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Abstract

Assistive robot systems require a robot to interact
closely with people and to perform joint human-robot
tasks. Interaction with humans comes with additional
challenges to those in other real-world scenarios. Robot
plans must be especially flexible and take into account
human abilities and preferences. For providing this
level of flexibility, we propose a framework for trans-
formational reactive planning that includes the capabil-
ity to learn models of the human during plan execution.
We show how this framework can be extended to the
special requirements of human-robot interaction.

Motivation
Planning for autonomous robots is moving more and more
into real-world dynamic environments. Especially challeng-
ing environments are those where the robot interacts with
humans, for example in assistive applications. In this pa-
per, we motivate these application domains as an interesting
research for planning technology and present a transforma-
tional planning and learning framework to tackle the specific
planning problems in human-robot interaction.

People are an extremely dynamic factor in the environ-
ment, not just because of their movements and manipula-
tions in the world. Humans can change their mind on their
envisaged goal, they can interrupt a task without the robot
realizing the reason and they execute their tasks in some fea-
sible, but non-optimal way. Therefore, robots need to form
realistic expectations about human behavior and have to re-
act flexibly to unexpected events.

In such a world, it is extremely important for a robot to
have a plan about its own actions and that of the human part-
ner. Only with a human-centered plan of the whole task can
the robot show behavior that is understandable and can be
expected by the human. Equally important is the flexible
execution of such a plan considering social rules and per-
sonal preferences. We have identified two main issues when
planning for human-robot interaction:

Models of human abilities and intentions. For a robot to
cooperate with a person, we have to develop novel rep-
resentation and inference mechanisms for models about
a human’s abilities and intentions, as well as a robot’s
own skills. While some general models about human

behavior like social rules might be provided as con-
straint rules to the planner, individual preferences and
habits must be observed and learned by the robot dur-
ing the interaction with the person.

Planning techniques to produce legible behavior. For as-
sistive tasks, a robot must cooperate closely with a per-
son. This means that it must represent the person’s part
in the activity in its own plan. When generating joint
plans, the robot must consider the person’s preferences
and abilities. Even with a joint plan humans cannot be
ordered or expected to behave in ways predefined in de-
tailed plans. Daily human behavior may at any time be
observed to be exceptional such as for humans chang-
ing their minds or being diverted. Using its models, a
robot must distinguish unusual situations from normal
ones. In the latter case, it must reactively adapt its be-
havior or try to clarify the situation.

To meet these challenges, we propose a framework con-
sisting of TRANER (TRAnsformational planNER) [Müller,
Kirsch, & Beetz, 2007] — a transformational planning sys-
tem, which has optimized reactive plans in the domain of an
autonomous household robot — and RoLL (Robot Learn-
ing Language) [Kirsch, 2008] — a language extension for
continual learning and adaptation of models during program
execution. TRANER has optimized plans in the domain of
an autonomous household robot. Provided with transforma-
tion rules for joint human-robot plans that adapt the task
assignment, TRANER makes it possible to adapt plans to
human preferences. These preferences will be represented
in the form of learned models. The Robot Learning Lan-
guage (RoLL) [Kirsch, 2008] provides mechanisms to up-
date models continually with the experiences made during
plan execution. The combination of these two systems is
an extremely flexible planning and plan execution frame-
work, which allows the integration and development of spe-
cial techniques needed for human-robot interaction. The
combination of these two systems is an extremely flexible
planning and plan execution framework, which we will ex-
tend for human-robot joint activities.

In the following we present a comprehensive scenario and
point out the research challenges with respect to the two
main research topics we have identified. Then we introduce
our transformational planning and learning framework and
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Figure 1: Assisting an elderly or handicaped person in
loading the dishwasher as an interesting scenario for joint
human-robot planning.

how it can be extended for HRI applications. The paper ends
with a discussion on related work and a conclusion.

Scenario
Assistive technology is becoming more and more impor-
tant in aging societies. We propose a robot helping an el-
derly person in the household as a challenging demonstra-
tion and research scenario. Specifically, we illustrate a situ-
ation where the robot helps to load the dishwasher as shown
in Figure 1. We assume that the robot knows how to load a
dishwasher and that it has general knowledge about the abil-
ities of elderly people, but doesn’t yet know the person it is
working with.

First of all, the robot has to generate a joint human-robot
plan considering the abilities and needs of elderly people.
The robot might propose a plan in which the robot brings
the dirty dishes to the dishwasher and the person loads it.
The robot might propose this plan explicitly to the person
and then they start executing it.

One elderly user might have a severe walking impairment
and would prefer to sit down while putting the dishes into the
dishwasher. Such a user might also want the robot to hand
him objects directly (instead of putting them somewhere to
be picked up). It would also be important for this user that
the robot knows in which order the person likes to fill the
dishwasher.

Another person might be able to walk, but cannot carry
heavy objects. This person might be bored by the robot
bringing the dishes when the person is well able to get some
of them herself. Here a better way of collaboration would be
the robot and the human bringing dishes to the dishwasher.
As current robots are hardly capable of putting things into
a dishwasher, the robot would better leave the dishes on the
worktop for the person to pick them up.

To meet these personal preferences, the robot must re-
member wishes that the person expresses and observe the
person’s reactions when executing the joint plan, as well as
possible failures. It should use them for learning models
such as the person’s ability to walk and carry objects or the
time a person is willing to wait for the robot to do something.

With this new knowledge, the robot must adapt its plans
with respect to the task assignment to each partner, the or-
der of the tasks, the mode in which tasks are executed (e.g.
handing over objects versus leaving them for the other to

be picked up), the closeness of the interaction (some people
might prefer to avoid close contact with the robot), etc. The
plans must optimize the joint human-robot activity with re-
spect to legibility and meeting human preferences. Just like
a human carer, the robot should also take care not to take
over activities that the person can do on her/his own.

Even when a plan is well-adapted to the needs of a per-
son, it can happen that the person doesn’t do what the robot
expects. It could happen that a person doesn’t keep to the
proposed plan while obviously still pursuing the same goal,
e.g. when the person gets dishes himself instead of waiting
for the robot to bring them. Or a person could abandon the
plan temporarily, for example when answering the phone.
There is also the possibility that a person makes a mistake
like dropping a dish. Using its learned knowledge of the per-
son’s behavior, a robot should be able to recognize such un-
usual situations, classify them and react accordingly. Even
the reaction of the robot might depend on human preferences
— some people might prefer the robot to take over their task
while they are distracted, others would like the robot to wait
for their return.

Models for Human-Robot Interaction. The scenario
gives examples of models that the robot needs to have of
its individual user: the person’s abilities and preferences for
gripping something, the person’s habits in which order to
place objects in the dishwasher, the mobility of the person
and implied constraints for the joint plan. Beside these indi-
vidual abilities and preferences, the robot also needs knowl-
edge about general human preferences, for example the way
to approach a human or general expectations of people like
committing to a task and performing actions in a certain or-
der. In short, the robot needs representations of a person’s
abilities and skills, personal preferences and social rules.

These models fall in two classes: 1) models that should
be derived from social and psychological studies and can
be provided by hand-coded decision rules or constraints on
plans (see for example [Koay et al., 2007]), and 2) individ-
ual preferences and abilities of a user that can change over
time and should be acquired and updated constantly by the
robot in the interaction with the human. While both aspects
are important for successful human-robot cooperation, the
framework we propose for human-robot planning is espe-
cially apt for the second class of models.

Adaptive Planning. As illustrated in the scenario, the
robot needs a plan that represents the human as well as the
robot. Such a plan cannot be generated or even evaluated
without knowledge of the personal preferences and abilities
of a user. The adaptation to the user is necessary on several
layers of abstraction: on a high-level planning level when as-
signing tasks to the partners, on an intermediate level when
deciding to hand over an object or placing it somewhere, on
a lower level when deciding how to approach the person.

For plan execution in real-world scenarios, failure moni-
toring, detection and repair are essential. When collaborat-
ing with a person, the robot must also monitor the failures of
the person or other unexpected events and act appropriately.
The robot must use its models to infer if its help is necessary
or if the person can handle the failure on his/her own.
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Transformational Planner
adjusting the level of support

Projection
Test suggested plan using models for

• simulating plan execution
• assessing plan in human-centered ways

Plan
Optimized plan with
respect to efficiency,

social acceptance
and personal abilities

and preferences

Execution
Propose plan to per-

son and execute it jointly

Plan Library
Joint human-robot plans

Models
Learned from experience, including

• prediction models of human behavior and reactions (e.g. predicting the tiredness of a person)
• prediction models of robot activity (e.g. the probability of dropping an object)
• evaluation models of the plan performance (e.g. the degree of uneasiness of the person)
• activity models for recognizing human activity (e.g. the robot knowing that the person is preparing a meal)

Figure 2: Plan-based adaptive control for human-robot interaction. The upper part shows the components provided by the
transformational reactive planning framework of TRANER, the lower part describes the learning mechanism of RoLL, which
is used to provide the models.

The Planning and Learning Framework
The framework we use for adaptive transformational plan-
ning is shown in Figure 2. It makes use of two existing
systems: TRANER for transformational planning and RoLL
for continuous adaptation through learning. We first explain
the overall framework as we use it for HRI and then present
the two subsystems and necessary adaptations of the current
systems to a human-robot context.

If a robot is to achieve a goal — possibly together with
a human — it chooses a plan from its plan library that can
achieve this goal in the given situation. The current plan
library of [Müller, 2008] includes activities for setting the
table, clearing the table and preparing pasta, as well as all
lower-level plans that are necessary to fulfill these activities
like carrying objects and navigating.

Before using the plan, its usefulness in the present situa-
tion is assessed by predicting the outcomes of the plan. In a
human-robot setting this also includes the person’s reaction
and acceptance of the behavior. If the plan shows potential
for improvement, it is transformed by generic plan transfor-
mation rules.

Once a plan has been transformed sufficiently to be ex-
pected to work well in the current situation, the robot exe-
cutes the plan. During execution, it makes new experiences
about the person’s behavior and reactions and also gets data
about its own actions. With these experiences the robot up-
dates the models in its program, which it needs for reliable
plan execution as well as for plan generation.

The strength of the system doesn’t lie in individual plan-
ning techniques or learning algorithms. It rather provides an
integrated framework that allows the robot to perform better
over time by adapting its behavior in the form of plans and
its knowledge in the form of models. These adaptations hap-
pen while the robot is active and thus enables a continuous
improvement.

TRANER— Transformational Planner
TRANER [Müller, 2008] is a transformational planning sys-
tem based on the Reactive Plan Language (RPL) [McDer-
mott, 1993]. In RPL, robots do not only execute their pro-
grams but also reason about and modify them. TRANER re-
alizes planning through a generate-test cycle in which plan
revision rules propose alternative plans and new plans are
simulated in order to test and evaluate them. The unique
features of TRANER are that it can realize very general and
abstract plan revisions such as “stack objects before carry-
ing them instead of handling them one by one” and that it
successfully operates on plans in a way that they generate
reliable, flexible, and efficient robot behavior.

TRANER plans contain declarative specifications for
monitoring the robot’s behavior, signaling failures, catching
failures, and recovering from them.

The strength of the approach has been demonstrated in
household tasks in a realistic physical simulation. The gain
in efficiency of a transformed plan was up to 45% compared
to the original plan. The plans monitored eight kind of fail-
ures and the robot always recognized if a failure occurred.
86 % of the failures could be recovered from, otherwise the
robot could at least explain the type of failure.

For using TRANER in a human-robot setting, we need to
add 1) a representation in the plan language to include hu-
man activities in the plan, 2) additional plan transformation
rules and 3) a more general mechanism for evaluating plans.

1) We have complemented the plans with an additional pa-
rameter assigning a plan either to be achieved by the robot
or the human. If the plan is assigned to the human, its exe-
cution consists in waiting for the person to perform it. With
this mechanism, the TRANER failure mechanism can also
be used to observe the human and detect unusual behavior.

2) Current transformation rules include changing the or-
der of plan steps, combining plan steps and adding new in-
termediate steps. For human-robot interaction we need addi-
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tional rules for redefining the assignment of actions to part-
ners. This might also make it necessary to include additional
plan steps such as hand over activities.

3) The evaluation of joint human-robot plans faces two
difficulties compared with a non-HRI setting: Since there
are no reliable simulations of humans, we cannot test the
plans in the simulation, and the objective functions to de-
cide if a plan is appropriate has to take into account human
preferences. For both problems, we need good models of
humans. For replacing the simulation, we will use the more
general concept of plan projection, where the expected out-
come of the plan is estimated with learned models (e.g. the
exhaustion of the person after an activity, the duration of
plan steps). For assessing the quality of a plan, we also need
models of human preferences (e.g. the distance the robot
kept during plan execution, the legibility of the behavior).

RoLL— Robot Learning Language
The Robot Learning Language (RoLL) [Kirsch, 2008]
makes learning tasks executable in the control program. It
allows for the specification of complete learning processes
including the acquisition of experience, the execution of
learning algorithms and the integration of learning results
into the program. RoLL’s design allows the inclusion of ar-
bitrary experience-based learning algorithms.

Learning problems solved using RoLL include time pre-
diction models of activities and decision functions for pa-
rameters of actions. However, the power of RoLL cannot
be demonstrated by a specific learning problem, but lies in
its versatility to use arbitrary learning mechanisms and to
improve the robot’s knowledge and behavior over time.

RoLL can be used directly for learning models of humans.
One big challenge for learning predictive models — such
as the time a person needs for an activity, the probability
of needing help, the chance of succeeding in a task — is
the reliable perception and classification of human activities
[Tenorth & Beetz, 2008]. For more advanced models — like
predicting the tiredness of a person, the acceptance of a plan,
the space a person will cover during an action — the ques-
tion of how to represent and learn those models with few
experiences will have to be solved. RoLL offers the unique
possibility to test and develop new methods for learning hu-
man models. It also facilitates the use of meta-learning,
which might enable the robot to learn adequate state space
representations.

Related Work
Alami et al. (2006) develop the Human-Aware Task Planner
(HATP), which generates plans using additional constraints
of social interactions. To allow legible movements of the
robot Sisbot (2008) presents a method for human-aware mo-
tion planning including navigation and manipulation tasks
where the robot respects social rules. A reactive planning
approach for robots in human environments is described by
Shiraishi and Anzai [Shiraishi & Anzai, 1996]. Here, the
robot receives a command and has to generate a plan quickly
in order to answer if it is able to fulfill the plan. During
the execution phase the plan is transformed to perform bet-
ter. The described approach only works on very abstract

plans with unparameterized actions and the interaction with
humans is restricted to receiving commands. The human-
aware planning framework of Cirillo, Karlsson, & Saffiotti
(2008) uses predictions of the human plan to coordinate hu-
man and robot activities, but don’t support direct human-
robot interaction. In the domain of assistive technology, Pol-
lack et al. (2003) describe a flexible reminder system for
people with cognitive impairment using temporal planning
techniques.

Rogers, Peng, & Zein-Sabatto (2005) report on models
about human-robot interaction. The robot keeps track of its
interaction state, which ranges from solitude, i.e. no inter-
action to active engagement with a human partner. In the
scenario, the interaction consists of commands given by a
person to the robot instead of performing a collaborative
task. Representing spatial knowledge has been examined in
the domain of human-robot communication [Moratz et al.,
2003; Levelt, 1996]. For natural language understanding,
a common model of spatial relations is necessary. Similar
to spatial knowledge is the idea of the robot taking the hu-
man’s perspective and disambiguating commands [Trafton
et al., 2005].

Conclusion
When working in close interaction with a human, robots
must plan both for the human and themselves. In this pa-
per, we have pointed out specific challenges for plan-based
control in the domain of human-robot collaboration, with
special attention to assistive scenarios.

We have put those challenges in two categories that are
closely related to one another: 1) the representation, acqui-
sition and use of models of humans as well as their constant
maintenance and update; and 2) requirements for plan-based
robot control in joint human-robot tasks.

We propose an existing framework that combines trans-
formations of reactive plans with experience-based learning,
which produces flexible and adaptive plans. We have started
to extend this framework to be applied in human-robot as-
sistive scenarios.
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