
Partial Observability, Quantification, and Iteration for Planning
Work in Progress

Robert P. Goldman
SIFT, LLC

rpgoldman@sift.info

Abstract
“Look up all of the books for a course, and order each of
them.” This seemingly simple task cannot be planned by
any planner that we know of. Classical planners are un-
able to handle this problem because it involves information-
gathering, partial observability, and a domain of individuals
that is not known at plan time. While substantial progress
has been made in planning under incomplete information,
this kind of goal remains out of reach, because even contin-
gent planners can’t handle sensing actions that produce set-
valued results, nor can they operate over sets of unknown
cardinality.

In this paper, we present an approach for planning that
handles gathering information about sets of entities, and can
operate on these sets. Our approach extends previous work
on knowledge-based planning under partial information by
adding reasoning about sets of entities whose membership
and cardinality will be discovered only at runtime. This al-
lows us to model limited forms of iteration and branching
in the solution plans, handled by recursive planner invoca-
tion. We describe Window SHOP, a successor to SHOP2
currently under construction that incorporates our approach.
While Window SHOP is an HTN planner, the approach de-
scribed here is one of augmenting the state representation
and progression algorithms of a planner, so is readily adapt-
able to first-principles planners.

Introduction
Classical planners make assumptions of complete observ-
ability and closed worlds that are not tenable in domains
like web service composition (Wu et al. 2003), and “soft-
bots” (Etzioni 1993). In these domains, the agent cannot just
know the state of the world; it must plan to use information-
gathering actions, and must track its state of knowledge.
These domains also have an open domain of quantification.
For example, a softbot interacting with a conventional work-
station may create or delete an arbitrary number of files.
Similarly, for an agent interacting with web services for re-
tail the set of possible products, in addition to being un-
known a priori, is effectively infinite. Agents in these en-
vironments will not be able to use the tactic of the universal
base1 for dealing with universally quantified goals, as con-
ventional planners do.

The PUCCINI(Golden 1998) and PKS (Petrick and Bac-
chus 2004) planners deal with the problem of partial ob-
servability and open domains by using local closed world

1Translating a universally quantified formula into a finite con-
junction of ground formulas.

(LCW) information. Conventional planners use the closed
world assumption: they track the state of the world as a set
of ground literals, and if they want to know if some ground
literal, l holds, they can simply examine their state database:
if l is present, it is true, and if l is absent, they can treat it
as false. In open, partially observable domains, the closed
world assumption is not tenable, but full open world rea-
soning is terribly expensive. Accordingly, both PUCCINI
and PKS use techniques that couple a conventional state
database with a database of information about the limits of
the agent’s knowledge (the LCW database). When trying to
determine whether l holds, such a planner will first exam-
ine its database for l. If l is present, it holds. If l is absent,
then the agent consults the LCW. If l falls in a domain about
which the agent has LCW, then a closed world assumption
applies, and the agent knows it is false; otherwise, it is sim-
ply unknown. For example, if a softbot uses the ls com-
mand to list the contents of a directory, it will then have
LCW of all of the files in that directory. Now, if it wishes
to know if the file shop2.lisp is in that directory, it can
consult its database, and if it does not see an assertion to that
effect, it knows that shop2.lisp is not there.

In addition to using LCW, these planners also have the
ability to construct plans that contain run-time variables
(skolem functions). These run-time variables allow the plan-
ners to refer to information that will only be available to
them at run-time. For example, if we are building a plan to
order a book through the web, we might have a web service
that, given an ISBN number, will return a price. So we could
build a plan that first looks up the price for the book, checks
to see if the price is below a threshold for acceptability, and
if so, executes a credit card transaction. Note that a con-
ventional planner could not construct such a plan, because
it would need to instantiate the price at plan time and check
again at plan time to see if the price was acceptable.

We address a critical limitation that these planners share:
the inability to reason about sets of entities that will be
known only at run-time. So, for example, they could gen-
erate the plan we refer to above, to buy a certain book from
a web service. However, they would be unable to generate
a plan for a goal like: “Consult the website for my algo-
rithms course, find the list of textbooks, and order all of the
textbooks listed there.” There are three reasons for this limi-
tation: first, the planners’ run-time variables are constrained
to refer only to individuals, and not sets; second, the LCW
update algorithms are not capable of handling updates of un-
known cardinality; and third, the planners cannot generate
plans that contain loops. PUCCINI worked around some
of these limitations by interleaving planning and execution

51



and by a special-purpose technique for linking to universally
quantified goals (Golden 1997).

This paper addresses those three limitations: we introduce
extensions to the LCW reasoning schemes that permit rea-
soning about run-time information about sets of objects that
satisfy a particular description. We also introduce planning
methods that introduce iteration constructs that operate on
those sets. We are currently working on an implemnetation
of these ideas, Window SHOP, built on the ReSHOP plan-
ner (successor to SHOP2(Nau et al. 2003)). While ReSHOP
is an HTN planner, nothing here is especially particular to
HTN planning. We concern ourselves with the state repre-
sentation of the planner, and how this state representation
can be used to plan for limited cases of iteration. The results
should be readily applicable to first-principles planners, as
well.

Actions
We model actions in our domain using a modification of
PDDL, influenced by Golden’s SADL(Golden 1997) and by
description logics (Baader et al. 2003). Our actions have
preconditions (which may be complex), like PDDL actions,
but their postconditions are marked as either causal or obser-
vational. Causal effects may be conditional and are written
as follows:

(cause (forall vars (when cond
effect)))

The universally-quantification and the when-condition are
optional, giving unconditional ground efects as the degener-
ate case. Observation effects are of the following form:

(observe [dvar]2 description
[attributes])

Note that some previous systems have categorized entire ac-
tions, rather than just individual effects, as either causal or
observational. Also note that the degenerate case of the ob-
servation effect is the ground observation, as in the operator
of checking to see if the light is on in a room.

A sample operator, representing the Unix ls -l com-
mand, is given as Figure 1. If we want to know the contents
of a directory with a particular pathname,3 we can execute
the action (ls-l pth dir). As a result of this action,
we will know all the elements of dir. Additionally, for each
of those elements, we will know whether or not it is a file or
a directory. We will know the pathname of each element,
and its filesize. Finally, we will know that each element’s
parent-directory is dir.

Epistemic State
In order to handle the software and web-service domains of
interest to us, Window SHOP must be able to reason about
its own partial knowledge, and use information-gathering
actions that it can use to expand that knowledge. Window
SHOP avoids full belief-space planning, instead favoring a

2The dvar is only needed if additional attributes are specified.
3The entities are modeled separately from their pathnames to

permit renaming, etc.

(action ls-l
:parameters (pth - pathname dir - dir)
:preconditions (pathname dir pth)
:effects
(observe x
(in.dir x dir)
(and
(observe (file x))
(observe (directory x))
(observe y (pathname x y))
(observe y (file-size x y))
(observe (parent-dir x dir)))))

Figure 1: Sample action, formalization of the Unix com-
mand ls -l.

simpler incomplete, but sound representation of knowledge
state, based on the idea of local closed world (LCW) knowl-
edge(Etzioni, Golden, and Weld 1997). We have extended
previous work on LCW knowledge to cover limited cases of
reasoning about sets of individuals. We describe the compo-
nents of this knowledge state, and a method for progressing
the state over observations and actions.

Local closed world knowledge is a mechanism for over-
coming the limitations of the closed world assumption
(CWA) in domains where the classical planning assumptions
do not hold, without resorting to full first-order theorem-
proving. The CWA is not compatible with problems like
“Order all of the books for Algorithms 221,” if the planner
does not know the list of books for the course. A CWA plan-
ner will simply say that there are no books for the course,
because it doesn’t have any its KB, and call it a day. Etzioni,
et al.(1997) developed the technique of LCW as a way of in-
dicating for what propositions the CWA is valid. For exam-
ple, before reading the course syllabus, we don’t have LCW,
so when we query the set of all the books for Algorithms
221, the answer is “unknown,” not false. After reading the
syllabus, the CWA is valid, and if the agent doesn’ know
any such books, then it can conclude there are none. Et-
zioni, et al. provide algorithms for updating LCW over ob-
servations. Unfortunately, these algorithms do not provide
a full answer for updating LCW projectively, in advance of
the actual observations. That means that in order to handle
problems like the textbook problem, PUCCINI must inter-
leave planning and execution, and must block planning until
observations are actually performed. We provide projective
techniques for planning with observations here.

Golden’s PUCCINI handled operators like the one in Fig-
ure 1, but because it did not handle sets, was unable to pro-
jectively plan tasks that involved such operators. Instead it
would plan as far as it could without information, and would
then stop planning and execute observations. For many situ-
ations, this is fine, but in other cases we might want to gen-
erate so-called “universal plans,” generate plans for an inter-
preter that does not integrate planning, observation actions
might be expensive or change the state of the world, etc.

52



State components
PUCCINI’s state representation is divided into two compo-
nents:

1. A set of ground propositions, as in a conventional planner;

2. A set of LCW statements, which are universally-
quantified conjunctions.

For example, if we were to list the directory
/Users/rpg/papers/, the resulting PUCCINI state
might be as given in Table 1. The LCW assertions indicate
that the agent has complete knowledge of matching facts.
So, for example, the first LCW assertion is intended to
indicate:

(forall x
(or (know (in.dir x dp))

(know (not (in.dir x dp)))))

It’s worth noting here that this state could only be computed
after actually executing the list action; we cannot project
these effects. Note also that knowledge reflected by the
LCW assertions gets, in a sense, weaker as the number of
conjuncts increases. For example, knowing all of the files
in the directory (line 3 of the LCW in Table 1) does not
entail knowing all of the entities in the directory (line 1).
Golden (1997) provides algorithms for conservatively up-
dating the LCW database over the state updates. These al-
gorithms are efficient and sound, but not complete, in that
they may remove LCW assertions unnecessarily in some cir-
cumstances. Golden provides experimental results, based on
the softbot domain, that show that the incompleteness is not
problematic.

Let us consider what we need to do to extend this frame-
work to projective reasoning about information-gathering.
Our information-gathering actions will produce information
about the sets of entities that match some description. For
example, all of the books that are to be read for a given
class (consulting a syllabus) or all of the entities in a di-
rectory (using the ls command). This suggests incorporat-
ing in the agent’s epistemic state a component that represent
the sets whose membership that agent know, an epistemic
state component we refer to as Knowset. We do this using a
variant of the universally-quantified conjunctive representa-
tion used by PUCCINI for LCW. The representation differs
in that it permits only a single universally quantified vari-
able, and denotes the elements of the set in the description.
We are grateful to Ugur Kuter for pointing out that the con-
junctive representation may also be viewed as a description
logic concept definition. So, in the state following listing
the directory dp, the Knowset state component would in-
clude (in.dir x dp)4. An advantage of this scheme is
that we can carry over Golden’s LCW-updating algorithms
to our Knowset case almost unchanged.

The LCW assertions of PUCCINI are used simply to
check whether or not a proposition that is not in the agent’s
belief state can be assumed false. The Knowset facts, on the
other hand, specify sets whose memebership is known, and

4From now on, free variables are implicitly universally-
quantified.

about whose members we wish to predicate additional facts.
Accordingly, the elements of the Knowset must be indexed
in some ways, so that we can provide additional facts about
them. We may learn some ancillary facts about the elements
of these sets. Typically this will happen because of operat-
ing on one of these sets. So with every set in Knowset, we
store propositions that we know to hold about the elements
of the set. In this case we would have (compressed s)
(where the variable s is implicitly quantified over the mem-
bers of the set). Note that if we know all of the files that
satisfy some description D, and we compress them, then we
know additionally the set of files that satisfy D∧compressed.
However, we know more than these two facts; we also know
that D → compressed (and thus that there are no non-
compressed files in D). In the same way as unary predi-
cations, we may record property-value assertions about the
set elements.

When projecting the effects of observations, there will
also be cases where we will need to record the fact that the
agent will know at run-time whether or not a property holds
of the members of a set (although we do not know at plan-
time). For example, after we execute the ls -l action, we
will not only know all of the entries in the directory, but also
whether they are (sub)directories or normal files. So with
every set in Knowset, we store propositions about which
we have “knowif” knowledge, in this case (file s) and
(directory s) (where the variable s is implicitly quan-
tified over the members of the set). Finally, we may have
“knowval” knowledge, where we know the value of some
property (function) of the elements of a set. E.g., the ls
-l action will also supply our agent with “knowval” knowl-
edge of (size s).

To summarize, given a known set whose description is P ,
we may have:
• Plan-time knowledge about whether a proposition φ holds

of the elements: ∀(s)P (s) =⇒ Kφ(s).
• Plan-time knowledge about the value of a property, f of

the elements: for some k, P∀(s)(s) =⇒ Kf(s) = k.
• knowif(φ) for some proposition φ, free in s:

knowif(φ) ≡ ∀(s)P (s) =⇒ (Kφ(s) ∨K¬φ(s)) (1)

• knowval(f) for properties, f :

knowif(φ) ≡
∀(s)P (s) =⇒ ∀(x) (Kf(s) = x ∨Kf(s) 6= x) (2)

Note that for both knowif() and knowval() there’s a
degenerate case of no free variables in the expres-
sion. For example, knowif((compressed f1)) and
knowval((size f1)).

Initial-state modality
We also follow Etzioni, et al. in providing an initial state
modality (init). This is necessary to appropriately capture
goals that are framed in terms of descriptions of entities. For
example, in the Unix domain, a user might want to print all
the postscript files in a directory. That user would presum-
ably be (unpleasantly) surprised if the system moved addi-
tional files into the directory and printed them as well, or if

53



Ground propositions
(pathname dp "/Users/rpg/papers")
(parent-dir d1 dp)
(parent-dir d2 dp)
(parent-dir f1 dp)
(pathname d1 "/Users/rpg/papers/icaps09")
(pathname d2 "/Users/rpg/papers/workshop")
(pathname f1 "/Users/rpg/papers/.DS_store")
(file f1)
(directory dp)
(directory d1)
(directory d2)

LCW
∀(x) (parent-dir x dp)
∀(x, y) (and (parent-dir x dp) (pathname x y))
∀(x) (and (parent-dir x dp) (file x))
∀(x) (and (parent-dir x dp) (directory x))

Table 1: Example of PUCCINI’s state.

if cond known true then
add literal and LCW(literal)

else if knowif(cond) then †
add knowif(literal)

else if cond unknown then
Make literal unkown...

Figure 2: Updating state with a causal effect

it was to simply delete all the postscript files in that direc-
tory and say “look, nothing to be printed!” That goal may
be expressed as something like:

(forall (f dir)
(init (pathname dir "/Users/rpg/papers"))
(init (in.dir f dir))
(printed f))

State update
The state of the agent must be updated to reflect the pro-
jected results of executing actions. Operators are either
causal or observational, and has an effect expression which
is a conjunction of individual causal or observational effects,
respectively.

Causal effects Causal effects are of the form (when
cond (cause ex-literal)), where the only free
variables in cond are bound by the operator’s parameters,
and ex-literal is either a ground literal, or an existentially-
quantified literal, which will be skolemized. To update the
state with such an effect, Window SHOP follows the pro-
cedure given in Figure 2. With the exception of the line
marked †, this procedure is exactly as per Etzioni, et al., and
inherits their soundness. The †line is needed because Win-
dow SHOP may need to reason about a state in which the
executing agent will know whether cond is or is not true, but
for which the planning agent cannot project a truth value; its
correctness should be obvious.

Observational effects The interpretation of observational
effects is sketched in Figure 3. Observational effects are
centered around the optional description. The first branch
of the if handles the simple case where there is no descrip-
tion. Here we simply record that the agent knows if e holds.

if ground(e) then
unless s � e ∨ ¬e

add knowif(s, e)
else

;; there is a description
let s = Knowset(desc); †
foreach c in attributes ‡

if ground(c)
add know(s, c)

elsif obs(c)
;; c is a sub-observation...
if quantified(c)

add knowval(s, c)
else

add knowif(s, c)

Figure 3: Updating state, s, with observational effect, e.

We point out that this knowledge may be subsumed by more
complete knowledge of the status of e. We suppress this de-
tail in the rest of Figure 3. If there is a description present,
then we must find the corresponding set (see the line with
the †) — Window SHOP may already know such a set, or
we may need to allocate a new one. The new one must
be situated in the context of other sets because it may ei-
ther inherit information from previously-existing subsumers
or supply information to previously-known sets that it sub-
sumes. Once we have the set in hand, we populate it with
additional information (‡).

Planning with branches and loops

Our approach to epistemic planning with branches and loops
is based on recursive invocations of the planner. When plan-
ning for a branch, conditional on φ the planner will split its
state into two child states, plan recursively, and then merge
the states together and continue. To plan to apply a task to
a set, the planner will construct a new state, containing in-
formation about a representative element of the set, plan the
task recursively for this element, while creating and enforc-
ing loop invariants, and then abstract the resulting plan into
a loop. We discuss these techniques in greater detail below.

54



ReSHOP
For modeling structured knowledge about a problem do-
main, one of the best-known approaches is Hierarchical
Task Network (HTN) planning. An HTN planner formu-
lates a plan by decomposing tasks (i.e., symbolic repre-
sentations of activities to be performed) into smaller and
smaller subtasks until tasks are reached that can be per-
formed directly. The basic idea was developed in the mid-
70s (Sacerdoti 1975; Tate 1977), and the formal underpin-
nings were developed in the mid-90s (Erol, Hendler, and
Nau 1994). SHOP2 (Nau et al. 2003) is a modern, high-
performance, open-source HTN planner. ReSHOP is a
rearchitecting of SHOP2, based on object-oriented facilities
provided by CLOS, in order to make it easier to tailor and
extend SHOP2. It is used as the basis of a PDDL durative-
action version(Goldman 2006), and a conditional planning
version(Kuter et al. 2007).

In SHOP2, the domain-specific knowledge is encoded by
means of tasks (i.e., symbolic representations of real-world
activities), and task-decomposition methods that specify the
possible ways of decomposing those tasks into smaller ones.
Planning starts with a task network, specifying the tasks
to be achieved, and constraints on the order in which they
should be achieved. SHOP2 proceeds by decomposing those
tasks into smaller tasks until only primitive tasks that can di-
rectly be executed in the world is left. The primitive tasks
along with their ordering constraints constitute a solution
plan for the input planning problem.

SHOP2 uses a search-control strategy called ordered task
decomposition: the planner chooses to decompose tasks into
subtasks in the same order that the tasks are supposed to
be accomplished. As a consequence, SHOP2 generates the
steps of each plan in the same order that the plan executor
will execute those steps. Because of this search strategy,
SHOP2 knows the current state at each step of the planning
process. Since it is easier to reason about what is true than
what might be true, this makes it easy to incorporate sub-
stantial expressive power into the planning system, such as
the auxiliary functions and axioms mentioned earlier.

Information gathering
Window SHOP, like Golden’s PUCCINI, can plan
for goals of the form (forall var (implies
(description var) (goal var))). That is,
achieve goal (or perform a task) for all entities that sat-
isfy description. As with PUCCINI, Window SHOP will
decompose this task by attempting to achieve knowledge
about description, and then achieve the goal for the entities
that satisfy the description. Like PUCCINI, Window
SHOP will plan for the goal directly if it can determine the
membership of description at plan-time. However, we go
beyond PUCCINI and PKS in attempting to establish that
the agent will know the membership of the description at
some point in the plan, and can use iteration to establish the
goal propositions will hold of all elements of this set.

Conditionals
The first of the two extensions to Window SHOP’s plan-
ning is the added ability to plan conditional branch goals

of the form (if prop then-task else-task). To
do this, Window SHOP creates two new world state objects,
one for the case where prop holds, and one for the case
where its negation holds, and then recursively plans then-
task and else-task starting in those two states. If both of
these recursive planning tasks succeed, then Window SHOP
merges the two final states projected in the recursive plan-
ning processes, and continues planning any remaining tasks
from the new, merged state. Note that this method uses the
HTN planning facilities to generate conditional plans that
look like conventional programs, with embedded branches,
as distinguished from simpler conditional planners, such
as Plinth (Goldman and Boddy 1994), which created tree-
shaped plans, whose size would explode in the presence
of multiple contingencies, and from planners like Cond-
SHOP2(Kuter et al. 2007) that generate policies.

Window SHOP’s algorithm for merging states after a
branch is a conservative, sound but incomplete operation.
Recall the components of Window SHOP state: ground as-
sertions, set information and LCW. To merge states Φ and Ψ
into Φ′, we do the following:

1. Standardize the name of runtime variables and sets, so
that they agree across Φ and Ψ.

2. For each l ∈ Φg , if l ∈ Ψg , l ∈ Φ′ else if Ψ �
¬l, knowif(l) ∈ Φ′.

3. For each knowif(l) ∈ Φg , if knowif(l) ∈ Ψg then
knowif(l) ∈ Φ′.

4. For each set descriptor, d in Φ and Ψ, d ∈ Φ′.

5. For each E ∈ Phi of the form ∀x ∈ S, know(Z(x)),
where Z(x) is of the form P(x), ¬P(x), R(x, c)
¬R(x, c), if E ∈ Ψ then EinΨ′ else if Ψ �
∀x ∈ S, know(¬Z(x)) add knowif(pos(E)) where
knowif(pos(E)) is the positive form of E.

6. For each E ∈ Φ of the form ∀x ∈ S, knowif(Z(x)), if
E ∈ Ψ, E ∈ Φ′.

7. For each E ∈ Phi of the form knowval(R,S), if E ∈ Ψ
then E ∈ Ψ′.

8. For each LCW conjunction, L ∈ Φ, if L ∈ Ψ, then L ∈
Φ′.

9. There are no other elements in Ψ′.

Iteration
Window SHOP provides the ability to plan a limited form of
iteration, specifically “foreach” iteration over the elements
of a set, for example (foreach ?file in Set22
(print ?file)). Its general technique is to perform
a kind of universal instantiation on the set, synthesizing a
planner state that contains facts about a representative ele-
ment of the set. Window SHOP then invokes itself recur-
sively to plan the task – in our example, (print ?file)
– for the representative element of the set. The recursive
planning is slightly modified from normal in order to estab-
lish and maintain loop invariants. If the recursive planning
completes successfully, Window SHOP performs universal
generalization on the resulting state, and continues planning.

55



Instantiating a loop variable Recall that the Window
SHOP state contains four kinds of information about sets:
a set description, know(), knowif() and knowval(). When
we wish to loop over the set of members of a state, we
perform the equivalent of universal instantiation using
this knowledge. First, we create a unique individual,
and instantiate the set description with this individual.
So, for example, if we know the membership of the
set of all files in my home directory, arbitrarily named
Set22, Set22 = (forall ?x (and (file ?x)
(parent.dir ?x /home/rpg/))), Window SHOP
might create (and (file file0) (parent.dir
file0 /home/rpg/)). Next, Window SHOP uses
the same new individual to instantiate the know() and
knowif() expressions. The knowval() expressions are
also instantiated, but require an additional instantiation for
the slot-fillers. For example, (forall ?x in Set22
(knowval (size ?x))), must be instantiated to
(size file0 size1). Two additional steps must be
made: first, the facts about the set (Set22 here) must be
removed from the new state, and second, the LCW database
must be updated appropriately. In the above example, (LCW
(size file0 size1)) and (LCW (size file0
?x))5 will be added to the LCW state. The task, of course,
must be instantiated in parallel: (print file0).

Recursive planning and loop invariants After instanti-
ating the new state, Window SHOP proceeds to plan for
the task in that new state. However, there is one difference
between this planning and conventional ReSHOP planning.
Here, since Window SHOP is planning a loop body, it must
be sure to enforce loop invariants. In order for each step in
the recursive plan to be valid, all of its preconditions must
be satisfied. Each precondition may be satisfied in one of
two ways: either (1) that precondition is satisfied in the ini-
tial state of the loop or (2) that precondition is established
by an earlier loop step. If the precondition is satisfied in the
initial state of the plan, Window SHOP will protect the con-
dition until the end of the loop body. If the precondition is
established by an earlier loop step, no protection is needed,
because in each iteration of the loop it will be established
anew.

Two points must be made about the above technique:
First, the statement here is oversimplified. The technique
described in the previous paragraph will only work in the
absence of conditional effects of the form (when cond
effect). If a conditional effect is used to establish a pre-
condition, then the condition for that effect, cond, must be
protected, and so must any of its preconditions. Second, the
requirement here is actually too strict. If a precondition, p, is
consumed by a, it is actually acceptable that p be clobbered
after a, so long as it is reestablished by the end of the loop
body. At the moment, we have not implemented this alterna-
tive; it’s not clear to us whether it is of practical importance
in our domains.

5Because there is only one size for each file.

Generalizing the loop plan If Window SHOP success-
fully plans the loop body, then it must be generalized and
inserted in the plan so that Window SHOP can plan any re-
maining tasks. The generalization is the inverse of the oper-
ation we have described above: when Window SHOP estab-
lishes a proposition about the iteration variable, it is lifted
to apply to the full set in the state after the loop. Note that
this may require existential generalization as well as uni-
versal generalization if in the course of the loop Window
SHOP will come to learn an attribute of the iteration vari-
able. Note also that the loop may clobber knowledge of the
set over which it iterates; the semantics of the loop involves
iteration over the set elements at the time the loop com-
mences. In practice this does not happen in our problems,
and it would not create problems for the semantics of loop
execution. However, it would complicate handling goals
of the form (forall var (implies description
goal)); it is for this reason that Golden introduced the ini-
tially modality.

Related Work
In the introductory material we have already discussed some
of the most directly related work, notably that by Golden,
et al. and by Petrick.

Hoffman, et al.(Hoffmann et al. 2009) discuss a tech-
nique for doing web service composition using conformant
planning. Their work aims to address issues of entity cre-
ation and of integrity constraints over the individuals in the
domain. Their approach differs from ours in that they stay
within the now-standard framework of grounded PDDL-
style planning. The relevance of the work is that they iden-
tify a notion of “forward-effects” (and strictly forward ef-
fects) that enable them to work in a propositional framework
while accommodating entity construction. We believe that
the same notion may be used to tame some of the difficulties
of reasoning with the witness variables introduced in plan-
ning loops in our approach.

Levesque’s work on planning with loops (Levesque 2005)
is similar to our own in aiming to efficiently handle a sub-
set of possible uses of loops in plans. However, Levesque
chooses a different class of loops as his focus — those that
are required by the existence of a planning parameter that
is not bounded. His paradigm cases is of a tree that can
be felled by some number of chops from an axe, where the
number of chops is not known by the planning agent. Our
paradigm case is similar in that we are forced to use a loop
only because we do not a priori know the membership of
the set(s) of interest. However, our approach is more one of
generating a mapper than a loop, and ion general there is no
single action that could handle an arbitrary element of the
set in the way the chop action handles an arbitrary “chop-
resistance” of the tree.

Levesque’s work on planning with loops is related to pre-
vious work on cyclic planning. Most recently, Cimatti, et
al. have characterized various different types of cyclic plan-
ning (Cimatti et al. 2003), but such work dates back at least
15 years (Musliner 1994).

Srivastava et al. (Srivastava, Immerman, and Zilberstein
2008) provide a method for generalizing a plan for some set

56



of objects into a looping plan that abstracts away from a par-
ticular set of objects. This is similar to our work in its use of
a plan for representative elements, and may be more general
in the looping constructs it permits; our loops are limited
to being essentially mappers. Our work differs in aiming to
handle entities that are unknown a priori rather than gener-
alizing from known entities to arbitrary sets. It would be
interesting to compare their abstraction techinque with our
witness-based approach, and see if it provides means to gen-
eralize the loops or provide better characterizations of the
kinds of plans this technique can and cannot find.

Conclusions
This paper describes work in progress. We have designed
modifications to the ReSHOP data structures needed to cap-
ture the epistemic states described here. We have partial
implementations of the projection algorithms. We are in-
vestigating whether algorithms used for the most restrictive
classes of description logic will provide valuable assistance
in this. The greatest practical difficulties involve recogniz-
ing when knowledge may be destroyed by an action (e.g.,
by possibly changing the membership of a knownset), so
that we retain soundness, without being so conservative as
to be useless. At the same time, we are examining a number
of test domains to determine whether the limitations on our
input language are appropriate. We are also working on a
treatment of creation of new entities, which we need to han-
dle tasks like file creation for softbots and the creation of
reservations, etc. for web service applications. Finally, al-
though we believe that in many cases preplanning is critical,
we do not reject interleaving execution and planning in all
cases.

Acknowledgments
This article was supported by DARPA/IPTO and the Air
Force Research Labratory, Wright Labs under contract num-
ber FA8650-06-C-7606. Approved for Public Release, Dis-
tribution Unlimited. This paper does not represent the offi-
cial position or opinions of DARPA/IPTO or Air Force Re-
search Labratory, Wright Labs.

Our thanks to Keith Golden for helpful discussions, and
for providing us with his formalization of the Unix soft-
bot domain. Thanks also to Ugur Kuter, Ron Petrick, John
Maraist, John Phelps, Mark Burstein, Drew McDermott,
Dana Nau, and the members of the University of Maryland,
College Park SHOP research group for helpful discussions.
Thanks to Mike Pelican for discussions of LCW implemen-
tations and help with copyediting.

References
American Assoc. of Artificial Intelligence. 1994. Proceed-
ings of the Twelfth National Conference on Artificial Intel-
ligence, Menlo Park, CA: AAAI Press/MIT Press.
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P., eds. 2003. The Description Logic
Handbook — Theory, Implementation and Applications.
Cambridge University Press.

Cimatti, A.; Pistore, A.; M, R.; and Traverso, P. 2003.
Weak, strong, and strong cyclic planning via symbolic
model checking. Artificial Intelligence 147(1–2):35–84.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN plan-
ning: Complexity and expressivity. In Proceedings of
the Twelfth National Conference on Artificial Intelligence
(1994), 1123–1128.
Etzioni, O.; Golden, K.; and Weld, D. S. 1997. Sound and
efficient closed-world reasoning for planning. Artificial In-
telligence 89(1–2):113–148.
Etzioni, O. 1993. Intelligence without robots: A reply to
Brooks. AI Magazine 14(4):7–13.
Golden, K. 1997. Planning and knowledge representation
for softbots. Ph.D. Dissertation, University of Washington.
Golden, K. 1998. Leap before you look: Information gath-
ering in the PUCCINI planner. In Simmons, R.; Veloso,
M.; and Smith, S., eds., Proceedings of the Fourth Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems, 70–77. Menlo Park, CA: AAAI Press.
Goldman, R. P., and Boddy, M. S. 1994. Conditional lin-
ear planning. In Hammond, K. J., ed., Artificial Intelli-
gence Planning Systems: Proceedings of the Second Inter-
national Conference. Los Altos, CA: Morgan Kaufmann
Publishers, Inc.
Goldman, R. P. 2006. Durative planning in HTNs. In Long,
D.; Smith, S. F.; Borrajo, D.; and McCluskey, L., eds., Pro-
ceedings of the Sixteenth International Conference on Au-
tomated Planning and Scheduling, 382–385.
Hoffmann, J.; Bertoli, P.; Helmert, M.; and Pistore, M.
2009. Message-based web service composition, integrity
constraints, and planning under uncertainty: A new con-
nection. Journal of Artificial Intelligence Research 35:49–
117.
Kuter, U.; Nau, D.; Reisner, E.; and Goldman, R. P. 2007.
Conditionalization: Adapting forward-chaining planners to
partially observable environments. In Proceedings of the
ICAPS-07 Workshop on Planning and Plan Execution for
Real-World Systems.
Levesque, H. J. 2005. Planning with loops. In Kaelbling,
L. P., and Saffiotti, A., eds., IJCAI, 509–515. Professional
Book Center.
Musliner, D. J. 1994. Using abstraction and nonde-
terminism to plan reaction loops. In Proceedings of
the Twelfth National Conference on Artificial Intelligence
(1994), 1036–1041.
Nau, D.; Au, T. C.; Ilghami, O.; Kuter, U.; Murdock, J. W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN planning
system. Journal of Artificial Intelligence Research 20:379–
404.
Petrick, R. P. A., and Bacchus, F. 2004. Extending the
knowledge-based approach to planning with incomplete in-
formation and sensing. In Zilberstein, S.; Koehler, J.; and
Koenig, S., eds., Proceedings of the Fourteenth Interna-
tional Conference on Automated Planning and Scheduling,
2–11.

57



Sacerdoti, E. 1975. The nonlinear nature of plans. In
Proceedings of the 1st International Joint Conference on
Artificial Intelligence, volume 4, 206–214.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2008.
Learning generalized plans using abstract counting. In Fox,
D., and Gomes, C. P., eds., Proceedings of the Twenty-
Third National Conference on Artificial Intelligence, 991–
997. AAAI Press.
Tate, A. 1977. Generating project networks. In Proceed-
ings of the 2nd International Joint Conference on Artificial
Intelligence, 888–893.
Wu, D.; Parsia, B.; Sirin, E.; Hendler, J. A.; and Nau, D. S.
2003. Automating DAML-S web services composition us-
ing SHOP2. In International Semantic Web Conference,
195–210.

58




