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Abstract

We present an action theory with the power to represent recur-
sive plans and the capability to reason about and synthesize
recursive workflow control structures. In contrast with the
software verification setting, reasoning does not take place
solely over predefined data structures, and neither is there
a process specification available in recursive form. Rather,
specification takes the form of goals, and domain structure
takes the form of a physical application setting containing
objects. For this reason, well-founded induction is employed
for its suitability for practical action domains where recursive
structures must be described or inferred. Under this method,
termination of the synthesized recursive workflow is a prop-
erty that follows automatically.

We show how a general workflow recursive construct is added
to an action language that is then augmented with induction.
This formalism is then transformed in a way amenable to au-
tomated reasoning. We demonstrate the method with a partic-
ular example specified in the theory, and then extracted from a
proof constructed by the SNARK first-order theorem prover.

Introduction
Due to the power and succinctness of recursive representa-
tions of processes, substantial value is offered by the inclu-
sion of this control structure in workflow languages. Ac-
cordingly, almost all present workflow execution engines
employ some type of facility to represent executional rep-
etition.

However, a main application of workflows is modeling
processes in real-world settings, and it is therefore important
to be able to reason about these workflows’ consequences,
properties, and formation. Prior work has applied action the-
ories to reasoning about workflows, yet has been limited in
expressivity to linear conditional execution paths. As a con-
sequence, the underlying workflow language is sub-Turing-
complete, with a consequential difficulty in expressing many
commonly occurring practical processes.

This work sets out to introduce recursive process expres-
sivity into workflow languages to allow reasoning for ver-
ification of suitable properties prior to the deployment of
a workflow, and also synthesis of a workflow that satisfies
user-specified properties.

The workflow setting differs from that of software
verification because software verification specification is

achieved by recourse to a recursive specification written in
terms of predefined data structures. By contrast, workflow
specification is made through a set of goals the workflow is
expected to achieve in its environmental setting.

Reasoning about workflows is thus more akin to reason-
ing about action domains from Artificial Intelligence than
of a software verification or synthesis task. Accordingly,
the foundational method chosen here for reasoning about re-
cursive control structures is well-founded induction. Well-
founded induction is a very general induction principle that
implies most other induction rules as special cases. It af-
fords the ability to define which domain elements constitute
a well-founded structure. It also offers the potential to au-
tomatically dynamically infer a well-founded structure from
the arrangement of a domain.

Reasoning about action domains has in the past focused
on a linear (possibly conditional) representation of the plan.
Many real-world domains, however, are structured in ways
that prevent the quantity or extent of a domain entity being
known at process formation time. Providing for these con-
tingencies using a linear plan either quickly becomes pro-
hibitive in plan space, or is theoretically impossible. A re-
cursive description, however, permits the representation of
a plan tolerant of the domain’s contingencies in a tractable
plan space. Depending on the contingency’s type, recursive
expressivity has the potential to reduce a linear growth in
space to constant space. In other cases, contingency types
that cause an exponential growth in plan space may be re-
duced by recursion to grow in linear space.

In this paper, we formulate an approach to the representa-
tion and reasoning of recursive workflows by using an action
theory to represent the workflow for the purposes of identi-
fying consequences of execution, and also the synthesis of
a workflow in response to a given set of conditions. There
are two main aims. The first is to derive the known conse-
quences of a recursive workflow, and the second to synthe-
size a workflow that may incorporate recursion.

Motivating Example
Let us assume we have a bag containing a number of books
for return to the library. The quantity of books, although
known at the end of plan execution, is indeterminate during
plan construction, and usually during execution also.

There are several alternative means for representing a plan
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guaranteeing all the books are returned. If an upper bound
on book quantity is known in advance, then it becomes pos-
sible to formulate an exhaustive conditional plan. The plan
can guarantee it can cater for the worst-case quantity of
books. However, even with this assumption, the method
lacks feasibility because we must always generate contin-
gencies for the worst case. Frequently, worst-case con-
ditions are not known in advance, and therefore an upper
bound assumption is unrealistic in many domains.

Assume we have a set of library books, book-set0, and
we wish to return all the books in the set to the li-
brary. The primitive action we can execute, however, is
return-one(book-set), which returns only a single book from
its argument, book-set, by placing it in the return box. We
also provide a test operation, empty-set(book-set), which de-
termines if its argument set is empty, indicating when all the
books have been deposited.

We attempt to construct a plan return-all(book-set0) that
will return all the books in its argument book-set0. It is spec-
ified to satisfy the goal condition P1.

∀(book-set0) ∃(z) ∀(s0) (P1)
(s0 � z) � empty-set(book-set0)

This is to say that for any input set book-set0, we attempt
to show the existence of a composite action z that, when
performed in any initial situation s0, will have the effect of
emptying book-set0.

In this example, to meet the goal of returning all books,
the plan should express that we repetitively remove each
book individually from the bag, and place it in the book
drop, and stop only when the bag is empty.

We will approach the problem here by automatically syn-
thesizing a recursive plan that solves the problem in the gen-
eral case (P2).

return-all(book-set0)⇐ if empty-set(book-set0), (P2)
no-op,
return-one(book-set0) ;
return-all(book-set0)

The system will be provided with information about the
causal effect of an action for placing one book into the return
bin. We also expect to give information about the structure
of the domain sufficient for the system to know that it will
finish the task.

In support of this, information will be given to justify
the use of well-founded induction. This will be achieved
through the attachment of the domain scenario to a general
well-founded relation. Here, the book bag will be regarded
as a finite set allowing the proper subset relation between
sets to be a well-founded relation underpinning induction.

An Action Theory for Workflows
To represent and reason about workflows, we develop an
action theory having its roots in a version of Plan Theory
(Manna and Waldinger 1987), a logical action formalism
that makes use of an explicit state (of the world) representa-
tion. Plan Theory is in turn a version of situation calculus.

Process Plan Theory (PPT) as developed here is written
in a multisorted predicate calculus with equality, with

- a sort O for objects (variables t, t0, t1, . . .),

- a sort S for situations (variables s, s1, s1, . . .),

- a sort E for events (variables z, e, e0, e1, . . .), and

- a sort P for propositions (variables p, p0, p1, . . .).

A number of foundational functions and relations are also
used.

• To capture the result of an event, the function s � e is
introduced from a situation and event to the new situation
resulting from the execution of the event.

• To represent the action sequence e1 followed by e2 the
function e1 ◦ e2 from an event and event to event is intro-
duced to represent the sequential composition of e1 and
e2.

• To represent the value of a term t in a particular situation,
the function s � t from a situation and term to an object
is introduced.

• To represent that a proposition p holds in situation s, the
relation s � p is introduced.

Within the language, all objects named by constants
{τ0, τ1, ...}, all situations {σ0, σ1, ...}, all events
{ε0, ε1, ...}, and all propositions {φ0, φ1, ...} will be
assumed to be uniquely named. Axiom P4 making use of
constructs from (Baker 1989) guarantees this property.

UNA{τ0, τ1, ... } ∧ UNA{σ0, σ1, ...} ∧
UNA{φ0, φ1, ...} ∧ UNA{ε0, ε1, ...} (P4)

Propositions, expressions and relations are reified to permit
us to quantify over these objects, and we will assume im-
plicit universal quantification for free variables. The first
axioms for PPT are identity axioms for situations and events
in P5 and P7 respectively.

(s � no-op) = s (P5)

(no-op ◦ e) = e (P6)
(e ◦ no-op) = e (P7)

Associativity of action terms is inherent in the understanding
of the plan language, and is stated explicitly in P8. Com-
position of events is described by the equality P9 between
function terms.

(e1 ◦ e2) ◦ e3 = e1 ◦ (e2 ◦ e3) (P8)

s � (e1 ◦ e2) = (s � e1) � e2 (P9)

Conditional events are captured by the following two ax-
ioms, P10 for the conditional action with a positive condi-
tion test result, and P11 for a negative condition test result.
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(s � if (p0, e1, e2)) � p ← (P10)
(s � p0 ∧ (s � e1) � p))

(s � if (p0, e1, e2)) � p ← (P11)
(¬(s � p0) ∧ (s � e2) � p))

Domain initial conditions are represented as a conjunction
of axioms that may take a range of forms. P12 represents a
simple case that proposition φ holds in the initial situation
s0.

(s0 � φ) (P12)

The action theory here is capable of utilizing existing so-
lutions to the frame problem, such as nonmonotonic com-
pletion or successor-state axioms (Reiter 1991). However,
since this is orthogonal to the subject of the present work,
we refer the interested reader to (McCarthy and Hayes 1969;
Shanahan 1997). We will refer to P5 to P12 together as
ProPT.

Projection and Planning
The action theory of the last section may be employed in
two main modes of reasoning. The first, consequence pro-
jection, determines the new state of the domain after a series
of events has taken place. Consequences of the type P13
may for example be used with the theory ProPT to test for
conditions that hold following the execution of a plan.

∃p∀s0.(s0 � plan) � p (P13)

The second mode of reasoning, plan synthesis, discovers a
plan of events that will cause the domain to have the con-
ditions specified in the goal. Parameterized plans may take
zero or more argument expressions as input. Here, we will
consider the case of one argument denoted by a. This may
for instance be the name of an object to be moved, or the
name of a bank account to which transfers are directed.

For the input expression variable a, we would like to find
a composite event z that makes the goal condition (a relation
on a) true for any initial situation s0. This is equivalent to
proving a goal taking the form P14.

∀a∃z∀s0 . Γ(s0, a, z) (P14)

Representation of Recursion
The technique of accomplishing a task by repeated appli-
cation of a subprocess has been shown over time to be al-
most universal in its use. The reason lies in the practical ad-
vantages that accrue with the succinctness of representation
made possible with a recursive (or to a lesser extent itera-
tive) description. For smaller examples where the domain
is fully specified a priori, it may be possible to represent
the plan in linear form (where recursive calls are unwound),
but for larger problems and problems that are incompletely
specified, it becomes impossible to represent the plan in this
flattened form.

Whenever a workflow acts on a domain whose condition
is not fully known at the time of workflow construction, its
actions must be contingent on the domain’s state (e.g., quan-
tity) at the point of invocation. The chief reason for the suc-
cinctness afforded by recursion is that it introduces parame-
terized subprocesses that allow for a conditional invocation
to more efficiently represent this contingent repetitive activ-
ity.

In PPT, we attempt to prove the goal P14. Within the plan
term z, we now introduce the function f to represent the
recursive process, and introduce a as the input parameters
passed to it on the first call. f(a) will then represent the first
invocation of the recursive process.

Recursive processes may be executed or simulated using
the reasoning apparatus we have so far. To reason about
properties of recursive plans, however, the underlying rea-
soning system must incorporate induction.

Reasoning about Recursive Plans: Induction
Recursion and induction are closely linked. We are justified
in employing inductive reasoning solely because the domain
structures under consideration are recursively defined (or al-
ternatively, are assumed to be recursively defined).

Proving properties of programs by structural induction
was suggested by (Burstall 1969), but (Floyd 1967) also
used a related approach for proving properties of flowchart
processes where the induction principle appeared implicitly.
In (Clark and van Emden 1981) flowcharts are described by
logic programs. By virtue of the equivalence of a logic pro-
gram’s minimal model and its least fixed point, consequence
verification may be viewed in terms of fixed point induction
(Park 1970) and also structural induction as used by (Boyer,
R. S. and Moore, J S. 1979).

The technique of structural induction makes use of the
constructor (or destructor) functions from a recursive defini-
tion to formulate the hypothesis of an induction rule. It may
be considered an instantiated form of (and derived from) the
more general well-founded induction. While structural in-
duction yields termination properties, it must be custom built
with a constructor (or destructor) function for each individ-
ual proof.

With well-founded induction, the choice of a suitable or-
dering relation in conjunction with a suitable induction hy-
pothesis results in an intuitive proof of goal properties, while
also conveniently yielding termination properties. Termina-
tion of a recursive routine occurs whenever there is an ab-
sence of an infinite sequence of recursive calls. This con-
dition is guaranteed by the well-foundedness requirement
of the induction used for the proof of properties (and syn-
thesis). If the induction is well founded, then there can be
no infinite sequence of recursive calls. A consequence of
the property of well-foundedness is a necessary and suffi-
cient condition for the existence of a minimal element of
any nonempty set of elements.

In earlier work, e.g., (Kraan, Basin, and Bundy 1993), it
has been usual practice to precompile a set of derived induc-
tion rules, which are then selected according to the problem.
The rules apply to particular recursive data types such as
natural numbers, sets, and lists. Here, however we will use
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well-founded induction and equip it with a well-founded re-
lation that enables the proof of the desired goal to be com-
pleted. Due to the generality of well-founded induction, we
need only one induction rule.

Workflow domains are frequently composed of real-world
structural objects, in contrast with software synthesis do-
mains whose data structures can be known beforehand. It
is thus less easy to select suitable induction rules for pre-
compilation. However, it is possible to apply particular well-
founded relations to the domains, and it is also possible to
infer the correct use of particular well-founded relations for
a given domain arrangement.

Well-Founded Induction
A well-founded relation over the set A is a relation with
no infinitely decreasing sequences of the form (... ≺ a3 ≺
a2 ≺ a1) such that ai ∈ A for all i. (A well-founded rela-
tion need not be transitive.) A consequence of the property
of well-foundedness is a necessary and sufficient condition
for the existence of a minimal element.

The set of natural numbers under the ordering < is well
founded. By contrast, the set of nonnegative real numbers
under the ordering < is not well founded due to the existence
of sequences such as (... < 1

4 < 1
2 < 1).

Well-founded induction is an inference rule with the gen-
erality to capture a wide class of induction rules. For a do-
main A, well-founded relations W , and proposition Φ, it
may be represented as an object language axiom.

∃W∈W, ∀x∈A . (∀y∈A . y≺
W

x→ Φ(y))→ Φ(x)
→ ∀x∈A .Φ(x)

Well-founded relations are of interest because of the role
they play in the well-founded induction principle: to prove
a goal ∀xΦ(x), it is sufficient, assuming an arbitrary
well-founded relation named r, to consider an arbitrary
entity x and prove Φ(x) assuming the induction hypothesis:

∀u .

[
Rel(r, u, x)→

Φ(u)

]

We may thus prove Φ(x), under the induction hypothesis
that Φ(u) holds for all entities u that are less than x under
the well-founded relation named r. (In the case in which
r is the < relation over the natural numbers, this is called
complete induction.) The action theory will be developed
accordingly in the steps below.

The most significant part of instantiating the induction
schema involves the selection of the well-founded relation.
This selection therefore becomes part of the search for a
proof and it becomes necessary to represent the ordering re-
lation in the object language.

To achieve this, a sort R for well-founded relations (vari-
ables r, r1, . . .), is added to PPT, and to represent well-
founded relation ≺

W
, we introduce a distinguished pred-

icate Rel(r, x, y) for the proposition that x and y are re-
lated through the reified relation named r. The relation
Rel(r, x, y) is linked to W by the following. For all ∀x, y∈

A, W ∈ W , ∀r ∈ R, such that r names the relation W ,
Rel(r, x, y) holds if and only if (x≺

W
y) holds.

According to the well-foundedness condition above, a
well-founded relation r is one that admits no infinite de-
creasing sequences. There are thus no infinite sequences of
entities (x1, x2, x3....) such that

Rel(r, x2, x1), Rel(r, x3, x2) and Rel(r, x4, x3) ...

To illustrate the effect in a finite blocks world, the relation
Rel(covers, a, b) says that a is less than b under r. It rep-
resents that the relation named covers, holding whenever
block a is on top of block b, is well founded because in a
given situation there are no infinite towers.

For a well-founded relation r, a plan f and a property de-
scribed by the formula Γ taking the arguments of situation s
and input expression u, we instantiate the induction schema
to the application setting as follows.

∃r∀s0∀a.

⎡
⎣ ∀s∀u.

[
Rel(r, 〈s, u〉 , 〈s0, a〉)→

Γ(s, u, f(u))

]
→ Γ(s0, a, f(a))

⎤
⎦

→ ∀s0∀a .Γ(s0, a, f(a))
(P15)

The entailment relation for the setting of recursive plans now
includes induction and may be stated as follows: assum-
ing Γ, find a suitable ordering relation ≺r such that ProPT
∧ P15 � P14. The plan may be extracted from a construc-
tive proof of the existence of z.

With the inclusion of induction, however, the theory
presents a difficulty in realization in an automated theorem
proving environment. The induction schema expresses an
infinite number of first-order rule instances that must be
available to take part in the proof as appropriate. To pro-
vide a solution to this problem, we will employ a technique
based on skolemization to re-express induction in a form
more suited to automated reasoning.

Plan formation occurs through proof of the existential
plan term contained in the query. Since the proof of exis-
tence of a plan is constrained to be constructive (proof by
contradiction is disallowed) it is possible to extract an en-
tity r0 representing a well-founded relation and an associ-
ated plan f(a) that satisfies a condition Γ(r0, a, f(a)) from
a proof of a theorem ∃r∀a∃z.Γ(r, a, z). In this goal, quan-
tified variables are constrained to range over their respective
sorts.

Further details and justification of the theoretical de-
velopment contained here may be found in an ex-
tension to this paper at http://www.ai.sri.com/
˜waldinge/recursiveplans.

Inducing a Well-Founded Relation
The method of reasoning about workflows described in pre-
vious sections relies on the availability of suitable well-
founded relations. The well-founded relation must match
the form of the inductive assertion needed for a proof of a
particular goal.
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We turn our attention now to the formation of specific
well-founded relations from a set of abstract and general
purpose orderings. The motivation for such an approach
arises from the desire to make use of a small set of general
well-founded relations rather than a particular well-founded
relation targeted to each problem domain.

If we start with a well-founded relation r on entities of
sort y, and a function f that maps entities of sort x into en-
tities of sort y, we can induce on entities of sort x a well-
founded relation induce(f, r), defined according to the fol-
lowing axiom P16.

Rel(induce(f, r), x1, x2)↔ (P16)
Rel(r, f(x1), f(x2))

As an example, let us consider taking x to be the sort of fi-
nite sets, y to be the sort of natural numbers, and f to be the
cardinality function card that yields the number of elements
in a given set. Then the relation induce(card, <) is the rela-
tion that holds between two sets x1 and x2 if x1 has fewer
elements than x2.

If r is well founded over y then induce(f, r) is well
founded over x, because if x1, x2, ... were an infinite
decreasing sequence with respect to induce(f, r), then
f(x1), f(x2), ... would be an infinite decreasing sequence
with respect to r, which is not possible.

Library Book Example Solution
We will now illustrate an application of this technique us-
ing the library example introduced earlier. Applying the
recursion-introduction rule and skolemization from previous
sections, we obtain the goal P17.

∃r∃z.(ŝ0(r, z) � z) � empty-set(book-set0(r)) (P17)

We also may assume the induction hypothesis P18 during an
attempt to find a well-founded relation r and a plan P19.

∀r∀s∀u .

[ Rel(r, 〈s, u〉 , 〈ŝ0(r, z), book-set0(r)〉)
→ [(s � return-all(book-set0(r)) �

empty-set(book-set0(r))]

]

(P18)

return-all(book-set0(r))⇐ z (P19)

P17 will achieve the specified goal condition from an arbi-
trary initial situation-input pair 〈ŝ0(r, z), book-set0(r)〉, un-
der the inductive assumption stating that recursive calls to
the desired plan will successfully achieve the specified con-
dition for any situation-input pair 〈s, u〉 that is less than the
initial situation-input pair.

The proof establishes the existence of the well-founded
relation r and the associated plan z. During the proof, the
well-founded relation r is taken to be the induced relation in-
duce( � , r), defined by the axiom P20 where f is a function
variable.

wfr( induce(f, r1), 〈s1, u1〉 , 〈s2, u2〉)↔ (P20)

wfr(r1, f(s1, u1), f(s2, r2))

The relation r1 in turn is taken to be proper-subset. By our
prior discussion of induced relations, we know that, since
proper-subset is well founded on finite sets, �proper-subset
is well founded on pairs of situations and finite sets. The
axiom tells us that, if the set book-set0 is nonempty, the event
return-one(book-set0) yields a situation in which book-set0
is a proper subset of its former self. In general, P21 holds.

if s � not(empty-set(book-set))→
wfr( proper-subset, (P21)

(s � return-one(book-set) � book-set)
(s � book-set)).

Thus, in the case in which book-set0 is nonempty, we have
(by definition of the induced relation) P22. For compactness,
induce(f, r) will be written as (f r).

wfr( � proper-subset, (P22)
〈s � return-one(book-set0), book-set0〉
〈s, book-set0〉).

In the situation in which the book set is reduced, the goal
of emptying the set entirely may be achieved by execut-
ing a recursive call. Taking s to be the initial situation
ŝ0(r, z), and then taking r to set the well-founded relation
� proper-subset, we can thus apply the induction hypothe-
sis to conclude P23.

(ŝ0( �proper-subset, z) � P23
return-one(book-set0( �proper-subset)) �
return-all(book-set0( �proper-subset)) �
empty-set(book-set0))

For the case in which the set book-set0 is already empty in
the initial situation, we can achieve the desired goal by doing
nothing, P24.

(ŝ0( �proper-subset, z) � no-op, (P24)
empty-set(book-set0))

Using an application of the conditional introduction rules,
we may now conclude that, in either case, the desired goal
is achieved through a conditional term.

(ŝ0( �proper-subset, z) � (P25)
(if (empty-set(book-set0( �proper-subset)),

no-op,
return-one(book-set0( �proper-subset)) �
return-all(book-set0( �proper-subset)) �
empty-set(book-set0(�proper-subset)))).

Hence the original goal P1 is satisfied by the program P26.

return-all(book-set0)⇐ if empty-set(book-set0), (P26)
no-op,
return-one(book-set0) ;
return-all(book-set0)

We have provided an example demonstrating how an ab-
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stract well-founded relation �proper-subset can be applied
automatically to reasoning about a practical workflow whose
purpose is to achieve a goal by a particular type of repetition,
represented here as recursion.

Axiom Set for ATP
The theory presented above has been run on the theorem
prover SNARK (Stickel, Waldinger, and Chaudhri 2001) us-
ing the axioms presented here. The plan already shown in
P26 was generated automatically as output. In these axioms,
variables are prefixed by a question mark for greater clarity.
Further details may be found in the Web extension to the
present paper.

The goal must serve two purposes and accordingly
is chosen to be a conjunction of the following atoms:
pair(?e, ?wfr) and holds(result(s0(?wfr, ?e), ?e), empty-
setx(book-setx0?wfr)). The first atom serves to identify
the two answer variables, and the second forms the goal
condition.

eq(?x, ?x) (P27)

(Reflexivity of equality.)

result(?s, no-op) = ?s (P28)

(Result no-op no op.)

result(result(?s, ?e1), ?e2) = (P29)
result(?s, compose(?e1, ?e2))

(Result of composition of events.)

compose(no-op, ?e) = ?e (P30)

(Compose no-op and event is event.)

compose(?e, no-op) = ?e (P31)

(Compose event and no-op is event.)

Holds(?s, not(?p))↔ ¬Holds(?s, ?p) (P32)

(Transparency of not.)

Holds(result(?s, if (?p0, ?e1, ?e2)), ?p)← (P33)
[Holds(?s, ?p0) ∧ Holds(result(?s, ?e1), ?p))]

(If introduction positive.)

Holds(result(?s, if (?p0, ?e1, ?e2)), ?p)← (P34)
[¬Holds(?s, ?p0) ∧ Holds(result(?s, ?e2), ?p))]

(If introduction negative.)

Holds(result(?s, return-all(?book-setx)) (P35)
(empty-setx(book-setx0, ?wfr)))←

and(Rel(?wfr, pair?s, ?book-setx),
pair(s0(?wfr, ?e), book-setx0(?wfr))))

(Recursive call achieves empty setx in reduced situation.)

Rel(induce(?fun, ?wfr), (P36)
pair(?s1, ?ex1), pair(?s2, ?ex2)) ←

Rel(?wfr, apply(?fun, ?s1, ?ex1)
apply(?fun, ?s2, ?ex2)))

(Definition of induced by fun.)

apply(val-setx, ?s, ?book-setx) = (P37)
val-setx(?s, ?book-setx)

(Apply val setx linkage.)

Rel(proper-subset, val-setx(result(?s, (P38)
return-one(?book-setx)), ?book-setx)
val-setx(?s, ?book-setx)) ←
and(Holds(?s, not(empty-setx(?book-setx))))

(Return one makes book set smaller.)

Satisfaction of Workflow Control Patterns

The representational power of the conditional recursive
plans defined in the previous sections is sufficient to describe
many important workflow control constructs. (Aalst et al.
2003) identified distinct patterns of control that are typically
required in workflow expression. Here, we select four par-
ticular patterns for their foundational characteristics, and we
identify the corresponding PPT constructs that realize them.

Workflow pattern: Sequential Activities. The Sequence con-
trol pattern provides for a sequential execution of a set of
predefined activities, such that each activity begins only af-
ter its predecessor has completed. This is represented in PPT
as a composition of events P39.

routine-A(ρ)⇐ activity1(ρ), (P39)
activity2(ρ),
activityn(ρ).

Workflow pattern: Exclusive Choice (conditional). The Ex-
clusive Choice (case statement) control pattern branches to
one of a number of new paths, subject to conditions associ-
ated with each path. However, only one path is ever chosen
even though multiple conditions may be satisfied. The key
to exclusive choice is to create a priority in the case analysis.
This ensures that we prevent more than one new path being
started in the event that more than one condition is true. P40
describes exclusive choice.

routine-A(ρ)⇐ if condition1(ρ), (P40)
body-activities1(ρ),
if condition2(ρ),

body-activities2(ρ),
if conditionn(ρ),
body-activitiesn(ρ).

Workflow pattern: Iteration (while). The iteration pattern
supports the execution of an activity or process multiple
times. The structured loop representation provided for in
this formalism is the while loop. This uses a pretest condi-
tion evaluated at the beginning of the loop prior to a con-
ditioned execution entry. Iteration is supported here by tail
recursion, and takes the form of P41.
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routine-A(ρ)⇐ if condition(ρ), (P41)
[body-activity(ρ);
routine-A(δ(ρ))],
no-op.

Workflow pattern: Recursion. A recursive structure defines
an activity in terms of itself. Although the inclusion of re-
cursion over iteration does not increase theoretical expres-
sivity, it still offers the chance to represent certain process
structures more efficiently than can be achieved using itera-
tion. It also provides greater expressivity for the acceptance
of user-generated workflows for reasoning.
A construct consists of either

- an activity(ρ), or
- a conditional if (ρ, construct1, construct2), or
- a recursive call routine-A(δ(ρ)).

Then, a recursive workflow consists of the following:

routine-A(ρ)⇐ construct1(ρ), (P42)
construct2(ρ),
constructn(ρ).

The property of termination of recursive structures applies in
a similar way to iteration in that we do not wish to have an
infinite number of recursive decompositions. This property
is linked to the existence of well-foundedness in the corre-
sponding induction rule used for recursion introduction. If
the particular rule is based on a well-founded ordering, then
we are guaranteed that the recursion will terminate.

These four control patterns together provide workflow ex-
pressivity that is Turing complete. The four control patterns
are therefore (technically) capable of expressing any work-
flow. (Strictly speaking, the presence of either pattern 3 or
4 along with 1 and 2 is sufficient for Turing completeness.)
The absence of constructs for the representation of concur-
rent processes is one dimension of enhancement necessary
for a more full workflow representation.

Specification and Consequences of Workflows
Specifying the goals that a process is to archive is an ac-
cepted method of process definition. However, there is fre-
quently information available about a process that takes al-
ternative forms. As well as specifying the goals of a desired
workflow using P14, we can state a requirement that specific
actions be incorporated into the workflow activities. For in-
stance, consider a desire to incorporate the use of a taxi into
a plan of travel. This may be achieved by substituting the
plan variable z in P14 for e1 ◦ taxi() ◦ e3.

Through the use of the two complementary methods of
goal enumeration and action enumeration, it is possible to
specify both what a task is to achieve and how it is to func-
tion. Such a dual representation is able to offer flexibility
and power for the specification of workflows in a practical
environment.

Evaluation and Discussion
There are disparate prior approaches to reasoning about re-
cursive structures. Systems for modeling workflows such

as (Kim, Spraragen, and Gil 2004) can typically represent
recursive process structures, but not reason about their prop-
erties. This remains the case even when workflow modeling
is given a logical account, as in (Cicekli and Cicekli 2006).

Planning solutions may be applied to workflow creation.
However, it has been difficult to reason about recursive plan
structures. Software synthesis methods (e.g., structural in-
duction in (Boyer, R. S. and Moore, J S. 1979)) may be
applied by viewing the workflow as a program. However,
some synthesis methods are not immediately applicable to
constructing processes from goals. Methods based on pro-
gram transformation (Burstall and Darlington 1977) rely on
a specification to contribute some structure. When the speci-
fication takes the form of goals, there is no original program
structure to transform.

As a consequence, (Boyer, R. S. and Moore, J S. 1979)
does not prove goals with existential quantification, as re-
quired for plan synthesis, and it also makes use of the
specification’s recursive structure in Recursion Analysis, the
means for induction rule selection.

(Levesque 2005) augmented planning techniques with in-
ductive generalization as an alternative means, but the gener-
ated plans are not guaranteed to be correct. (Magnusson and
Doherty 2008) used fixed-point induction to reason about it-
erative structures. However, synthesized plans are only par-
tially correct, and this allows the creation of nonterminating
plans.

In this work, we combine techniques for deductive plan-
ning and software synthesis to reason about and extract re-
cursive plans. (See (Constable and Moczydlowski 2006) for
alternative methods of extraction.) The method is based on
well-founded induction, and therefore all synthesized plans
are guaranteed to be correct and to terminate. (Bundy et al.
2006) uses several specially developed induction rules for
this purpose; however we use a single induction schema in-
stantiated with a well-founded relation. (Ball et al. 2006;
Hurd 2007) also dynamically construct a well-founded rela-
tion, but this is in the software verification setting only.

(Boyer, R. S. and Moore, J S. 1979) provide for auto-
matic generalization of the inductive hypothesis. However,
the generalizations required in practice are frequently not
discovered by the theorem prover.

Conclusion
We have developed a process language and theory for work-
flows that when combined with the method of well-founded
induction demonstrates the creation of recursive process
workflows that are guaranteed to be correct and to termi-
nate. Several examples have been demonstrated to work on
a theorem prover. A single induction schema is used, and
specialization of inductive inference is achieved with the se-
lection of a well-founded relation. The method employs a
small number of abstract well-founded relations, which are
then used as a basis to induce specific relations required for
the reasoning.

Since reasoning of this type is undecidable, future work
will examine, in more depth, suitable heuristics to accom-
pany the approach. The method of inductive hypothesis
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generalization also promises to further increase the class of
problems for which the techniques described can be applied.
This will also be the subject of further research.
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