
A generate-and-test approach for computing “optimal” plans in SAT-based
planning

Enrico Giunchiglia and Marco Maratea
DIST - University of Genova, Viale F. Causa 15, Genova, Italy

{enrico,marco@dist.unige.it}

Abstract

Planning as Satisfiability (SAT) is the best approach for opti-
mally (wrt makespan) solving classical planning problems.
SAT-based planners, likeSATPLAN, can thus return plans
having minimal makespan guaranteed. However, the returned
plan does not take into account plan quality issues introduced
in the last two International Planning Competitions (IPCs):
such issues include plans which minimize action costs and
plans with “soft” goals, where a metric has to be optimized
over actions/goals. Recently, an approach to address such
issues has been presented, in the framework of planning as
satisfiability with preferences: by imposing that one prefers
“not to perform” actions, or “to satisfy” soft goals, the related
system (calledSATPLAN(P)) is guaranteed to return plans
with minimal number of actions, or with maximal number
of soft goals satisfied (thus in a qualitative case), and is ex-
tended to deal with the quantitative case. But, besides such
feature, and the fact that the first computed plan is guaran-
teed to be “optimal”, it is well-known that introducing order-
ing in SAT heuristics can lead, at least theoretically, to sig-
nificant degradation in performances: inSATPLAN(P), this
phenomenon also happened experimentally on large planning
problems with many preferences.
In this paper, we present a different, generate-and-test, ap-
proach to tackle the problem of dealing with such optimiza-
tion issues: without imposing any ordering, a (candidate op-
timal) plan is first generated, and then a constraint is added
imposing that the new plan (if any) has to be “better” than
the last computed, i.e., the plan quality is increased at each
iteration. We implemented this idea inSATPLAN, and com-
pared the resulting systems wrtSATPLAN(P) and SGPLAN
on planning problems coming from IPCs. The analysis shows
performance benefits for the new approach, in particular on
planning problems with many preferences.

Introduction
Planning as Satisfiability (SAT) (Kautz and Selman 1992)
is the best approach for optimally (wrt makespan) solving
classical planning problems. The SAT-based plannerSAT-
PLAN (Kautz and Selman 1999) has been the winner in
the deterministic track for optimal planners in the 4th In-
ternational Planning Competition (IPC-4) (Hoffmann and
Edelkamp 2005) and co-winner in the IPC-5 (Gerevini et

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

al. 2009) (together with another SAT-based planner, MAX -
PLAN (Xing, Chen, and Zhang 2006)). SAT-based plan-
ners inherit from the approach the property that the returned
plan has minimal makespan guaranteed. However, the re-
turned plan does not take into account plan quality issues
introduced in the last two International Planning Compe-
titions (IPCs): such issues include plans which minimize
action costs and plans with “soft” goals, where a met-
ric has to be optimized over actions/goals. The availabil-
ity of planning systems able to deal with such optimiza-
tion issues is relatively recent, and, even if search-based
and IP-based planners have shown positive results, it is
not yet clear what is the best solving approach. A first
SAT-based approach to tackle this problem has been re-
cently presented, in the framework of planning as satisfi-
ability with preferences (Giunchiglia and Maratea 2007a;
2007b): by imposing that the heuristic of the underlying
SAT solver first select literals which correspond to “not to
perform” actions, or “to satisfy” soft goals, the related sys-
tem, calledSATPLAN(P), is guaranteed to return plans with
minimal number of actions (or, minimal-actions), or with
the maximal number of soft goals satisfied, i.e., no subset of
the plan’s actions or soft goals achieve the goals, given the
optimal makespan. But, besides such feature, and the fact
that the first computed plan is guaranteed to be “optimal”,
it is well-known that introducing ordering in SAT heuris-
tics can lead, at least theoretically, to significant degradation
in performances (J̈arvisalo, Junttila, and Niemelä 2005): in
SATPLAN(P), this phenomenon also happened experimen-
tally on large planning problems with many preferences.

In this paper, we present a different, generate-and-test,
approach to tackle the problem of dealing with such opti-
mization issues, at fixed, optimal makespan: without impos-
ing any ordering, a (candidate optimal) plan is first gener-
ated, and then a constraint is added imposing that the new
plan (if any) has to be “better” than the last computed, ex-
tending what has been done in different contexts in both
CSP and SAT, e.g., (Castell et al. 1996; Gavanelli 2002;
DiRosa, Giunchiglia, and Maratea 2008). Thus, the plan
quality is increased at each iteration of the algorithm. We
implemented this idea inSATPLAN, also considering the
“quantitative” approach to the problem, i.e., considering also
plans with the minimum number of actions, or with maxi-
mum number of soft goals satisfied, by means of a known re-

9

duction from quantitative to qualitative preferences. We then
compared the resulting system wrtSATPLAN(P) on both
classical planning problems coming from IPCs, and on plan-
ning problems coming from the “SimplePreferences” track
of the IPC-5, having all goals as “soft”. The results of our
preliminary analysis point out that:

• on planning problems with many preferences,SATPLAN-
GNT performs better thanSATPLAN(P);

• on planning problems with (relatively) few preferences,
SATPLAN-GNT andSATPLAN(P) perform similarly; and

• SATPLAN-GNT andSATPLAN(P) are both overall compet-
itive to SGPLAN on planning problems coming from the
“SimplePreferences” track of the IPC-5, where SGPLAN
was the clear winner.

The paper is structured as follows. We first present some
basic preliminaries about planning (as satisfiability). Then,
we define optimal plans in term of preferences. We continue
by showing the new algorithm, along with some formal re-
sults, whose implementation and experimental evaluation is
presented in the next section. The last part of the paper dis-
cusses interactions with other, related work and drawn some
conclusions and possible topics for future research.

Preliminaries
Let F andA be the set offluentsandactions, respectively.
A stateis an interpretation of the fluent signature. Acom-
plex actionα is an interpretation of the action signature, and
models the concurrent execution of the actions satisfied by
α, i.e., it is a set of actions that can be executed in parallel.
A planning problemis a triple〈I, tr,G〉 where

• I is a Boolean formula overF and represents the set of
initial states;

• tr is a Boolean formula overF∪A∪F ′ whereF ′ = {f ′ :
f ∈ F} is a copy of the fluent signature and represents
the transition relationof the automaton describing how
(complex) actions affect states (we assumeF ∩ F ′ = ∅);

• G is a Boolean formula overF and represents the set of
goal states.

The above definition of planning problem differs from the
traditional ones in which the description of actions’ effects
on a state is described in an high-level action language like
STRIPS or PDDL. We used this formulation because the
techniques we are going to describe are largely independent
from the action language used, at least from a theoretical
point of view. The only assumption that we make is that the
description is deterministic: there is only one state satisfy-
ing I and the execution of a (complex) actionα in a state
s can lead to at most one states′. More formally, for each
states and complex actionα there is at most one interpreta-
tion extendings ∪ α and satisfyingtr. Consider a planning
problemΠ = 〈I, tr,G〉. In the following, for any integeri

• if F is a formula in the fluent signature,Fi is obtained
from F by substituting eachf ∈ F with fi,

• tri is the formula obtained fromtr by substituting each
symbolp ∈ F ∪ A with pi−1 and eachf ∈ F ′ with fi.

If n is an integer, theplanning problemΠ with makespann
is the Boolean formulaΠn defined as

I0 ∧ ∧n
i=1tri ∧Gn, n ≥ 0 (1)

and aplan is an interpretation (or, equivalently, a set of lit-
erals) satisfying (1).1 For example, consider the planning
problem of going to work from home for an husband and
a wife. Assume that they can use the car or the bus or the
bike, but one has to stay home with the child, this scenario
can be formalized using two fluent variablesAtWorkHand
AtWorkW, and three action variablesCar, BusandBike. The
problem with makespan1 can be expressed by the conjunc-
tion (here indicated with “,”) of the formulas:

¬AtWorkH0,¬AtWorkW0,
AtWorkH1 ≡ ¬AtWorkH0 ≡ (Car0 ∨ Bus0 ∨ Bike0),
AtWorkW1 ≡ ¬AtWorkW0 ≡ (Car0 ∨ Bus0 ∨ Bike0),

¬AtWorkH1 ∨ ¬AtWorkW1,
(2)

in which the first two formulas correspond to the initial state,
the third and the fourth to the transition relation, and the last
indicates that at most one goal can be reached, mimicking,
together with the other formulas, that goals are soft. The
planning problem has many solutions, each corresponding
to a non-empty subset of{Car0,Bus0,Bike0} for each flu-
ent. Among those plans, in a minimal-actions plan a single
action is performed. About “soft” goals, the simple charac-
terization in (2) is extended to include “preferences” among
the goals, by means of weights associated to the violation of
the goals, or an ordering on them.

Optimal plans and qualitative preferences
In this section we formalize the definition of optimal
plans in the framework of planning as satisfiability with
preferences, first presented in (Giunchiglia and Maratea
2007a). LetΠn be a planning problemΠ with makespan
n. A qualitative preference (forΠn) is a pair〈P,≺〉 where
P is a set of literals (the preferences, in our case they will
be built on action variables or soft goals) and≺ is a partial
order onP . Thus, the focus of our presentation is on the
qualitativeapproach to the problem, and to preferences on
literals. This is not a limitation, given that in (Giunchiglia
and Maratea 2007a) it is showed how to deal with quantita-
tive preferences (where a preference is a pair〈P, c〉 where
P has the same meaning as before, andc is a function
that maps literals to positive integer) and with (qualitative
and quantitative) preferences on formulas, by means of
a reduction to our framework of qualitative preferences
on literals. Qualitative and quantitative approaches both
received attention in planning, each having its pros and
cons, as commented in, e.g., Sec. 2.3 of (Gerevini et al.
2009).

Consider a qualitative preference〈P,≺〉. The partial or-
der can be extended to plans forΠn in the following way.
Let π1 andπ2 be two plans forΠn. π1 is preferred toπ2

(wrt 〈P,≺〉) iff

1In the following, we continuously switch between plans and
satisfying interpretations.

10

1. they satisfy different sets of preferences, i.e.,{p : p ∈
P, π1 |= p} 6= {p : p ∈ P, π2 |= p}, and

2. for each preferencep2 satisfied byπ2 and not byπ1 there
is another preferencep1 satisfied byπ1 and not byπ2 with
p1 ≺ p2.

The second condition says that ifπ1 does not satisfy a pref-
erencep2 which is satisfied byπ2, thenπ1 is preferred toπ2

only if there is a good reason forπ1 6|= p2, i.e.,π1 satisfies a
“more preferred” preference (not satisfied byπ2). We write
π1 ≺ π2 to mean thatπ1 is preferred toπ2. It is easy to see
that≺ defines a partial order on plans forΠn wrt 〈P,≺〉.
A plan π is optimal for Πn (wrt 〈P,≺〉) if it is a minimal
element of the partial order on plans forΠn, i.e., if there is
no planπ′ for Πn with π′ ≺ π (wrt 〈P,≺〉). As an example,
consider the planning problem in (2); if we have the quali-
tative preference (in the following, we show only the action
variables assigned to true in the optimal plan):
a. 〈{¬Bike0,¬Bus0,¬Car0}, ∅〉, i.e., the situation in which

we prefer not to perform actions, and the preferences
are equally important (≺= ∅), there are three op-
timal, i.e., minimal-actions, plans, corresponding to
{Bike0}, {Bus0}, {Car0}, for each fluent.

b. 〈{¬Bike0,¬Bus0,¬Car0}, {¬Bike0 ≺ ¬Car0}〉, i.e., the
situation in which again we prefer not to perform ac-
tions, and not to take the bike is preferred over not
to take the car, then there are two optimal plans, i.e.,
{Bus0}, {Car0}, for each fluent.

c. 〈{AtWorkH,AtWorkW}, ∅〉, i.e., the situation in which we
prefer to satisfy the (soft) goals, and the goals are equally
important (≺=∅), there are14 optimal plans, each cor-
responding to a non-empty subset of{Car0,Bus0,Bike0}
for each soft goal.

d. 〈{AtWorkH,AtWorkW}, {AtWorkH ≺ AtWorkW}〉, i.e.,
the situation in which again we prefer to satisfy the soft
goals, and satisfying the first is preferred to the second,
there are7 optimal plans, each corresponding to a non-
empty subset of{Car0,Bus0,Bike0} and with the fluent
AtWorkHtrue.

Computing optimal plans via
generate-and-test

We have already discussed in the introduction that the al-
gorithm in (Giunchiglia and Maratea 2007a; 2007b) has
drawbacks related to imposing an ordering on preferences
to be followed while branching: from (Järvisalo, Junttila,
and Niemel̈a 2005), it is well-known that such ordering can
significantly degrade the performances. Here we present a
different, generate-and-test, approach for solving the prob-
lem of generating plans with minimal number of actions,
or with maximal number of soft goal satisfied, thus in the
qualitative case (in the next section we briefly mention how
to also deal with the quantitative case). It first generates
a (candidate optimal) plan, and then a constraint is added
imposing that the new plan (if any) has to be “better” than
the last computed, extending what has been done in both
CSP and SAT, e.g., in (Castell et al. 1996; Gavanelli 2002;
DiRosa, Giunchiglia, and Maratea 2008).

Thus, crucial for the above procedure is a condition which
enables us to say which are the plans that are preferred (wrt
〈P,≺〉) to a planπ: such a formula, wherel is a literal, is

(∨l:l∈P,l 6∈πl) ∧ (∧l′:l′∈P,l′∈π(∨l:l∈P,l 6∈π,l≺l′ l ∨ l
′)). (3)

which codifies conditions1. and2. in the previous section.
Note that if the partial order is empty, the second part of (3)
reduces to a conjunctive clause (i.e., a conjunction of lit-
erals), thus this part is very efficiently propagated by unit
propagation.

A plan π′ is preferred toπ wrt 〈P,≺〉 iff π′ satisfies (3),
as stated by the following theorem.

Theorem 1 Let π and π′ be two plans. Let〈P,≺〉 be a
qualitative preference.π′ is preferred toπ wrt 〈P,≺〉 if and
only if π′ satisfies the preference formula in (3).

Theorem 1 follows from (3) by construction, and corre-
sponds to a formalization of a concept already known in
literature, e.g., (Giunchiglia and Maratea 2007a).

In Figure 1 we present the new solving procedures. Infor-
mally, QL-PLAN-GNT-1 andQL-PLAN-GNT-2 find an opti-
mal plan by translating the planning problemΠ at makespan
n and the preference into a propositional formula (and a
CNF conversioncnf is needed). Then, the CNF formula to-
gether with the preference are fed toPREF-DLL , a modified
version ofDLL that can find “optimal” SAT solution. An op-
timal solution corresponds to an optimal plan of the original
problem.

More in details about Figure 1:

• in QL-PLAN-GNT-2: for eachp ∈ P , v(p) is a newly in-
troduced variable;v(P) is the set of new variables, i.e.,
{v(p) : p ∈ P}; v(≺) =≺′ is the partial order onv(P)
defined byv(p) ≺′ v(p′) iff p ≺ p′; in QL-PLAN-GNT-1:
no changes are made to the preference, thus in the param-
eters passed toPREF-DLL P ′ = P and≺′=≺.

• π is a consistent set of literals (or, equivalently, a (candi-
date) plan forΠn), and corresponds to the partial interpre-
tation mapping to true the literalsl ∈ π.

• cnf(ϕ), whereϕ is a formula, is a set of clauses (i.e., set of
sets of literals, with⊤ denoting the empty set of clauses)
such that:

– for any interpretationπ in the signature ofcnf(ϕ) such
thatπ |= cnf(ϕ) it is true also thatπ′ |= ϕ, whereπ′ is
the interpretationπ restricted to the signature ofϕ; and

– (ii) interpretationπ, π ⊇ π′, such thatπ |= cnf(ϕ).

There are well known methods for computingcnf(ϕ)
in linear time by introducing additional variables,
e.g., (Tseitin 1970).

• l is a literal andl is the complement ofl;

• ϕl returns the set of clauses obtained fromϕ by (i) delet-
ing the clausesC ∈ ϕwith l ∈ C, and(ii) deletingl from
the other clauses inϕ;

• Reasonreturns the set of clauses corresponding to (3);

• ChooseLiteralreturns anunassignedliteral l (i.e., such
that{l, l} ∩ π = ∅) in ϕ.

11

〈P,≺〉 := a qualitative preference;ψ := ⊤; πopt := ∅

function QL-PLAN-GNT-1(Π,n)
1 return PREF-DLL (cnf(Πn),∅,P ,≺)

function QL-PLAN-GNT-2(Π,n)
2 return

PREF-DLL (cnf(I0 ∧ ∧n
i=1tri ∧p∈P (v(p) ∨ p)),∅,v(P),v(≺))

function PREF-DLL (ϕ ∪ ψ,π,P ′,≺′)
3 if (∅ ∈ (ϕ ∪ ψ)π) return FALSE;
4 if (π is total)πopt := π; ψ := Reason(π, P ′,≺′);

return FALSE;
5 if ({l} ∈ (ϕ ∪ ψ)π) return PREF-DLL(ϕ ∪ ψ, π ∪ {l});
6 l := ChooseLiteral(ϕ ∪ ψ, π);
7 return PREF-DLL(ϕ ∪ ψ, π ∪ {l}) or

PREF-DLL(ϕ ∪ ψ, π ∪ {l}).

Figure 1: The algorithms ofSATPLAN-GNT.

Note that in the algorithm we have not specified〈P,≺〉
to be a preference on literals: in fact, goals are usually for-
mulas. Thus, when dealing with soft goals (QL-PLAN-GNT-
2 algorithm), we add what are called “goal selectors”, i.e.,
variables which are place-holders for the goals: preferences
are then expressed over such set of variables, and in this
way we are back to our setting of preferences on literals.
Goal selectors have the same meaning of clause selectors in
Max-SAT. When preferences are expressed over action vari-
ables (QL-PLAN-GNT-1 algorithm), adding such variables
and modifying the ordering is not needed.

Thus, given a planning problemΠ, a makespann, and a
qualitative preference〈P,≺〉, an optimal plan is computed
by invoking PREF-DLL (DiRosa, Giunchiglia, and Maratea
2008), a modified version of standardDLL for computing
“optimal” solutions, oncnf(), i.e., the set of clauses corre-
sponding to the planning problemΠ with makespann, pos-
sibly with the modified preferences. The formulaψ corre-
sponds to the clauses corresponding to (3) added because of
a (candidate) optimal solution is found: in the first invoca-
tion,ψ is the empty set of clauses.

More in details,PREF-DLL is standardDLL except that
when a new planπ is found (at line 4), it is set to be the (ac-
tual) optimal planπopt (initially set to ∅), a set of clauses
corresponding to (3) are assigned toψ, and FALSE is re-
turned to continue the search looking for “better” plans.
WhenPREF-DLL terminates, the last plan found is optimal
(if one exists), i.e., no plan exists which is preferred to the
actualπopt, as stated by the following theorem, which ex-
tends to planning as satisfiability previous results.

Theorem 2 Let Π be a planning problem,n the makespan,
and 〈P,≺〉 a qualitative preference.QL-PLAN-GNT-1 and
QL-PLAN-GNT-2 terminate, and thenπopt is empty ifΠ
does not have a plan of makespann, and an optimal plan
wrt 〈P,≺ 〉 for makespann, otherwise.

Theorem 2 follows from the correctness ofPREF-DLL
(Theorem 2 in (DiRosa, Giunchiglia, and Maratea 2008))

and the assumptions oncnf.

Notice that each time a newπ′ is found at line 4 of Fig-
ure 1, which is better than the actualπopt, ψ may be over-
written because we can discard the clauses added because of
π since they are entailed by the new clauses added because
of π′. as stated by the following theorem.
Theorem 3 Let 〈P,≺〉 be a qualitative preference. Let
π1, π2, . . . , πk be the sequence of plans computed byQL-
PLAN-GNT-1 or QL-PLAN-GNT-2, andψ1, ψ2, . . . , ψk be
the corresponding formulas computed as in (3). For eachi,
0 < i < n, ψi+1 entailsψi.
As a consequence, inPREF-DLL , the formulaψ is over-
written as soon as a new modelπ is found (line 4).
QL-PLAN-GNT-1 and QL-PLAN-GNT-2 are thus guaran-
teed to work in polynomial space in the size of the input
planning problem, makespan and preference.

Going back to our original problems, if we want to
compute plans with minimal number of actions, assuming
act(Πn) is the set of variables inΠn corresponding to ac-
tion variables, it is enough to set
1. P := {a|a ∈ act(Πn)}; and

2. ≺ := ∅,
and then calling theQL-PLAN-GNT-1 algorithm to obtain
the expected result (in the qualitative case). If we are inter-
ested in computing plans with the maximal number of soft
goals satisfied, givenSG to be the set of soft goals of the
problem, it is enough to set
1. P := {v(p)|p ∈ SG}; and

2. ≺ := ∅,
and then calling theQL-PLAN-GNT-2 algorithm to obtain
the expected result (again in the qualitative case).

As an example of the behavior of theQL-PLAN-GNT-1
algorithm in Figure 1, consider the planning problem (2)
(which thus corresponds toΠn) and the preferencea. at the
end of the previous section, the search for a minimal-actions
plan may proceed (depending onChooseLiteral) as follows:

1. π1={Car0,Bike0,Bus0}, thenψ1 : Car0 ∨ Bike0 ∨ Bus0,
i.e., at least one action has to be assigned as inP . Assume
the next plan is

2. π2={Bike0,Bus0}, thenψ2 : (Bike0∨Bus0)∧Car0, which
asks that at least one amongBike0 and Bus0 has to be
assigned as inP , while Car0 has to remain assigned as in
P ; assume now the next computed plan is

3. π3={Bike0}, thenψ3 : Bike0 ∧Car0 ∧Bus0, which would
be satisfied only by a plan where all actions are not per-
formed: given this plan does not satisfy (the constraints
related to the transition relation of) (2) (which, intuitively,
say “at least one action has to be performed”),π3 is opti-
mal. In PREF-DLL , this is achieved by means of no other
plan is computed at line 4 of Figure 1, and the procedure
eventually exits at line 3 withπ3 asπopt.
It is clear from the example how the quality of the plan

increases at each new solution found. TheQL-PLAN-GNT-
2 algorithm behaves similarly.

12

SATPLAN(P)(W) SATPLAN-GNT(W) SATPLAN(P)() SATPLAN-GNT()
pipesworld-notankage 85.57(9) 110.37(9) 40.92(11) 100.21(13)
pipesworld-tankage 193.86(6) 217.72(7) 32.59(7) 97.96(8)

satellite 12.6(2) 7.34(2) 3.34(4) 226.04(4)
promela-optical 58.96(11) 108.2(13) 123.38(9) 18.59(13)

psr-small 34.82(47) 32.08(48) 11.85(44) 15(48)
depots 76.02(5) 43.84(5) 194.24(5) 123.08(9)

zenoTravel 10.44(8) 10.79(8) 64.41(9) 40.76(11)
freeCell 10.8(2) 8.91(2) 89.81(4) 15.19(3)
logistics 97.92(10) 5.77(13) 2.4(22) 78.37(25)
mprime 60.17(19) 60.24(19) 27.59(14) 12.58(19)
mystery 24.47(13) 28.29(15) 32.36(13) 11.69(15)

openstacks − − 717.31(4) −
pathways 22.89(5) 13.96(5) 63.78(7) 5.79(7)
storage 16.67(9) 7.83(9) 42.1(12) 24.24(11)

TPP 0.08(5) 151.17(7) 0.14(8) 123.59(19)
elevator 18.99(15) 1.75(15) 54.08(30) 0.63(15)
rovers 83.41(6) 22.9(6) 79.31(8) 110.38(16)

Table 1: Results on domains coming from IPCs.x(y) stands fory instances solved withx secs of mean CPU time.

Implementation and experimental evaluation
As we already said in the introduction, we usedSATPLAN
(ver. of Feb. 2006) as underlying planning system.SAT-
PLAN is the most famous SAT-based system and we al-
ready mentioned its good performances in IPCs.SATPLAN
can only handle STRIPS domains. We thus extendedSAT-
PLAN in order to incorporate such ideas (i.e., to imple-
mentQL-PLAN-GNT-1/QL-PLAN-GNT-2 at each makespan
of theSATPLAN’s approach, till the optimal makespan), and
we calledSATPLAN-GNT the overall system: it implements
PREF-DLL in MINISAT which is also one of the solversSAT-
PLAN can use, and that we set as default forSATPLAN.2

Experiments for minimal-actions plans
We considered several STRIPS domains from the first five
IPCs (the recent IPC-6 does not have basic STRIPS prob-
lems). GivenP := {a|a ∈ act(Πn)} defined above, we con-
sidered both the qualitative preference〈P, ∅〉 and the quan-
titative preference〈P, c〉 in which c is the constant function
1, i.e, the setting where an uniform cost is associated to “not
to perform” each action: the related objective function is
thus the minimization of the number of action involved in
the plan. We used Warners encoding (Warners 1998) (de-
noted with “W”) to reduce to qualitative preferences (with
a non-empty partial order): it showed the best performances
on planning problems in (Giunchiglia and Maratea 2007a;
2007b), and it is thus the same used inSATPLAN(P). In
Table 1 there are the results of our analysis. The first col-
umn is the domain of problem, thenSATPLAN(P)(W) and
SATPLAN-GNT(W) (resp. SATPLAN(P)() and SATPLAN-
GNT()) denote the systems working on the quantitative (resp.
qualitative) case. Results are presented as in the Max-SAT

2SATPLAN ’s default solver isSIEGE: we run SATPLAN with
SIEGE and MINISAT and we have seen no significant differences
in performances in terms of both CPU time and plans quality.

Evaluations3 by x(y), wherey is the number of solved in-
stances within the time limit (900s on a Linux box equipped
with a Pentium IV 3.2GHz processor and 1GB of RAM),
andx is the mean solving time of solved instances (used to
break ties). “−” means that no instance is solved within
the time limit. We can note that in the quantitative case
SATPLAN-GNT(W) has an edge overSATPLAN(P)(W): it of-
ten solves more instances, and never less, while in the quali-
tative case results are mixed. In general,SATPLAN-GNT con-
vergence to the optimal solution is effective, and only few
iterations are needed: we performed a detailed analysis on
selected benchmarks, and we noted that, in mean, only 2.5
iterations were needed, and the quality of the first plan was
already very good. In the qualitative case, on same domains,
splitting preferentially on action variables, without the bur-
den introduced by the W-encoding, can efficiently lead to
the optimal solution. Finally, note that often the differences
in performances are in the order of one/few instances, or just
in term of mean CPU time: this is in line with state-of-the-
art results, given that often in optimization problems solving
even one more, or just in a faster way, the available bench-
marks can be a significant result (e.g., in the Max-SAT Eval-
uations, where often the domain winner is granted by only
the mean CPU time). Considering the length of the plans
returned bySATPLAN-GNT(W) (and thusSATPLAN(P)(W)4

and plainSATPLAN we want to mention that the reduction
percentage for the domains in Table 1 goes from 54% for
mprime to no reduction in 5 domains (this is because no re-
duction is possible given the structure of the problems, or
because the approach stops at the optimal makespan).

3Seehttp://www.maxsat07.udl.es/ for the last.
4Note that, in general, this is not the case forSATPLAN-GNT()

andSATPLAN(P)(), given they return subset-minimal solutions.

13

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14

P
la

n
m

et
ric

#problem

Pathways-SimplePreferences

SATPLAN(P)
SGPLAN

 0.01

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14

C
P

U
 ti

m
e

#problem

Pathways-SimplePreferences

SATPLAN(P)
SATPLAN-GNT

SGPLAN

Figure 2: Pathways domain, “SimplePreferences” track of IPC-5. Left: Plan metric, i.e., number of unsatisfied soft goals, for
SATPLAN-GNT(W) (and thusSATPLAN(P)(W)) and SGPLAN . Right: CPU time forSATPLAN-GNT(W), SATPLAN(P)(W) and
SGPLAN (in log scale).

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7

P
la

n
m

et
ric

#problem

Storage-SimplePreferences

SATPLAN(P)
SGPLAN

 0.01

 0.1

 1

 10

 100

 1 2 3 4 5 6 7

C
P

U
 ti

m
e

#problem

Storage-SimplePreferences

SATPLAN(P)
SATPLAN-GNT

SGPLAN

Figure 3: Storage domain, “SimplePreferences” track of IPC-5. Left: Plan metric, i.e., number of unsatisfied soft goals, for
SATPLAN-GNT(W) (and thusSATPLAN(P)(W)) and SGPLAN . Right: CPU time forSATPLAN-GNT(W), SATPLAN(P)(W) and
SGPLAN (in log scale).

Experiments with soft goals

For this part of the experiments we considered two types
of problems. First, we evaluatedSATPLAN-GNT on some
of the instances from (Giunchiglia and Maratea 2007a;
2007b). Such instances were created from the original
STRIPS instances of the domain we mentioned above, but
considering all goals as being “soft” (but with the constraint
that at least one goal has to be reached, otherwise the empty
plan is always a solution). We do not show detailed results
for this analysis, and we just summarize it. The vast major-
ity of these benchmarks were already solved efficiently by
SATPLAN(P). We have considered10 problems (each from
a different domain) whereSATPLAN(P) took considerable
time to solve, in the quantitative case: on such problems,

SATPLAN-GNT(W) took in mean around half a time wrtSAT-
PLAN(P)(W) to solve them. In the qualitative case, all prob-
lems are solved quite easily by bothSATPLAN-GNT() and
SATPLAN(P)(). But, besides the fact that in the instances so
far mentioned goals are precisely soft, i.e., they can be sat-
isfied, or not, without affecting plan validity, such instances
are not fully satisfactory because goals are non-conflicting,
i.e., all soft goals can be (eventually) satisfied at the same
time.

For this reason, given that the case in which not all the
goals can be satisfied (often called over-subscription plan-
ning) is practically very important, we also evaluated some
domains from the “SimplePreferences” track of the IPC-
5, which include the possibility to express and reason on

14

conflicting soft goals. Given that such domains are non-
STRIPS, and some ADL constructs are used, we have used
the following compilation technique: the preferences (goals)
in the IPC-5 problems are translated into preconditions of
dummy actions, which achieve new dummy literals defining
the new problem goals. Then, these new actions can be com-
piled into STRIPS actions by using an existing tool (we have
used both Hoffmann’s tool for compiling ADL actions into
STRIPS actions, namelyADL 2STRIPS, and a modification
of the same tool used in IPC-5, based on LPG). In our anal-
ysis we have included the domains where all goals are soft
(but conflicting in general, changing all weights associated
to goals violation to be the same), and preferences are only
expressed on goals, i.e., the Storage and Pathways domains.
Results are presented as in the reports of the IPC-5, consider-
ing, for each domain, both plan metric and CPU time to find
the plan. In the analysis, we consideredSATPLAN-GNT(W)
andSATPLAN(P)(W) (given the metric is defined quantita-
tively in IPC-5 on soft goals) and, as a reference, SGPLAN ,
the clear winner of the “SimplePreferences” track at IPC-5.

For the Pathways domain in Figure 2 we can note (Fig-
ure 2 Right) thatSATPLAN-GNT(W) and SATPLAN(P)(W)
perform similarly (withSATPLAN(P)(W) being slightly bet-
ter) and better than SGPLAN for non-easy (i.e., from prob-
lem #6, as numbered in the IPC-5) problems, but for two
problems (#13 and #15) only solved by SGPLAN within the
time limit. About the plan metric (Figure 2 Left), we can
see that SGPLAN , overall, returns plans of slightly better
quality, i.e., it can satisfy more soft goals. For the Storage
domain, instead, in Figure 3 (Right) we can note that all sys-
tems solve all instances considered5, with SGPLAN being
around one order of magnitude faster than the other systems,
which nonetheless solve each problem in less than 20s, with
SATPLAN-GNT(W) being faster of around a factor of2. This
fact is in line with all our results, given that this domain in-
cludes a high number of preferences on the biggest instances
we considered. The reason for the performance gap wrt
SGPLAN can be immediately explained by looking at Fig-
ure 3 (Left):SATPLAN-GNT(W) andSATPLAN(P)(W) return
plans of much better quality than SGPLAN . The tradeoff
between CPU performances and plan quality ofSATPLAN-
GNT (andSATPLAN(P)) seems to be very effective, at least
on this domain, further considering that(i) it (unlike SG-
PLAN) is not tailored for finding general optimal solutions
(but only bounded to the optimal makespan), and(ii) SG-
PLAN was by far the best systems on these domains in the
“SimplePreferences” track at IPC-5.

Conclusions, related and future works
In this paper we have presented a generate-and-test ap-
proach for finding optimal plans which, differently to a
previous SAT-based approach(i) does not constrain the
heuristic, (ii) works in polynomial space, and(iii) often
shows performance benefits. The most related approaches
in planning are the ones in (Brafman and Chernyavsky 2005;

5We have considered all instances that the tools could compile.
We are contacting the authors to be able to possibly compile bigger
instances.

Büttner and Rintanen 2005). In (Brafman and Chernyavsky
2005), the authors show how to extendGP-CSP (Do and
Kambhampati 2001) in order to planning with preferences
expressed as a TCP-net (Boutilier et al. 2004). In the
Boolean case, TCP-net can be expressed as Boolean formu-
las, and the problem they consider is the same we deal with.
No implementation of the approach is provided, or at least
that we are aware of, to which we can compare to. Though
this work is not based on satisfiability, the problem they con-
sider is the same we deal with: find an optimal plan wrt the
given preferences among the plans with makespann. We
can also deal with quantitative preferences. However, both
approaches can be (easily) extended in order to work without
a bounded horizon, by simply using an iterative deepening
approach, i.e., by successively incrementingn, each time us-
ing the previously found solutions to bound the search space,
up to a point in which we are guaranteed to have an optimal
solution independent from the boundn. This is the approach
followed in (Büttner and Rintanen 2005), where the prob-
lem considered is to extend the planning as satisfiability ap-
proach in order to find plans with optimal sequential length.
Interestingly, the authors use a Boolean formula to encode
the function representing the sequential length of the plan.
In their approach, for a givenn, the search for an optimal so-
lution is done by iteratively calling the SAT solver, each time
adding a constraint imposing a smaller value for the objec-
tive function (using (Bailleux and Boufkhad 2003)): when
the SAT formula becomes unsatisfiable,n is set ton + 1
and the process is iterated looking for a better plan than the
one so far discovered. For a fixedn, the problem considered
in (Büttner and Rintanen 2005) is exactly one of the prob-
lems we can deal with: finding a plan with the minimum
number of actions for a planning problemΠ with makespan
n, thus using a quantitative approach. Our approach can also
deal with “soft” goals, and with the qualitative approach to
all problems. Another, algorithmic, difference between our
work and (B̈uttner and Rintanen 2005) is that, iteratively
calling the SAT solver as a black box, the nogoods computed
during a call are not re-used by the following calls for the
samen, while this is not the case for us. Also other, search-
based, planners, e.g., LPG-QUALITY (Gerevini, Saetti, and
Serina 2008), do anytime search and gradually improve the
solution quality.

We are currently extending the analysis regarding soft
goals, in order to include more domains from the IPC-5.
In the future we want to compare our system with the IP-
based planner OPTIPLAN (van den Briel and Kambhampati
2005). We then plan to relax the computation of makespan-
optimal plans in order to find even better solutions when
dealing with problems involving both optimizations wrt ac-
tions, e.g., in the quantitative case (Büttner and Rintanen
2005), and, more recently, (Chen, Lv, and Huang 2008),
and optimizations wrt soft goals. We also plan to address
non-uniform action costs (e.g., (Keyder and Geffner 2008;
Chen, Lv, and Huang 2008)), by dealing with the “action
costs” requirement introduced in IPC-6.

15

References
Bailleux, O., and Boufkhad, Y. 2003. Efficient CNF en-
coding of boolean cardinality constraints. In Rossi, F., ed.,
Proc. of the 9th International Conference on Principles and
Practice of Constraint Programming (CP), volume 2833 of
Lecture Notes in Computer Science, 108–122. Springer.

Boutilier, C.; Brafman, R. I.; Domshlak, C.; Hoos, H. H.;
and Poole, D. 2004. CP-nets: A tool for representing and
reasoning with conditional ceteris paribus preference state-
ments.Journal of Artificial Intelligence Research21:135–
191.

Brafman, R. I., and Chernyavsky, Y. 2005. Planning
with goal preferences and constraints. In Biundo, S.; My-
ers, K. L.; and Rajan, K., eds.,Proc. of the 15th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 182–191. AAAI Press.

Büttner, M., and Rintanen, J. 2005. Satisfiability planning
with constraints on the number of actions. In Biundo, S.;
Myers, K. L.; and Rajan, K., eds.,Proc. of the 15th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 292–299. AAAI Press.

Castell, T.; Cayrol, C.; Cayrol, M.; and Berre, D. L. 1996.
Using the Davis and Putnam procedure for an efficient
computation of preferred models. InProc. of the 12th Eu-
ropean Conference on Artificial Intelligence (ECAI), 350–
354. John Wiley and Sons, Chichester.

Chen, Y.; Lv, Q.; and Huang, R. 2008. Plan-A: A cost-
optimal planner based on SAT-constrained optimization. In
Proc. of 6th International Planning Competition, ICAPS-
08.

DiRosa, E.; Giunchiglia, E.; and Maratea, M. 2008. A
new approach for solving satisfiability problems with qual-
itative preferences. InProc. of ECAI-08, 510–514. IOS
Press.

Do, M. B., and Kambhampati, S. 2001. Planning as con-
straint satisfaction: Solving the planning graph by compil-
ing it into CSP.Artificial Intelligence132(2):151–182.

Gavanelli, M. 2002. An algorithm for multi-criteria opti-
mization in CSPs. In van Harmelen, F., ed.,Proceedings
of the 15th Eureopean Conference on Artificial Intelligence
(ECAI), 136–140. IOS Press.

Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the 5th IPC:
PDDL3 and experimental evaluation of the planners.Arti-
ficial Intelligence173(5-6):619–668.

Gerevini, A.; Saetti, A.; and Serina, I. 2008. An ap-
proach to efficient planning with numerical fluents and
multi-criteria plan quality. Artificial Intelligence172(8-
9):899–944.

Giunchiglia, E., and Maratea, M. 2007a. Planning as satis-
fiability with preferences. InProc. of the 22nd AAAI Con-
ference on Artificial Intelligence, 987–992. AAAI Press.

Giunchiglia, E., and Maratea, M. 2007b. SAT-based plan-
ning with minimal-#actions plans and ”soft” goals. In
Basili, R., and Pazienza, M. T., eds.,Proc. of the 10th

Congress of the Italian Association for Artificial Intelli-
gence, volume 4733 ofLecture Notes in Computer Science,
422–433. Springer.
Hoffmann, J., and Edelkamp, S. 2005. The deterministic
part of IPC-4: An overview.Journal of Artificial Intelli-
gence Research24:519–579.
Järvisalo, M.; Junttila, T. A.; and Niemelä, I. 2005. Un-
restricted vs restricted cut in a tableau method for boolean
circuits.Annals of Mathemathics and Artificial Intelligence
44(4):373–399.
Kautz, H., and Selman, B. 1992. Planning as satisfiability.
In Neumann, B., ed.,Proc. of the 10th European Confer-
ence on Artificial Intelligence (ECAI), 359–363. IOS Press.
Kautz, H., and Selman, B. 1999. Unifying SAT-based and
graph-based planning. In Dean, T., ed.,Proc. of the 16th In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI), 318–325. Morgan-Kaufmann.
Keyder, E., and Geffner, H. 2008. Heuristics for plan-
ning with action costs revisited. In Ghallab, M.; Spy-
ropoulos, C. D.; Fakotakis, N.; and Avouris, N. M., eds.,
Proc. of 18th European Conference on Artificial Intelli-
gence (ECAI), volume 178 ofFrontiers in Artificial Intelli-
gence and Applications, 588–592. IOS Press.
Tseitin, G. 1970. On the complexity of proofs in proposi-
tional logics.Seminars in Mathematics8.
van den Briel, M., and Kambhampati, S. 2005. Optiplan:
Unifying ip-based and graph-based planning.Journal of
Artificial Intelligence Research24:919–931.
Warners, J. P. 1998. A linear-time transformation of lin-
ear inequalities into CNF.Information Processing Letters
68(2):63–69.
Xing, Z.; Chen, Y.; and Zhang, W. 2006. Maxplan: Op-
timal planning by decomposed satisfiability and backward
reduction. InProc. of 5th International Planning Compe-
tition, ICAPS-06, 53–55.

16

