
From Discrete Mission Schedule to Continuous Implicit Trajectory
using Optimal Tasks Warping

François Keith1,4, Nicolas Mansard2, Sylvain Miossec3, and Abderrahmane Kheddar1,4

1CNRS-UM2 LIRMM, Montpellier, France
2CNRS-LAAS, Toulouse, France

3PRISME-Univ. d’Orléans, Bourges, France
4CNRS-AIST JRL, UMI3218/CRT, Tsukuba, Japan

{keith, kheddar}@lirmm.fr, nmansard@laas.fr, sylvain.miossec@bourges.univ-orleans.fr

Abstract

This paper presents a generic solution to apply a mis-
sion described by a sequence of tasks on a robot while
accounting for its physical constraints, without compu-
ting explicitly a reference trajectory. A naive solution
to this problem would be to schedule the execution of
the tasks sequentially, avoiding concurrency. This solu-
tion does not exploit fully the robot capabilities such as
redundancy and have poor performance in terms of exe-
cution time or energy. Our contribution is to determine
the time-optimal realization of the mission taking into
account robotic constraints that may be as complex as
collision avoidance. Our approach achieves more than a
simple scheduling; its originality lies in maintaining the
task approach in the formulated optimization of the task
sequencing problem. This theory is exemplified through
a complete experiment on the real HRP-2 robot.

Introduction
A robot is designed to perform missions in various ap-
plication contexts. When the environment is well or par-
tially structured most missions can be hierarchically decom-
posed into a set of tasks (i.e. generic sensory-motor func-
tions) which has to be mapped into robot execution. Nu-
merous works have been proposed to compute such a se-
quence of tasks from a given mission and a set of causal
paradigms (Dechter 2003; Ghallab, Nau, and Traverso
2004). However, they generally produce a symbolic plan,
where the only numerical precisions lie on the scheduled
time data. Moreover, constraints have to be expressed un-
der a symbolic expression. Its robotic application into the
real world requires the time sequence to be refined, typically
through an applicative path planner (LaValle 2006), that will
compute the trajectories to be followed by the robot (Lamare
and Ghallab 1998). Yet, the meaning of the symbolic plan
is lost in the global trajectory. Such low-level methods lack
of robustness to environment changes or uncertainties. Con-
sequently, the remaining trajectory may have to be recom-
puted several times while the mission is being achieved.
Moreover, it is difficult (and often specifically hard coded)
to enhance the trajectory with symbolic data, that would
help re-computing only part of the plan (Py and Ingrand
2004) or distort locally the trajectory after small environ-
ment changes (Quinlan and Khatib 1993).

Rather than using a trajectory planner between the tem-
poral reasoning and its real robotic execution, we propose to
use a sensory-motor control approach based on task compo-
nents. The task function (Samson, Le Borgne, and Espiau
1991) is an elegant approach to produce intuitively sensor-
based robot objectives. Based on the redundancy of the sys-
tem, the approach can be extended to consider a hierarchical
set of tasks (Siciliano and Slotine 1991). Hierarchy of tasks
are becoming popular to build complex behavior for very re-
dundant robot such as humanoids (Mansard and Chaumette
2007; Sentis and Khatib 2006).

A task (i.e. a task function) can be directly linked to
the symbols on which the task temporal network is rea-
soning. Mission decomposition is thus executable directly
using the sensory-motor mapping of the task function. How-
ever, exclusive task sequencing on the robot produces gene-
rally jerky suboptimal movements which may look to hu-
mans as monotonous automated motions. This paper fo-
cuses on finding a solution to produce automatically an op-
timal plane/schedule that makes use of the redundancy by
enabling task concurrency. It seems difficult to use tem-
poral networks to produce a scheduling with task overlap-
ping when the tasks concurrency is restricted by phys-
ical limitations of the robot (for example obstacles or ba-
lance of a biped robot), since the constraints are not in a
discrete form. On the other hand, semi-infinite optimiza-
tion (Miossec, Yokoi, and Kheddar 2006) is known to gene-
rate low level trajectories, while accounting for such cons-
traints, but with insufficient robustness to environment un-
certainties.

In this paper, we propose to rely on task for both the sym-
bolic reasoning and control of the robot. In between, we
propose to use semi-infinite optimization to refine the sym-
bolic schedule and account for system constraints. Given a
sequence of tasks to achieve a mission, our solution returns
for each task the optimal times at which it is activated and
inactivated and the optimal parameters for the task execu-
tion. The originality of our approach lies in keeping the task
component in the formulation of this problem, which can
roughly translate to optimizing tasks overlapping by mani-
pulating tasks, i.e. the controllers as variables of the opti-
mization problem.

30



Generic Task Sequencing
Task function formalism and Stack of Tasks
Defining the motion of the robot in terms of task simply con-
sists in choosing several control laws to be applied on a sub-
part of the robot degrees of freedom (DOF).

A task is defined by a vector e (typically, the error be-
tween a signal s and its desired value, e = s − s∗). The
Jacobian of the task is noted J = ∂e

∂q , where q is the robot
configuration vector. In the following, we consider that the
robot input control is the joint velocity q̇. The equation of
motion is thus reduced to the kinematics:

ė = Jq̇ (1)

Considering a reference behavior ė∗ to be applied in the task
space, the control law to be applied on the robot whole body
is given by the least-square solution:

q̇ = J+ė∗ + Pz (2)

where J+ is the least-square inverse (Ben-Israel and Greville
2003) of J, P = I−J+J is the null-space of J and z is any
secondary criterion that will be applied without disturbing
the main task thanks to the projection into P1. A typical
requested behavior is the regulation of the error, which can
be obtained through an exponential decrease by setting:

ė∗ = −λe (3)

As mentioned earlier, (2) enables to compose a complex
behavior from a set of tasks (Siciliano and Slotine 1991;
Baerlocher and Boulic 2004; Sentis and Khatib 2006): z
can be used to fulfil a secondary task, without disturbing
the main task having priority. This nice decoupling can be
extended recursively to a set of n tasks, each new task being
fulfilled without disturbing the previous ones:

q̇i = q̇i−1 + (JiPA
i−1)+(ėi − Jiq̇i−1), i = 1 . . . n (4)

where q̇0 = 0, PA
i is the projector onto the null-space of the

augmented Jacobian JA
i = (J1, . . .Ji) and J̃i = JiPA

i−1 is
the limited Jacobian of the task i. The robot joint velocity
realizing all the tasks in the stack is q̇ = q̇n. A similar recur-
sive formulation can be obtained to compute the PA

i (Baer-
locher and Boulic 2004). The complete implementation of
this approach is proposed in (Mansard and Chaumette 2007)
under the name Stack of Tasks (SoT). The structure enables
to easily add or remove a task, or to swap the priority order
between two tasks, during the control. Constraints (such as
joints limit) can be taken into account. The continuity of the
control law is preserved even at the instant of change.

Gain handling
The simple attractor presented in (3) has the advantage to
introduce a nice exponential decrease. However, it can be
penalizing, since q̇ is directly proportional to e (3) . At the
beginning of the task, ∥e∥ reaches its higher value (strong
acceleration), while at the end of the task, ∥e∥ decreases
slowly (slow convergence).

1Eq. (2) is the least-square solution when z = 0

A very classical ’trick’ when regulating a task is to rather
use an adaptive gain λ = λ(e(t)) that depends on the norm
of the error of the task. To keep the nice property of the at-
traction, the gain only adapts with the error, and not directly
with the time. We choose the following function:

λ(e) = (λF − λI) exp
(

−∥e∥β
λF − λI

)
+ λI (5)

with λI the gain at infinity, λF the gain at regulation and β
the slope at regulation. Besides, since the gain near conver-
gence λF has to be higher than the gain at the entry λI , we
have: λI ≤ λF .

Sequence of tasks

A task sequence is a finite set of tasks sorted by order of
regulation, and eventually linked to each other. Any pair of
tasks can be either independent (i.e. they can be achieved
in parallel), or constrained (i.e. one may have to wait for
another one to be achieved, in order to make sense or to be
doable).

The sequence can be formulated into a classical temporal
network scheduling, starting at t0 and ending at tEnd. Both
values are finite and the sequence does not loop. Besides,
we may consider for the sake of clarity but without loss of
generality that each task appears only once in the sequence.

The position of a task in the sequence is defined by the
time interval during which it is maintained in the SoT. For
a given task i, this interval is noted [tIi , t

F
i ]: the task enters

in the SoT at tIi and is removed at tFi . These instants are
defined with respect to the beginning of the sequence at t0.
However, they do not indicate the achievement level of the
task: tFi may apply before the task regulation. Let’s ϵi be
the tolerance on the task regulation: a task is considered as
regulated when ∥ei(t)∥ ≤ ϵi. The regulation time tRi is
defined by ∥ei(tRi )∥ = ϵi.

Two types of tasks can be distinguished: the main tasks
and the optional tasks. The main tasks describe the basic
trajectory of the robot and have to be regulated before being
removed of the SoT. The optional tasks are aimed at locally
modifying the trajectory of the robot by creating a attractor
and do not need to be regulated.

A task sequence is characterized by a set of time-
constraints binding the schedules of two tasks ei and ej.
They can be defined as follows2: ei must begin or end once
ej has begun, has ended or has been regulated. We use the
graphical representation given by Fig. 1 and the following
notation to describe the sets of pairs of tasks ei and ej that
undergo these dependencies (ei is the direct predecessor of

2contrary to Allen Logic, that only considers the start and end
points of the time interval, here is also considered the regulation
time tR

31



j begins once i has begun
tIi ≤ tIj

j begins once i is realized
tRi ≤ tIj

j begins once i has ended
tFi ≤ tIj

j ends once i is realized
tRi ≤ tFj

j ends once i has ended
tFi ≤ tFj

Figure 1: Five time-dependency relations are considered.

ej) :

SI,I = {(ei, ej) | tIi ≤ tIj} (6a)

SR,I = {(ei, ej) | tRi ≤ tIj} (6b)

SR,F = {(ei, ej) | tRi ≤ tFj } (6c)

SF,I = {(ei, ej) | tFi ≤ tIj} (6d)

SF,F = {(ei, ej) | tFi ≤ tFj } (6e)

For example, the robot has first to grasp an object and
maintain the force closure on it (eA) before moving it (eB).
The task (eB) can only start once the task (eA) has been
regulated, and must end before the task (eA).

Continuous optimization of sequence of tasks
Given a set of hypothesis described using (6), we now pro-
pose a generic solution to automatically compute an optimal
set of task-behavior parameters and their sequencing plan to
be executed by the SoT.

General problem formulation
An optimization problem is composed of a criterion to mini-
mize, and of a set of equality and inequality constraints that
must be satisfied. Our chosen criterion is to minimize the
regulation duration of the mission.

The variables of our problem are for each task: (i) the time
of its entry, (ii) the time of its removal (from the SoT), and
(iii) the gains (λI , λF , β) which describe the task execution
behavior.

The general optimization problem is written as follows:

min
x

tEnd (7a)

subject to q̇ = SoTx(q, t) (7b)
seq(q) < 0 (7c)
ϕ(q) < 0 (7d)

∀i, tFi ≤ tEnd (7e)

The vector x gathers the optimization variables of
each task and tEnd, the duration of the mission,
x = [tI1, t

F
1 , λI

1, λ
F
1 , β1, . . . , t

I
n, tFn , λI

n, λF
n , βn, tEnd].

seq(q) and ϕ(q) are respectively the sequencing and the
robotic constraints.

The optimization criterion tEnd is computed indirectly.
An equivalent explicit definition could be given by
tEnd = max

i
(tFi ). However this constraint is not smooth.

Giving only (7b), the problem is smooth and properly
defined: at the optimal solution, tEnd will be equal to the
maximum termination time of all tasks’ tFi . Vector q is in
fact a vector of functions of time, hence constraints ϕ(q)
are semi-infinite, i.e. taking place for all the values of the
continuous variable t ∈ [t0, tEnd].

It can be shown that (7) defines a continuous optimiza-
tion problem. However, it cannot be solved directly because
of the semi-infinite nature of the constraints. Therefore we
expanded the semi-infinite constraint into a discrete form.

Constraints
Parameters x must satisfy both the sequencing and the
robotic time-constraints enumerated hereafter:

Tasks constraints, noted seq(q) gather the task sequence
conditions of (6) and the following constraints:
For each task i:

Time coherence 0 ≤ tIi < tFi ≤ tEnd (8a)

Termination condition ∥s∗i − si(tFi )∥ < ϵi (8b)

Gain consistency λI
i ≤ λF

i (8c)

The constraints (6a), (6d), (6e), (8a) and (8c) are linear.
On the contrary, the constraint (8b) is impossible to com-
pute directly using x, and is determined from a simulation
of the execution. Care has to be taken while resolving the
condition described by (6b) and (6c). Indeed, discretizing
tR to the closest simulation step will produce discontinu-
ities which may disturb the optimization process. A rather
fastidious solution to this continuity problem would be to
determine this point by interpolation. Another solution is to
reformulate them: we rather evaluate the regulation of the
task i when the task j begins. The constraint (6b) and (6c)
becomes respectively:

∀(i, j) ∈ SR,I , ∥s∗i − si(tIj )∥ ≤ ϵi (9)

∀(i, j) ∈ SR,F , ∥s∗i − si(tFj )∥ ≤ ϵi (10)

Robot constraints : ϕ(q) Those constraints are mainly
due to hardware intrinsic limitations of the robot. For now,
we realize only a kinematic simulation of the task sequence.
Thus, dynamic constraints (such as torque limits, stability
. . . ) are not taken into account. The remaining constraints
are as follows:

Joint limits qmin ≤ q ≤ qmax (11a)
Velocity limits q̇min ≤ q̇ ≤ q̇max (11b)
Collision avoidance 0 ≤ dij (11c)

32



qmin, qmax, q̇min, q̇max are respectively the lower and
upper joint limits and the lower and upper velocity limits.
dij is the distance between objects i and j. Object designate
those found in the mission’s environments and each link of
the robotic system. Hence, both collision with the environ-
ment and self-collision of the robot have to be evaluated.

All of those constraints are semi-infinite: the following
section presents how they have been tackled.

Technical aspects of the optimization resolution
Semi-infinite constraints In a first approach, we tried to
discretize the semi-infinite constraints on the basis of the si-
mulation steps grid. However, since the number of the grid
sample points changes in function of tEnd, the number of
constraints is variable. Subsequently a classical optimiza-
tion solver can not handle them.

Let c be the evaluation value of a given constraint:
(∀t ∈ [t0, tEnd], c(t) < 0). We considered associating only
one value to the constraint, cV , that is computed as follows:
If the constraint is always satisfied, then cV is the higher
value of c(t). Otherwise, it is the sum of all the violations
found at each time step. Considering that the time step
can change (e.g. when adding an interpolation point), we
choose to weight the added value by the time step δt.

Constraint by task Each task appears only once in the
sequence, but a same action can be associated to many tasks.
Associating the constraints ϕ(q) to the whole simulation
can thus raise an issue: a violated constraint can not be
linked to the responsible task. In order to compensate this
problem, we consider nT additional sets of constraint ϕ(q),
noted ϕi(q), i ∈ [1 . . . nT ], (with nT the number of tasks in
the sequence). Each set ϕi(q) is computed only when the
task i is in the SoT.

Scaling Since the constraints are not homogeneous (times,
angles, velocities, distances), they have to be normalized
based on the constraint values obtained while executing the
sequence corresponding to the initial set of parameters x0.
This simple scaling improves significantly the convergence
of the optimization.

Absolute versus relative timing
In this parameterization, the tasks are described with an ab-
solute time. As it is, decreasing tIi for a task i will not have
any direct effect on tFi : we have also to decrease tFi then
decrease tEnd: it is thus necessary to propagate the reduction
for all the following tasks. To avoid this, another paramete-
rization consists in describing the SoT entry time of a given
task with respect (i.e. relatively) to the previous one. We in-
troduce a relative timing: each task is now described by two
delays (instead of the absolute times tI and tF ), namely:

1. dtI : is the delay which occurs between (i) the maximum
time of entry or of end of the preceding tasks, and (ii) the
SoT entry time of the task in question.

2. dtF : is the delay between the SoT entry and the removal
times of the task in question.

These two delays fulfil the following equations:

tIi = max
(

max
(j,i)∈SI,I

{tIj}, max
(j,i)∈SF,I

{tFj }
)

+ dtI (12)

tFi = tIi + dtFi (13)

Subsequently, the new parameter vector is noted :
x′ = [dtI1, dtF1 , λI

1, λ
F
1 , β1, . . . , dtIn, dtFn , λI

n, λF
n , βn, tEnd].

If the task sequence is only a chain of tasks realized one
after the other, we directly have x′ = f(x), with f a linear
function, and tEnd =

∑
i

dtIi +
∑
i

dtFi

Considering this new set of parameters, the formulation
of the optimization problem changes: the tasks constraints
seq(q) are modified. We consider the following tasks on the
delay:

∀i, 0 ≤ dtIi (14)

∀i, 0 < dtFi (15)

These constraints replace the previous constraints (6a), (6d)
and (8a). Each task’s start depends on its predecessors in the
sequence. The other constraints (6e), (8b), (8c), (9) and (10)
remain unchanged.

Implementation
Optimization
At each optimization step, the solver chooses a new set of
parameters x. It then computes the constraints. Constraints
(6e) and (8c), (14) and (15), can be evaluated directly. As
stated previously, the other constraints can not be directly
computed (since they do not write in an analytical formula-
tion). They are thus evaluated using a complete simulation
of their execution. The chosen value of the current opti-
mization variable vector x is transmitted by the optimiza-
tion solver to the simulation engine. The simulation returns
the evaluation of the constraints and the optimization solver
computes a new step vector x, until convergence.

The optimization solver is chosen to be the SQP algorithm
from the MATLAB optimization toolbox. The complexity
of the optimization does not depend on the number of possi-
ble solutions for a set of tasks, but on the number of param-
eters. Our solver has a linear complexity in the number of
parameters O (P ).

Simulation
In section Generic Task Sequencing, we presented the com-
putation of desired joint velocities for a hierarchy of tasks,
as (7). The simulation is basically a numerical integration of
this equation (we used an explicit Euler integration method
with a fixed step ∆t = 0.005sec). The starting tIi and en-
ding tFi times of tasks are continuous variables that are not
aligned with the grid. Those instants are important since
they correspond to a change in the SoT and thus a change in
the control. If postponing the change of control to the next

33



time step (like on a real system) we will not have a conti-
nuous problem (hence potentially raising the same problem
described in section ). To solve this problem, the entry time
ta for a given task is added as an integration point during the
time step [t, t + ∆t], resulting in the separation of the time
step into the two smaller time steps [t, ta] and [ta, t + ∆t].

Initialization
[tI1, t

F
1 , . . . , tIn, tFn ] = computeTimes (x)

tEnd
Sim = maxi

(
tFi

)
t = 0
while (t < max (tEnd, tEnd

Sim )) do
∆t′ = findTimeStep(t)
handleStackOfTasks (t)
updateConstraints()
t = t + ∆t′

end
Algorithm 1: Tasks sequencing simulation

The algorithm 1 describes the simulation. The function
computeTimes computes the absolute times using the re-
lative times. The function findTimeStep computes the
required time step for the Euler integration: the initial ∆t, or
a smaller one if needed, due to the need of splitting this in-
terval in two. The function handleStackOfTasks com-
putes the velocity of the robot induced by to the tasks exe-
cution and integrates it, altogether with any other simulated
objects or processes, to obtain the new positions.

The simulation engine runs under the AMELIF frame-
work (Evrard et al. 2008), an interactive dynamic simu-
lator for virtual avatars which includes collision detection
and task handling according to the SoT formalism. The
execution for both simulation and real-robot control is per-
formed by a generic control framework based on (Mansard
and Chaumette 2007).

Experiment
Temporal network
The sequence of tasks (Fig. 2) describes a robot taking out a
can from the fridge. The corresponding tasks are:
• e0 Open the right gripper
• e1 Move the right arm to the fridge
• e2 Close the right gripper
• e3 Open the fridge
• e4 Close the fridge
• e5 Open the left gripper
• e6 Move the left gripper in the fridge area
• e7 Move the left gripper to the can
• e8 Close the left gripper
• e9 Lift the can
• e10 Remove the can out of the fridge
This is a complex mission that can not be split into smaller
sequences. Indeed, the sequence is centered on the fridge:
the grasping part does not make sense if the fridge is closed.

Figure 2: Sequence describing the HRP-2 taking the can in
the fridge

Figure 3: Results of the optimization of the sequence of task:
when the task is added in the SoT, its error is first regulated
(this corresponds to the dark part (red or dark blue) of the
block). From tRi , the error is nearly null and the task is kept
in the SoT (light part (yellow or cyan) of the block) until tFi .

Instead of adding an explicit timing conditions between the
tasks to ensure that this will never occur, we choose to con-
sider as constraint the collision between the left arm and the
door, in order to test task overlapping.

The constraints considered for this problem are thus se-
quencing and robotic constraints (joint position and velocity
limits), and non-colliding with the fridge.

Results of the optimization
We ran the optimization on a 3GHz desktop PC running un-
der Windows OS. No specific effort of software optimization
has been made. The sequence found is described on Fig. 3.

Each task is described by two periods: the dark one is
the achievement period [tIi , t

R
i ], the bright one is the SoT

presence period [tIi , t
F
i ].

The overlaps between the tasks of the left and the right
arm appear clearly: the left arm starts to move before the
fridge is open. It then starts to move toward the can pose
even if the fridge is not completely open. And finally, the
right arm starts to close the fridge before the left arm has
completely left the fridge area. The whole task sequence
lasts 47sec. Without these two overlaps, the robot will move
to and grasp the can (e7) only after the fridge is fully opened

34



(e3) and it will close the fridge (e4) only after the can is
completely taken out (e10); consequently the total mission
would have taken at least 71sec.

For this optimization (66 parameters and 120 constraints),
one simulation takes around 1secs. The whole optimization
process required 7 hours, mainly due to a first simplistic op-
timization scheme (in particular, gradients are estimated by
finite differences). Reducing this cost is one of our main
concerns.

Experiment on the real robot
The SoT formalism allows to directly apply the optimized
task sequence as a control law using the same task defini-
tion. The task sequence is executed by the robot HRP-2. It
is a full-size humanoid robot with 30 actuated DOF. For the
experiment, we only used the upper part of the robot (the
legs are fixed). Only the described tasks are used to com-
pute the control law (which means that no additional care is
taken for ensuring the constraints). For the tasks requiring
a haptic interaction (i.e. opening and closing the fridge) the
force sensor of the robot is used to close the loop and com-
pensate for position uncertainties. However, we did not use
a visual feedback from the robot: the configuration of the
robot, the fridge and the can were fixed and were identical
in the simulation and in the real execution.

The robot manages to grasp the can without colliding
any obstacle or joint limits, and respecting the given ve-
locity limits. The obtained execution is plotted on Fig. 4.
Thanks to the optimized gain, the convergence of the error
of the tasks that require a good precision (grasping the fridge
handler and the can) is achieved quickly. On the opposite,
the intermediary tasks (before grasping the handler and the
can, and while leaving the fridge), which have been intro-
duced only to reduce the collision with the non convex part
of the environment, are not fully achieved. This is part of
the optimization decision, in order to reduce the execution
time. Snapshots of the execution are given in Fig. 5. See
http://www.laas.fr/˜nmansard/keithfridge.avi.

Discussion and future work
The experimentation on the real robot has been made under
the strong hypothesis that the simulation matched precisely
the real execution (e.g. the position of all objects in the uni-
verse are similar, the robot follows the expected behavior).
Unfortunately, it is most likely that some unexpected modi-
fications appear, that will prevent the good execution of the
sequence.

We will work on this issue by supervising the execution
of the optimized plan during the real experiment. In partic-
ular, we plan to use the error of each task at critical times,
namely the time of tasks’ entry and removal obtained from
the optimization as references during the real experimenta-
tion (instead of times). It is likely that it’s possible to adapt
the tasks’ behavior in order to adjust the sequence in case of
small perturbations. If substencial corrections are required,
it is likely that we need to operate at the level of the task
planing and subsequently to run a new optimization.

Besides, we need to take into account the dynamic aspects

5 10 15 20 25 30 35 40 45 50

 

Approach
Grasp
Open fridge
Close fridge

5 10 15 20 25 30 35 40 45 50

 

Approach can
Grasp can
Lift can
Approach final
final

5 10 15 20 25 30 35 40 45 50
Time(sec)

 

OpenL
CloseL
OpenR
CloseR

Figure 4: Real experiments: decrease of the errors when
the optimized task scheduling is applied on the real robot:
(top) right arm tasks (middle) left arm tasks (bottom) gripper
tasks. The concurrency beween the tasks is clearly visible.

and constraints of the simulation, and we will had more per-
ception tasks such as visual interaction.

Conclusion
We devise a method which allows to optimize both the be-
havior and the overlapping scheduling of a sequence of tasks
composing a robotic mission. The solution derives from an
optimization formulation of the tasks scheduling keeping the
formalism built on the top of a task-function based control.
This allows to include the robot limitations as well as col-
lision avoidance as constraints. Our method is exemplified
through a complete simulation of a complex mission, where
we demonstrated an improvement in the smoothness of the
generated motion. For the time being, our method still needs
a predefined ordered sequence. As a future work we will
increase the autonomy by determining automatically the or-
dered sequence and compute all the necessary subtasks from
definitions of actions/objects associations.

References
Baerlocher, P., and Boulic, R. 2004. An inverse kinematic archi-
tecture enforcing an arbitrary number of strict priority levels. The
Visual Computer 6(20):402–417.
Ben-Israel, A., and Greville, T. 2003. Generalized inverses: the-
ory and applications. CMS Books in Mathematics. Springer, 2nd
edition.
Dechter, R. 2003. Constraint Processing. Morgan Kaufmann.
chapter 12, Temporal Constraint Network.
Evrard, P.; Keith, F.; Chardonnet, J.-R.; and Kheddar, A. 2008.
Framework for haptic interaction with virtual avatars. In Robot
and Human Interactive Communication (RO-MAN’08).
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated Plan-
ning: Theory and Practice. Morgan Kauffmann Publishers.
Lamare, B., and Ghallab, M. 1998. Integrating a temporal planner
with a path planner for a mobile robot. In Proc. AIPS Workshop on
Integrating planning, scheduling and execution in dynamic and
uncertain environments, 144 –151.

35



Figure 5: Hrp-2 grasping a can in the fridge.

LaValle, S. 2006. Planning Algorithms. Cambridge Univ. Press.
Mansard, N., and Chaumette, F. 2007. Task sequencing for
sensor-based control. IEEE Trans. on Robotics 23(1):60–72.
Miossec, S.; Yokoi, K.; and Kheddar, A. 2006. Development of
a software for motion optimization of robots– application to the
kick motion of the HRP-2 robot. In IEEE International Confer-
ence on Robotics and Biomimetics.
Py, F., and Ingrand, F. 2004. Dependable exec. control for auton.
robots. In IEEE/RSJ Int. Conf. Intelligent Rob. Sys. (IROS’04).
Quinlan, S., and Khatib, O. 1993. Elastic bands: Connecting
path planning and robot control. In IEEE Int. Conf. Robot. Autom.
(ICRA’93), volume 2, 802–807.
Samson, C.; Le Borgne, M.; and Espiau, B. 1991. Robot Control:
the Task Function Approach. Clarendon Press, Oxford, UK.
Sentis, L., and Khatib, O. 2006. A whole-body control framework
for humanoids operating in human environments. In IEEE Int.
Conf. Robot. Autom. (ICRA’06), 2641–2648.
Siciliano, B., and Slotine, J.-J. 1991. A general framework for
managing multiple tasks in highly redundant robotic systems. In
IEEE Int. Conf. on Advanced Robotics (ICAR’91).

36




