Constraint Programming Approach to a Bilevel Scheduling Problem

Andras Kovacs and Tamas Kis
Computer and Automation Research Institute,
Hungarian Academy of Sciences,
Kende utca 13-17, 1111 Budapest, Hungary
{akovacs,tamas.kis } @sztaki.hu

Abstract

Bilevel optimization problems involve two decision makers
who make their choices sequentially, either one according to
its own objective function. Many problems arising in econ-
omy and management science can be modeled as bilevel op-
timization problems. Several special cases of bilevel problem
have been studied in the literature, e.g., linear bilevel prob-
lems. However, up to now, very little is known about solu-
tion techniques of discrete bilevel problems. In this paper we
show that constraint programming can be used to model and
solve such problems. We demonstrate our first results on a
simple bilevel scheduling problem.

Introduction

Bilevel programming deals with decision and optimization
problems whose outcome is decided by the interplay of two
self-interested decision makers. The parties have complete
and mutual knowledge about each other’s models. First, the
decision maker called the leader makes its choice. Then,
in view of the leader’s decision, the follower chooses its re-
sponse. Either decision maker aims at minimizing (maxi-
mizing) its own objective function. In the general case, the
objective values mutually depend on the choices of the other
party. Technically, the follower’s role can be seen as solving
a parametric optimization problem, whose parameters are
determined by the leader. The particularly interesting situa-
tion is that of the leader, who is assumed to have a complete
knowledge of the follower’s constraints, objective, and input
data. He endeavors to find his best choice subject to the re-
sponse that he can expect from the self-interested follower.
In the optimistic (pessimistic) case the leader assumes that
the follower chooses from the set of its optimal responses
the one that is the most (least) favorable for the leader.
Formally, the set of all variables in the problem is parti-
tioned into two sets: the leader’s variables X, and the fol-
lower’s variables X', The leader can assign values to X,
while the follower decides about X ". The leader aims at
minimizing f% subject to the constraint set C'* and the fol-
lower’s optimality condition, which states that the follower
will minimize f¥ subject to C*', see lines (1-3). From this
formulation it also follows that the leader must avoid the val-
ues of X ” for which the follower’s response does not satisfy

Copyright (© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

17

CE. Throughout the paper we assume that both the leader
and the follower try to minimize their objectives, though,
the same techniques can be used for maximization or mixed
problems as well.

Minimize
fL(XL,XF) (1)
subject to
ch(xE X 2
Xt e argmin(fF(XL7XF/) | CF(XLaXFI)) 3)
XF/

Probably the earliest example and a motivation of bilevel
optimization problems came from economic game theory.
In a two-player Stackelberg game two competing firms, the
market leader and a follower company, for example a new
entrant, produce equivalent goods. The firms decide their
production quantities sequentially, which together determine
the market price, with the aim of maximizing their own
profit (Dempe 2002). Various other bilevel optimization
problems arise naturally in economy and management sci-
ence. Perhaps the most widely discussed example is the foll
setting problem in a network, e.g., in a system of regional
highways (Labbé, Marcotte, & Savard 1998). The owner of
the network (the leader) seeks for the optimal pricing of each
link in the network so as to maximize its profit. The follower
corresponds to the ensemble of the users of the network. A
fixed amount of users belong to each origin-destination pair,
and each user selects the path that minimizes his costs, com-
posed of the travel time and the tolls to pay. Many varia-
tions of this basic problem have been investigated, including
problems where tolls or traffic signs are set by the local au-
thorities who wish to control the movement of hazardous
materials or consider other environmental effects (Marcotte
et al. 2009). Another typical application is the optimiza-
tion of chemical processes. Here, the follower’s optimality
condition describes that the steady-state result of a chemi-
cal reaction is an equilibrium where the reacting substances
reach their energy minimum.

Despite all the above, well-founded theoretical results are
known for special cases of bilevel problems only. These in-
clude various exact and heuristic approaches to linear bilevel

problems (where all constraints and both objective func-
tions are linear expressions over continuous variables), and
mostly heuristic methods for other cases, such as bilinear
problems (Dempe 2002). For discrete bilevel problems,
which are in the focus of this study, only sporadic results are
available. For example, (Lukac, gorié, & Rosenzweig 2008)
consider the production planning problem of a pharmaceu-
tical company, while (Karlof & Wang 1996) study a bilevel
problem that may arise in flow shop scheduling. The latter
papers take a relatively straightforward solution approach:
they enumerate (a part of) the leader’s possible choices, and
for each choice, compute the follower’s response. In (Kis &
Kovics 2009), we present basic complexity and algorithmic
results for bilevel scheduling problems.

To the best of our knowledge, the solution of bilevel opti-
mization problems using constraint programming (CP) tech-
niques has not been investigated yet. Nevertheless, bilevel
programming is strongly related to the class of quantified
constraint optimization problems (Benedetti, Lallouet, &
Vautard 2007). We analyze this relationship later in this pa-
per.

The paper is organized as follows. First, we illustrate
bilevel optimization problems on a sample problem from the
scheduling domain. After making the necessary basic defini-
tions and presenting some basic theoretical results, we intro-
duce a generic CP approach to discrete bilevel optimization
problems. Then, we illustrate the use of those techniques on
the sample problem and present computational results.

A sample problem

The classical approach in management science assumes that
the different departments of the same company, although
have individual decision roles and responsibilities, subsume
their interest to the same global objective. This objective is
related to maximizing the long-term profit of the company.
The reality is often different: the performance of each de-
partment is evaluated using, and rewarded based on, a dif-
ferent performance measure. These performance measures
are only distantly related to the global objective of the com-
pany, and are often conflicting. Hence, a relevant alternative
model of the joint operation of several departments is using
multilevel programming techniques. A simple case study is
presented below.

Consider the bilevel scheduling problem where the man-
agement of the company (the leader) is responsible for or-
der acceptance and the workshop foreman (the follower) de-
cides on the execution sequence of the tasks corresponding
to accepted orders. The leader has no direct influence on the
sequencing decisions. Formally, there is a set of tasks 7',
some of which will have to be scheduled on a single unary
resource. Task j is characterized by its processing time p;,
release time 7, and deadline d;. The difference between
the profit if j is executed on time and the loss of reputation
if it is rejected is captured by the cost (or task weight) wJL
to be paid if the task is rejected. A solution is acceptable
for the leader only if all the accepted tasks are completed on
time. The leader must select the tasks that will be actually
executed: the binary variable x; is 1 if task j is accepted

18

and 0 if rejected. The objective of the leader is to minimize
> wJL (1 — x;) subject to the temporal constraints.

The sequencing decisions are made by the follower, who
aims at minimizing the total weighted completion time of
the tasks selected by the leader, ie., {j | z; = 1}. The
completion time of tasks j is denoted by C';, and the task
weights w]F that express the importance of tasks for the fol-
lower are independent from the leader’s task weights ij
We assume that the follower observes the release times, but
the organizational relations within the company are such that
the leader cannot force the follower to obey the deadlines.
Hence, it might happen that a set of tasks could be sched-
uled on time, but the follower prefers to execute them in a
sequence that violates some deadlines. Such task sets do not
lead to feasible solutions of the bilevel problem. Using the
classical scheduling notation, the follower’s problem corre-
sponds to a parametric version of 1|r;| > ij C;, where the
parameters x; decide the set of tasks to be considered by the
follower. This sample problem is a special case of bilevel
problems where the leader’s objective depends only on the
leader’s variables. However, the feasibility of a solution de-
pends on the follower’s response as well.

Below we present an example to demonstrate the differ-
ence between the single level and the bilevel problem. Con-
sider the instance presented in Fig. 1. In the single level case,
the leader could accept all the four tasks and process them,
e.g., in the order (1,2,3,4). In the bilevel case, the leader
only chooses the tasks to process, but the follower sequences
them. If the leader selects all tasks, then the follower’s re-
sponse is the solution of the corresponding 1|r;| > j wf C;
problem, i.e., the sequence (4, 3,2, 1). This solution is in-
feasible, because the deadline of task 1 is violated. In fact,
the optimal bilevel solution is selecting the tasks {1, 2, 3},
and processing them in the order (1, 3,2), which respects
all deadlines. An interesting, seemingly paradoxical situa-
tion is that the strictly smaller set of tasks {1,2} cannot be
scheduled, because the follower’s response, (2, 1), violates
the deadline of task 1. This also warns us that inference
methods that work for the single level case might not gener-
alize to the bilevel problem.

Basic properties of discrete bilevel problems

In this section we present some basic properties of discrete
bilevel problems. First, we show that bilevel optimization
differs substantially from single level bicriteria optimization,
but they are strongly related to quantified constraint satisfac-
tion problems. Then, we investigate the potential definitions
of the follower’s optimality condition, and analyze how the
bilevel problem can be relaxed to a single level problem. Fi-
nally, we address the computational complexity of bilevel
problems.

Difference of the bilevel and bicriteria approaches

Although both bilevel programming and single level bicri-
teria approaches seek for solutions that are attractive w.r.t.
two different objective functions, the two approaches differ
essentially. They model two different situations: bicriteria
optimization looks for the best compromise in a centralized

Taskj | p; [y | d; | wl [wl
1 110 1 2 1
2 210|100 2 4
3 1 1]100 | 2 20
4 110|100 1 5

4 ‘ 3| ‘ 2 1
0o 1 2 4 5 Vt
113 2
0o 1 2 4 Vt
2 1
0 2 3 Vt

Figure 1: A bilevel problem instance and the follower’s re-
sponse for various choices of the leader. The tasks marked
with a thick frame in the schedules violate their deadlines.

way, while bilevel optimization follows a simple, hierarchi-
cal protocol with two autonomous partners, each interested
in optimizing its own objective value. Indeed, the optimal
solution of the bilevel problem might not be Pareto opti-
mal for the corresponding single level bicriteria problem,
and vice versa. Below we illustrate this phenomenon on our
sample problem.

Consider the problem instance presented in Fig. 2. The
candidate task sets to be scheduled are {1}, {2}, {3}, and
{1,2}, and it is easy to see that no other task set can be
scheduled to meet the deadlines. A Pareto optimal sched-
ule is (1,2), denoted by S, which leads to objective values
fE =3and f = 7. Observe that schedule S; is not a fea-
sible solution of the bilevel problem: if the leader decided to
accept tasks {1, 2}, then the follower would sequence these
according to (2, 1), resulting in schedule S;. However, Sy
violates the leader’s deadline constraint on task 1, and hence,
it is not a feasible solution of the bilevel problem. In fact, the
optimal bilevel solution is the schedule (3), called S5, which
has f' = 4 and fF' = 20. The leader prefers S3 to {1} and
{2} as well. Note that S; Pareto dominates S5, which means
that the bilevel optimal solution is Pareto dominated.

On the optimistic and pessimistic cases

Constraint (3) in the definition of the bilevel problem states
that X must be chosen in such a way that, given X Lot
minimizes the follower’s cost. However, it does not provide
further details on how the follower chooses its response if
he has several optimal solutions, although these can differ
essentially from the viewpoint of the leader. This holds es-

19

pecially if only a subset of the follower’s optimal solutions
satisfy C' or they lead to different values of f~. The defi-
nition presented in lines (1-3) assumes that the leader is al-
lowed to choose one from the follower’s optimal solutions,
or, equivalently, the follower is friendly enough to choose
an optimal response that satisfies C* and minimizes fT, if
there exists one. This is called the optimistic bilevel case.

In contrast, in the pessimistic case, the leader wishes to
safeguard against the risks of an unfavorable follower re-
sponse by assuming that the follower selects its optimal re-
sponse that is the least favorable for the leader. Hence, the
leader must select values for X in such a way that all opti-
mal solutions of the follower satisfies CZ. Also, the optimal
follower response that maximizes f’ is considered. In this
paper, we limit our scope to the optimistic case. Note how-
ever that similar techniques can be used for the pessimistic
case, except that the pessimistic model requires reified con-
straints to check whether there exists an optimal follower
response that violates at least one constraint in CL. Hence,
the solvability of the pessimistic case depends on whether
the applied CP solver allows reification for the constraints
in C, and it is typically more challenging computationally
than the optimistic case.

Related problems in CP

In constraint programming, a problem class strongly re-
lated to bilevel programming is the class of quantified con-
straint satisfaction problems (QCSPs), and their optimiza-
tion versions, quantified constraint optimization problems
(QCOPs) (Benedetti, Lallouet, & Vautard 2007). While
a classical constraint program corresponds to evaluating a
formula that contains existentially quantified variables only
(e.g., 3Ty C(z,y)), in QCSP it is allowed to have univer-
sally quantified variables as well (e.g., 3zVy C(z,y)). In
(Benedetti, Lallouet, & Vautard 2007), the basic QCSP and
QCOP language has been extended with restricted quantifi-
cation, resulting in the QCSP+ and QCOP+ languages. A
sample QCSP+ formula is JzVy[L(z,y)] C(z,y), which
contains the restricted quantification Vy[L(x, y)]. This reads
“for all y such that L(x,y) it holds that...”. Tt is easy to show
that a QCSP+ formula can be translated in a QCSP formula
with negation and disjunction. A generic solver for QCOP+
called QeCode has been made available by the the same au-
thors (Benedetti, Lallouet, & Vautard 2006).

Now, we show that the class of discrete bilevel problems
is equivalent to QCOP+ with a single pair of quantifiers
3 ¢ Vo, assuming that the function symbols f¥ and f¥ and
the relation < is available in the constraint language. First,
note that the optimistic bilevel problem corresponds to the
QCOP+

min {f¥ (2%, 2F) | CF (2t 2") A OF (2 2F) A
VJ;F/[CF(JCL,JCF/)] @t) < fF(.TL,J]F/)}.
4

Furthermore, the pessimistic bilevel problem can be
rewritten as

Taskj | p; [r; [dj [wl [wl
1 1101 2 1
2 1102 2 3
3 21023 10
S, S, S,
1|2 211 3
0o 1 2 0o 1 2 0 2
Schedule | f | f¥ [Feasibility Optimality
S1 3 7 | Feasible Pareto optimal
So 3 5 | Task 1 violates deadline | -
Ss 4 | 20 | Feasible Bilevel optimal

Figure 2: Difference of the bilevel and the bicriteria Pareto optimal solutions.

min {f*(z",2") | C*(a",2") A CF (2" 2") A

L | P O R A Tl
VxF”[CF(IL,IF”) A fF(:CL7xF) _ fF(mL’xF”)]
C’L(xL,xF//) A R 2F) > fL(xL,xF”}. ®)

On the other hand, the QCOP+ formula
min{f(z) | Vy[L(z,y)] : C(z,y)} can be rewritten
to a bilevel program with f* = f, f¥ =0, CF = C, and
cF=L.

Another related problem in constraint programming is
the class of adversarial constraint satisfaction problems
(ACSP) (Brown et al. 2004). ACSP can be used to model
games played by n agents with potentially conflicting in-
terests that consist of a fixed number of rounds. The num-
ber of rounds equals the number of variables in the ACSP,
which is typically much larger that the number of agents.
The main differences between ACSP and bilevel program-
ming is that in ACSP in each round the forthcoming agent is
free to choose an arbitrary variable to instantiate, i.e., vari-
ables are not assigned to agents a priori. Also, in ACSP, all
agents must satisfy the same set of constraints, although in
theory it is possible to incorporate a measure of constraint
violations into the optimization criteria of the agents.

The single level relaxation

Various components of the solution algorithms for bilevel
problems rely on well understood techniques for single level
problems. Therefore, it seems natural to look for relations
between bilevel and single level problems. The simplest way
of reduction is to let the leader decide on every variable,
and completely disregard the existence of the follower. The
resulting problem will be called the single level relaxation
of the bilevel problem, and its solution value is obviously a
lower bound on the bilevel solution cost:

20

Definition 1 The single level relaxation of a bilevel pro-
gram is, using the set of variables X = X' U X, the
problem min{ f£(X) | C*(X) A CF(X)}.

Computational complexity

Bilevel problems are complex optimization problems, they
often belong to a higher complexity class than their cor-
responding single level relaxations. For example, linear
bilevel problems (where both the single level relaxation and
the follower’s subproblem is a linear program) are known
to be NP-complete (Dempe 2002). Here, we focus on the
complexity of decision versions of discrete bilevel problems,
especially in the case where the (decision version of the) sin-
gle level relaxation is NP-hard. It is easy to observe that a
bilevel problem is — except for degenerate cases — at least
as complex as its single level relaxation, hence, NP-hard.
On the other hand, since discrete bilevel problems can be
reduced to QCSP+ formulae, they are in PSPACE.

Now, whether a discrete bilevel program belongs to NP
or not depends, at the first place, on the complexity of the
follower’s subproblem. While a follower’s subproblem in
P guarantees that the bilevel problem is in NP, it is easy to
define problems that are outside NP. Consider an unconven-
tional, but valid bilevel scheduling problem where all vari-
ables and constraints belong to the follower, while the leader
is represented only via its objective function. All tasks must
be scheduled on a single machine without overlap or pre-
emption, subject to release times 7; and strict deadlines d;.
Assume that all parameters are integer. The objective of the
leader is to minimize 3 | C;, whereas the follower minimizes
the weighted earliness penalty > w;(d; — C;). This prob-
lem is outside NP (unless P=NP), because it is both NP-hard
and co-NP-hard. The latter holds because verifying the fea-
sibility of a bilevel solution is equivalent to proving that no
better solution exists for the follower’s NP-hard subproblem.

The above complexity results indicate that no direct en-
coding of bilevel problems into CP or MIP can be expected.
For the case of our main sample problem, we were not able

to prove that it is outside NP, but we conjecture that it is,
since no trivial certificate seems to exist for a positive an-
Swer.

Modeling and solving bilevel problems by CP

In this section we first present a generic approach to solv-
ing discrete bilevel optimization problems by CP. Then, we
introduce several algorithmic techniques to improve the ef-
ficiency of the solver. Each of the subsections has a counter-
part in the next section, where the use of the given technique
is illustrated on the sample problem.

The constraint model

Given the discrete bilevel problem (1-3), let us define an
equivalent constraint program that encodes the bilevel prob-
lem from the leader’s point of view. We also call it the mas-
ter problem. The variables are both X* and X . They are
subject to constraints CL, CF and C*. CL is the set of the
leader’s constraints, and C* states that the follower selects
its optimal response for any given decision of the leader. Fi-
nally, the follower’s set of constraints C'*" is also part of the
model; it is redundant, but it strengthens propagation by fil-
tering out choices that do not lead to a feasible follower re-
sponse at all, since the propagation of C'* can be incomplete.

Minimize
Rt X" (6)
subject to
chxt, x"))
cr(x*, x") ®)
crxt, x") ©)

In the sequel we assume that model constraints C' and
CF are classical constraints over finite-domain variables,
which have appropriate propagation algorithms defined in
the literature. In contrast, constraint C* embeds the fol-
lower’s subproblem, and states that

XF € argmin{fF(XE, XF'y | cF (XL, XFHY. (10)
XF/

The propagation of constraint C* is challenging because
it requires the characterization of the set of all optimal so-
lution of a parametric optimization problem over different
choices of the parameters. Unless problem-specific methods
are available, we propose to overcome this difficulty by us-
ing a generate-and-test approach, i.e., solving the follower’s
subproblem when all of the leader’s variables X* become
bound. Then, the problem reduces to a classical single level
optimization problem with known parameters X, solvable
by any exact approach, e.g., CP search. Note that the sub-
problem solver must ignore the domains of X " in the master
problem, since those domains are corrupted by the propaga-
tors of C'L, i.e., constraints that the follower disregards. In
the optimistic case, the follower selects from the set of his

21

optimal solutions a solution that satisfies C* and minimizes
fE. Therefore, the solver embedded into C* must be called
twice:

(1) Determine the follower’s minimum cost, fF *
miny - {fF (XL, XF") | CF (XL, XF")}. Return failure
if no solution exists.

(2) Find the follower’s response according to
the optimistic —assumptions, ie., X% =
argminyr {fE(XE, XTy | fF(XL XT =
FEY A CE(XE XFY A CF(XE,XF)}. Return

failure if no solution exists.

Regarding search techniques for the master problem, we
propose to perform any kind of search in the space of the in-
stantiations of the leader’s variables. Any exact or non-exact
search technique can be used. It is not necessary to con-
sider the follower’s variables, since values will be assigned
to them by constraint C'*. At the same time, exact search in
the space of follower responses must be performed within
C*, since the exact optimum must be known to check this
constraint.

The proposed solution method resembles the (logic-
based) Benders decomposition approach to single-level
problems (Hooker & Ottosson 2003). However, in the single
level Benders case one is free to choose the separation of the
master and the subproblem as it is the most efficient compu-
tationally, whereas in the bilevel case the separation comes
from the problem definition. This leads to the second main
difference of the two techniques, namely that for the prob-
lems investigated we were not able to feedback strong cuts
(or constraints) from the subproblem to the master problem.

Lifting the follower’s dominance rules into the
master problem

While in general it is impossible to compute the follower’s
response before the complete instantiation of X%, various
dominance properties may be known for the follower’s prob-
lem. Weak dominance rules describe properties that all op-
timal solutions of the follower’s sub-problem must hold.
These rules can be encoded as constraints in the master prob-
lem. Note that in general, the dominance rule compiles into
a reified constraint, i.e., one containing disjunction or im-
plication. If the reified constraint takes a sufficiently simple
form so that it propagates even when variables X " are un-
bound, then it is worth adding them to the CP master prob-
lem to strengthen propagation.

Comparing the follower’s lower and upper bounds

Below we present a novel technique that prunes the search
tree based on the difference of the problem models perceived
by the leader and the follower. We will characterize the val-
ues that f¥" can take in solutions that are feasible for the
leader, as well as the values that f F can take in optimal re-
sponses of the follower. Clearly, if the two ranges do not
overlap, then there is no feasible bilevel solution in the cur-
rent branch of the search tree.

Let UB denote the value of the best known solution, and
let us characterize the current branch of the search tree by

the domain of X%, denoted by Dom(X*). Any feasible im-
proving solution of the master problem must obey C'*, C'¥,
and f* < UB. Hence, a valid lower bound ¢g“™" on the
values f¥ in the solutions that are acceptable for the leader
in the current branch is:

ngm = min min{fF(XL/,XF) |

XL'eDom(XL) XF

CHXY XFynCF (XY XFYA fLXY XF) < UB).

On the other hand, for any fixed leader’s choice in this
branch, the follower will return a response that minimizes
fF subject to CF. By taking the maximum of these min-
imum values, we get an upper bound g on f in the
solutions that are acceptable for the follower in the current
branch:

Fmax

g = max

XL'cDom(XL) XF

Note that the constraints in the definition of gf™%® are a
subset of the constraints for ", and therefore g¥"™* <
g™ can occur. This means that no solution in the current
branch of the search tree is both feasible for the leader and
optimal for the follower. At the same time g/'™e* > glmin
is also possible, since gF maT is a maximin, whereas ngm
is a minimum.

Lemma 1 If gf'™maer < gbmin then the current search

branch contains no feasible improving bilevel solution, and
therefore it can be fathomed.

In general, it is difficult to compute the exact values of
gfma® and gF™in. Instead, an upper estimate of gf™az,
denote by §7"™%* can be used, and similarly, a lower esti-
mate of g7 denoted by §*" can be applied.

Lower bounds on the leader’s cost

In theory, it is straightforward to apply the classical lower
bounding technique of operations research to bilevel prob-
lems: let £~ be a lower bound and f L an upper bound, typi-
cally the value of the best known solution. Now, if fE> f L
then the current branch of the search tree does not contain a
feasible improving solution. In practice, the effective use of
this technique is challenging, because good lower bounds for
bilevel problems are rarely available from the literature. A
possible approach is using the single level relaxation, whose
solution imposes a lower bound on the bilevel problem. If
the single level relaxation is still (NP-)hard, then it can be
relaxed further.

Modeling and solving the sample problem
The basic constraint model

The basic constraint model of our sample problem contains
n binary variables x; to denote if task j is scheduled, and
n optional activities with start and end time variables. The
activities are subject to a unary resource and time window
constraints, and the follower’s optimality constraint. The

min{ (XY XFy|cF (XL XF)).

22

objective function is expressed as f* = 3", wk(1 — z;)
using a weighted sum constraint. Our search strategy selects
in each node the task j whose x; variable is unbound and
has the greatest w]L . Then, it creates two children of the
node according to x; = 1 (left branch) or z; = 0 (right
branch).

The follower’s optimality constraint is a custom devel-
oped constraint, which embeds a constraint-based solver for
the 1|r;| >~ wf C; problem. The naive constraint model
with a unary resource constraint, release time constraint, and
the cost expressed using a weighted sum constraint is used.
A classical chronological schedule-or-postpone search strat-
egy (called setTimes in Ilog) is used, and the subproblem
solver also includes dominance rules from (Jouglet, Bap-
tiste, & Carlier 2004).

Lifting the follower’s dominance rules into the
master problem

Despite the various dominance rules known for the
1]r;| 3= w} C; problem, the condition side of most of these
rules is too complex to fire when only the x; variables are
bound, and very little is known about the task start times
or the order. We lifted one simple dominance rule to the
leader’s model. It states that tasks that start after the last re-
lease time are scheduled in a weighted shortest processing
time (WSPT, non-increasing wf / p;) order, with ties bro-
ken by earliest due date (EDD, non-decreasing d;). EDD is
necessary as a tie breaker due to the optimistic assumption.
Now, let rpax = max;r;, and let 7 — j denote a prece-
dence constraint between 7 and j. Then, for each pair of
tasks ¢ and j such that ¢ precedes j in the WSPT/EDD/task
index order, we add the following reified constraint to the
model:

start; < rpax Voostart; <rgpax Vot —

Comparing the follower’s lower and upper bounds

The upper bound Our follower’s subproblem is
1ri| > wJFC'j. Let f¥(T}) denote the follower’s minimal
cost when the leader accepts the task set 77. It is obvious
that if) C T5 then fF(Ty) < fF(Ty). Therefore, the
cost of any heuristic solution to the follower’s problem
with task set Tyq; = {j | 1 € Dom(z;)} can be used as
gF ™ma® In our solver, we have implemented the constructive
heuristic called CPRTWT heuristic with the makeBetter
improvement step after the insertion of each task to the
schedule, originally introduced in (Jouglet ez al. 2008).

The lower bound Computing §~™" requires obtaining a

lowerboundona wf C; problem subject to release times,
deadlines, and optional activities. Our LB is based on the
model of (Pan & Shi 2005) for a similar problem, though,
without optional activities:

minzwfcj (11)
J

subject to

\Z (7‘; —|—pj)zj < Cj (12)
Vj Cj < dz (13)
Vi, j (i #j) (Ci<Cj—pjz) V (C; <Ci—pizs)
(14)
wazj > W (15)
J
Vj Z5 € Dom(xj) (16)

In this formulation, variables z; indicate if task j is pro-
cessed (z; = 1) or not (z; = 0). Variables C; denote the
completion times. Constraints (12) and (13) specify the re-
lease times and deadlines of the task, and also ensure that C}
is 0 if j is not scheduled. Note that the time windows taken
from the CP model can be used, since these are strengthened
by propagation compared to the original values. Line (14)
defines the unary resource constraint. Constraint (15) states
that the total weight of the tasks selected for processing must
beatleast W =3, w —UB+11in order to achieve an im-
proving solution for the leader. In a given search node, it can
already be known for some tasks if they are already selected
for processing by the leader or not, while it is still an open
question for the rest (16). Note that Dom(z;) C {0,1}.
Now, by moving inequalities (12) and (13) into the objective
function with multipliers a and b, we receive the following
Lagrangian relaxation (LR):

manw o +Za3

ri4p;s)2j—C5))+b;(Cj—dz;)]

a7

—a;+b;)C; + Z[%(T; +p;) —bidjlz; (18)
J

— Z(wj

subject to
Vi,j (i #3j) (Ci<Cj—pjz) V (C; <Ci—pizi)
(19)
> whz =W (20)
J
Vi zj € Dom(z;) 21

Next, we present how the LR problem can be solved to
optimality for fixed non-negative Lagrangian multipliers a
and b. We exploit that the first component of the objec-
tive function corresponds to } ¢, _jy w}C; with wj =

wJF — a; + b;, while the second component does not con-

tain completion time variables C';. Therefore, for any fixed
z, the optimal solution is a no-delay schedule containing the
selected tasks in WSPT order.

Computing the LB in leaves of the search tree We have
developed two different methods for computing the optimal
solution of LR: one to be used in the leaves of the search
tree, and another for internal search nodes. In leaves we

23

exploit that there are no optional tasks, i.e., the variables z;
are fixed. In this case, g©™" equals the objective value of
the WSPT schedule, which can be computed in O(n logn)
time.

Computing the LB in internal search nodes In inter-
nal search nodes, the optimal choice of z and the implied
cost can be determined using the following dynamic pro-
gram (DP). As the initialization step, we sort the tasks j that
may be scheduled (1 € Dom(z;)) by non-increasing w’; /p;,
which corresponds to the WSPT order. Tasks that cannot be
scheduled (1 ¢ Dom(x;)) are completely ignored by the
algorithm. The DP fills in a 3 dimensional table, whose
element u(k, v,t) equals the optimal relaxed cost for tasks
{1, ..., k}, total leader’s weight v, and schedule end time ¢.
The first layer of the table for £ = 1 contains the two trivial
solutions, u(1,w!, p;) = w!'p; for the schedule that con-
tains task 1 only, and u(1,0,0) = 0 for the empty schedule.
Further elements can be obtained by recursion from k& — 1
to k. When computing u(k, v, t), one has to decide if task k
is appended to the end of an earlier schedule, or a previous
schedule is kept:

u(k,v,t) = min(u(k—1, v—wk, t—pp)+twl , u(k—1,v,t))

The optimal solution of the DP is contained in the last
layer of the table, among the elements that satisfy constraint
(20), i.e., those with v > W. The DP runs in pseudo-
polynomial time and space: its complexity is O(nV P),

where V =" wf and P =Y p;.

Setting the Lagrangian multipliers The above methods
result in an optimal solution of LR for any fixed non-
negative multipliers a and b, assuming w’; = wF —a;+b; >
0. To find the multipliers that provide the strongest LB, the
above methods were embedded into a loop, and the multipli-
ers were adjusted after each cycle. Namely, if task j violated
its release time in the current optimal solution of LR, then its

weight was increased to w; = % + €, where k is the pre-
decessor task of j in the schedule. Similarly, if 5 violated its
deadline, then its weight was decreased to w) = % — ¢,

where k is the successor of j. The method was initialized
with a; = bj =0.

The best run times were achieved with the number of cy-
cles set to 15 in leaves, and not using this method in internal
search nodes (c.f. the experimental results for further de-
tails).

Lower bounds

The single level relaxation (SLR) of our problem is a
1|r;| > w;U; scheduling problem, which is NP-complete.
Nevertheless, various solution techniques and polynomial
lower bounds are available from the literature. The cur-
rent best algorithm for the SLR is the branch-and-bound
of (M’Hallah & Bulfin 2007). We have implemented the
mixed-integer programming (MIP) formulation of the single

level problem proposed in this paper, and solved its linear re-
laxation in each node of the search tree. The parameters 7
and d; were updated in each node by the tighter time win-
dows taken from the CP model. Note that the gap between
the value of the bilevel solution originates from two sources:
solving the SLR instead of the bilevel problem and the fur-
ther linear relaxation of SLR. For the specific problem, we
have found that over 75% of the gap is due to taking the SLR,
and only 25% originates from solving the linear relaxation.

A modified propagator for C*

It is straightforward to build a propagator for the follower’s
optimality constraint C* based on the generic scheme pre-
sented in the previous section. However, below we present
a modified algorithm that fully exploits the follower’s lower
and upper bounds during the exact solution of the follower’s
subproblem. Moreover, it first solves the follower’s sub-
problem with the leader’s deadline constraints, which is a
tighter and easier-to-solve problem. Then, it also exploits
the results of this step for solving the more complicated
version of the subproblem, without the leader’s constraints.
This modified algorithm exploits that the leader’s objective,
f%, does not depend on the follower’s response.

(1) Compute §F'™a® and glmin;
(1a) Return failure if gf'mae < glmin,

(2) Compute a follower’s response with mini-
mum fF that satisfies the leader’s constraints,
XF+ = argminy e {fF (XL, XF') | CL(XL, XF") A
CP(XE, XF') A fP(XE XF) <= gFmer} and
fF+ — fF(XL,XF+);

(2a) Return failure if no solution exists;

(3) Determine the follower’s minimum cost,
7 = minge {fF(XEXT) | CF(XE,XT) A
fF(XL,XF/) <= gFmaac _ 1}'

(3a) Abort the branch and bound if a solution with f t <
fF+ is reached. Then, return failure;

(3b) Otherwise X 't is a feasible bilevel solution.

Computational experiments

In this section we report computational results achieved on
the sample problem. The solver was implemented in such
a way that each technique presented in a separate section
above could be switched on or off individually. Moreover,
the comparison of the follower’s bounds could be performed
independently in internal search nodes using the DP or in
leaves using the WSPT schedule. Preliminary experiments
showed that all the presented techniques contribute to prun-
ing the search tree, but it does not pay off in terms of search
time to use the leader’s lower bound or to compare the fol-
lower’s bounds in internal nodes. Therefore we decided to
switch off these two components in the main experiments.
Below we present a comparison of three versions of the
solver: the fastest version that uses all techniques except
for the previously mentioned two inefficient components,
[Main]; a version with all features of [Main] except for the

24

computation of follower’s bounds, [No fbds]; and finally a
naive solver that lacked all the improvements proposed in
the previous sections, [Naive].

The solver was implemented in C++ using ILOG Solver
and Scheduler, both for the bilevel master problem and the
follower’s subproblem solver. ILOG Cplex was used for the
computation of the LP lower bound. The experiments were
run on a 1.86 GHz Intel Xeon computer with 2 GB of RAM
under Windows Server 2003. The time limit was set to 600
seconds per problem instance.

Problem instances have been generated similarly to the
instances for the single level problem of minimizing the
weighted number of late jobs in (Dauzere-Péres & Sevaux
2003) and (M’Hallah & Bulfin 2007), with the only differ-
ence that we have also added the follower’s weights wf .
The parameters of the generator are number of tasks n, the
range of release times, kr (a larger value means a greater
variance of the release times), and the tightness of the dead-
lines, kp (the larger the value, the wider the time windows).
Parameter n varied between 20 and 50 with increments of
5, while kg and kp were chosen from the set {1, 5, 10, 20}.
Generating 10 instances with all possible combinations of
the 3 parameters resulted in 1120 instances altogether. Pro-
cessing times were generated using U[1, 100], release times
from U0, krn], deadlines from U|r; + p;, r; + p; + kpnl,
while weights w} and w!" from U[1,10], where Ula, b] de-
notes the discrete uniform distribution over integers from the
interval [a, b].

The comparison of the results achieved with the three dif-
ferent versions of the solver is displayed in Table 1, while
Table 2 provides further statistics about runs of the propa-
gator of C'* in the [Main] version. In both tables, each row
contains combined result for the instances with a given value
of N and kp. Column Opr displays the number of instances
that could be solved to proven optimality out of 40. Time
contains the average computation time in seconds or 600 for
instances where the time limit was hit. Column Nodes shows
the average number of search nodes. The additional columns
in Table 2 contain the number of times the propagator of C*
reached the different steps of computation: calculating the
follower’s bounds (Step (1)), the follower’s minimum cost
when the leader’s constraints are respected (Step (2)), and
the minimum cost when the leader’s constraints are ignored
(Step (3)). The numbering of the steps refers to the phases of
the modified propagator presented in the previous section.

The results show that the two stronger versions of the
solver, [Main] and [No fbds] were able to solve instances
with up to 20-25 tasks to optimality, whereas the [Naive]
version started to have difficulties even with some 20-task
instances. On the whole, [Main] solved 5% more instances
than [No fbds], and 30% more than [Naive]. The differ-
ence becomes slightly more significant as the problem size
increases, and the comparison of average computation times
brings roughly the same result. Smaller values of kp made
the problems easier to solve for all versions, because then
the leader had a smaller choice of task sets to accept, and
those sets are identified relatively efficiently without the fol-
lower’s optimality condition, too. This is made apparent es-
pecially by the low number of calls to the propagator of C*

[Main] [No fbds] [Naive]
N kp | Opt Time Nodes | Opt Time Nodes | Opt Time Nodes
20 1 40 0.02 43 40 0.03 43 40 0.03 43
5 40 0.08 270 40 0.18 270 40 0.30 309
10 40 0.21 529 40 0.48 529 40 4.28 688
20 40 7.59 4705 40 21.25 4705 26 273.73 7583
25 1 40 0.03 97 40 0.03 97 40 0.03 97
5 40 0.57 1759 40 2.60 1759 40 5.38 1942
10 40 5.64 7355 40 21.35 7355 35 14575 8583
20 29 239.78 34782 21 310.04 19417 6 54846 12863
30 1 40 0.06 284 40 0.11 284 40 0.10 285
5 38 34.10 27941 38 42.42 11916 37 71.89 7061
10 36 104.97 53246 31 182.96 40530 9 505.32 23421
20 12 44943 124099 12 458.68 69999 0 600.00 11410
35 1 40 0.16 706 40 0.27 706 40 0.26 706
5 37 62.16 62103 36 90.36 52112 28 257.19 21321
10 24 333.00 210391 16 403.61 123248 3 57694 20327
20 4 56998 163991 1 58691 90687 0 600.00 1571
40 1 39 15.26 10252 39 15.34 3764 39 15.27 3376
5 34 184.19 229326 30 272.01 169537 15 469.50 57638
10 8 54942 432902 7 557.19 285322 0 600.00 7933
20 0 600.00 126248 0 600.00 44883 0 600.00 300
45 1 39 16.53 12557 39 18.81 6696 39 19.23 6361
5 18 385.20 375424 16 407.03 187852 4 55599 22541
10 2 593.11 352346 0 600.00 194131 0 600.00 4485
20 0 600.00 115571 0 600.00 35093 0 600.00 474
50 1 39 20.13 25036 39 29.42 21928 39 31.87 21907
5 10 519.11 618822 8 540.12 304749 1 586.47 18676
10 0 600.00 203165 0 600.00 86580 0 600.00 1334
20 0 600.00 59771 0 600.00 19525 0 600.00 106
> 729 693 561

Table 1: Comparison of three different versions of the solver.

with kp = 1 (column Step (1) in Table 2). The results also
depend on kg (small kr makes them easier to solve), but
much less than on kp or N.

The analysis of the runs of the propagator in Table 2
shows that follower’s bounds computation inferred the in-
feasibility of the leaf in 64% of the cases. The exact CP
solver had to be called without the leader’s constraints in the
remaining 36% of the runs (Step (2)), and with the leader’s
constraint in only 0.5% of the runs (Step (3)). On the one
hand, this low percentage is an excellent result, since the
last step of the algorithm is the most time consuming. On
the other hand, it also shows that at least 99.5% of the leaves
did not contain a solution that is both feasible for the leader
and optimal for the follower. Hence, future research should
address the efficient propagation of the follower’s optimal-
ity constraint C'* also in the internal search nodes. On aver-
age, about 5% of the total computation time was spent in the
propagator of C* in the leaves.

Conclusions

This paper introduced novel CP-based modeling and solu-
tion techniques for discrete bilevel optimization problems,
and showed how these can be applied to a sample bilevel
scheduling problem. Since bilevel problems are computa-
tionally difficult — they are often outside NP —, techniques
that improve the efficiency of the solver are of key impor-

25

tance. Beyond presenting how some classical techniques can
be generalized to bilevel problems, we introduced a novel in-
ference method that reduces the search space by comparing
the values that the follower’s objective can take in solutions
acceptable for the leader and for the follower. Computa-
tional results were also presented.

We think that an interesting direction for future research
is the development of new inference techniques for bilevel
problems. Depending on the specific problem, these can in-
clude the filtering of the leader’s variable domains based on
inference from the follower’s optimality condition, or the
re-use of the follower’s response computed in earlier visited
leaves.

Acknowledgements

The authors thank J6zsef Vancza for his valuable comments
and suggestions. The work reported here has been sup-
ported by OTKA grants K76810 and T73376. A. Kovécs
acknowledges the support of the Janos Bolyai scholarship
No. BO/00138/07.

References

Lallouet,
2006.

and Vau-
web page.

Benedetti,
tard, J.

M.; A

Qecode’s

www.univ-orleans.fr/lifo/members/vautard/

gecode.

N kp | Opt Time Nodes | Step (1) Step(2) Step (3)
20 1 40 0.02 43 6 3 3
5 40 0.08 270 73 14 4

10 40 0.21 529 100 39 5

20 40 7.59 4705 2624 1270 10

25 1 40 0.03 97 6 4 3
5 40 0.57 1759 921 43 4

10 40 5.64 7355 2964 1065 10

20 29 239.78 34782 17135 10990 18

30 1 40 0.06 284 21 6 4
5 38 34.10 27941 22283 8391 137

10 36 104.97 53246 17622 9986 102

20 12 44943 124099 59287 20118 12

35 1 40 0.16 706 37 20 5
5 37 62.16 62103 31694 13873 81

10 24 333.00 210391 59021 29022 398

20 4 56998 163991 79428 15446 6

40 1 39 15.26 10252 8267 4259 5
5 34 184.19 229326 39983 18003 780

10 8 54942 432902 78845 37022 506

20 0 600.00 126248 70704 10952 4

45 1 39 16.53 12557 7977 2980 17
5 18 385.20 375424 69220 36070 1237

10 2 593.11 352346 93630 35124 100

20 0 600.00 115571 58313 4516 0

50 1 39 20.13 25036 6103 1799 146
5 10 519.11 618822 73507 31618 684

10 0 600.00 203165 61564 24269 54

20 0 600.00 59771 30829 3552 0

Table 2: Detailed results achieved with the [Main] version of the solver.

Benedetti, M.; Lallouet, A.; and Vautard, J. 2007. Qcsp
made practical by virtue of restricted quantification. In In-
ternational Joint Conference on Artificial Intelligence, 38—
43.

Brown, K. N.; Little, J.; Creed, P. J.; and Freuder, E. C.
2004. Adversarial constraint satisfaction by game-tree
search. In Proc. of ECAI 2004, 151-155.

Dauzere-Péres, S., and Sevaux, M. 2003. Using La-
grangean relaxation to minimize the weighted number of
late jobs on a single machine. Naval Research Logistics
50(3):273-288.

Dempe, S. 2002. Foundations of Bilevel Programming.
Kluwer.

Hooker, J. N., and Ottosson, G. 2003. Logic-based Benders
decomposition. Mathematical Programming 96:33-60.

Jouglet, A.; Baptiste, P.; and Carlier, J. 2004. Branch-and-
bound algorithms for total weighted tardiness. In Hand-
book of Scheduling: Algorithms, Models, and Performance
Analysis. Chapman & Hall / CRC. chapter 13.

Jouglet, A.; Savourey, D.; Carlier, J.; and Baptiste, P.
2008. Dominance-based heuristics for one-machine total
cost scheduling problems. European Journal of Opera-
tional Research 184:879-899.

Karlof, J. K., and Wang, W. 1996. Bilevel programming
applied to the flow shop scheduling problem. Computers
and Operations Research 23(5):443-451.

26

Kis, T., and Kovacs, A. 2009. On bilevel machine schedul-
ing problems. Submitted to Algorithmica.

Labbé, M.; Marcotte, P.; and Savard, G. 1998. A bilevel
model of taxation and its application to optimal highway
pricing. Management Science 44(12):1608—-1622.

Lukac, Z.; éorié, K.; and Rosenzweig, V. V. 2008. Pro-
duction planning problem with sequence dependent setups
as a bilevel programming problem. European Journal of
Operational Research 187:1504-1512.

Marcotte, P.; Mercier, A.; Savard, G.; and Verter, V. 2009.
Toll policies for mitigating hazardous materials transport
risk. Transportation Science 43(2):228-243.

M’Hallah, R., and Bulfin, R. 2007. Minimizing the
weighted number of tardy jobs on a single machine with
release dates. European Journal of Operational Research
176:727-744.

Pan, Y., and Shi, L. 2005. Dual constrained single ma-
chine sequencing to minimize total weighted completion
time. IEEE Transactions on Automation Science and Engi-
neering 2(4):344-357.

