P.: MCK: Model checking the logic of knowledge. In: CAV. (2004)
479–483

10. Lomuscio, A., Penczek, W.: LDYIS: a framework for model checking security protocols.
Fundamenta Informaticae 85 (1-4) (2008) 359–375

11. MCMAS: A model checker for multi-agent systems.
http://dfn.dl.sourceforge.net/sourceforge/ist-contract /mcmas-0.9.6.tar.gz. (2009)

12. Millen, J.: Common Authentification Protocol Specification Language. (2001)
13. Dolev, D., Yao, A.: On the security of public-key protocols. IEEE Transactions on Informa-

tion Theory 29 (1983) 198–208
14. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
15. De-qin, X., Huan-guo, Z.: Model checking electronic commerce security protocols based on

ctl. Journal Wuhan University Journal of Natural Sciences (2004)
16. Halpern, J., O’Neill, K.: Anonymity and information hiding in multiagent systems. Journal

of Computer Security 13(3) (2005) 483–514
17. Hughes, D., Shmatikov, V.: Information hiding, anonymity and privacy: a modular approach.

Journal of Computer Security 12(1) (2004) 3–36
18. Lowe, G.: A hierarchy of authentication specifications. In Proceedings of the 10th IEEE

workshop on Computer Security Foundations (1997)
19. Halpern, J., Pucella, R.: On the relationship between strand spaces and multi-agent systems.

In: Proceedings of the 8th ACM conference on Computer and Communications Security.
(2001) 106–115

20. Lowe, G.: A family of attacks upon authentication protocols. Technical report, Department
of Mathematics and Computer Science, University of Leicester (1997)

21. ENS-Cachan: Security Protocols Open Repository. (2003)
22. PCtoIS: Protocol compiler to interpreted systems. https://sourceforge.net/projects/pc2is/

(2009)
23. Lowe, G.: An attack on the Needham-Schroeder Public-Key authentication protocol. Inf.

Process. Lett. 56(3) (1995) 131–133
24. Lowe, G.: Casper: A compiler for the analysis of security protocols. Journal of Computer

Security 6(1-2) (1998)
25. Vigano, L.: Automated security protocol analysis with the AVISPA tool. Proceedings of the

XXI Mathematical Foundations of Programming Semantics (2006)

41

