
Leaving Choices Open in Planner/Planner Integration∗

Sylvain Joyeux and Frank Kirchner
DFKI Bremen, Robotics Innovation Center

Robert-Hooke-Strae 5
D-28359 Bremen

Abstract

In this paper, we analyze the shortcoming of some of the hi-
erarchical planner/planner integration schemes in use nowa-
days. We will show that, in these integration methodologies,
one planner has usually to take decisions that are not limited
to its “area of expertise” (path planning, low-level planning,
high-level goal scheduling, . . . ). It can therefore make ill-
informed decisions and closes open choices that could have
been used for planning and scheduling. We propose a dif-
ferent view on planner/planner integration, where one plan-
ner does not provide a single solution but instead filters its
plan space, returning a set of near-optimal solutions. In other
words, it returns the solutions that are sensible according to
its model. The actual choices being then made either by other
planners that use this information, or during execution when
missing relevant information is made available to the system.
Changing the point of view in this way would for instance
allow a robot to proactively improve its knowledge to make
better informed decisions.

1. Introduction: Decision-making in Robotic
Systems

What is decision making in robotic architectures is a difficult
question, and this section will definitely not give a definitive
answer. It will instead try to give, through examples, a feel-
ing for the following three categories that can be found in a
robotic system:

• components definitely not taking decisions.
• components definitely taking decisions.
• a “grey area” where the answer is not so clear

No decision making Low-level behaviours like “go for-
ward” or “turn left” are obviously not decision-making com-
ponents. Another example is a module to control motors, or
a pilot module for an UAV. They do not choose anything:
they take a very short-term command (for instance the de-
sired path the robot should follow) and tries to make the sys-
tem stick to that command regardless of external influence
(in case of side wind for an UAV for instance).

∗Work done in the Intelligent Mobility project, funded by the
German DLR, with funds from the Ministry of Science (BMBF).
Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Decision-making components Task planning deals with
the selection of the future actions of the robot, given its
goals, its current state, a model of its environment and a
model of how it can change its own state and its environ-
ment. Action planning is definitely in the domain of deci-
sion making: it chooses one combination of actions that will
allow the system to reach its stated goal(s) among all the
possible combinations of actions.

Grey area In there lies path planning, or – more gener-
ally – all processes which involve choosing the place the
robot should move. This might be, for instance, a perception
planner which tells where perception should be done. These
components get a goal and deal with choosing the right path
for the robot to reach it. One could argue that given the
environment model, the planner’s cost function and the geo-
metrical model of the robot, there is only one optimal path.
However, when taking into account the actual path execu-
tion, one can easily that this optimal path will in the end
prove to be only one among a set of qualitatively equiva-
lent solutions. Thus, from the robot mission point of view,
most path planning algorithms choose a single path in all
the possible equivalent ones. They make a decision, and this
decision impacts the whole system.

This actually could be seen as a definition of decision-
making. Any component which chooses one of the possi-
ble, sensible courses of actions makes a decision. As such,
they are all planners: they do a projection of the robot into
its possible futures and choose one (or many) among them.
As we will see in the next section, it is important to under-
stand the interaction between the different decision-making
components – and to allow them to have rich interactions –
as these interactions are critical for the overall robot perfor-
mance.

The next section will focus on issues that we identified
in the integration between planning components. Then, we
will develop the example of path- and task- planning inte-
gration through the presentation of a qualitative path plan-
ning algorithm we developped. Finally, the generalization
of this approach to the integration of task planners will be
discusses, and we will conclude on the general usefulness of
our approach.

22



2. Problem Statement
In most systems, path planners are integrated using what one
could call the “MoveTo(goal)” paradigm. As we outlined in
the previous section, they are asked to reach a place, and
choose one solution that would allow the robot to reach that
place. For that scheme to work flawlessly, the path planner
would have to concern itself with problems that go out of
the “robot motion” domain, as for instance possible robot-
robot interactions or scheduling issues: it has to consider a
whole-system point of view and not only a navigation point
of view.

For instance, a good solution for the classical rover-AUV
navigation scenario – where the rover has a goal to reach and
the AUV can provide some mapping information to it – is to
have the rover take into account the AUV’s task schedul-
ing in its navigation decision, i.e. decide to take a route
over another based on if and when the AUV will be able to
provide him some data about the possible routes. Addition-
ally, if it is presented with the relevant information, the task
planner may be able to schedule information gathering tasks
that would help the system in its decision. However, for
both solutions to be easily integrated, the task planner and
the multi-robot cooperation subsystem would have to know
what options are actually open to them.

This problem also appears between action planners: in
architectures where action planning is split into hierarchies
– as for instance in (Alami et al. 1998; Alami and Botelho
2001) – the lower layers have only a partial knowledge of the
plans of the upper layers: their knowledge is limited to the
actions that should be executed right now. In these schemes,
there is not the possibility to choose, in the lower layers, the
optimal actions given the future plan of the upper layer. The
lower layers can therefore over-constrain the upper layer.

To summarize our point here, decision are not always
made in the component that is the most well-informed to
make it. Note that this issue remains in systems where
the planning and execution layers are tightly integrated
through the building of a single plan or the sharing of
partial plans as in CLARAty (Volpe et al. 2000; 2001;
Nesnas et al. 2005), IDEA (Muscettola et al. 2002;
Finzi, Ingrand, and Muscettola 2004) and the Concurrent
Reactive Plans (Beetz 2000). It remains, because for the
planning problem to be tractable, one must split it into
smaller sub-problems and, until now, that involves using
some domain-specific components, planning algorithms or
cost functions, to make decisions while taking into account
parameters unrelated to their focus. These components are
then making choices that should have been done by a more
informed or better suited layer, and also leads to a complex-
ification of the cost functions, which become a delicate bal-
ance between all the trade-offs that the system faces.

2.1 The Example of Path Planning Integration
First, most path planners search for an optimal solution in
the geometrical space (for instance in traversability maps)
while, given the scale they are operating at, searching opti-
mality is actually meaningless. Indeed, the uncertainty on
the travel time or energy consumption is far greater than the
difference between the optimal path and the next-to-optimal.

Second, as we already detailed, limiting the output of path
planners to the optimal path hinders the ability to use task
planning for information gathering, multi-robot cooperation,
and complexifies the design of cost functions.

We therefore advocate to start thinking as path planner
as a filter: it takes the whole geometrical (or configuration)
space and finds out the set of solutions that are qualitatively
equivalent from the point of view of the navigation’s subsys-
tem. Indeed, these solutions will be, in practice, equivalent
at execution time and therefore a choice cannot be made by
pure “travel-oriented” concerns (time, energy).

So, the path planner would output a set of solutions, leav-
ing the actual choice to another component (task planner,
plan manager). The advantage is then that one can take into
account concerns that would be difficult to put in the path
planner’s cost function. For instance:
• in multi-robot contexts, opportunistic behaviors during

path execution: for instance, taking photos of a place that
another agent requires without impairing the robot’s main
mission.

• generation of contingency plans, where the task planner
takes into account both a nominal movement and the abil-
ity to use alternate paths if the nominal one is blocked.

• the proper handling of unknown regions. In outdoor en-
vironments, the robot badly knows the environment it-
self. It must therefore decide whether it should explore
an unknown (or badly known) region or if it should take
a known path that is potentially longer. This decision is
currently implicitly made by the system’s path planner
through the use of a priori values for the unknown parts of
the map. In other words, the robot designer assumes the
unknown to be of a certain type. An integrative approach
could instead use the task planning system that has access
to both the mission profile (is there enough time and en-
ergy for exploration?), and the consequences of a failure
(what would be the cost of a failure?) to make that deci-
sion.
Finally, the stability of a path plan is of great importance

for their integration in task plans. Optimal approaches, like
D*-based approaches, become unstable around “crossroads”
(where two completely different paths of almost equal costs
meet each other). Indeed, little changes in the robot’s en-
vironment model, or position estimate, can make the path
costs change in a way that make the algorithm switch be-
tween them.

Because of this instability, it is hard to use the gener-
ated path in the task plan, as the latter can change dra-
matically at any time. For instance, in multi-robot con-
texts, there is no way to assume how a robot is commit-
ted to its currently chosen path. The authors have already
observed the consequences of such instability in a bi-robot
setup where the UAV uses the rover’s path to generate the
regions to map (Joyeux, Lacroix, and Alami 2007), which
led to the UAV having to constantly move to completely dif-
ferent places. Again, by knowing the set of solutions from
which the rover’s execution engine will pick, the multi-robot
cooperation component would be able to mitigate that prob-
lem.

23



2.2 Proposed Integration Scheme
What we basically advocate in this paper to change the
way planners are integrated with each other. Through the
path planner example, we will see that a hierarchical plan-
ner/planner integration can be achieved by having the plan-
ners acting as filters. One planner no more outputs one
single near-optimal solution, but a set of solutions among
those that are sensible (which often would translate as “near-
optimal”) given the level of detail of the considered plan-
ner. For instance, path planning should only have to reason
on navigation optimization criteria (time, energy), allowing
higher level tools to inject other criteria (cooperation possi-
bilities, contingencies).

The matter of integrating choices in plan representations
is not something new in itself. One can see conditional
planning and MDP as allowing the representation of open
choices by defining “choice tasks” which have multiple out-
comes. The issue, in our opinion, is not to represent choices
but to represent the information needed for scheduling. In-
deed, as we mentioned, one unique feature of representing
the choices in plans is that one can then represent the actions
that are required to make informed choices. There would be,
inherently, the need to have the planner stop seeing the plan
as a static problem (static forward model) but really as a
dynamic problem where tasks can influence decisions. The
GPGP/TAEMS (Lesser et al. 2004) is an example of such a
plan model.

The following section will further develop the example
of path- and task- planning integration, by presenting our
actual implementation of the proposed scheme. Then, we
will discuss the possible generalization of such a scheme to
the realm of task planning. Finally, we will conclude with
the limitations and possibilities of our approach.

3. Choices in Plans
In this section, we will see how we represent and generate
these choice plans in the case of the path planning problem,
and how those plans have been integrated into our plan man-
ager (Joyeux et al. 2009). The next section will then discuss
the generalization to the integration of task planners, as well
as open questions that exist in this approach.

3.1 Corridor Plans
The basic idea behind our representation is that planning
for navigation should be qualitatively optimal: the goal is
not to try following the optimal trajectory, but to represent
and structure the regions of space where the robot should
progress for the overall movement to be near-optimal. The
resulting plan will therefore be both a geometrical represen-
tation of this region and the necessary symbolic information
to direct the robot in it.

At the geometrical level, this region is segmented in “cor-
ridors”. A corridor is a virtual tunnel, which has a median
line and two boundary curves. From a navigation point of
view, if the robot enters a given corridor from one end, it
will traverse it and exit it at the other end (Fig. 1). I.e. the
task plan will see one corridor as an atomic action.

Then, the corridors are structured into a topological plan,
which represents how the corridors can be chained during
execution. It links the corridor end regions with two types
of edges:

• edges that represent the possible direction of travel inside
one corridor (intra-corridor edge).

• connections between two end regions of two different cor-
ridors (inter-corridor edges).

In this representation, a well-formed path, that is a corri-
dor sequence, is an alternance of edges of the two types. In
other words, once an inter-corridor edge is taken (i.e. move
from one corridor to another), the robot must take an intra-
corridor edge (i.e. cross the corridor), and vice-versa. This
guarantees that the robot won’t go back into the corridor it
just crossed.

Corridors can therefore be bidirectional if it exists two
paths that traverse it in the two opposite directions. Or they
are directed if all paths that traverse it do it in the same di-
rection. In the first case, there are two intra-corridor edges
(one for each direction of travel), and in the second case only
one.

While similar to topological maps (see (Thrun 1998) for
both an interesting method around topological maps and the
related work in that field), it is not a representation of a map,
but of a plan: it is a compact representation of the set of
corridor sequences (plan executions) that lead to the robot’s
goal in a near-optimal way. Our contribution here is that we
are able to generate such a plan in an unstructured outdoor
environments, using the cost function to structure the space.
The downside of it being that, like all plans, the topologi-
cal representation will probably change if the goal changes
while the environment does not.

3.2 Generation of Corridor Plans
For our plan generation algorithm, we assume that the envi-
ronment is represented as a navigation function sampled on
a grid map. The navigation function gives the optimal cost
to the goal for each point in the map and can for instance
be generated by D* or one of its offspring (we’re using D*).
The first phase of our algorithm transforms the navigation
function into a total cost function: for each point, the algo-
rithm computes the added cost of first going to that point
and only then going from that point to the goal. Then, the
algorithm marks the “navigation region”, which includes all
points whose total cost is within a given margin of the op-
timal cost. That “cost margin” can be set in different ways,
as for instance (i) a fixed value which represents the allowed
margin on the overall cost, (ii) a ratio of the optimal cost to
goal or (iii) based on the uncertainty of the optimal path (if
uncertainty informations is available).

The navigation region is then structured by using a
Voronoi skeleton extraction algorithm. Voronoi diagram ex-
traction is a widely studied subject, and we therefore do not
describe it here. See for instance (Li, Chen, and Li 1999).
However, the Voronoi diagram only generates an undirected
graph of corridors. There is still the need to generate a di-
rected graph. This is done by the following algorithm:

24



a33

a34
a35

a36

a37
a38

Figure 1: Detail of a corridor plan which gets around an obstacle. The geometrical representation is on the left, with the obstacle
in black and the median lines in white. The topological representation is on the middle: the plan dictates that the robot should
come from a38 (blue) to a35 through either a36 or a37. On the right, a specific corridor sequence has been chosen for execution
by the motion planner and the median line is updated accordingly (red parts).

Figure 2: Up: photo of our outdoor test track at DFKI. Down: the hand-made classification per terrain type. Terrain types are
internally associated with average speed values. The cost is time to travel.

• the cost along the corridor median lines is made mono-
tonic . Corridors for which it is not the case are split into
two new corridors.

• the corridors are oriented w.r.t. cost to target: the entry
point whose cost is higher is the entry point of the corri-
dor and the other one the exit point (remember that nav-
igation is following the down-gradient of the navigation
function).

• then, a depth-first search starting at the robot’s start point
allows to find all the paths that reach the goal in a near-
optimal way. The cost of traversing a given corridor be-
ing the absolute value of the difference between the cost
of the entry and exit regions: we make the approximation
that the cost of crossing the corridor is equal to the cost of
travelling along the median line (per the monotonic trans-
formation in (1)).

The result of this process can be seen on Fig. 3. A detailed
explanation, that can help interpreting this plan, is on Fig. 4.

3.3 Choices in the Plan Manager
Our plan manager model is made of two types of objects:
events and tasks. The first represents timepoints and the sec-
ond represent processes. These objects are structured into
graphs (mostly DAGs), to form a plan. These graphs, or
object relations allow to represent:

• the execution flow by linking events together

• how tasks interact with each other thanks to so-called task
relations

• the links between the different levels of abstraction by a
mixture of task relations, event relations and an object-
oriented model.

One should refer to (Joyeux et al. 2009; Joyeux 2007;
2008) for more details about the model, how the plan man-
ager executes its plans and how it is tailored for multi-robot
execution. In this paper, we will only focus on how choices
are represented in the plan.

Choices in our plan manager are a special kind of event.
That event is present in the execution flow to represent that,
once reached, one of the possible plan executions (the event
that follow the choice node) has to be chosen (Fig. 5). At all
times, if choice nodes are still present in the plans, it means
that at this stage of execution, there was no compelling rea-
sons to prefer one possible execution path against another.

Finally, the influence of other robot activities on the abil-
ity to perform that choice is represented by an influence rela-
tion borrowed from the GPGP/TAEMS model. This relation
marks that choosing one of the outcome tasks is influenced
by the task that will provide the necessary information.

4. Discussion
As we mentioned in our introduction, there is no silver bullet
in the domain of automated planning, and one has therefore
to choose the appropriate planning model and algorithm for

25



a0

a1

a8

a3

a7
a16

a13
a15 a42

a2

a11

a5

a9

a14

a10

a17

a4
a6

a12

a18

a19

a20

a21

a22

a24

a23

a25

a26

a27

a28

a29

a30a31

a32

a33

a34
a35

a36

a37
a38

a39

a40a41

a26

a11

Figure 3: Generated corridor map on the full terrain, for a navigation starting at the bottom far right (on the line between the
green and brown regions). The target point is up-left, in the green region. The resulting topological map is presented on the top.
Note that each line continues the previous one (for instance a26 is connected to a28 on the right of the first line and to a25 on
the left of the second line). The corridor names have no meaning. Detailed explanation of some complex features is presented
on Fig. 4.

a22

a24

a26

a25

a12a21

Figure 4: On this detail of the global plan, the concept of bidirectional corridors can be explained. A robot that comes from
a23 has first two choices: either go straight to a19 or to go through a22. If it crosses a22, then it has only two choices:
either go through a24 and a18 or a21 and a18. It cannot go back a22 because that plan would be ill-formed (see section 3.1).
Symmetrically, a robot that comes from a25 can cross both a24 and a22 to go up and reach either a21 or a19. a24 and a22 are
therefore bidirectional.

26



Corr::Exec(a19)

Corr::Exec(a23)

start success

Corr::Exec(a22)

start success

start success
Corr::Exec(a18)

start success
start success

Corr::Exec(−a24)

start success

Corr::Exec(a12)

start success

Explore(coordinates)

Robot2

Robot1

Corr::Exec(a21)

Figure 5: Example plan with choice nodes and influence relation. Parts of the corridor plan of Fig. 4 has been translated into
our plan manager’s model, the circles being the events, the crossed circles the choice nodes and the event-to-event arrows
precedence relations. Then, a hypothetical robot-robot interaction is set up where the second robot influences the first robot’s
choice by performing some perception task. This relation is represented by the three arrows pointing at Robot2’s Explore task
(these arrows should be read “parent is influenced by child”). In our manager’s scheduler, the choices are removed when done,
allowing to simplify the plan as the choices. This is of course a trade-off in itself, as new gathered information cannot modify
these choices anymore.

the robot’s mission. Obviously, neither is there a silver bullet
for the integration of the various planners that a given system
needs. The remaining of the paper will discuss the pros and
cons of our proposed scheme, and finally conclude on its
general usefulness.

4.1 Applicability on the integration of multiple
task planners

The choice of task/path planning integration to support our
integration scheme is actually biased. Indeed, the path plan-
ning domain has some characteristics that make it ideal for
our integration method:
• one can find the sensible set of solution efficiently (in our

case, using the D* algorithm)
• one can represent this set of solutions in a way that makes

it usable for a task planner of plan manager. In this paper,
this is through the representation of a single corridor as an
atomic task.
We will now discuss the applicability of this scheme in

the more general realm of task planning.
First of all, our scheme is related to the domain of least-

commitment planning (Weld 1994):
• partial order planners avoid over-constraining the plan at

the scheduling level. A single set of tasks is selected (i.e.
the planner selects one way of achieving the system’s mis-
sion(s)), but these tasks are only scheduled as it is strictly
required by the plan model. The singular feature of least-
commitment planners is to represent disjunctions in the
task order, i.e. represent that two tasks A and B that can-
not be executed in parallel could be executed either as
AthenB or as BthenA.

• in (Friedman and Weld 1996), action selection is delayed
until it is made completely necessary, which reduces the
search space. One could also go further and, when there

is no compelling reason to choose at the planning level,
leave the action selection to the execution component.

Generally speaking, both are a subset of what we pro-
pose. Part of the alternative plans would obviously only
differ from a scheduling point of view. What could still be
added is the ability to find different sets of tasks that achieve
the overall robot goal. There is therefore one central ques-
tion: is it common to have, in a given situation, various ways
to achieve a given goal ? Is not partial-order planning the
only meaningful part of the “filtering” strategy we propose ?

In our everyday life, most activities would indeed require
a fixed set of tasks to be performed. The choices lie only in
the scheduling of these activities. It therefore seems that, for
most activities, partial order planning would be enough.

However, that changes if we become uncertain about our
ability to achieve a task. In automated planning, this is
handled in different ways by conditional planning, contin-
gency planning and probabilistic planning. However, in all
of these approaches, failure is handled a posteriori: the plan-
ner takes into account that a task could fail and tries to find
a plan, starting from the hypothesized failure. Another strat-
egy would be to postulate that the task will fail and ask the
planner to find an alternative plan in which the task is not
present, or is present in another context. In effect, that would
force the planning engine to search for an alternative plan,
potentially of higher cost, in which this possible failure is
removed. Doing this repeatedly, as contingency planners al-
ready do, would lead to the kind of open-choices plans we
propose.

4.2 Exploiting Decision Information
The most straightforward use of the decision information is
actually static: it can be integrated in a standard planner to
take into account concerns of safety (based on how wide
and/or well-known a corridor is) and redundancy (how many

27



Task planner (Europa2)

Plan Manager

(Roby)Initial

plan

Corridor

Planner

A corridor plan

is generated

for each

navigation

tasks

Parts of the corridor plans

are filtered out if they break

the allocated time/ressources

computed by Europa

Plan with

open

choices

Multi−robot

task allocation

Selection

of information

gathering tasks

and prioritization

Figure 6: Integration scheme of our path planner with an
actual task planner through our plan manager.

alternate paths exist in a subgraph of the corridor plan, to
commit the robot as little as possible). This last case would
be comparable to the planning process of probabilistic plan-
ners, in which the overall expected utility is considered at
each level.

Another interesting use of this information is the addition
of information gathering tasks, where these tasks provide
information that could influence the robot’s decision. We
plan to develop such a scheme (Fig. 6), basing ourselves on
Europa2 as a task planner, the algorithm presented in this
paper for path planning and our Roby plan manager. How
we would model the influence of one task on the choice node
is still an open question for us.

The problem with this scheme is that Europa2 itself will
not be able to take into account the corridor plans. The issue
is that Europa2’s plan database, to our knowledge, does not
handle conditional plans. It will therefore not be possible to
use the availability of choices in Europa2. We will instead
handle it in the plan manager itself. Nonetheless, we as-
sume it will allow us to handle interesting cases, especially
in multi-robot contexts.

Finally, based on these corridor plans, we could extend the
approach to making contingency plans for navigation. As-
suming that it is possible to derive a likeliness that traversing
a given corridor fails, it would be possible to build a rela-
tionship between both the nominal plan and the plan where
traversing fails, thus allowing decisions to be taken based on
an online estimate of the cost of failure. We already devel-
oped the corridor update operator that is needed to imple-
ment this approach, but its description is out of this paper’s
scope.

4.3 Representation of open choices in a planning
engine

In our example, the open choices are not represented at the
planning engine level, only at the plan management level
(i.e. executive), simply because the planning engine is not
able to handle this information.

The main reason for that is efficiency: handling open pos-

sibilities is not possible in the planning stage, because it
would make the search cost explode. Nonetheless, we think
that the experience in least-commitment planners and con-
tingency planners indicate that our scheme could be inte-
grated in a planning system. Where that would most proba-
bly improve the system efficiency is in multi-robot context.

Indeed, multi-robot architectures centered on plan man-
agement approaches already indicated (Lesser et al. 2004;
Gancet and Lacroix 2005; Joyeux et al. 2009) that it is pos-
sible to make single-robot planner or scheduler interact with
a component that is multi-robot aware, to lead to an efficient
multi-robot system. Our scheme, if integrated in these ap-
proaches, would allow the subject of negotiation to not only
be task allocation, but a robot’s choice of plan. This would
be done while keeping the cost functions for single-robot
tasks centered on single-robot concerns.

5. Conclusion
In this paper, we argued that a richer approach for plan-
ner/planner integration is desirable. We used there the path
planning as the primary example, because the handling of
path plans stemmed our reflexion on the subject and because
it is an ideal example for the scheme we propose. We pre-
sented how we achieved to build a prototype for a path plan-
ner that supports that scheme, and how we plan to integrate
it further in a complete robotic system.

Our scheme is based on having planners act a filter in-
stead of decision-makers. In our point of view, one planner
should concern itself only with the parameters that are rel-
evant to its level of detail and domain of application, and
produce not the optimal plan (given its cost function) but the
set of plans that are qualitatively equivalent to the optimal
one, thus leaving the actual choice to the upper layers (if
any).

We also argue that extending it to the integration between
task planners is limited, but possible. Limited due to the
complexity impact it would have on the planning process,
but possible because related approaches already exist. We
finally argue that it would significantly improve a robot’s
ability to cooperate in the context of multi-robot teams.

References
Alami, R., and Botelho, S. 2001. Plan-based multi-robot
cooperation. In Advances in Plan-Based Control of Robotic
Agents, Lecture Notes in Computer Science. Springer.
Alami, R.; Chatila, R.; Fleury, S.; Ghallab, M.; and In-
grand, F. 1998. An architecture for autonomy. Interna-
tional Journal of Robotics Research 17(4):315–337.
Beetz, M. 2000. Concurrent Reactive Plans. Springer-
Verlag.
Finzi, A.; Ingrand, F.; and Muscettola, N. 2004. Robot
action planning and execution control. In Proceedings of
IWPSS.
Friedman, M., and Weld, D. 1996. Least-commitment ac-
tion selection. In Proc. 3rd Intl. Conf. on AI Planning Sys-
tems. AAAI Press.

28



Gancet, J., and Lacroix, S. 2005. Embedding heteroge-
neous levels of decisional autonomy in multi-robot sys-
tems.
Joyeux, S.; Alami, R.; Lacroix, S.; and Philippsen, R.
2009. A plan manager for multi-robot systems. The In-
ternational Journal of Robotics Research 28(2):220.
Joyeux, S.; Lacroix, S.; and Alami, R. 2007. A plan man-
ager for multi-robot systems. In Proceedings of FSR.
Joyeux, S. 2007. A Software Framework for Plan Man-
agement and Execution in Robotics: Application to Multi-
Robot Systems. Ph.D. Dissertation, ISAE. http://tel.
archives-ouvertes.fr/tel-00283086/fr/.
Joyeux, S. 2008. The roby plan manager. doudou.
github.com/roby.
Lesser, V.; Decker, K.; Wagner, T.; Carver, N.; Gar-
vey, A.; Horling, B.; Neiman, D.; Podorozhny, R.; Na-
gendraPrasad, M.; Raja, A.; Vincent, R.; Xuan, P.; and
Zhang, X. 2004. Evolution of the GPGP/TAEMS Domain-
Independent Coordination Framework. Autonomous
Agents and Multi-Agent Systems 9(1):87–143.
Li, C.; Chen, J.; and Li, Z. 1999. A raster-based method
for computing Voronoi diagrams of spatial objects using
dynamic distance transformation. International Journal of
Geographical Information Science 13.
Muscettola, N.; Dorals, G. A.; Fry, C.; Levinson, R.; and
Plaunt, C. 2002. IDEA: Planning at the core of autonomous
reactive agents. In Proceedings of the 3rd International
NASA Workshop on Planning and Scheduling for Space.
Nesnas, I.; Simmons, R.; Gaines, D.; Kunz, C.; Diaz-
Calderon, A.; Estlin, T.; Madison, R.; Guineau, J.;
McHenry, M.; Shu, I.-H.; and Apfelbaum, D. 2005.
Claraty: Challenged and steps toward reusable robotic soft-
ware. International Journal of Robotic Research 3(1):23–
30.
Thrun, S. 1998. Learning metric-topological maps for
indoor mobile robot navigation. Artificial Intelligence
99(1):21–71.
Volpe, R.; Nesnas, I.; Estlin, T.; Mutz, D.; Petras, R.; and
Das, H. 2000. Claraty: Coupled layer architecture for
robotic autonomy. Technical report, NASA Jet Propulsion
Laboratory.
Volpe, R.; Nesnas, I.; Estlin, T.; Mutz, D.; Petras, R.; and
Das, H. 2001. The claraty architecture for robotic auton-
omy. In Aerospace Conference, 121–132.
Weld, D. 1994. An introduction to least commitment plan-
ning. AI magazine 15(4):27–61.

29




