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Abstract

In most real-world problems of decision under uncertainty,
continuous state variables (for instance: fuel level) are to
be taken into account. The Hybrid Markov Decision Pro-
cesses (HMDP) framework allows one to directly model both
continuous and discrete components of the state space. The
main issues with HMDPs are: how to compactly represent the
value function (reward expectation) and how to efficiently up-
date it (perform Bellman backup) on the hybrid state space?
In the general case, closed-form computation for the update
is intractable without model simplification, especially when
updating the value function over the whole state space, and
any compact representation of the value function has to be an
approximation of the result of this update.
We present HRTDP, an algorithm which lifts any restriction
on the transition function representation, while allowing com-
pact representation of the value function. This is done us-
ing asynchronous backups on only some parts of the hybrid
state space, approximated with sampling techniques, and us-
ing state-of-the-art regression techniques to obtain a compact
(while precise) representation for the value function. It also
benefits from recent advances in discrete forward stochas-
tic planning: partial policy construction relying on domain-
independent relaxation heuristic, and extends this framework
to hybrid domains. We demonstrate the relevance of our ap-
proach on instances of two large hybrid planning domains
with complex transition functions: search-and-rescue and air-
port ground traffic management.

Introduction
Despite recent advances, autonomous decision-making is
still a challenge in real-world scenarios. One cause is that
such scenarios involve intrinsic non-determinism in large
spaces. One solution for building autonomous controllers is
to compute off-line partial policies instead of plans, that is a
mapping of a subset of the possible states to actions. Markov
Decision Processes (MDPs) have been recently shown to be
able to deal with large state spaces with probabilistic mod-
elling of the non-determinism, particularly using forward
heuristic search in order to prune the search space. But an-
other major issue to handle real-world problems is the con-
tinuous nature of some features. Typically, resources of an
agent cannot be handled natively in the MDP framework.
Generally, such features of the domain are discretized, mak-
ing the size of the state space of the MDP exponentially

larger, while loosing precision in the representation of these
continuous features.

Hybrid MDPs (i.e. definition of the state space in form
of a cross-product of discrete state variables and continuous
state variables) allow a compact representation of such large
MDPs with continuous features, as we will show in next sec-
tion. Within this framework, real-world problems can be
easily modelled, we present two examples of such modeling
in the next section. As far as the authors know, there have
been surprisingly few work in the domain of hybrid MDPs,
as we will see. The main obstacles for solving HMDPs are:
the representation of the expectation of rewards (the value
function) over the hybrid state space (because of the infinite
support); and the calculation of the update of the value func-
tion, the Bellman backups (because of the hybrid integration
over dependent continuous and discrete variables). In order
to solve such problems, one needs to have an approximation
of the value function, and a way to compute the updates ef-
ficiently. Previous approaches propose to restrict possible
transition functions and value function representations in or-
der to be able to solve both these problems.

The main contribution of this work is to lift such restric-
tion by using asynchronous updates of the value function.
This is done by adapting (discrete) MDP forward heuris-
tic sampling over trajectories, and representing compactly
the value function using machine-learning techniques. We
will explain what is needed for such adaptation (third sec-
tion) and will show that recent advances in the domain of
machine learning (particularly classification and regression)
can be used in the core of the algorithm, and what kind of ap-
proximations can be used for the Bellman backup itself. It is
worth noting that while using machine learning techniques
for representation of some functions in our algorithm, we
do not learn the policy in the sense of reinforcement learn-
ing, we prefer to use “classical” forward heuristic search and
asynchronous Bellman backup. We will show the effective-
ness of our approach in last section.

Solving Hybrid Markov Decision Processes
Definition 1. A Hybrid Markov Decision Process (HMDP)
is a tuple 〈S,A, T,R〉 where:
• S =

⊗p
i=1 Vci ×

⊗q
i=1 Vdi is a cartesian product of p

continuous state variables and q discrete state variables.
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A state s ∈ S is an instantiation of all state variables:
s =

(
vc1, · · · , vcp, vd1 , · · · , vdq

)
.

• A is the set of actions ; we assume all actions are enu-
merated and discrete. Each action a ∈ A is applicable
over a set of states Sa.
• T : S × A × S → [0, 1] is a transition function which
models the probability of action outcomes ; it is a prob-
ability density function over continuous variables whose
integration gives the probability of discrete variables.
• R : S × A× S → R is the reward function ; R(s, a, s′)
is the reward earned when going to state s′ from state s
by applying action a.

We assume all continuous variable domains are in any
subsets of R, and the action space is discrete. The optimiza-
tion of a HMDP consists in computing the policy π∗ : S →
A which maximizes the mean over all possible state trajec-
tories of the discounted accumulated rewards over an infi-
nite time horizon: π∗(s) = arg max

π∈AS
E
[∑+∞

t=0 γ
trt | s0, π

]
where 0 < γ < 1 is the discount factor.

Related Work
As we will show in example domains, the main difficulty
comes from the Bellman backups in hybrid domains. As
the state space is composed with both discrete and hybrid
components, the form of the exact summation is intractable
in the general case. Another issue is the representation of the
value function itself, which can be of any form, thus needs
to be approximated in some way. The authors are aware
of two main types of algorithms for solving hybrid Markov
decision processes. The first one is the HALP framework
(Kveton, Hauskrecht, and Guestrin 2006) ; while the other
one is the adaptation of AO∗ to hybrid domains, named HAO∗
(Meuleau et al. 2009).

The HALP framework pioneered the domain of hybrid
MDPs using approximate linear programming by projecting
value function on a finite set of basis functions, discretizing
continuous state variables and using mixture of beta transi-
tion models only. The linear programming formulation of
the MDP uses an infinite set of linear constraints for each
(s, a) pair. The main criticisms for this approach are that the
authors use a set of “basis” functions on which they project
the value function, they give severe restrictions on the form
of the state transitions functions and on the basis functions
in order to perform exact backups, and they truncate the in-
finite set of constraints in order to be able to solve the lin-
ear problem. While deteriorating the quality of the solution,
these model restrictions require complex implementations.
Another issue is the required use of a relevant density func-
tion that models the weight of each state in the optimization,
what can be hard to define for some problems. Automated
generation of a good set of basis function has been recently
proposed in (Kveton and Hauskrecht 2006), as well as the
use of more general transition functions and approximation
techniques (Kveton, Hauskrecht, and Guestrin 2006), which
shows that the authors are well-aware of these limitations,
but they are still not completely lifted.

In the HAO∗ algorithm, the authors extend the AO∗ al-

gorithm to hybrid domains. The authors perform an exact
backup on the whole continuous state space and represent
the value function as a piecewise linear function, organized
as kd-trees (in current implementation), and explore the state
space in a “classical” tree search, grouping states that have
same values. So the exact backup solution requires the use of
expensive linear programming techniques in order to update
the vectors of the piecewise linear value function in Bellman
backups. We can see two main issues with this approach: the
backup operation itself is extremely heavy and is dependent
on the representation used for the value function. Further-
more, current implementations of HAO∗ cannot deal with cy-
cles (existing in our domains) because of the representation
of the value function currently used, and moreover because
it heavily relies on a heuristic that is domain-dependent (and
that can be generalized only for domain without cycles).

We can also cite (Li and Littman 2005), in which the au-
thors use a lazy approximation scheme for the value function
but still need to go through piecewise linear constant repre-
sentation, and (Marecki, Koenig, and Tambe 2007) in which
it is approximated as phase-type distributions. While these
representations are sound and efficient, they do not entirely
solve the problem of the backups.

The curse of exact backups; proposed approach
One should notice that the need for exact backup comes
from the fact that all these algorithms perform the Bellman
backup on the whole (or reachable) state space at the same
time. So they have to be able to have a closed-form inte-
gration, once again done with exact backup then approxima-
tion of the representation. We propose a radically different
approach, based on the combination of smart forward sam-
pling (made easy by the use of the RTDP (Barto, Bradtke,
and Singh 1995) algorithm framework), and online machine
learning techniques, especially of regression algorithm used
to represent the value function (and confidence in this ap-
proximation) within constant (or limited) memory use.

Our claims are the following: the value function should
be represented locally (the global value function should be
decomposed into several value functions defined only over
parts of the state space), and the limited support of this
reprensentation lifts the need for a complex approximation
scheme along with closed-form integration. Then, thanks to
asynchronous updates of the value function (like in RTDP),
it is sound to update only a local representation of the value
function for one subset of states Si (we do not need to eval-
uate the value function for the whole state space at the same
time like other approaches do by using linear programming).
Using this local representation of the value function, sam-
pling techniques can be used in order to approximate the
Bellman integration, allowing to take into account only the
states that are reachable from Si (we do not need to per-
form the Bellman integration over the whole state space,
neither the whole reachable state space). Furthermore, ma-
chine learning techniques allow to represent value functions
locally efficiently (typically, only regression is needed).

This approach also has interesting theoretical properties:
first, as we consider only local representation of the value
function and approximation of the Bellman backups using
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sampling, it is possible to deal with any transition function:
we do not need any specific or restrictive form for the tran-
sition function, contrary to other approaches. Furthermore,
RTDP has a very interesting anytime behavior, which will
be reproduced by our algorithm as shown further in the Ex-
perimental results section. Finally, as we are performing a
forward exploration (the RTDP trials), we can focus not only
on the most reachable states, but also on the part of the space
where the confidence on the knowledge of the value function
is low, hopefully allowing a quicker convergence.

Example domains
We present two examples of stochastic planning domains
with both discrete and continuous state variables, and cycles
in the transition graph. The first one has a lot of discrete state
variables, what makes the search in the planning graph hard
because of the curse of dimensionality phenomenon (Bell-
man 1957). The second one contains many continuous state
variables, so that it is challenging for efficient approximation
of functions of continuous variables.

Search-and-rescue In the search-and-rescue mission de-
picted in Figure 1, the autonomous helicopter has to: find
potential landing zones near the survivor (by using its mem-
ory and analyzing images); then explore them to decide if
it is able to land in them. After landing, the survivor tries
to board in, but may fail with a probability depending on his
distance to the zone. In case of success, the helicopter comes
back to the control center. Otherwise, it tries a different zone
until the fuel is below a given threshold.

control center

Z1

Z2

Z3

Z4

Z5

survivor

Figure 1: search and rescue domain

Let Z = {z1, · · · , zn} be the set of potential landing
zones, cc be the control center. Formally, discrete vari-
ables are: at ∈ {z1, · · · , zn} ∪ {cc}: zone which the he-
licopter flies over; ∀z ∈ Z, explored(z) ∈ {0, 1}: boolean
flags indicating for each zone if it has been explored; ∀z ∈
Z, landable(z) ∈ {0, 1}: boolean flags indicating for each
zone if it is possible to land in it (after it has been explored);
com ∈ {0, 1}: boolean flag indicating if communication
with the control center is possible; on ground ∈ {0, 1}:
boolean flag indicating if the helicopter is on ground or if it
is flying . Continuous state variables are: fuel ∈ [0, FM ]:
remaining fuel (FM : initial fuel level); mem ∈ [0,MM ]:
available memory (MM : maximum memory).

The planning domain’s actions are: ∀z ∈ Z ∪
{cc}, goto(z): go to zone z ; take picture (and analyze

it); download in order to free memory; explore (the zone
being flown over) ; land (in the zone being flown over) ;
take off ; end mission (if the survivor has boarded or if
the remaining fuel is below a given threshold).

In order to illustrate the difficulty of Bellman integration
one can see in Figure 2 that the effects of the action are de-
fined by pieces both continuous and discrete, the success of
the landing itself is probabilistic. If it fails the fuel is de-
creased with a Gaussian law depending on the altitude; in
case of success the human is rescued with some probabil-
ity depending on the distance to him. Clearly, these effects
cannot be integrated in a closed-form way.
(and

(probabilistic (land-success)
(and
(on-ground)
(when (not (at cc))
(forall (?z - zone)

(when (at ?z)
(probabilistic (/ 1 (+ 1 (* 0.03 (distance ?z hm))))

(human-rescued)))))))
(probabilistic
(gaussian
(* (altitude) (land-consumption)) ;; mean
(* 0.1 (* (altitude) (land-consumption))) ;; variance
#rv ;; random variate )

(decrease (fuel-level) #rv) ) )

Figure 2: Conditional probabilistic effects of the land action

Airport ground traffic’s management This planning do-
main consists in moving ground planes in an airport. Taxi-
ways are modeled as a graph as shown on Figure 3. At each
decision epoch, planes target the next planned waypoint, but
the distances they cover are stochastic. Consequently, the
positions of planes at each decision epoch are continuous
stochastic variables defined over the graph’s segments. Fi-
nally, some pilots may not target the right next waypoints
optimized by the planner.

Figure 3: airport ground traffic management domain

We note P = {p1, · · · , pn} the set of planes, and W =
{w1, · · · , wq} the set of waypoints. The function C : W ×
W → {0, 1} indicates if 2 waypoints are connected in the
graph. This planning domain’s state variables are: ∀p ∈
P, at(p): discrete variables that stand for the graph segment
which frames each plane. This segment is represented by an
ordered pair in order to model the orientation of the plane
; dom(at(p)) = C−1({1}). ∀p ∈ P, abs(p): continuous
variables which represent the continuous position of each
plane p in its segment at(p), dom(abs(p)) = [0; 1].

We assume all planes move at the same time, so that
the actions are factored by the individual actions of each
plane. The individual actions of a plane p are (we note
(w1, w2) = at(p) the segment that frames p): move(p):
move until reaching the end of the current segment, and
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wait there for the next action if reached ; ∀w ∈ {w′ ∈
W \ {w1} | C(w2, w

′) = 1},move and target(p, w):
move until reaching the end of the current segment, then, if
it has been reached, move and target waypoint w ; stop(p):
stop at the current (continuous) position.

Extending RTDP to hybrid domains
Real Time Dynamic Programming (RTDP) is an ef-
ficient algorithm scheme proposed initially in (Barto,
Bradtke, and Singh 1995). Starting from a given state (ini-
tial state for a shortest stochastic path problem or current
state if used on-line), it simulates a trajectory of the agent
while greedily selecting the best action (so far) in every en-
countered state. A trajectory (a trial) stops whenever the
goal is reached (in case of shortest stochastic path problems
where a single goal is given, or when some given horizon is
reached). In order to evaluate actions near unexplored states,
a heuristic function is used to give an expected value to these
states. One interesting feature of this algorithm is that it up-
dates values of encountered states only, which, due to the
trial mechanism, will be the most probably encountered.

A pseudo-code for the RTDP algorithm is given as Algo-
rithm 1. The external while loop indefinitely repeats what is
called RTDP trials. Practically, this loops is stopped when
the value of the initial state does not decrease anymore (than
a given ε) or when the mission is finished (since RTDP can be
used on-line). It is worth being noted that this is not a suffi-
cient condition of optimality, thinking about the case where
the optimal solution has not been explored yet due to the
stochastic nature of the trials. In the (discrete) MDP case,

Algorithm 1: RTDP
// s is initially the initial state
// all s.explored are false initially
while true do1

while ¬GOAL(s) do2
a← greedyAction(s);3
s.V alue← update(s);4
s← pickNextState(s, a);5
s.explored← true;6

updating the value of a state s takes the form of equation
1, where H(s) denotes the value of an admissible heuristic
function over S, and a is the action greedily selected.

s.V alue =
∑
s′∈S

T (s, a, s′)[R(s, a, s′) + γV ∗(s′)](1)

V (s) =
{
s.V alue if s.explored = true
H(s) if s.explored = false

(2)

Choosing the best action is done within the same calculation
as updating the value of the current state (as it is computed
with eq. 3). Equivalently, if the values are stored for every
states, the policy can be computed as shown on equation 3.

π∗(s) = argmax
a∈A

 X
s′∈S

T (s, a, s′)[R(s, a, s′) + γV (s′)]

!
(3)

Bellman update with hybrid state variables In order to
generalize the RTDP scheme to the hybrid case, we need to
define several functions. The first one is about s.explored1:
we cannot give an explored flag to every continuous state, in-
stead, we need to define an exploration function explored :
S → {true, false}, telling the algorithm if we should use a
heuristic value or a computed value for the state s.

Another issue comes with s.Value: in the same idea,
s.Value cannot be stored in the usual way, as the state space
is continuous. We need to define a value function value :
S → R, that for any state s in the continuous space S will
store the value of a state. Along with the value representa-
tion, we need a consistent way to store the policy, since it
cannot be represented with classical tabular representations.

But the most complicated cases come from the update
itself, equation 1, where we sum over the (discrete) state
space: this may be generalized as a continuous integral sum,
or more exactly, with a mixture of sum and integrations in a
hybrid space with dependent summation bounds. For now,
we just need to define an update function update : ((S →
R),S)→ (S → R), that is able to update the value function
for one state s ∈ S (and its neighborhood).

Hybrid planning using machine learning
Recent on-line machine learning methods like LWPR (Vi-
jayakumar, D’souza, and Schaal 2005) and on-line Gaus-
sian Processes (Csató and Opper 2002) can be used to ef-
ficiently represent functions of continuous variables whose
values permanently change and have to be always learned
again (as opposed to off-line learning methods). Such meth-
ods learn the values of these functions for some given states,
and they also predict the values of these functions for the
neighbour learned states. If the learned values are in a dis-
crete set, the learning algorithm is called a classifier. If they
are in a continuous space, it is called a regressor. Besides,
most on-line learning methods are sparse, i.e. the memory
used to learn the function is bounded by some constant.

Whatever the framework which they are applied to, on-
line machine learning methods are state-of-the-art tools to
represent functions of continuous variables very efficiently
in terms of space and time. Consequently, we use on-line re-
gressors to represent the value function of hybrid MDPs, and
classifiers to store the policy and the exploration function.
Although these methods come from the machine learning
community, our algorithm is not related at all to reinforce-
ment learning, since we perfectly know the planning model.

On-line learning methods are used in continuous spaces,
whereas our state space contains both discrete and contin-
uous variables. It would be possible to consider each dis-
crete state variable as a set of fixed values of some artifi-
cial continuous variables that might be used by the learn-
ing methods. Yet, we argue that this solution would not be
very efficient because it adds a lot of dimensions to regres-
sors and classifiers, whose complexity of algorithms dras-
tically increases with the input’s dimension. Also, we use
on-line learning tools only over the continuous part of the

1in RTDP, this boolean is implicit: when a node has not been
explored, the heuristic value is used
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space space, thanks to the following data structure which is
similar to the hybrid search graph of HAO∗ (Meuleau et al.
2009), except that the latter uses kd-trees to represent func-
tions of continuous variables.

Definition 2. A Hybrid Planning Graph (HPG) is an ori-
ented graph (Sd, T d) where:
• Sd ⊂

⊗q
i=1 Vdi is the projection of the hybrid state space

on the discrete state variables ; each vertex (vd1 , · · · , vdq ),
called a discrete state, is a tuple 〈πc, Vr〉 where:
• πc :

⊗p
i=1 Vci → A is a multi-class classifier such that

πc(vc1, · · · , vcp) = π(vc1, · · · , vcp, vd1 , · · · , vdq ) ;
• Vr :

⊗p
i=1 Vci → R is a regressor such that

Vr(vc1, · · · , vcp) = V (vc1, · · · , vcp, vd1 , · · · , vdq ).
• T d = {(sd1, sd2) ∈ (Sd)2 | ∃(sc1, sc2, a) ∈ (

⊗p
i=1 Vci )2 ×

A, T ((sc1, s
d
1), a, (s

c
2, s

d
2)) > 0} is the set of possible tran-

sitions between the discrete states of the graph.

In this structure, one node corresponds to one instancia-
tion of all discrete variables: the graph does not need to split
nodes, it adds new one on the fly when they are encoutered
during exploration. In this definition, the explored function
defined earlier is not present. But we simulate this function
with the Vr functions: as the regressors toolboxes we use
give not only the result but also the confidence (or the con-
fidence bound) in the result (i.e. the learning noise), we just
say that if the confidence bound is too high (or te confidence
too low), then the point of the hybrid state space has not been
explored enough, and we consider explored = false in this
case: we do not need to have a separate binary classifier.

At the initialization of HRTDP, the HPG only contains 1
vertex, that corresponds to the discrete variables’ instantia-
tion of the initial state. New nodes are added to the graph
during the search at each Bellman backup, as explained be-
low. In the course of HRTDP trials, we jump from HPG
nodes to HPG nodes while updating the value of the current
hybrid state by using the value function regressor of each
visited HPG node.

Confidence in learned information One key aspect in us-
ing modern regression and classification techniques is the
notion of confidence: modern toolboxes allow not only to
use the approximation resulting from the regression (or clas-
sification), but also give the confidence in this result, that
can be seen as the probability that the prediction is correct
given the information used so far. Some toolboxes, like the
one we used, prefer the confidence bound, whose intuition
is the opposite: if the bound is high, the knowledge quality
is low. Indeed, it is critical to take this confidence into ac-
count while using learning techniques; if not, then it would
be considered implicitly that the learning phase is perfect,
particularly that the regressor gives the correct value, even
with a very small training set, which cannot be true.

Furthermore, as we will see in the next section, the
confidence allows to smartly guide the exploration itself
within the RTDP framework. Remember that RTDP greed-
ily chooses the best action in the deterministic case. In our
case (using ML techniques), the best action is a relative cri-
terion: if the confidence bound is low, then we know what

the best action is, but if it is high, then we should not trust
that much that this action is the best one (especially if there
has not been much training samples around this action). We
propose an exploration versus exploitation scheme based on
confidence of which action is best to guide the algorithm.
Hybrid Bellman backup Updating the value of a hybrid
state requires to compute an integration over continuous and
discrete state variables. As shown in Algorithm 2, we com-
pute an approximation of this hybrid integral with a Monte-
Carlo integration method where the value of the integrated
function is predicted from the value function regressor of
the next states’ HPG nodes (line 9). New nodes are added
to the HPG when random successor discrete states have not
been explored (line 6). If a random successor continuous
state has not yet been explored (that is the confidence bound
is too high), we compute its heuristic value (see below) and
we request to its value function regressor to learn it (lines 7
and 8). Finally, we request to the value function regressor
(resp. the policy classifier) to learn the updated value (resp.
policy) of the hybrid state (lines 14 and 15).

The random next function uses the HMDP transition
function T to generate random successor states. No assump-
tions are made regarding the form of the probability distribu-
tion in T . As a result, our algorithm works with any kind of
probability distributions that can be sampled. To our knowl-
edge, no other HMDP algorithm is able to deal with any kind
of transition functions.

Algorithm 2: Hybrid state update
// s = (sc, sd) is the state to update

// sd refers to the HPG node containing s
// N is the number of samples to compute

an approximation of the integral
// CT is the confidence threshold, over

which the node is seen as unexplored
best qvalue← −∞;1
for a ∈ A do2

qvalue← 0;3
for i← 1 to N do4

((s′c, s′d), r)← s.random next(T ((sc, sd), a, ·));5

if s′d 6∈ HPG.nodes() then HPG.add node(s′d);6

if confidence(s′d.Vc.predict(s′c)) > CT then7
s′d.Vr.learn(s′c, H(s′c, s′d));8

qvalue← qvalue+ (γ × s′d.Vr.predict(s′c)) + r;9

qvalue← qvalue/N ;10
if best qvalue < qvalue then11

best qvalue← qvalue;12
best action← a;13

sd.Vr.learn(sc, best qvalue);14

sd.πc.learn(sc, best action);15

HRTDP With the update mechanism described above, we
can now propose the HRTDP algorithm shown as Algorithm
3. First, we update the value for the state s and learn policy
and the regressor as shown in previous section, and (in the
very same loops in the real implementation) we track both
the best action for this state s and the action that leads to
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least known regions of the state space. Then, depending on
how badly the region is known, we choose to apply either the
greedy selection as in RTDP, or an exploration action that
will lead to explore the less known region, in order to re-
duce the learning bias and to improve the knowledge as fast
as possible. The α > 0 parameter allows us to tune the ex-
ploration vs. exploitation scheme, and may be changed on-
line, for instance to implement a simulated-annealing-like
approach. In Algorithm 3, as in the experiments presented
further, we randomly choose the best action with a proba-
bility e−α·worstConf , what means that the less the region is
known, the more exploration is performed.

Algorithm 3: HRTDP
while true do1

// s is initially the initial state
while ¬GOAL(s) do2

hybrid state update(s);3
lessKnownA← action leading to predictions with4
highest confidence bound ;
worstConf ← corresponding confidence bound;5
bestA← action leading to states with highest value;6

7

a←


bestA with p = e−α.worstConf

lessknownA with p = 1− e−α.worstConf

s← pickNextState(s, a);

Domain-independent admissible heuristic Each time
the exploration classifier of a HPG node predicts that a hy-
brid state s has not been explored, an admissible heuristic
value H(s) must be computed such that: H(s) > V π

∗
(s).

Naive heuristics may require to generate all the nodes of the
HPG, what is exponential in the number of discrete state
variables. Also, we implemented a relaxed heuristic inspired
by the deterministic FF planner (Hoffmann and Nebel 2001)
to deal with the HMDP model.2

This heuristic assumes that all discrete variables are bi-
nary, what is actually not restrictive because any n-ary vari-
able can be translated into dlog2(n)e binary variables. The
heuristic constructs two increasing lists of all the true (resp.
false) values taken by each discrete state variable during the
heuristic search, without ever removing values from the list.
While linear in space, these lists loose the dependence of the
variables of the states explored during the heuristic search.
The transition function is relaxed so that it can directly op-
erate on these lists, without considering the continuous state
variables at all. The search stops when the goal state is in-
cluded in the lists, and the discounted opposite value of the
distance to the goal state is an admissible heuristic for the
shortest stochastic path problem. The complexity of the re-
laxed heuristic search is polynomial in the length of the lists,
i.e. polynomial in the number of discrete state variables.

While searching on the discrete states only, the heuristic
is still admissible because, intuitively, more steps would be
required to reach the goal state by considering the continu-
ous state variables during the heuristic search (there would

2This heuristic is inspired from the FSP∗ planner, more
precisely is an implementation of the RDH heuristic found in
http://ippc-2008.loria.fr/wiki/images/c/c2/Team1-FSP.pdf

be less applicable actions at each expansion step). Also,
the relaxed distance is lower than the distance that would be
computed with actual hybrid states. This heuristic has been
chosen because it performed quite well in the past planning
competitions, and because it is domain independent, and can
be used for domains with cycles.

Experimental results
We tested our algorithm HRTDP on shortest stochastic path
instances of the domains presented in the second section.3
We used an extension of the PPDDL language defined in
(Teichteil 2008) to model HMDP problems with any kind
of probability distribution functions. We used LWPR (Vi-
jayakumar, D’souza, and Schaal 2005) for the implementa-
tion of HPG nodes’ regressor and classifiers. For each test,
we ran HRTDP 10 times and averaged different critera over
the 10 HRTDP runs. Each criterion is presented as an aver-
age function (over HRTDP runs) of the optimization time (in
seconds) observed after each HRTDP trial. In all following
figures, in green is shown the average value and in red the
maximum difference to the mean.
Search-and-rescue domain Based on the description of
this domain, there are 23+2n(n + 1) discrete states (max-
imum number of HPG nodes) and 2 continuous variables,
where n is the number of zones.

Figure 4 shows that HRTDP converges extremely quickly
in terms of value of the initial state (value is the expecta-
tion of rewards collected while executing the policy), mean-
ing that our algorithm is able to give quickly good solutions
for the initial state (and most probable trajectories). A “val-
ley” can be noticed for the 20 zones problem, it seems that
the regressor used underestimates the expected costs at some
point. As we can see in figure 5 the number of nodes in the
hybrid planning graph continues to extend after the value has
stabilized, showing that our algorithm continues to explore
some less reachable states (anytime behavior), while not re-
ally increasing the expected reward, exactly as expected with
RTDP-like algorithms (if states are less reachable, they have
lower influence on the expected reward). One could notice
that the number of (explored) nodes in the HPG is very small
compared with the theoretical maximum number of discrete
states, this is due to the nature of the domain, because many
actions have very strong preconditions and can be applied
only in few states, leading to an extremely large number of
states that are nearly unreachable.

On figure 6(a) is shown the percentage of explicit choice
of an exploration action. This percentage does not decrease
during the resolution; this is related to the worst confidence
bounds during the backups shown on figure 6(b), which
seems to reach an upper bound. Indeed LWPR reports the
confidence bound which behaves as the opposite of the in-
tuition of the confidence: the higher the value is, the lower
we can trust the prediction. So in this case, due to the fact
that we explore more and more states, the worst confidence

3We could not compare to HALP nor HAO∗ on the domains they
can solve because we could not obtain their codes, which is hard
and complex to implement, nor compiled versions. Moreover, do-
mains used in publications are not available.
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bound gets worse and worse. We think that it would improve
after the whole state space has been explored enough, which
we definitely do not want to do.

In order to show the influence of the explicit exploration,
we ran another set of experiments where the α factor is very
low, leading to few explicit exploration actions, as shown
on figure 7(a). In this case we can see that the worst con-
fidence bound during bellman backups reaches almost the
same value, but takes more time to do so (on figure 7(b)).
This comforts us into our first intuition of reason for the high
(and non-decreasing) percentage of exploration.

Finally, both the explicit choice of an exploration action
and the regression induced noise have an impact on the
length of the HRTDP trials. Recall that the trials stops when
reaching the goal, giving us a hint on the quality of the solu-
tion so far. On figures 8(a) we can see the (noisy) length of
the trials, while on figure 8(b) we can see that when the value
of the initial state gets minimal for the first time, HRTDP per-
forms very short trials (that is the optimal solution), and after
that the length augments gradually because HRTDP explores
new regions, while not being able to improve the value of
the initial state (as the length to reach the goal are greater).

We also tested the influence of the number of samples for
the approximation of the Bellman backup, but it is straight-
forward: with less particles the calculation is faster, shows
a lot of noise, and the more particles the less noise but the
more time taken.

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  200  400  600  800  1000

pe
rc

en
ta

ge
 o

f e
xp

lo
ra

tio
n 

ac
tio

ns

planning time

(a) % choice of exploration

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0  200  400  600  800  1000

w
or

st
 c

on
fid

en
ce

 d
ur

in
g 

B
el

la
m

an
 b

ac
ku

p

planning time x
(b) Worst confidence bound

Figure 6: Expl. and conf. for 20 zones in the S&R domain
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Figure 8: Length of trials (in the 10 zones S&R domain)

Airport management domain Figure 9 shows the results
obtained on one instance of the airport ground traffic man-
agement domain which contains (2N)p discrete states and p
continuous variables, where N is the number of connected
waypoints (N = 12 with the tested airport) and p is the num-
ber of planes (5 in the results presented here, other are not
included for space reasons). While this domain is even more
difficult than the previous one, we can see that HRTDP is
able to cope with it. Despite the higher number of regressors
in this domain, HRTDP is still able to quickly converge to a
stable policy. There are fewer points in the figures, because
more computations are needed in each Bellman backup.

Comparison with a purely heuristic strategy In order
to prove that HRTDP does improve the heuristic value to
find good strategies, we also compared HRTDP with a
purely heuristic strategy that consists in always choosing
the best heuristic action in a state without learning (the
heuristic value of an action in a given state is the sum of
the immediate reward and the average heuristic value of its
successor states). While returning informative values for
HRTDP’s Bellman backups, the heuristic presented in the
previous section (computed on a relaxation of the discrete
state space), used in a purely heuristic strategy, was totally
unable to reach any goal state in the hybrid domain over
100 runs of depth 200 each, for all the problems previously
presented. Besides, the statistical value of the initial state
when using this strategy was equal to −10 = −1/(1− γ) in
all cases (with γ = 0.9), which corresponds to near-infinite
trajectories that never reach a goal state. On the contrary,
as shown in the previous figures, HRTDP using this heuris-
tic was always able after very few seconds to reach a goal
state in far fewer than 200 steps and the value of the initial
state was never below −5 or −2 (depending on the prob-
lem): compared with the purely heuristic strategy with the
same heuristic, these results do prove that HRTDP quite well
optimizes the value function despite learning noise.

Conclusion and perspectives
We have shown that it is possible to solve HMDPs in an
asynchronous way using forward heuristic search and hybrid
representations of the core components needed to perform
Bellman backups. We have proposed a formulation of such
algorithm, together with the use of state-of-the-art machine
learning algorithms for regression, also using on-line incre-
mental learning for Bellman backups. We have shown the
effectiveness of these techniques on two different complex
domains. Our technique allows to deal with any transition
function, what was not possible with any previous approach.

Future work will be to use other on-line learning meth-
ods such as Gaussian processes (Csató and Opper 2002;
Lawrence, Seeger, and Herbrich 2003), in order to see the
influence of the regression technique, which is crucial to en-
sure that our algorithm gives good policies, hopefully al-
lowing to prove (ε-)optimality. We also plan to expand this
approach to deal with partially observable MDPs, by using
the same techniques into the (fully continuous) belief space.
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Figure 4: value of the initial state for search-and-rescue domain with 5 zones
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Figure 5: Number of nodes developped by HRTDP for the search-and-rescue domain
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Figure 7: S&R (10 zones): reducing the percentage of exploration (α = 0.1)
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Figure 9: Results for airport domain
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