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Abstract

In this paper we examine a collection of related incremen-
tal constraint-posting algorithms for temporal planning and
for planning with continuous processes. The basis for these
algorithms is an incremental version of the Bellman-Ford
single-source shortest-path algorithm for consistency check-
ing Simple Temporal Networks (STNs). We extend an exist-
ing incremental algorithm for STNs and then proceed to show
how this algorithm plays a key role in temporal planning by
a forward-chaining strategy, interleaving action choice with
action scheduling. We go on to consider the more complex
problem of temporal planning with continuous linear pro-
cesses and show how the incremental STN algorithm can be
integrated with a linear program (LP) solver, to achieve an
efficient incremental constraint-posting algorithm for use in a
forward-search planner. We demonstrate empirically that the
incremental algorithms improve performance in both tempo-
ral and temporal and numeric settings.

1 Introduction

During the search for temporal plans it is necessary to find
not only the actions that should be applied in the plan, but
also the times at which they must be applied. In the dura-
tive action models used in PDDL2.1 (Fox & Long 2003),
the durations of the actions must also be selected to sat-
isfy the constraints in each action model. As has been ob-
served (Cushing et al. 2007), interesting temporal problems,
with required concurrency, make the assignment of times to
actions particularly hard, since the coordination of concur-
rent activity is essential in finding a solution.

One way to tackle this problem is to interleave action se-
lection (deciding what to be done) with the management of
the temporal constraints on these actions (deciding when to
do them). This approach has been successfully explored in
several planning systems designed to plan with PDDL2.1, in-
cluding Sapa (Do & Kambhampati 2001), TPSys (Garrido,
Onainda, & Barber 2001) and the CRIKEY family (Coles
et al. 2009a; 2008; 2009b). Of these, the CRIKEY-based
planners are the most successful at managing required con-
currency and a relatively rich collection of duration con-
straints and duration-dependent effects, while COLIN (Coles
et al. 2009b) is designed not only for temporal planning, but
also to manage continuous linear processes. The schedul-
ing of actions in these planners is performed using a Simple

Temporal Network (STN) (Dechter, Meiri, & Pearl 1991).
The consistency of an STN can be checked by the use of a
single-source shortest path algorithm. If an STN is incon-
sistent, negative-cost cycles will be present in the directed
graph corresponding to the STN. However, to achieve ef-
ficient management of the temporal constraints generated
during planning in these systems, it is necessary to check
consistency in a series of closely related STNs, each an in-
cremental development of the preceding STN (except when
backtracking, which requires a return to an earlier STN).

The contribution of this paper is twofold. First, we ex-
plore the use of incremental addition of edges and vertices
within the context of the planner CRIKEY3, where plan-
ning action choice decisions are interleaved with temporal
scheduling to assign time stamps to these. These techniques
are important when tackling problems represented in the
richer subset of temporal PDDL2.1, where per-node tem-
poral consistency checking (rather than post-hoc) is essen-
tial. Second, we show how such incremental algorithms can
be used in situations where there are complex interactions
between time and metric values, through linear continuous
processes as handled in COLIN.

The paper is structured as follows: first, we introduce the
problems we are interested in solving and then go on to de-
scribe, in general terms, the work on which our algorithm is
based (Cesta & Oddi 1996). We then illustrate how Cesta
and Oddi’s work can encapsulated within a general graph-
extension algorithm for use in our work, to allow the addi-
tion of both vertices and edges to the graph. Having done so,
we demonstrate how this algorithm can be used efficiently
in our target problem in two different settings: the forward-
chaining planner, CRIKEY3 and the planner for continuous
linear processes, COLIN. Finally, we provide empirical eval-
uation of the significance of these incremental approaches.

2 Background

We begin with a description of the structure of the tempo-
ral problems we consider. This account ignores the details
of the syntax of the language in which the domains are de-
scribed (see (Fox & Long 2003)), focussing on the semantic
structures we handle.
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2.1 Temporal Planning Problems

A classical planning problem is a tuple 〈A, I, G〉, where A
is a set of actions, I is a set of propositions representing the
initial state and G a set of propositions required to hold in the
goal state. The solution to a problem is an ordered sequence
of actions in A that transforms the initial state I into a state
S′ such that G ⊆ S′. Each action a ∈ A is a tuple 〈P,E〉,
where:

• P is the precondition of a, which must hold in any state
in which a is applicable;

• E is the effects of the application of a and is a pair of sets
of propositions: those that are added to and those that are
deleted from a state upon the application of a.

A temporal planning problem is an extension of a clas-
sical planning problem where each action in A has a more
complex form. Each action a in a temporal planning prob-
lem is a tuple 〈P⊢, E⊢, P↔, P⊣, E⊣, d〉. P⊢ and P⊣ are the
conditions required to be true at the start and end of the ac-
tion, respectively. Similarly E⊢ and E⊣ are effects that oc-
cur at the start and end of the action respectively. P↔ is a set
of invariants: propositions that must remain true throughout
the application of the action. PDDL2.1 allows complex du-
ration constraints, including disjunctive interval constraints,
to be expressed, but our work is confined to managing the
simpler subset in which duration constraints define inter-
vals, so that d is a constraint of the form lb ≤ t ≤ ub
(with lb, ub ∈ ℜ+

0 , lb ≤ ub), forming a constraint on t,
the duration of the action. A temporal action a can be con-
sidered as two linked instantaneous action end-points, each
equivalent to a standard classical action, a⊢ = 〈P⊢, E⊢〉,
denoting the start of the action, and a⊣ = 〈P⊣, E⊣〉, denot-
ing its end. We refer to these action end-points as ‘snap-
actions’ (Coles et al. 2009a). Between these snap-actions,
the invariant facts (P↔) must hold, and we can represent
the temporal relationship between the two snap-actions as
lb ≤ t(a⊣) − t(a⊢) ≤ ub, where t(x) is the time at which
snap-action x occurs.

We define a temporal scheduling problem as a tuple
〈A, C〉 where A is a set of events (in our case, actions) to
be scheduled, and C is a set of temporal constraints over
their timestamps, t(a) for a ∈ A. Each constraint is of the

form lb ≤ t(b)− t(a) ≤ ub (with a, b ∈ A, lb, ub ∈ ℜ+

0 and
lb ≤ ub). The goal is to find a timestamp t(a) ≥ 0 for each
action in a ∈ A such that all the conditions C are satisfied.
A scheduling problem defined thus is known as a Simple
Temporal Problem (STP) (Dechter, Meiri, & Pearl 1991).
For a given STP, a labelled directed graph 〈V,E〉 can be in-
duced, referred to as a Simple Temporal Network (STN).
The vertices, V , correspond to the actions in A, along with
a root node, ‘0’, to represent the origin of time. Each con-
straint (lb ≤ t(b) − t(a) ≤ ub) ∈ C corresponds to two
edges: (a, b) with weight ub and (b, a) with weight −lb. A
solution to the STN can be extracted from this digraph by
the use of a shortest path algorithm. If the shortest path al-
gorithm discovers a negative cycle, no solution exists and
the STN is said to be inconsistent. Otherwise, the feasible
timestamps for the event corresponding to a vertex v lie in

the range [−dv0, d0v] (where dv0 is the shortest path from v
to the root, and d0v the shortest path from the root to v).

Clearly the problems of planning and scheduling are
highly interrelated, especially in temporal planning. The
solution (or partial solution) to a planning problem as a
set of actions, with ordering constraints determined by the
causal relationships between the preconditions and effects
of the actions, can be seen as the input to a simple temporal
scheduling problem. Indeed, in order to solve any planning
problem, it is necessary to schedule the actions with respect
to one another at least to resolve possible conflicts and hence
some element of scheduling is always involved in planning.
On a spectrum where one extreme is classical planning prob-
lems and the other is pure scheduling problems, in classi-
cal planning, the scheduling decisions are a trivial corollary
of the actions selected to solve the problem, while, towards
pure scheduling, one can encounter cases where the neces-
sary actions to achieve the goal are known and the problem
lies in determining when to execute them (Smith, Frank, &
Jónsson 2000). An interesting class of problems lie towards
the middle of this continuum: problems where both plan-
ning and scheduling decisions must be made appropriately
in order to solve the problem. One approach to solving these
problems is to take the planning problem as the master prob-
lem, to decide which actions to include using a planner and
then to use a STP subsolver to check for consistency each
time an action choice is made. This is the structure of a fam-
ily of planning systems, CRIKEY (Coles et al. 2009a) and its
successors, CRIKEY3 (Coles et al. 2008) and COLIN (Coles
et al. 2009b) (we refer to these planner, collectively, as the
CRIKEY-family).

Temporal problems expressible in PDDL2.1 and
PDDL2.2 (Hoffmann & Edelkamp 2005) make it nec-
essary to tightly integrate planning and temporal scheduling
in order to solve problems with required concurrency.
Several planners, other than the CRIKEY-family, employ
schedulers during search, including VHPOP (Younes &
Simmons 2003), SGPLAN (Chen, Wah, & Hsu 2006)
and TSGP (Coles et al. 2007). MIPS (Edelkamp 2003)
uses a post hoc approach to scheduling, applying a PERT
scheduling algorithm to the plan after it has been built.
SGPLAN and MIPS use a compressed action relaxation (as
discussed in (Coles et al. 2009a)), in which the effects of
both start and end points of a durative action are combined
to form a single instantaneous action for planning. This
approach does not allow problems with required concur-
rency to be solved, since the durations of actions are not
considered until after planning decisions are already made.
What is common to the other planners, as well as to the
CRIKEY-family, is the incremental nature of the successive
changes to the scheduling problems they face. That is, in
the CRIKEY-family, and the other planners that perform
interleaved temporal scheduling as outlined above, the
STN is typically modified incrementally by the planner and
therefore successive consistency checks are often performed
on very similar STNs, with as little as one additional
action added. This motivates the use of incremental STN
consistency checking algorithms: consistency checking
represents a substantial computational overhead during
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search and calls are made to the STN solver with graphs
that are only incrementally different.

2.2 Incrementally Adding Constraints to STNs

Consistency checking in STNs can be performed by an all-
pairs shortest paths algorithm, such as Floyd-Warshall’s al-
gorithm (Floyd 1962) or by multiple applications of the
Bellman-Ford single-source shortest path algorithm (Bell-
man 1958). An approach that exploits the typical structure of
STNs to achieve an empirically more efficient performance
than the earlier algorithms is based on the identification of
triangles within the STN graph structure (Choueiry & Xu
2004), recently further developed in (Planken, de Weerdt,
& van der Krogt 2008). Many authors have considered
the problem of incremental constraint addition in STNs, in-
cluding (Cesta & Oddi 1996; Ramalingam & Reps 1996;
Gerevini, Perini, & Ricci 1996). In the context we are con-
sidering, new events are the main source of new constraints,
as new actions are added to the incrementally developing
plan head during forward-chaining search.

Algorithm 1 shows an algorithm, due to Cesta and
Oddi (Cesta & Oddi 1996), that is an incremental version of
the Bellman-Ford Single-Source Shortest Path algorithm. It
takes as input a digraph representation of a (consistent) STN,
G, and a constraint c = (a ≤ t(j)− t(i) ≤ b) to be added to
G, and updates G to reflect c, also checking whether a neg-
ative cycle is introduced when doing so. It works by prop-
agating the effects of the new constraint (a pair of edges),
maintaining a queue of affected vertices (initially those in-
volved in c). If a vertex u taken from this queue has an
edge that leads to a shorter path being found from the root
node to another node v, i.e. if d0v can be reduced (line 10),
then d0v is updated and v placed on the queue. Similarly, at
line 23, if a shorter distance dv0 is found, from v to the root,
this is updated and v placed on the queue. These correspond
to reducing (and increasing) the maximum (and minimum)
timepoints for the vertex v. Negative cycles (inconsistency)
are detected in one of two ways:

• if at any point d0v + dv0 < 0 (lines 12 and 25), then a
simple negative cycle has been found;

• if the distance d0j or di0 is updated twice (lines 14, 27),
then the path through the STN that gives rise to these re-
vised distances necessarily has j (or i) as an ancestor—all
new shortest paths can ultimately be traced back to the
new constraint c, otherwise they would have been present
in the original G. (For a proof of this, see (Cesta & Oddi
1996).)

3 An Incremental Bellman-Ford Algorithm

for Dynamic Graphs

The algorithm presented by Cesta and Oddi (Algorithm 1)
is described in terms of adding new constraints (edges) can
be added to the STN, not new vertices. As was discussed in
Section 2.1, if there are choices to be made about the actions
that will appear in a solution (i.e. how many actions) then
the number of vertices in the STN will not remain constant.

A naı̈ve solution to this problem would be to maintain a
cache of spare vertices Q = {q0 . . . qn} in the STN, each

Algorithm 1: Incrementally Adding Constraints

Data: G - an STN; c = (a ≤ j − i ≤ b) - a constraint
Result: G updated with C, or fail if G inconsistent
wij ← b, wji ← −a;1

Q← a queue, initially {i, j};2

LBP, UBP ← ∅;3

NEW ← {(i, j), (j, i)};4

LB, UB ← {i, j};5

while Q 6= ∅ do6

u← pop(Q);7

if u ∈ UB then8

foreach edge (u, v) out of u do9

if d0v > d0u + wuv then10

d0v ← d0u + wuv;11

if d0v + dv0 < 0 then return fail;12

else if (u, v) ∈ NEW then13

if (u, v) ∈ UBP then return fail;14

else UBP ← UBP ∪ {(u, v)}15

UB ← UB ∪ {v};16

if v 6∈ Q then push(Q, v)17

end18

end19

end20

if u ∈ LB then21

foreach edge (v, u) into u do22

if dv0 > du0 + wvu then23

dv0 ← du0 + wvu;24

if d0v + dv0 < 0 then return fail;25

else if (v, u) ∈ NEW then26

if (v, u) ∈ LBP then return fail;27

else LBP ← LBP ∪ {(v, u)}28

LB ← LB ∪ {v};29

if v 6∈ Q then push(Q, v)30

end31

end32

end33

LB ← LB \ {u};34

UB ← UB \ {u};35

end36

with a single constraint (0 ≤ t(qn) − t(Z) ≤ ∞) (where
Z is the root node, 0). Then, if an additional solution vertex
v with some constraints C is to be added to an STN, one
of the spare vertices could be appropriated for the purpose,
relabelling it to represent v. Algorithm 1 can then be used to
update the STN to reflect the constraints C.

The problem with such an approach is that it is not clear at
the outset how many spare vertices are needed and creating
a sufficiently large number to guarantee that we could not
run out would demand an exponentially large set in the size
of the planning instance. The information stored for each
vertex v in the STN is as follows:

• the shortest distances d0v and dv0, and

• the edges involving v.

Each of the supposed spare vertices q ∈ Q will initially have
d0q = ∞ and dq0 = 0. Also, the only edges involving
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Algorithm 2: Incrementally Adding STN Sections

Data: G - an STN; V - new vertices; C - new
constraints

Result: G updated with V and C, or fail if G
inconsistent

G← G ∪ V ;1

foreach v ∈ V do2

d0v ←∞, dv0 ← 0;3

w0v ←∞, wv0 ← 0;4

end5

foreach c ∈ C do6

Call Algorithm 1 on 〈G, c〉;7

if Algorithm failed then return fail;8

end9

q are (0, q) with weight ∞ and (q, 0) with weight 0 (those
induced by its associated constraint). Therefore, none of the
spare vertices will be involved in the shortest paths of any
other vertex in the STN. With this information, it is possible
to lazily add spare vertices to an STN as they are needed
as if they had always been present. Then, as in the spare
vertex case, Algorithm 1 can be used to add constraints and
to check for consistency.

Algorithm 2 presents an algorithm which works on this
basis. It takes as input a consistent STN, G, with the new
vertices to be added V , and new constraints C. First, in the
loop beginning at line 2 we create the spare vertices, and set
up their constraints appropriately. Then, at line 6, we loop
over each of the new constraints being added, calling Algo-
rithm 1 to update the STN to reflect each constraint in turn.
If any additional constraint leads to inconsistency, then the
algorithm returns failure: the requested modifications can-
not be made. Otherwise, G has been updated with the new
vertices V and new constraints C. Note that either or both
of V or C can be empty without the correctness of the algo-
rithm being affected: it serves as a general purpose mutator
to update a consistent STN with some new vertices or con-
straints.

4 Forward-Chaining Temporal Planning

The search paradigm employed in CRIKEY3 is forward-
chaining planning: search begins from the initial state and
selects actions to append to an (initially empty) plan, in
order to reach a goal state in the search space. Many
well-known planners have taken this approach, including
HSP (Bonet & Geffner 2001) and FF (Hoffmann & Nebel
2001) and, more recently, Fast Downward (Helmert 2006)
and LAMA (Richter, Helmert, & Westphal 2008). In the
classical case, where all actions are instantaneous, the key
to the success of a forward-chaining approach is in select-
ing good actions to apply at each state during search, typ-
ically using heuristic guidance. Taking a forward-chaining
approach to temporal planning requires the additional man-
agement of temporal constraints. In the CRIKEY-family, this
is performed by splitting durative actions into start and end
snap-actions, and checking the temporal feasibility of the
induced schedule at each state. Although the selection of in-

Algorithm 3: Temporal Feasibility of Successors

Data: ξ - STN for the existing plan to reach a state S;
A - action choices
Result: A′ - temporally feasible action choices
A′ ← ∅;1

foreach a ∈ A do2

c← a follows previous action in plan;3

if a is an end snap-action then4

dur ← duration constraint between a and its5

corresponding start in ξ;
c← c ∪ {dur};6

end7

ξ′ ← Algorithm 2, passing 〈ξ, a, c〉;8

if ξ′ is consistent then A′ ← A ∪ {a};9

end10

dividual snap-actions remains a search process governed by
the same kind of heuristic guidance as the classical forward-
chaining planners, the additional temporal constraints lead
to pruning of certain action choices following the construc-
tion of a plan head and it is important to identify these in-
consistent action choices as early as possible, by perform-
ing temporal consistency checks as each state is constructed.
The temporal constraints take the form of a simple temporal
network as discussed in Section 2.1.

In forward-chaining temporal planning, when an action,
a, is applied to a state, S, to reach a successor, S′, the STN,
ξ, representing the temporal constraints on the plan to reach
S has to be modified to reflect the application of a, yielding
a new STN, ξ′. Algorithm 3 illustrates how the new incre-
mental STN algorithm (Algorithm 2) can be used in this
process, providing — in effect — a drop-in replacement for
the temporal feasibility checking performed in existing tem-
poral planners, but working incrementally. It takes as input
a state, S, and a set of logically applicable actions, A. For
each action a ∈ A, first the relevant constraints are collated:
a has to be the next action in the plan and, if it is an end
action, a constraint between it and its corresponding start is
necessary to capture its duration. Algorithm 2 is then called
to incrementally add a and its associated constraints to ξ and
check the temporal consistency of the resulting STN ξ′. Fi-
nally, at line 9, if ξ′ is found to be consistent, the action is
deemed to be applicable.

In some temporal forward-chaining planning approaches
action compression is used, as discussed earlier, to avoid
considering how start- and end-actions interleave. How-
ever, in problems with required concurrency, in the presence
of Timed Initial Literals (Hoffmann & Edelkamp 2005) or
when makespan is considered important, the temporal con-
sequences of action choices have to be considered during
search and post hoc scheduling is insufficient.

5 Planning with Continuous Numeric

Change

The current state-of-the-art approaches to temporal-numeric
planning, in particular where numeric effects are continu-
ous linear processes, make use of linear programs (LPs),
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or mixed-integer linear programs (MILPs), to encapsulate
temporal and numeric constraints (Coles et al. 2009b;
Li & Williams 2008; Shin & Davis 2005). Due to the inter-
action between time and numbers in the presence of linear
continuous numeric change during the execution of an ac-
tion, a simple STN is inadequate in performing scheduling.
This is because the time at which to execute actions depends
on how the numeric processes interact as well as the tem-
poral constraints that govern the durations of actions them-
selves. In the same way that temporal planning by forward-
chaining leads to the construction of incrementally different
STNs, so the problem of forward-chaining planning with
linear continuous processes leads to an incremental series
of LPs. However, since the plans remain temporally struc-
tured, planners still face the need to schedule the actions in
a temporal constraint network.

In this section we present extensions of the incremental
treatment of STNs for temporal planning, to handle plan-
ning in this more complex setting. We base our discussion
on COLIN, which is a member of the CRIKEY-family de-
signed to solve problems with linear continuous processes.
We present two techniques. The first is based around reusing
data obtained from the LPs solved during search and exploit-
ing this in an incremental state-to-state constraint network.
The second is a novel coupling of the incremental-Bellman-
Ford and LP approaches, where LP search is bounded by
the values obtained from solving an STN, increasing its effi-
ciency. We will then discuss how these two interact, allow-
ing information from the LP to be fed back into the STN for
use when expanding subsequent states.

5.1 Extending an STN to an LP to handle
Continuous Numeric Change

In COLIN, the STN constraints for a given state are aug-
mented to represent the numeric preconditions and effects
of actions (for full details, see (Coles et al. 2009b)). In the
case where time and numbers do not interact it is sufficient
to consider only the timestamp of each event and to han-
dle numeric variables separately. With continuous numeric
change, however, this is no longer the case and two further
classes of variables are therefore required:

• Variables v0(a)...vm(a) (denoted by the vector ~v(a))
are added to record each of the state numeric variables
v0, ..., vm in the planning problem immediately prior to
execution of (instantaneous) action a.

• Variables v′0(a)...v′m(a) (denoted by the vector ~v′(a)): the
values of v0, ..., vm immediately after application of a.

Constraints over the values of ~v(a) and ~v′(a) are generated
to capture the conditions supporting execution of a and its
effects, as follows:

• Preconditions of an event a are specified over ~v(a). Eg
if a has a precondition v1 > 3, the constraint v1(a) > 3
is generated.

• The instantaneous effects of an event a generate con-
straints linking ~v(a) to ~v′(a). Eg the effect v1+ = 10
generates the constraint v′1 = v1 + 10.

• Invariants established by an action starting at t(a⊢) and
finishing at t(a⊣) are specified over each of {~v(x) :
t(a⊢) < t(x) ≤ t(a⊣)} and {~v′(x) : t(a⊢) ≤ t(x) <
t(a⊣)}.

• Active continuous effects add constraints linking ~v′(a)
to ~v(a). Eg if after a⊢ an effect of dv0/dt = 3 is active,
then v0(x) = v′0(a⊢) + 3(t(x) − t(a⊢)) for an action, x,
immediately following a⊢.

• Duration constraints for each action, a, starting at t(a⊢)
and finishing at t(a⊣), specify bounds on t(a⊣)− t(a⊢) in
terms of numeric constants and the values of the numeric
state variables at ~v(a⊢).

With this representation, it can be seen that the resulting
LP is an augmented STN: it maintains the temporal event
ordering constraints of the STN and adds further constraints
that — due to the continuous effects — enforce a relation-
ship between timestamps and numeric variable values. The
planning approach still depends on forward-chaining, so the
sequence of LPs that is generated continues to be a succes-
sion of incremental adjustments of the preceding LP.

5.2 Incremental Inference of Bounds in Linear
Programs

In COLIN, an LP solver is used to assign timestamps to the
action choices in the plan head, checking action choice feasi-
bility, with an objective function to minimise the timestamp
of the most recently added action. Assuming the plan can
indeed be scheduled, then as well as the value of the ob-
jective function giving the minimal plan head makespan, it
can also be seen as a lower bound on the timestamp of a
in the plan reaching the current state, S. It follows that it
is also the lower bound on the timestamp of a in all states
reachable from S. This value can be attached to a to serve
as a lower bound within the scheduler when evaluating suc-
cessor states. That is, the timestamp lower bounds from S
can be used in the LP generated from the successor state,
S′. In general, tightening the variable bounds within an LP
reduces the time taken to find a solution, so the result of
this is that we can reduce the time taken to solve the LPs
constructed during search by incrementally exploiting these
lower timestamp bounds.

5.3 Seeding Linear Programs Using an
Incremental STN Solver

The LP in COLIN encodes the interaction between time and
numbers in the planning problem. A simple relaxation of
this is to ignore the numeric variables introduced in 5.1 and
to replace the duration constraints with admissible bounds
(minimum durations never over-estimate, maximum dura-
tions never under-estimate) in cases where the true dura-
tion depends on state variables subject to continuous nu-
meric change. This relaxation takes the form of an STN.
Solving this STN with the incremental Bellman-Ford al-
gorithm gives upper- and lower-bounds on t(a) (d0a and
−da0). Then these upper- and lower-bounds can be taken
as bounds on the timestamp variables within the LP.
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To this end, we propose as a first step a two-stage ap-
proach to solving the linear programs produced within con-
tinuous numeric temporal planners:

1. Solve the simple temporal constraints as an STN, giving
bounds on t(a) for all actions a in the plan head. If the
STN is infeasible, the master LP must, too, be infeasible.

2. Construct the LP, bounding the timestamp variables using
the values from the STN, and solve.

In this manner, we couple the two solvers, with trans-
fer of information in one direction (STN to LP). In doing
this, we gain in two ways. First, we can exploit incre-
mental STN algorithms, giving admissible bounds on action
timestamps, while also detecting simple temporally infeasi-
ble action choices without relying on the more expensive LP
solver to do so. The STNs constructed in this way are incre-
mental in the same way as those in CRIKEY(requiring node
addition), so the incremental algorithm described above re-
mains appropriate. Second, the LP starts with more in-
formed bounds on action timestamps, and in the absence of
any numeric–temporal interaction, the time taken to solve
the LP will then be negligible.

5.4 Bidirectional LP–STN Coupling

The limitation of feeding data only from the STN solver to
the LP solver is that, in the case of the LP being success-
fully solved, any extra temporal information discovered in
that process is not then fed back into subsequent STNs. The
drawback of this becomes obvious when considering state
expansion: suppose a state S has been checked for consis-
tency (using the Bellman-Ford and LP solvers), and is then
chosen for expansion. For each successor state, S′, the in-
cremental Bellman-Ford algorithm is used to seed the LP,
prior to solving the LP itself. Even if the LP and STN so-
lutions for S were substantially different, the LP for S′ will
still be seeded with the STN bounds for S′, which are in turn
build upon the STN bounds for S. The LP solver then has to
find the timestamps of the actions in the plan to S′ with no
benefit of having done so previously for S, a state which is
only slightly different.

To improve upon this, we combine the two approaches we
have set out. Rather than the minimum timestamp bounds
on each action being used as lower bounds in the LP, they
are used to generate additional constraints in the STN. For
an action a, with minimum timestamp min(a), we add a
constraint to the STN: min(a) ≥ t(a)− t(0).

In doing so, the complex reasoning behind finding a so-
lution to the LP is reduced to a constraint expressible in the
language of the STN: a simple minimum bound on the re-
lationship between two time points. Then, even though the
STN solver is entirely unaware of the numeric constraints of
the problem, it is forced to obey the refined minimum times-
tamp bound we obtain for each action when it is first added
to the LP.

The synergy obtained from combining the approaches has
another useful consequence. When recording the minimum
timestamp bound on each action as it is added to the plan
(Section 5.2), that bound remains fixed in subsequent states,
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Figure 1: Time to solve problems with and without incre-
mental STN in CRIKEY3

no matter how much its actual timestamp may need to in-
crease beyond this to account for subsequent additions to the
plan head. This is a simple tradeoff: to maintain bound ad-
missibility, we risk it becoming uninformative since, due to
the costs involved, it is not feasible to minimise every times-
tamp for every step in the plan at every state encountered
during search. In our combined incremental approach, by
adding the latest minimum timestamp bound to the STN as
a single edge, its effects are efficiently propagated through
the rest of the plan by the incremental algorithm, updating
the lower timestamp bounds on each action (−dv0 for each
v). If these bounds exceed the existing recorded minimum
timestamp bounds any actions, the bounds can be updated
accordingly.

6 Results

We present two sets of results to demonstrate the efficiency
improvements gained through using our algorithms. All
tests are performed on identical 3.4GHz Pentium 4 ma-
chines, with 2GB of physical memory, and were subject time
and memory limits of 1800 seconds and 1.5GB respectively.
To solve the linear programmes, lp solve 5.5.0.14 was used.

6.1 The Use of Incremental Bellman-Ford in
Temporal Planning

First, we demonstrate the effectiveness of the incremental
Bellman-Ford algorithm in forward-chaining planning, us-
ing CRIKEY3 as a basis for our experiments. As described
in Section 4, CRIKEY3 performs forward-chaining search
in a manner similar to FF but uses the start and end points
of durative actions. The role of the STN is to check the
temporal consistency of these choices at each state. Note
that the plan that found by CRIKEY3 will not be affected by
the use of the incremental Bellman-Ford algorithm: only the
per-state scheduling overhead is affected. The plan quality
is therefore identical in both approaches, so our evaluation
considers only the time taken to find solution plans.

The effect of the use of the incremental Bellman-Ford al-
gorithm on performance of CRIKEY3 in a number of do-
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Figure 2: Time to solve non-continuous planning problems
with and without incremental computation using COLIN

mains is shown in Figure 1. The domains included are in-
dicative, similar performance improvements were seen in
other temporal benchmark domains. The X-axis shows the
performance without the incremental algorithm (computing
STNs ab initio at each node), and the Y-axis the performance
with the incremental algorithm. Points below the dotted line
indicate that the incremental version was faster and points
above it that the non-incremental version was faster. Points
on the line x = 1800 indicate problems that were solved
by the incremental version but the non-incremental version
failed to solve them within the timelimit.

As can be seen, the incremental version of the plan-
ner solves all problems more efficiently than the non-
incremental version. Further, the incremental version solves
14 additional problems in this collection.

Of the domains shown, the performance difference in
Driverlog diverges the most as the problem size increases.
Further analysis of the data obtained reveals this is in part
due to the large branching factor present during search: as
the problems become larger, the numbers of trucks, pack-
ages and drivers increase, and hence the branching factor
also increases significantly. In this case, each state has many
successors differing from it only incrementally, so the incre-
mental algorithm performs particularly well. Further exper-
imentation reveals a similar phenomenon in other domains,
which is a useful research result for planning: as planning
problems become larger, and the breadth of decision making
increases, the incremental algorithm is increasingly useful.

6.2 Incremental Algorithms in
Temporal-Numeric Planning

To evaluate the performance of the hybrid STN-LP solver in
temporal-numeric forward-chaining planning, we first con-
sider the performance of the approach in domains without
continuous numeric change. As the LP solver is only called
if the STN relaxation of the LP removes any constraints —
which in the case of problems without continuous numeric
change, it does not — such a comparison compares the in-
cremental Bellman-Ford algorithm to using an LP solver.

The results of this comparison are shown in Figure 2. As can
be seen, there is a clear advantage to using the incremental
Bellman-Ford algorithm to perform scheduling rather than
using an LP. This is not a surprising result, since the LP
solver does not exploit the specific structure of STNs to
achieve enhanced performance. What these results do sug-
gest is that, considering the two individually, the incremen-
tal Bellman-Ford algorithm is more efficient, strengthening
the motivation to use the incremental Bellman-Ford algo-
rithm before the LP, both to tighten bounds and to avoid the
need to call the LP solver at nodes in the search space of a
continuous planning problem where no continuous change
is currently active.

The final section of the evaluation concerns the use of in-
cremental algorithms for problems including continuous lin-
ear processes. Figure 3 shows the performance of COLIN on
continuous variants of the Satellite and Rovers domain as
well as the Airplane Landing problem, using problem files
based on real data from Edinburgh airport. Descriptions of
these domains can be found in (Coles et al. 2009b), with
the addition that here, in the Airplane Landing domain, a
set of problems is considered instead of a single instance.
These domains were selected since they are the only exist-
ing benchmark domains in the literature that are written in
PDDL, contain continuous numeric change and for which a
problem set is available.

The data show that the hybrid incremental-STN–LP
scheduler improves overall performance in comparison with
the LP solver.

The results for the problems in the Airplane Landing do-
main show a consistent and marked improvement in time
taken to solve problems. The reason for this is that the so-
lution plans in this domain are generally long, with a prob-
lem for p planes requiring 3p actions in the plan. The largest
problem in this set involves landing 62 planes. This is an im-
portant result: as planning technology improves and is able
to generate longer, more complex plans, the role of the em-
bedded incremental STN algorithm will become even more
important yielding greater improvements.

The points in Figure 3 lying close to the line y = x are
instances of Satellite and Rovers problems. In the Satellite
domain, the satellite activity is performed within envelopes
of power availability, with the available power subject to
continuous numeric change. In these problems, the STN
bounds are comparatively less useful and the benefits of the
combined approach are eroded. In the Rovers domain, the
results are actually positive. However, taken as a percent-
age of the entire time taken to find the solution, the relative
gain in the performance of the scheduling element is com-
paratively small. As the implementation of the continuous
numeric planning graph is relatively inefficient, observably
so in this domain, this masks the impact of improvements in
scheduling performance.

7 Conclusion
In this paper, we have shown how an incremental Bellman-
Ford algorithm can be used as a basis for the efficient man-
agement of temporal constraints in planning. We described
how such an approach can be used in temporal planning
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Figure 3: Time taken to solve continuous planning problems
with and without incremental computation using COLIN

alone and then, in combination with an LP solver, to enhance
the performance of a temporal-metric planner for continuous
linear processes.

We have shown that in both cases, the incremental man-
agement of constraints leads to a significant performance
improvement. The integration of the incremental STN
solver with use of LPs, feeding information in both direc-
tions between the LP and STN, leads to an order of magni-
tude improvement on problems of significant size. The ap-
proach imposes low overhead and, in fact, reduces the need
to apply the LP solver in cases where the STN relaxation
either eliminates a search state or adds no new constraints.
The improvement therefore involves no tradeoff in general
and allows us to solve a larger collection of benchmark prob-
lems.
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