
Hybridisation of Constraint Solving with an Ant Colony Algorithm for Vehicle
On-Line Path Planning

Christophe Guettier1, Francois Lucas1 and Patrick Siarry2

1SAGEM, 27, Rue Leblanc, 75012 Paris, France
{christophe.guettier, francois.lucas}@sagem.com

2Univ. of Paris XII Val-de-Marne, Sciences and Technology Faculty
61, av du Gal de Gaulle, 94010 Creteil, France

patrick.siarry@univ-paris12.fr

Abstract

This paper presents a hybrid solving method for vehicle path
planning problems. As part of the vehicle system architec-
ture (vetronic), planning is dynamic and has to be activated
on-line which require response times to be compatible with
mission execution. The proposed approach combines a com-
plete method based on constraint solving techniques with an
Ant Colony (ACO) metaheuristic. ACO is used to solve a
relaxed problem as a pre-processing step. The hybridisation
then relies on a probing technique that order variables accord-
ing to a metric built on a distance information to the best so-
lution found by ACO, allowing to guide a Branch&Bound
search method. Various forms of strategies are compared and
evaluated on real world scenarios. Preliminary results exhibit
response times close to vehicle control requirements, on real-
istic problem instances.

Introduction
Mainly in space and defense domains, mission planning has
always been a major challenge for the planning community,
in terms of problem formulation, modelling, search tech-
niques and evaluation. In critical mission systems for mili-
tary vehicles, planning has been so far considered separated
from navigation, in particular at the tactical level. However,
modern operations take place in urban environments which
involve versatile threats and require high tactical mobility.

For manned vehicle applications, the goal is to provide
driver decision support functionalities, such as advising
the best route to follow under specific mission constraints.
To face environment uncertainty (e.g. obstacles, hostile
threats), on-line planning algorithms must have execution
times close to that of human reflexes. For unmanned ve-
hicles (UAV, UGV, etc.), navigation plans must be updated
whenever the mission objective changes, the environment
evolves significantly or the expected amount of resources is
not satisfactory. In addition, and according to the vehicle
type and its on-board system (also called vetronic in the fol-
lowing), on-line planning must be compatible with mission
tempo.

Much research has been carried out on mission planning.
Generic planning formalisms (Long and Fox 2000)(Ghallab
et al. 1998) have highlighted problem complexity, which

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

can be tackled through domain-independent search meth-
ods and heuristics. These approaches may not match on-
line planning system requirements, embedded in vehicles.
Specific techniques can fulfil on-line requirements such as
in (Meuleau and al 2008), but may not encompass the spec-
trum of operational constraints.

This paper focuses on Constrained Vehicle Planning
(CVP) problems. A hybrid path planning method is pre-
sented to address dynamic mission management for both
manned or unmanned vehicles. To match both on-line re-
sponse time and multiple requirements, we combine a com-
plete solving based on Constraint Programming (CP) and
Branch&Bound strategy with an Ant Colony Optimisation
(ACO) algorithm. ACO is a stochastic metaheuristic that
adapt easily to path planning and is efficient for discrete and
dynamic state space problems (Di Caro & al 2005). We
use it in a pre-processing step to build a probe that guides
a Branch&Bound solving. CP provides generic expressive-
ness and efficient solving techniques for global optimisation
and constraint satisfaction. Also, the problem instances we
consider are relatively small, since environment horizon un-
der consideration is limited.

To our knowledge, our approach is new. Other work has
been led on ACO-CP hybridisation in the literature (Solnon
et al. 2008) in which a CP solver uses an ACO algorithm
as heuristic and backtracking method. Nevertheless, it is an
incomplete method. In our case, the ACO solution is only
used to order variables but the solving is still complete.

Experimentations underline interesting performances on
representative problems (mission, urban, or open environ-
ment). Memory consumption, computation load and execu-
tion time are compatible with the shape of problem instances
as well as on-line requirements.

Vehicle Navigation
Constrained Path Planning

The CVP problem consists in finding a path from the cur-
rent vehicle location to an objective waypoint. Intermediate
mandatory waypoints can be imposed to fulfil secondary ob-
jectives. This problem can be transformed into a TSP, known
as NP-complete : the core difficulty is then to find an opti-
mal sequence of mandatory waypoints to visit. According to
user experience, two kinds of plan optimisation are interest-

15



ing: minimising mission duration and maximizing mission
safety. However, various other operational metrics can be
imposed as hard constraints, and represented as distances,
such as energy or capabilities. The optimisation criterion is
minimizing the time to destination. In addition, only vehicle
energy will be considered as a secondary metric.

Example
As an illustrative example, let us consider the following sit-
uation inspired from a real case (fig. 1). During mission
execution, the planner has only partial awareness of its en-
vironment. The knowledge horizon is given by ground ob-
servability, provided by vehicle team, sensors or external ob-
servations. Yellow-filled circles and arrows represent way-
points and feasible paths between waypoints respectively.
Transparent circles and dotted arrows represent waypoints
and transitions that are situated beyond the observability
horizon. One or more waypoints, as the bold waypoint on
the figure, may be imposed along the vehicle route.

Figure 1: Example of alternative paths for a ground vehicle
horizon, and corresponding to the line of sight of a cooper-
ating UAV.

Environment horizon and response time
In our approach, on-line planning is solved over a limited
horizon, from the current vehicle position. It corresponds to
the terrain on which the vehicle vetronic has enough detailed
information to characterise its trafficability. Therefore, the
number of mandatory waypoints is relatively small. They
correspond to short-term objectives or narrow manoeuvres
executed by the vehicle. The following requirements drive
response time of on-line planning:

• Computation time must be consistent with mission tempo,
so that secondary objectives are reached.

• The generated plan must comply with vehicle control en-
velope. The control envelope on immediate feasible tra-
jectories decreases when plan generation response time
increases.

• In the case of manned vehicles, response time has to
match pilot anticipation skills.

• In the case of unmanned vehicles, other processing (situ-
ation awareness, generation of flight control commands)
must be done.

Note that if a plan cannot be quickly solved, the vehi-
cle may stop if this is possible. This is an ultimate solution
that is not satisfactory from an operational point of view.
Finally, due to vetronic processing resources, computation
load, memory usage and response time must be reduced as
much as possible.

Hybrid solving approach
CP advantages combine a high level of expressiveness and
powerful constraint solving techniques. It matches compos-
ite problems like CVP which requires formulation of dif-
ferent related models (Van Hentenryck et al. 1995). Fol-
lowing this approach, a flow{0, 1} model of planning prob-
lems is proposed, which supports multiple distance metrics.
This graph-based model of the terrain is very useful to rep-
resent tactical mobility (positions, progression axes, objec-
tives), and vehicle abilities. CP also provides primitives such
as Arc Consistency (AC) for constraint propagation, Branch
and Bound (B&B) for optimisation and tree search (back-
tracking).

The ant colony search is a stochastic approach that com-
bines heuristic search and learning in multiple cycles. It uses
the same problem representation, but with a relaxed formu-
lation. Only a single metric is considered and secondary
objectives are modelled with a vertex parameter. Within a
given cycle, a set of ants is deployed and finds some paths
over the graph. A probabilistic law, depending on experi-
ence, is associated to a given ant in order to decide over
alternative edges. Good quality solutions incrementally up-
date the experience over several cycles. For a given cy-
cle, the previous experience guides the search by attracting
ants toward good path solutions. This technique allows the
search to explore the state space despite any other imple-
mented heuristic.

The hybridisation approach uses a static probing tech-
nique. The goal is to guide a complete strategy with the
stochastic algorithm. The prober encapsulates the ACO
search, which returns a probing solution to the relaxed prob-
lem. Instead of dynamic probing with tentative values such
as in(El Sakkout & Wallace 2000), this search strategy uses
a static prober which orders problem variables to explore ac-
cording to the relaxed solution properties. Then, the solving
follows the CP search strategy, combining B&B and AC.

Constrained Vehicle Planning Formulation
The terrain is represented as an undirected graph structure
(see Fig. 1), where edges define progression axes and ver-
tices tactical positions (or locations). Vertices also represent
primary and secondary objectives. Other constraints can im-
pose vertices or edges to be excluded or included in the ve-
hicle plan. Lastly, operational metrics (protection, vulnera-
bility, capacity) can also be associated to edges. The input
specification can be expressed using terrain structure, initial

16



conditions, mission objectives and vehicle capabilites. The
following elements are known off-line and characterise this
input specification:

• Initial conditions: The starting location and resources ini-
tially available.

• Objectives: Some of the locations can correspond to sec-
ondary or primary objectives.

Basic constraints
The space of possible plans is represented as a directed
graphG(X, U) where the set of edgesU represents possible
progression axes and the set of verticesX possible position
(or navigation) locations1. A vehicle starts from vertexstart
and must reach its objective at vertexend. A path is defined
by the set of positive flows. A set of variablesϕu ∈ {0, 1}
models a possible path fromstart to end, where the edge
u belongs to the path if and only if decision variableϕu is
instantiated to1.

From an initial position to a final one, path consistency is
asserted by the following constraints, whereω+(x) ⊂ U and
ω−(x) ⊂ U are outgoing and incoming edges from vertex
x, respectively.

∑

u ∈ ω+(start)

ϕu = 1,
∑

u ∈ ω−(end)

ϕu = 1, (1)

∀x ∈ X \ {start, end},
∑

u ∈ ω+(x)

ϕu =
∑

u ∈ ω−(x)

ϕu ≤ 1 (2)

Nodesstart andend respectively represent current po-
sition and primary objective for the vehicle. Equation (2)
ensures path connectivity and unicity while equation (1) im-
poses limit conditions for the extremities of the path. This
constraint gives a linear chain alternating positions and mo-
bility actions (along progression axes) along the graph.

Capability metrics
Assuming a given dateDx associated with a position (e.g.
vertex)x, we formulate path length formulation (3) often
considered in Operation Research (OR) (Gondran and Mi-
noux 1995). VariableDx expresses the time at which the
vehicle reaches positionx (see example in figure 2). Assum-
ing that constantsd(x′,x) represent the time taken to perform
a movement from locationx′ to x, we have:

∀x ∈ X, Dx =
∑

(x′,x) ∈ ω−(x)

ϕ(x′,x)(d(x′,x) + Dx′)

(3)

Constantsd(x,x′) are critical decision variables in the
problem and make constraints (3) non linear by termsDx′ .
Finally, the mission schedule can be represented as∆ =
{(x, Dx)| x ∈ X, Dx > 0}.

An equivalent constraint-based formulation is also used
for other mission metrics (Fig. 2), such as energy or capac-
ity.

1In the remaining of the paper, a vertex is denoted byx, while
an edge can be denoted either byu or by (x, x′).

3

2 2
C:5

A:0

B:3 D:7

Graph in fig. is a spatial rep-
resentation of possible moves
(edges) and positions (nodes).
Moves, that correspond to the
set of positive valuesΦ =
{(A, B), (B, C), (C, D)}, are
represented with blue arrows.
Assuming a timing metric
(edge values are speeds).
Other operational metrics, such
as protection, vulnerabiliy,
available energy and security
are similarly formulated in
different experiments.

Figure 2: Illustrating a path with pass-by dates over a graph
of locations and progression axes

Hybrid Search
The solving strategies focus on mission duration optimisa-
tion, that is minimising the time to destination. This date
corresponds to one of the variable set{Dend}.The position
end is the primary objective of the vehicle. Decision vari-
ables are path variables{ϕx}, timing variables{Du}.

Reference algorithm
The basic algorithm is a “generate and test” approach that
is described only for complexity analysis purpose. Between
any couple of secondary objectives, a shortest path is pre-
computed. The algorithm then builds a quotient graph where
the set of nodes includes all secondary objectives in addition
to start and end ones. Quotient graph edges result from the
precomputed shortest path, valued with the distance. Here
the reference algorithm can only be applied for the relaxed
problem (without energy or capability metrics). Algorithm
complexity isO(n!).

CP search strategy
All problem formulations and search strategies have been
implemented in theCLP (FD)2 SICStus prolog library. Ba-
sic search strategy makes use of B&Bminimisepredicate
andCLP (FD) constraint AC propagation algorithm. The
B&B iterates over an arbitrary order of variables labeling.
When a variable choice is done, AC propagates domain vari-
ables until a fixed point is reached.

Shortest path hybridisation
Designing a strategy consists in finding the right variables
ordering and value filtering. The idea is to use the prober
to statically order problem variables, as a preprocessing. In-
stead of using this solution as an initial tentative value, the
prober estimates a distance between any problem variable
and the probing solution. The search strategy then defines
both variable and value ordering according to the resulting
distance set. The technique does not suppress any choices
points, such that the solving remains complete.

2Constraint Logic Programming, using Finite Domain as alge-
braic interpretation.)

17



Ant path hybridisation
Instead of considering a blind shortest path as prober, the
proposed algorithm implements an ACO search that uses a
similar model of the environment. As introduced before, the
method deploys a set of ants over search cycles (the num-
ber of ants and the number of cycles being currently defined
statically) and learns. At the end of each search, ants pro-
vide a set of paths, ordered according to their quality. Best
ones (on the model ofRank-based Ant System(Bullnheimer
& al 1999)) are selected to update experience by reinforcing
weights associated to their edges. The experience enables
search guidance towards interesting areas (where good solu-
tions were found). Within an ant search, the choice of the
next waypoint is given by the following probabilistic equa-
tion. For an antk currently at vertexx, the probability for
choosing a vertexx′ as its next waypoint is given by:

∀(x, x′) ∈ X2, x′ ∈ ω+(x), P(x,x′)(k) =
τα
x,x′η

β
x′

∑
l∈ω+(x)

τα
x,x′η

β
x′

(4)

whereP(x,x′) is a probability and thus belongs to[0, 1].
Theηx′ parameter represents the search heuristic (which is
simply the inverse of the minimal distance to go from vertex
j to the next objective in this implementation). This parame-
ter tends to choose the closest vertices to the objective. The
τ(x,x′) parameter represents the edge weight to go from ver-
tex x to vertexx′. This represents the experience acquired
during previous search cycles, which tends to choose edges
that belong to known good solutions. Parametersα andβ
are used for calibration and balance the importance between
τ andη parameters.

The hybridisation schema of the ACO algorithm is similar
to the shortest path one.

Discussion
There is no universal rule to parameterize the ACO algo-
rithm. It depends on the problem, essentially in terms of
graph size and connectivity. The choice ofα andβ can be
decisive if there is a high risk for the search to follow a dead-
end path. In this case, by privileging theη term (thus by
settingβ higher thanα), the search will have more chance
to fail (or to find bad solutions) if it takes a path towards the
objective but which does not lead to it. An analogy can be
made withA∗ algorithm, whose worst case is a labyrinth in
which the only way to reach the objective is opposite to the
location’s direction. In the other cases, it can be judicious
to take more consideration toη that can fastly lead to good
solutions. TheN parameter depends on the size of the prob-
lem. The larger the problem is, the more important the ant
population (represented byN ) should be, as the number of
possible solutions becomes high. TheC parameter (number
of search cycles, analogous to generations in genetic algo-
rithms) more particularly depends on learning mechanisms.
As we know, the quality of the search is a compromise be-
tween state space exploration and convergence speed. Ac-
cording to the chosen strategy,C should be low if a fast con-
vergence is wished (the reinforcing edge parameters should

then evolve fastly), or high in the contrary (and reinforcing
should be mild to maintain alternative paths).

In the current version of our ACO algorithm, parame-
ter values were empirically fixed as follows:α = 0.6 ;
β = 1 ; η = 0.6 ; C = 6 ; N = 6 ; ρ = 0.08 (ρ is
the pheromone evaporation factor, used to decrease edges
attractiveness over time).

Preliminary Results
To evaluate the efficiency of the hybrid algorithm, we com-
pared the performance results with two other search methods
: a simple constraint solving algorithm based on arbitrary
variable ordering, and a hybrid constraint solving - shortest
path algorithm.

Experiments have been run on a dual core CPU, at
2.53GHz with 2Gbytes of memory.

Problem instances To illustrate the approach, experi-
ments on three benchmarks are presented. They are repre-
sentative of vehicle planning for modern peace keeping mis-
sions, both in urban and open environments. The following
table gives an idea of problem complexity.

Problems Bench1 Bench2 Bench3
Environment urban urban open
Vertices 23 22 22
Edges 76 74 68
Variables 723 654 702
Constraints 1944 1750 1886

For each benchmark, fifty distinct problem instances are
generated, organised on five series. For a given serie, ten
instances with starting and ending nodes are choosen on the
graph diameter. For each serie, a fixed set waypoints is im-
posed. Over the five series the difficulty increases from one
imposed waypoint to five ones (see example fig. 3).

Results Response times are given in figure 4 (the y-axis)
for the three benchmarks, over the five series (x-axis). The
measurement considers the search strategy response time,
including the whole probing preprocessing.

The y-axis shows response time range for a given serie.
The number of imposed waypoints does not affect response
time for hybrid search strategies, compared to the reference
algorithm complexity. In contrast, only benchmark 1 is a
problem for the basic CP search, when increasing difficulty.
Except on benchmark 3, the basic strategy delivers poor re-
sults, and even exceeds the ten seconds limit twice on the
first benchmark. This underlines the efficiency of variable
ordering approach. In twelve experiments over fifteen, ACO
algorithm dominates the shortest path guided strategy. How-
ever, both hybridisation approaches have response times of
a similar order of magnitude.

The total number of backtracks over the 10 runs is pre-
sented in figure 5 (y-axis) for each serie (x-axis). The num-
ber of backtracks is measured during the B&B search execu-
tion. In general, the number of backtracks reflects response
times. Also, computation time is not spent on optimisation
iterations but on backtracking and variables labeling. For
both hybrid strategies, variable ordering guides the search

18



Figure 3: A serie of 3 imposed waypoints (colored circles)
on an open environment benchmark. Dashed circles repre-
sent possible starting or ending nodes.

significantly so that it reduces the amount of backtracks.
In fact, hybrid algorithms find the optimal solutions in few
B&B iterations, with minimum backtracks. When compar-
ing these two, ACO search gives better results (a lower num-
ber of backtracks), as metaheuristic outputs provide better
strategy guidance. On series 2, 3 and 5 of benchmark 3, both
hybrid strategies counterperform, compared to the pure CP
search strategies. This suggests that the order (formulated
by an operational expert, which generally follows a tempo-
ral order) is not so arbitrary! This is the case even for the
hybrid ACO strategy, in spite of a lower number of back-
tracks. In these three series, computation time is spent on
B&B optimisation for the hybrid ACO strategy while com-
putation is lost in backtracking for the shortest path hybrid
one.

The following table compares overhead computation for
both shortest path and ACO algorithms. The latter provides
acceptable execution time, and is worth the computation
savings during the CP search.

Search cycle number and ants population size have been
found acceptable for the problem. When these parameters
are badly chosen, the metaheuristic may not find a solution.
A naive approach would be to increase parameters as much
as possible, but it can seriously impact solving time. In fact,
these parameters choices represent a compromise between
solving time and chances to find a (good) solution.

Overheads Bench1 Bench2 Bench3
Shortest Path (ms) [0, 30] [0, 31] [0, 16]
Ant Colony (ms) [31, 110] [31, 94] [47, 109]

Figure 4: Minimum and maximum response times to reach
optimal solution for the three benchmarks, with series of one
to five number of imposed waypoints.

19



Figure 5: Total number of backtracks needed to find the op-
timal solution for the three benchmarks. It is summed over
series of one to five number of imposed waypoints.

State of the art
Different techniques have been shown to be useful to
tackle on-line planning problems, including theoretical for-
malisms, generic or specific heuristics, constraint solving,
and local search techniques.

• Generic planners: Generic planning techniques can be ap-
plied to solve such problems. In (Long and Fox 2000),
transportation problem classes are proposed, for which
preprocessing and dedicated heuristics can be introduced
to specialise generic search algorithms.

• Domain specific planners: Much planning research has
been done for both military or civilian purposes, rely-
ing on specific planning frameworks such as Hierarchical
Task Network (HTN)(Goldman et al. 2000).

• Planning with constraint solving: This is the case in Ix-
TeT (Laborie and Ghallab 1995) and HSTS. In Reactive
Model-based Programming Language (RMPL) (Kim & al
2001), an evolution of CC languages, the same paradigm
is used to dynamically constrain planning representations
of one or more remote agents.

• In many respects, CVP can be tackled with operation re-
search algorithms, based on flow models. Basically, the
CVP problems can be relaxed as a Traveling Salesman
Problem, for which numerous algorithms have been pro-
posed (see (Gondran and Minoux 1995) for example). Lo-
cal searches have also been widely used for TSP prob-
lems. In particular, new metaheuristics such as ACO algo-
rithms can be efficiently applied (Aarst and Lenstra 1997)
to TSP.

• Much work addresses dynamic on-line planning, in-
cluding computer games and exploration vehicles (like
NASA’s Mars Rover). Two efficient kinds of algorithms
are particularly widespread : real-time heuristic search
methods (like LRTA* (Korf 1990) or RTAA* (Koenig and
Likhachev 2006)) and incremental heuristic search meth-
ods (like D* Lite (Koenig and Likhachev 2002). The first
one only consider a local environment subset to solve,
which is updated over time, to limit the problem size.
The second approach consider the whole environment but
reuses data from previous searches to gain execution time
and avoid dead-ends.

Most of constraint programming frameworks are useful
to design hybrid search techniques, by integrating OR and
Linear Programming algorithms (Ajili and Wallace 2003).
However, only a few ones such as (Knight et al. 01), have
explored on-line planning requirements.

Conclusion
In this paper, we proposed a new hybrid ACO - CP algo-
rithm to tackle vehicle path planning, whose response times
must fit on-line requirements. The CP approach allows
higher constraint expressiveness and global solving abili-
ties, while the ACO algorithm is used as a probe to or-
der search variables. The experimentations led on realistic
examples clearly showed the interest of variables ordering
for search guidance, resulting in a significant reduction of

20



response time. They also revealed better performance of
the ACO algorithm over the shortest path probing, both in
terms of solving time and total number of backtracks. How-
ever, calibration of ACO algorithms must be tuned accord-
ing to problem size and structure. An interesting way to im-
prove our approach would be to dynamically parameterise
the ACO metaheuristic to fit problem and vetronic require-
ments. In this preliminary approach, starting location and
resource availability are off-line parameters of our solver. A
transition to dynamic aspect can be introduced by adding
a sliding environment horizon, updating the state space as
well as the vehicle state (current position, objectives and re-
maining resources). Here, the interest of ACO algorithms is
to use edge reinforcement of previous searches in new com-
putations. A comparison of this dynamic ACO with other
well-known heuristic methods like LRTA* or D* Lite will
also be investigated.

References
P. Albert, M. Khichane, C. Solnon : Integration of ACO
in a Constraint Programming Language. In 6th Interna-
tional Conference on Ant Colony Optimization and Swarm
Intelligence (ANTS), Bruxelles. pp. 84-95. LNCS 5217.
Springer.
Aarst,E. and Lenstra,J.K. 1997. Local Search in Combina-
torial Optimisation, McGraw Hill, Chichester, UK, 1997.
Ajili,F.; Wallace,M. 2003. Constraint and Integer Program-
ming: Toward a Unified Methodology. In Chapter 6: Hy-
brid Problem Solving in ECLiPSe. Kluwer Academic Pub-
lishers, 2003.
Knight R.; Rabideau G.; Chien S.; Engelhardt B. and Sher-
wood R. Casper: Space Exploration through Continuous
Planning. IEEE Intelligent Systems, vol 16, P.70, 2001.
El Sakkout,H. and Wallace M. Probe Backtrack Search
for Minimal Perturbations in Dynamic Scheduling. Con-
straints Journal, Vol. 5, 2000.
Ghallab,M.; Howe,A.; Knowblock,C.; Mac Dermott,D.;
Ram,A.; Veloso,M.; Weld,D.; and Wilkins,D. 1998.
PDDL- The Planning Domain Definition Language. Tech-
nical Report, CVC TR-98-003/DCS TR-1165.
Gondran,M. and Minoux,M.1995.Graphes et Algorithmes,
ed. Eyrolles, Paris.
Goldman,R.P.; Haigh,K.Z.; Musliner,D.J.; and Pelican,M.
2000. MACBeth: A Multi-Agent Constraint-Based Plan-
ner. Proceedings of the AAAI Workshop on Constraints
and AI Planning. Menlo Park, Calif.: AAAI Press.
Laborie,P. and Ghallab,M. 1995. Planning with sharable re-
source constraints. Proceedings of IJCAI’95. Menlo Park,
Calif.: International Joint Conference on Artificial Intelli-
gence, Inc.
Long, D. and Fox, M. 2000. Automatic Synthesis and use
of Generic Types in Planning. Proceedings of AAAI 2000.
Menlo Park, Calif.: AAAI Press.
Meuleau,N.; Plaunt,C. and Smith D. 2008. Emergency
Landing Planning for Damaged Aircraft. In SPA Work-
shop, International Conference on Automated Planning
and Scheduling.

Van Hentenryck,P.; Saraswat,V and Deville,Y. 1995. De-
sign, Implementation and Evaluation of the Constraint
Language CC(FD), In Constraint Programming: Basics
and Trends, A. Podelski Ed., Springer-Verlag.
Kim,P.; Williams, B and Abramson, M. 2001. Execut-
ing Reactive, Model-based Programs through Graph-based
Temporal Planning. Proceedings of the International Joint
Conference on Artificial Intelligence, Seattle, WA.
Bullnheimer B., Hartl R., Strauss C., A new rank-based
version of the ant system : a computational study , Central
European Journal for Operations Research and Economics,
vol. 7, n1, p. 2538, 1999.
Di Caro G. A., Ducatelle F., Gambardella L., AntHocNet :
an adaptive Nature inspired algorithm for routing in mobile
ad hoc networks , European Transactions on Telecommu-
nications (ETT), vol. 16, n5, 2005.
R. Korf : Real-Time Heuristic Search, Artificial Intelli-
gence 42 (2-3), pages 189-211, 1990.
S. Koenig, M. Likhachev : Real-Time Adaptive A*, in Pro-
ceedings of the AAMAS, pages 281-288, 2006.
S. Koenig, M. Likhachev : D* Lite, in Proceedings of the
AAAI, pages 476-483, 2002.

21




