
Acting in Partially Observable Environments
When Achievement of the Goal Cannot be Guaranteed

Alexandre Albore
Universitat Pompeu Fabra

Barcelona, Spain
alexandre.albore@upf.edu

Héctor Geffner
ICREA & Universitat Pompeu Fabra

Barcelona, Spain
hector.geffner@upf.edu

Abstract

The problem of planning in partially observable environments
can be regarded as a search problem in belief space where be-
liefs express the collection of states that are deemed possible.
In this paper we address the problem that arises when one of
the possible states is a dead-end: a state from which the goal
cannot be reached. In such situations, no contingent plan ex-
ists, and yet, such situations are common when planning with
incomplete information. For example, if a robot has to move
to a target while sensing if adjacent cells are free or not, and
the map is not known, the (hidden) state where the target is to-
tally blocked by occupied cells is possible and is a dead end.
Of course, the robot shouldn’t get paralysed in such cases;
it should move toward the target and give up only when one
such state is not only possible but certain. However, contin-
gent planning doesn’t help in obtaining such behavior, and
neither does the introduction of probabilities. A belief state
where a dead-end state is possible is itself a dead-end, and
both its worst case cost and its expected cost are infinite. One
option in such cases is to find contingent plans or policies that
maximize ’coverage’, i.e. the set of possible states for which
the solution works. This is the approach that we take in this
paper, where we extend a recent action-selection mechanism
for contingent planning, that uses a translation into classical
planning, to work in such settings. We show that such scenar-
ios are common and that the proposed mechanism has other
applications as well. In particular, it can be used to deal with
dead-end beliefs that do not contain dead-end states, and to
generate meaningful, goal-oriented behavior in solvable but
complex contingent settings where state-of-the-art contingent
planners fail.

Introduction
Consider the problem of a robot that has to move from one
position to another position in a grid, not knowing which of
the cells in the grid are free. The robot can sense which ad-
jacent cells are free and can move into an adjacent free loca-
tion. The problem can be expressed as a contingent planning
task and fed easily into a state-of-the-art contingent planner
such as Contingent FF (Hoffmann and Brafman 2005), MBP
(Bertoli et al. 2001), or POND (Bryce, Kambhampati, and
Smith 2006). The planners, however, will not help, because

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the problem has no solution. Indeed, there are ’contingen-
cies’ in the problem that prevent the agent from reaching its
destination with certainty; namely, the possibilities where
all the paths to the goal are blocked. Still, in the absence of
contingent plans, we do not want the robot to freeze. What
it should do instead is to move toward the target and give
up only when one of these possibilities turns out to be true.
Contingent planners, however, do not capture such behavior.
This limitation, all the same, does not apply only to contin-
gent planning, but to many other models of action selection
that presume that the goal can be achieved with certainty.
Indeed, the problem can be cast as a POMDP by filling in
the probabilities that each cell is free and maintaining the
goal of reaching the target with certainty (Cassandra, Kael-
bling, and Littman 1994). Yet even then, the expected cost
of reaching this target belief will be infinity as there is a non-
zero probability that the paths to the goal are blocked.1

Since contingent and POMDP problems can be cast as
search problems in belief space (Astrom 1965; Bonet and
Geffner 2000), the problems above correspond to situations
in which certain belief states are dead-ends; belief states
from which the goal beliefs cannot be guaranteed to be
reached with certainty. The belief states in the contingent
setting represent the set of states that the agent deems pos-
sible at one point. In this example, the states encode the
position of the agent and the status of the cells (free or not),
thus the initial belief state is a dead-end because it contains
states where the non-empty cells block the paths to the goal.
Those states are dead-ends in themselves as the goal cannot
be reached from them even if such states are assumed to be
observable. In contingent planning or in POMDPs, a belief
state where a dead-end state is possible, is itself a dead-end
from which the goal cannot be reached.

When planning with incomplete information, dead-end
beliefs do not arise only from dead-end states. In a medi-
cal problem, for example, where solving depends on exactly
identifying the patient’s disease, if the observations available
discard all but two possible diseases, and no therapy works
for both of them, the belief is a dead-end (no pun intended)
as the goal cannot be reached with certainty, even if each of

1Costs and rewards are often discounted in POMDPs, and that
results in expected costs and rewards to be bounded. Yet, while
discounting bounds costs, it does not produce meaningful policies
when reachability cannot be ensured.

1

the diseases could be treated separately.
In the presence of dead-end beliefs, where the achieve-

ment of the goal cannot be guaranteed, one option is to find
contingent plans or policies that maximize ’coverage’, i.e.
the set of possible states for which the solution works. Such
policies are well-defined except in the very unfortunate sit-
uations where each of the states that are deemed possible
is a dead-end. None of the scenarios above, however, falls
into this class. This is the approach that we take in this pa-
per, where we extend a recent action selection mechanism
for contingent problems to work in such settings. We show
through a number of examples that such scenarios are com-
mon and the proposed extension has other applications as
well. In particular, it can be used to generate meaningful,
goal-oriented behavior in solvable but complex contingent
settings where state-of-the-art planners fail.

The action selection mechanism on which we build is the
one formulated for the CLG planner: a contingent planner
that can work in off-line mode, for building full contingent
plans, or in on-line mode, for generating single executions
(Albore, Palacios, and Geffner 2009). In execution mode,
CLG uses the model X(P) to keep track of the beliefs, and
a relaxation of X(P) for selecting the actions. CLG relies
on a translation that maps a non-deterministic problem in
belief space P (a contingent planning problem), into a non-
deterministic problem X(P) in state space, where beliefs
are represented by means of new literals KL/t that express
epistemic conditionals: namely, that if t is true initially, then
L is true.

The advantages of building on CLG are two. First, in
many of the problems, the bottleneck is not the lack of so-
lutions, but the size of the solutions, that is exponential in
the number of possible observations. The ability of CLG to
produce goal-oriented observation/action sequences without
having to build a complete contingent plan first, is thus a
clear plus. Second, the use of the tags t in the underlying
translation, that denote assumptions about the initial situa-
tion, can be used to find contingent plans or policies that
(heuristically) maximize ’coverage’. This will be done by
extending the translationX(P) with actions that manipulate
these assumptions.

The changes result in an action selection mechanism that
we call CLG+, whose difference with CLG is that it works
in contingent problems without solutions. Thus CLG+, like
CLG, does not ’freeze’ due to the size of the contingent solu-
tions, but unlike CLG, it does not ’freeze’ either when such
solutions do not exist. As long as there is the possibility of
reaching the goal, CLG+ will go for it, making CLG+ a quite
robust and persistent action selection mechanism. We will
illustrate its behavior through a number of examples, many
of which fall outside the scope of the planners and solvers
that we are aware of.

The paper is organized as follows. We first review contin-
gent planning (Section 2), the problem of dead-ends in belief
space (Section 3), and the CLG planner (Section 4). We then
consider the extensions that make CLG+ (Section 5), and il-
lustrate its behavior over a number of examples (Section 6).
We then evaluate the overhead of CLG+ in relation to CLG
(Section 7), and end with a summary.

Contingent Planning
The contingent planning problems that we consider depart
from classical planning problems into two ways: first, the
initial situation may be uncertain, second some of the ac-
tions are sensing actions. The contingent problems are thus
tuples P = 〈F,O, I,G〉 where F stands for the fluent sym-
bols in the problem, O stands for the actions set, I for a set
of clauses over F defining the initial situation, and G for a
set of literals over F defining the goal. All the actions are
assumed to be deterministic and all uncertainty is assumed
to lie in the initial situation only.

A normal action a has a precondition given by a set of
fluent literals, and a set of conditional effects C → L where
C is a set of fluent literals and L is a literal. A literal is a
fluent or its complement, and the expression ¬L is used to
denote the complement of a literal L .

The sensing actions uncover the truth value of a fluent x
in F and are denoted as obs(x). Sensing actions can have
preconditions as any other actions, but for simplicity we as-
sume that they have no other effects.

The solution to a contingent problem P can be expressed
as a contingent plan or tree where the branches capture
the possible executions. A plan solves the problem if
all the possible executions are feasible (action precondi-
tions hold when actions are applied) and end up in goal
states (Bertoli et al. 2001; Hoffmann and Brafman 2005;
Bryce, Kambhampati, and Smith 2006).

An alternative characterization, useful for our purposes,
can be obtained from a dynamic programming formulation
(Bellman 1957; Bonet and Geffner 2000). In a contingent
problem, an agent starts in a given belief state b = b0 and
must reach a target belief bF containing only goal states. For
this, the physical effects of an action a, applicable in a belief
state b, deterministically map b into a new belief state ba:

ba = {s′ | s′ = f(a, s) , s ∈ b}

where f(a, s) is the state-transition function determined by
the effects associated with the action a in P , while the sens-
ing effects of a non-deterministically map ba into a belief
state boa:

boa = {s | s ∈ ba and s compatible with o}

where o is one of the possible observations that may arise in
ba. If we write O(b, a) to indicate the possible observations
that may arise by doing action a in b, then the cost of reach-
ing a target belief state bF from a non-target belief b, in the
worst case, can be obtained from the optimality equation:

V (b) = min
a∈A(b)

[
c(a) + max

o∈O(b,a)
V (boa)

]
with V (bF) = 0 for goal beliefs (those that include goal
states only). A(b) denotes the set of actions applicable in b;
namely, those whose preconditions are true in b, and c(a) is
the cost of the action a, assumed to be 1 by default.

The solution to the optimality equation yields the opti-
mal cost function V ∗(b) that measures the cost of reach-
ing a goal belief from b in the worst case. If action costs
are all 1, V ∗(b) provides the depth of the contingent tree

2

with minimal depth that solves the problem. In our setting,
where actions have either physical or sensing effects but not
both, O(b, a) must be set to contain just one dummy ob-
servation that is true in all states when a is a physical ac-
tion, and ba must be set to b when a is a sensing action.
For capturing expected costs rather than worst case costs,
the beliefs must be set to probability distributions, and the
equations for updating beliefs and the optimality equations
must be adjusted, with a weighted sum over the observa-
tions o ∈ O(b, a) replacing the max. The resulting model
is a POMDP (Cassandra, Kaelbling, and Littman 1994;
Bonet and Geffner 2000).

A dead-end belief in this setting is just a belief state b
with infinite cost V ∗(b), reflecting that a goal belief cannot
be reached with certainty from b. Problems where the initial
belief state b0 is a dead-end have no solution, and neither
contingent nor POMDP planners yield a behavior for them,
which is certainly a weakness of those formulations, as such
situations are common.

A dead-end state s is a state from which the goal cannot
be reached even supposing full observability. Such states
have infinite optimal costs V ∗(s) and they induce an infinite
optimal cost on the beliefs states that render them possible.
Indeed, it is easy to show that V (b) ≥ V ∗(s) =∞, either in
the contingent or POMDP settings.

Yet action should not be stopped when one of the possi-
ble scenarios is a dead-end but rather when these possibili-
ties are the only ones left. A possible principle for guiding
such an action is by following a policy obtained from a re-
laxation where the current belief is augmented with assump-
tions. These assumptions can be then confirmed or discon-
firmed as a result of the observations gathered. This process
can be iterated until reaching the goal or finding out that the
goal is unreachable. This is the approach taken in (Albore
and Bertoli 2006) where the assumptions to make are given
explicitly. In our framework, they will arise naturally from
the planning process.

Dead-Ends in Belief Space

S G

Figure 1: A 5× 5 grid.

Figure 1 shows an in-
stance of the example
used in the introduction:
a 5 × 5 grid where the
cells in the middle col-
umn, shown in gray, may
be free or not, and an
agent that is initially to the
left of this column must
move to the other side.
The status of those cells
is not known to the agent,
but the agent can move
one unit in each of the
four directions, if the corresponding destination cell is free,
and can sense the status of the adjacent cells.

The problem involves in the order of 52 × 25 states: 52

possible positions for the agent, and 25 possible configura-
tions of the cells in gray. Some of these states are not reach-
able, such as those where the agent is at cell that is not free.

The dead-end states s for this problem are quite few and cor-
respond to those in which the agent is on the left and none
of the cells in the middle column is free. These are 10 states,
and one of these 10 states is part of the initial belief state b0,
and hence b0 is a dead-end belief, and the problem has no
solution.

We fed this problem into some recent contingent plan-
ners. Contingent-FF, for example, notices right away, with-
out search, that the problem has no solution and immediately
quits. POND, on the other hand, starts searching for a solu-
tion and keeps searching for quite a while. CLG behaves
like Contingent-FF, producing an infinite heuristic value for
the initial belief state, quitting right away without doing any
search. In this case, the responses of both Contingent-FF
and CLG are adequate if the objective is the generation of
a plan that must reach the goal with certainty considering
all the possibilities. However, this is not a reasonable objec-
tive nor a requisite for an agent acting in partially observable
environments. Actually, CLG can be used in on-line mode
where it does not build a full contingent plan before the next
action is executed. In such mode, CLG becomes an action
selection mechanism that outputs the next action to do given
the past observation-action sequence. However, the heuristic
used in CLG for producing this behavior implicitly consid-
ers all the possibilities, something that makes perfect sense
if the choice is between an action that works in all cases,
and one that works only on some, but fails when the choice
is between actions none of which works in all cases.

In the absence of a policy that works in all cases, the strat-
egy that makes sense is to follow a policy that will work in
most cases, revising the policy as new observations are gath-
ered. This means actually to compute a policy assuming the
current belief not to be b, if b is a dead-end, but a belief b′
that differs minimally from b and is not a dead-end. In the
example depicted in this figure, this b′0 can be obtained by
excluding from b0 the states where all gray cells are blocked,
or more simply, by keeping only the states in which one spe-
cific grey cell is free. Such a change amounts to making an
assumption. If the assumption is found out to be wrong, it
can then be revised and replaced by another assumption if
the resulting belief state is still a dead-end.

This is the strategy that we will adopt, that fits naturally
with the CLG planner, which is built on a translation where
the assumptions t about the initial situation are part of the
language. The key idea will be to extend the translation with
actions that manipulate these assumptions.

CLG: Closed Greedy Planner
CLG is an action selection mechanism for acting in partially
observable environments that can be used in on-line mode,
for selecting the next-to-apply action on a single execution
given the past sequence of observations and actions, or in
off-line mode, for building full contingent plans (Albore,
Palacios, and Geffner 2007; 2009). For the latter task, it
has been shown to scale up better than other recent planners
such as Contingent-FF and POND, while its on-line mode
allows it to deal with problems with too many contingencies
where the construction of full contingent plans is not fea-
sible. The action selection mechanism that we propose for

3

dealing with contingent scenarios with no solutions is based
on CLG and exploits its formulation.

Translation
CLG is based on a translation that compiles beliefs away:
contingent problems P are translated into non-deterministic
but fully observable problems X(P) whose literals encode
the beliefs over P .

The translation X(P) = XT,M (P) involves two param-
eters, a set of tags T and a set of merges M , and builds on
a similar translation KT,M introduced before for mapping
conformant problems into classical problems (Palacios and
Geffner 2007). In these translations, a tag t is a set (con-
junction) of literals in P whose status in the initial situation
I is not known, and a merge m ∈ M is a collection of tags
t1, . . . , tn that stands for the DNF formula t1 ∨ · · · ∨ tn.
Tags are assumed to represent consistent assumptions about
I , i.e. I 6|= ¬t, and merges, disjunction of assumptions that
are valid in I; i.e. I |= t1 ∨ · · · ∨ tn.

The fluents in both XT,M (P) and KT,M (P), for P =
〈F,O, I,G〉 are of the form KL/t for each L ∈ F and
t ∈ T , meaning that “if t is true in the initial situation, L is
true”. In addition, KT,M (P) includes extra actions, called
merge actions, that allow the derivation of a literalKLwhen
KL/t′ has been obtained for each tag t′ in a merge m ∈M .

The translation KT,M maps a conformant problem
P = 〈F ,O,I ,G〉, into the classical problem KT,M (P) =
〈F ′,O′,I ′,G′〉 where

F ′ ={KL/t,K¬L/t | L ∈ F}
I ′ ={KL/t | if I |= t ⊃ L}
G′ ={KL | L ∈ G}
O′ ={a : KC/t→ KL/t, a : ¬K¬C/t→ ¬K¬L/t

| a : C → L in P} ∪ {
∧
t∈m

KL/t→ KL |m ∈M}

with t ranging over T and the preconditions of the actions a
in KT,M (P) including the literal KL if the preconditions of
a in P include the literal L.

The expressions KC/t and ¬K¬C/t when C =
L1, . . . , Ln, are abbreviations for KL1/t, . . . ,KLn/t and
¬K¬L1/t, . . . ,¬K¬Ln/t respectively. Similarly, KL
stands for KL/t0 where t0 is the “empty tag”. The empty
tag is assumed in all sets T .

The translation KT,M (P) is sound, and for suitable
choices of tags and merges is complete, the former mean-
ing that the classical plans that solve KT,M (P) yield valid
conformant plans for P (by dropping the merge actions), and
the latter that all conformant plans for P can be obtained in
this way.

The translation X(P) = XT,M (P) used in CLG is the
translation KT,M (P ′) of the conformant fragment P ′ of
P (i.e. P without the sensing actions) extended with two
components: an encoding of the sensing actions, expressed
as non-deterministic actions, and two deductive rules ex-
pressed as actions that extend the conformant merges.
For suitable choices of tags and merges, the translation

XT,M (P) is complete too, and a similar family of transla-
tions Xi(P) that are complete for problems with contingent
width no greater than i is defined in (Albore, Palacios, and
Geffner 2009).

The sensing actions obs(L) in P become in X(P) the
non-deterministic actions

obs(L) : ¬KL ∧ ¬K¬L → KL |K¬L ,

while the deductive rules, encoded as actions with single
conditional effects are:∧

t∈m,m∈M

(KL/t ∨K¬t) → KL

KL/t ∧K¬L → K¬t

The computational pay-off of the translation X(P) is that
it encodes beliefs by sets of literals. The translation X(P)
is solved in CLG by using a relaxation H(P) that is called
the heuristic model. This model represents a classical plan-
ning problem obtained from P by moving preconditions in
as conditions, discarding deletes, and encoding sensing ac-
tions as deterministic actions over literals ML that express
contingent knowledge and are used to encode action precon-
ditions.

Action Selection
The Closed-Loop Greedy (CLG) planner uses the execution
model X(P) = X1(P) for keeping track of beliefs, and the
heuristic model H(P) for selecting the actions to do next
in closed-loop fashion. Starting with the initial state s of
X(P) = X1(P), an action sequence π is selected for ap-
plication in s, and the loop resumes from the state s′ that
results, until s′ is a goal state in X(P). The action sequence
π is obtained using a modified version of the classical FF
planner. In FF, a single enforced hill climbing (EHC) step is
a local search that results in an action sequence π that maps
a state s into a state s′ with a better heuristic value hFF.
In this local search, the classical model is used for doing
the state progression, and its delete-relaxation for comput-
ing the relaxed plans. CLG adopts the same search strategy,
with the execution model X(P) used for the progression,
and the heuristic model H(P) used for computing the re-
laxed plans. In addition, in order to avoid the consideration
of non-deterministic actions in the local search, whenever a
“local plan” π that ends in a sensing action obs(L) is being
considered, the action sequence π is returned without fur-
ther evaluation. Notice that for an action to be considered
into the local plan, the action must have been found to be
“helpful” according to FF’s criterion.

CLG+
The modifications needed to render CLG usable in contin-
gent problems where the achievement of the goal cannot
be guaranteed, makes use of two main ideas and opens the
scope of the resulting action selection mechanism quite con-
siderably.

The key innovation in CLG+ is the introduction of as-
sumptions in the form of new actions with effect K¬t
and precondition ¬K¬t and ¬Kt. We will abuse notation

4

slightly and name those actions as K¬t. These actions form
part of both the execution model X(P) and the heuristic
model H(P). The reason for having assumptions of the
form K¬t, rather than of the form Kt, is that the former
are finer grained. For example, in a problem involving an
initial situation with an xor(x1, . . . , xn), where the tags are
ti = xi, we will be able to discard some xi without neces-
sarily committing to another one.

The second element needed is the handling of action
costs. In order to establish a preference for solutions and
relaxed solutions that work in most cases, actions that in-
volve assumptions, while feasible, are penalized with a high
cost. Then, an heuristic sensitive to costs is needed for se-
lecting the actions. In order to preserve as much of the
architecture of CLG as possible, we achieve this in CLG+
by moving from FF, as the underlying classical planner, to
FF(hs

a), a planner that retains from FF everything except the
definition and computation of the relaxed plans (Keyder and
Geffner 2008). In FF, the relaxed plans that serve to pro-
vide the heuristics and the helpful actions are computed us-
ing the relaxed plan graph. This computation, however, is
not sensitive to costs. In FF(hs

a), the relaxed plans are com-
puted recursively, very much as the heuristic estimates in
the additive heuristic. The difference between the additive
heuristic hadd and the set-additive heuristic hs

a, is that the
former propagates numbers h(p; s) that estimate the cost of
achieving the fluent p from s, while the latter propagates la-
bels π(p; s) that capture the relaxed plans for computing p
from s. While cost-sensitive relaxed plans could be obtained
from using the least expensive additive heuristic (Keyder and
Geffner 2008), the set-additive heuristic has benefits when
dealing with conditional effects, that are numerous in the
translation H(P) and are not treated well by most heuris-
tics. Indeed, the hFF heuristic treats conditional effects as
independent actions, except when the conditional effects ap-
pear in the same level of the relaxed plan graph. This choice
is rather arbitrary, as indeed, sometimes the heuristic value
of a state can be reduced by moving a conditional effect to a
successive layer. The set-additive heuristic combines for us
a sensitivity to costs with the ability to deal with conditional
effects in a more principled manner. Taking advantage of a
cost-sensitive heuristic, the cost of all the deductive actions
in X(P) and H(P) is set to 0.

A third element in the move from CLG to CLG+ is a de-
vice for preventing inconsistent assumptions from producing
arbitrary conclusions. While the deductive actions in CLG
are not deductively closed, the merge rules in the heuristic
model may result in unwarranted conclusions. In particular,
if m is a merge for the literal L, the contingent merge action∧

t∈m(KL/t∨K¬t) → KL can be used to deriveKL from
the assumptions K¬t for all t ∈ m. These assumptions are
jointly inconsistent, but nothing prevents them from being
made in a ’relaxed plan’ with a sufficiently high cost. In or-
der to avoid this, we introduce a new fluent in the language,
ok(m,L) that we keep true only when some literal KL/t is
true, and introduce this new literal as an extra condition in
the merge action. This prevents the mergem for L to trigger
if none of the literals KL/t are true.

Finally, a last issue that needs to be addressed in CLG+,

is the difference between assumptions K¬t in the execu-
tion model X(P) and the same assumptions in the heuris-
tic model H(P). Recall, that the heuristic model is used
to compute heuristic values and relaxed plans, and to indi-
cate the actions that are helpful. On the other hand, states
are progressed using the execution model, both when they
are finally selected and applied, and when they are applied
in the EHC search. The difference between an assumption
K¬t in H(P) and the same assumption in X(P) is that the
former is just ’thinking’, while the latter is ’acting’; or in
different words, the first just extends the relaxation with an
extra assumption, the second is a commitment that affects
the current beliefs. As we will see, sometimes the current
beliefs need to be changed, as for example, when there is a
single possible relevant action to make, but we are uncertain
about the status of its preconditions. If the agent is supposed
to head for the goal no matter what, as CLG+ does, then it
must then take risks: if it applies an action assuming that
its preconditions hold in the current true but hidden state,
and this is not the case, then the execution will fail. Other-
wise, it’s not a good idea to risk the execution. The asymme-
try between assumptions K¬t in the execution and heuristic
models is captured as follows. The actions to be done in
the current state s are computed first, doing an EHC search
from s, with the helpful actions but excluding the execution
of assumptions (assumptions in X(P)). If this fails, then
this EHC is repeated, considering all actions and not only
the helpful ones, but still without executing any assumption.
If this fails too, then this same EHC search is carried out
with all the actions enabled, including the assumptions in
the execution model. It is only then that assumptions may
be chosen for execution. In all cases, as in CLG, if a sensing
action is selected for application in the EHC search, the path
leading to the sensing action is selected for application. As
in CLG, this is done in order to avoid the simulation of the
non-deterministic effects of sensing in the EHC search.

Examples
We illustrate the behavior of CLG+ over a number of dif-
ferent problems. Most are meaningful contingent problems
without solutions. We include also problems with contin-
gent widths greater than 1 which are not solved by CLG, but
that CLG+ manages to solve. We divide the problems into
those with dead-ends that arise from dead-end states, those
with dead-ends that arise due to the absence of policies able
to handle all possibilities, and those that are solvable but
complex.

Problems with Dead-End States
Figure 2 shows a version of the Wumpus problem from
(Russell and Norvig 1994). In this problem, the agent shown
in the Start state must get the Gold by sorting dangerous
wumpuses and pits. We assume that the agent can move
deterministically one unit in each of the four directions, pro-
vided that in the target cell there is no wall, wumpus, or pit.2

2In the book, if the agent moves into a wumpus or pit cell, it
dies. Also agent is then armed with an arrow which can kill the
wumpus if fired properly, but does not know its position in the grid.

5

1: MOVE_P1-1_P2-1
2: MOVE_P2-1_P1-1
3: MOVE_P1-1_P1-2
4: MOVE_P1-2_P2-2
5: MOVE_P2-2_P3-2
6: MOVE_P3-2_P2-2
7: MOVE_P2-2_P2-3
8: GRAB_P2-3

Figure 2: An execution in Wumpus: hidden state shown on the
left and execution (with passive sensing) shown on the right.

Initially, the agent knows its location, but doesn’t know
where the gold is, nor where the wumpuses or pits are. The
uncertainty in the initial situation is modelled by having un-
certainty in each cell regarding whether it contains a wum-
pus, a pit, none, or both. The uncertainty on the gold lo-
cation is an XOR over all the grid cells. This is a natural
encoding of the problem, yet it makes the problem unsolv-
able, as the gold may be in a cell with a wumpus or pit, or it
may be blocked by them. The agent can sense the presence
of a wumpus in some adjacent cell by the smell (stench), the
presence of a pit in some adjacent cell by the breeze, and the
presence of the gold in its own cell by the glitter. The stench,
the breeze, and the glitter are all observable.

The figure produces the execution obtained from CLG+
by running it on the hidden state shown in the picture, where
there are 3 pits and 1 wumpus as shown, and the gold is
located at cell 2-3. For simplicity, the sensing is assumed
to be passive, meaning that all applicable sensing actions
are applied after every step. Thus, the actions shown in the
execution all refer to non-sensing actions.

In the execution, the agent starts at 1-1 knowing that there
is no wumpus or pit in the two adjacent locations. It then
moves to 2-1, where it senses no stench, and thus, that there
is not wumpus around, and a breeze, from which it con-
cludes that the only safe cell to move is 1-1. It moves there,
and from there it moves to the other known safe cell 1-2,
where it senses no breeze, and thus no pit around, but it
senses a stench. From the observations gathered so far it
concludes that there is neither a wumpus nor a pit at 2-2,
and thus that the cell is safe, and its moves there, where it
senses no stench and no breeze. It decides to move then to
3-2, but sensing a breeze there, it backs up to 2-2, heading
up now into 2-3, where it sees the glitter and grabs the gold.

In all this execution, CLG+ never commits to an action
K¬t (an assumption) in the execution, but uses many of
those actions in the construction of relaxed plans, and in the
computation of the heuristic. Indeed, in every relaxed plan
computed, it is assumed that the gold is not at a number of
locations, from which it is inferred that it must be at particu-
lar location. This is not enough though. All the relaxed plans
involve also assumptions about cells that are safe and need
to be traversed in order to reach to the position in which the

gold is suspected to be. All these assumptions are handled
automatically as actions in the heuristic model. No assump-
tions from the execution model are done.

In this problem, the translations used in CLG+ took 1.5
seconds and the execution 5.5 seconds.

Figure 3: Navigation. Initially the status of all cells other than I
and G is unknown. The hidden state is shown by indicating the free
cells in white.

Navigation in Unknown Map We consider now a ver-
sion of the problem used in the introduction, where an agent
must move from an initial location I to a target location G
in a grid where the status of all other cells is unknown (cf.
Fig. 3). Such cells can be free or not, the agent can sense
the status of adjacent cells, and can move into them if free.
The problem is not solvable, as it contains dead-end beliefs
that result from dead-end states: those in which the cells
that are not free block the goal. Arrows in the figure indi-
cate the execution that results from a particular hidden state
where the cells that are free are the ones shown in white. In
such a case, by moving and sensing, the agent follows the
path shown. Not knowing that the two cells under the goal
are blocked, the agent heads initially to the right, but having
learned that, it backtracks, going around those two cells.

In this example, the translation took 0.3 seconds and the
execution in CLG+ 0.5 seconds.

Figure 4: A boxes domain.

Learning Unknown Model We consider next a Boxes
domain, illustrated in Fig. 4, where a treasure is hidden
in one of three closed boxes. There are three levers, each
controlling the opening or closure of one box, but the agent
does not know which box. The problem is modeled with an
uncertain initial situation where an XOR is used to state that
each lever controls one box, but nothing implies that each
box is controlled by one lever. Thus, the problem where
the agent has to get the hidden treasure has no contingent
solution. The actions used to open the boxes are the push
actions:

6

(:action push_lever
:parameters (?l - lever)
:effect (and (when (controls ?l box1)

(opened box1))
(when (controls ?l box2)

(opened box2))
(when (controls ?l box3)

(opened box3))))

Similar actions are used to closed them. The agent can
check if the treasure is in a box if the box is open. For mak-
ing the task more interesting, we also ask that the boxes be
all closed at the end. This tests whether the agent is learning
the action model; namely, which lever controls which box.
Passive learning is assumed also in this case, meaning that
all applicable sensing actions are automatically applied af-
ter each normal action. In this case, the observable fluents
include whether a box is opened or closed, and whether the
treasure is or is not in an open box.

An execution that is obtained for the hidden initial state
where the treasure is in box 2, and the levers A, B, and C
control the boxes 1, 2, and 3 respectively, is given by the ac-
tion sequence: push-a, push-b, pull-a, pick-treasure, pull-b,
where the sensing actions are applied after each step. As
a result, after the first push-a action, the planner infers that
level-a controls box 1, after push-b, it infers that the lever B
controls the box 2 and that the treasure is there; it then closes
box 1, picks up the treasure, and closes box-b, applying the
knowledge gained about the lever mechanism.

In this example, the translation takes 0.04 seconds, and
the execution in CLG+, 0.08 seconds.

Problems with Pure Dead-ends Beliefs
Here we illustrate an unsolvable problem that results from
the absence of a policy that can deal with all the possible
states in the initial belief state, even though, none of these
states is a dead-end. Any policy that is taken will work for
some initial states, but not for others. Thus, in these cases,
the adoption of a policy involves ’betting’: if we are lucky,
we solve the problem, if we are not, we fail. This is different
than in the problems above where the actions of the agent
did not affect the solvability of the problem; the question
then was whether the hidden state was a dead-end state or
not.

Figure 5: Minesweeper: distribution of bombs is the hidden state

Minesweeper We consider a version of the well known
Minesweeper problem. This problem involves a grid where
each cell may contain a mine or not. Cells without a mine
must be cleared with the ’clear’ action, while cells with a
mine must be cleared with a ’sweepmine’ action. The goal
of the problem is to have all the cells cleared. Knowledge
about the location of the mines is obtained through a ’check’
action on a cell that yields a failed execution if the cell con-
tains a mine. We model this by setting ’no mine at cell’ as a
precondition of ’check cell’, and ’mine at cell’ as precondi-
tion of ’sweepmine cell’. Given the initial complete lack of
knowledge about the mine locations, the problem is unsolv-
able, and indeed, it can lead to failure after the first ’check’.
One thus must ’bet’ on the first cell to clear. The initial belief
state is thus a dead-end even if does not contain any dead-
end states. Indeed, the problem would be solvable for any
initial state if the state was observable.

In the figure, the hidden state has mines at (2;3), (3;1),
and (3;3), and the first action is to assume that there is no
mine at (1,1), and to check this position. This is the first do-
main where K¬t actions need to be executed outside of the
heuristic model, in order to obtain the knowledge about the
action preconditions. This could have led to an execution
failure if there was a bomb in (1,1). After the check at (1,1),
for the hidden state shown, the planner infers that there is no
bomb at either (1,2) or (2,1). It thus checks these two posi-
tions, and infers from the first check, that there is no mines
at (1,3) and (2,2). On the other hand, from the check at (2,1)
it infers that there must be a bomb at (3-1), since it is known
by then that there is no bomb at (2,2), and minesweeps that
bomb. The belief at that point is shown in the figure 5, where
the white cells are the ones whose status is known. It then
chooses to do a check at (3,1), that is now cleared, to find out
that (2,3) is clear, and from the resulting observations finds
out the status of the two other cells with bombs.

The instance is solved in 0.15 seconds by CLG+, with
0.13 seconds taken in the translation.

Problem with High Contingent Width
The last example is a solvable problem having contingent
width higher than 1, that both CLG and Contingent-FF fail
to solve, and where POND solves only the small instances.
CLG+, on the other hand, turns out to scale up better in this
example as a full contingent planner.

Binary Tree The problem involves a binary tree with
depth n. Starting in the root, the agent has to move to a leave
of the tree. The possible actions are to move from a node n
to its left or to its right son, if the corresponding edge is not
blocked. One of the two edges, however, is always blocked,
and the agent can find out which by doing a sensing opera-
tion at n. There are also actions for moving up in the tree.
The problem has width n, meaning that a complete Xi(P)
translation would be exponential in n. As a result, CLG that
uses the X1(P) translation does not solve the problem, and
reports an infinite heuristic value. The problem, however, is
simple, just requiring sensing at each node, and moving to
the son along the edge that is open. While CLG does not
find a solution to this solvable problem, CLG+ does: it finds

7

a full solution to trees of depth 3, 4, and 5, in 0.24 seconds,
0.99 seconds, and 3.60 seconds. POND solves the first in
0.11 seconds, the second in 0.87 seconds, and does not solve
the last one.

Scalability and Overhead

CLG CLG+
problem time #acts time #acts
ebtcs-50 11.96 149 12.88 149
ebtcs-70 34.37 209 34.13 209
medpks-50 3.23 101 3.17 101
medpks-70 9.89 141 9.10 141
medpks-99 28.77 199 27.61 199
unix-3 9.26 113 52.17 111
unix-4 120.72 240 1748.84 238
cballs-4-1 0.35 295 0.71 282
cballs-4-2 18.83 20050 56.44 20203
cballs-4-3 1537.99 1136920 T
cballs-9-1 192.16 3385 234.88 3497
cballs-9-2 T T
clog-7 0.17 210 1.12 215
clog-huge 157.94 37718 T
doors-7 10.60 2153 64.28 2145
doors-9 1042.96 46024 T
wumpus-5 1.76 732 14.31 753
wumpus-7 89.32 10681 1217.39 17256
wumpus-10 T T

Table 1: Examples to calibrate the performance and scalability of
CLG+ in relation to plain CLG. Figures shown are total time and
total number of actions in solution.
’T’ stands for time out (cut-off of 45mn or 1.8Gb of memory).

Table 1 displays the ability of CLG+ to build full con-
tingent plans over standard benchmarks, in comparison with
CLG, shown in (Albore, Palacios, and Geffner 2009) to scale
up better than Contingent-FF and POND. All the tests of this
paper are obtained on a Linux machine running at 2.33GHz
with 2Gb of RAM.

In these problems, all the additional machinery in CLG+
is not needed, and thus the difference in performance be-
tween CLG and CLG+ shows the overhead resulting from
these changes. As it can be seen, CLG+ is slower than
CLG, but it manages to solve most of the problems that CLG
can solve. These figures give an idea of how well CLG+
scales, an idea that cannot be obtained from the examples
discussed above, that are aimed at describing the functional-
ity of CLG+ rather than its scalability.

Summary
We have presented an action selection mechanism for acting
in partial observable environments where the achievement
of the goal cannot be guaranteed. As we have seen, this
is a common situation when planning with incomplete in-
formation, and yet, contingent and POMDP approaches, do
not appear to capture the behavior that is sensible in those
settings. The proposed action selection mechanism, called
CLG+, that extends the one in the CLG planner, can deal

with dead-end beliefs arising from dead-end states and situa-
tions where no strategy works in all cases, and can solve con-
tingent problems, such as those with high contingent width,
that cannot be solved by state-of-the-art planners. Like CLG
planner, CLG+ does not get paralysed due the size of con-
tingent solutions, because it does not have to build such so-
lutions in order to act. At the same time, unlike CLG, CLG+
does not get paralysed either when such solutions do not ex-
ist. As long as there is the possibility of reaching the goal,
CLG+ will go for it, making it into a robust and persistent
action selection mechanism able to work in a wide variety
of scenarios.

References
Albore, A., and Bertoli, P. 2006. Safe LTL assumption-based
planning. In Proc. 16th Int. Conf. on Planning and Scheduling
(ICAPS-06).
Albore, A.; Palacios, H.; and Geffner, H. 2007. Fast and informed
action selection for planning with sensing. In Proc. 12th Conf.
Spanish AI (CAEPIA-07). Springer.
Albore, A.; Palacios, H.; and Geffner, H. 2009. A translation-
based approach to contingent planning. In Proc. 21st Int. Joint
Conf. AI (IJCAI-09). Forthcoming.
Astrom, K. 1965. Optimal control of markov decision processes
with incomplete state estimation. J. Math. Anal. Appl. 10:174–
205.
Bellman, R. 1957. Dynamic Programming. Princeton University
Press.
Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2001.
Planning in nondeterministic domains under partial observabil-
ity via symbolic model checking. In Proc. 13th Int. Joint Conf. AI
(IJCAI-01).
Bonet, B., and Geffner, H. 2000. Planning with incomplete infor-
mation as heuristic search in belief space. In Proc. of AIPS-2000,
52–61. AAAI Press.
Bryce, D.; Kambhampati, S.; and Smith, D. E. 2006. Planning
graph heuristics for belief space search. Journal of AI Research
26:35–99.
Cassandra, A.; Kaelbling, L.; and Littman, M. L. 1994. Acting
optimally in partially observable stochastic domains. In Proc.
AAAI, 1023–1028.
Hoffmann, J., and Brafman, R. 2005. Contingent planning via
heuristic forward search with implicit belief states. In Proc. 15th
Int. Conf. on Automated Planning and Scheduling (ICAPS-05).
Keyder, E., and Geffner, H. 2008. Heuristics for planning with
action costs revisited. In Proc. European Conf. AI (ECAI-08).
Palacios, H., and Geffner, H. 2007. From conformant into classi-
cal planning: Efficient translations that may be complete too. In
Proc. 17th Int. Conf. on Planning and Scheduling (ICAPS-07).
Russell, S., and Norvig, P. 1994. Artificial Intelligence: A Modern
Approach. Prentice Hall.

8

