
Model-based, Hierarchical Control of a Mobile Manipulation Platform

Conor McGann, Eric Berger, Jonathan Bohren, Sachin Chitta, Brian Gerkey, Stuart Glaser,
Bhaskara Marthi, Wim Meeussen, Tony Pratkanis, Eitan Marder-Eppstein, Melonee Wise

Willow Garage (mcgann@willowgarage.com)

Abstract

PR2 is a sophisticated mobile manipulation platform de-
signed for operation in dynamic and unstructured indoor en-
vironments. In this paper we describe an experiment using
TREX, a hierarchical control framework based on constraint-
based temporal planning, to coordinate PR2 behavior. The
experiment was part of a fully integrated demonstration of
PR2 capabilities involving autonomous navigation, door-
opening, and recharging using standard electrical outlets. The
goal of this experiment was to evaluate the applicability of a
model-based, planning centric approach for practical robotics
on a large scale. The results were encouraging. Not only
did TREX play an important role in accomplishing the mile-
stone, which was in itself a significant achievement in au-
tonomous robotics, but it did so with modest computata-
tional overhead and system complexity. In this paper we out-
line the details of the milestone and how TREX was used
to achieve it, providing a quantitative and qualititative eval-
uation of TREX performance. We believe this presents a
promising pathway for deep integration of declarative mod-
els, and automated planning as a paradigm for practical robot
programming. All software described in this paper, includ-
ing TREX, is available under an Open Source license, via
http://ros.sourceforge.net.

Introduction
PR2 is a sophisticated mobile manipulation platform de-
signed for operation in dynamic and unstructured indoor
environments. Writing programs to enable such a robot
to operate autonomously, competently and robustly is hard.
The overall goal of our work is to make programming such
robots easier. Our strategy for achieving this goal is to de-
velop robust, re-usable action primitives that are maximally
decoupled, and focus on methods to compose these actions
in a principled way to accomplish higher level tasks.

In this paper we report results from an experiment apply-
ing TREX ((McGann et al. 2008b), (McGann et al. 2008a)),
a hierarchical control framework based on constraint-based
temporal planning, to coordinate PR2 behavior. TREX
was chosen because it claimed to support a synthesis of
goal-directed and reactive behavior in a uniform computa-
tional model based on formal, declarative models and au-
tomated planning techniques. Moreover, EUROPA (Frank
and Jónsson 2003), the constraint-based temporal planning

system at the heart of TREX, has a promising track record
in planning for practical robotics applications (Muscettola et
al. 1998), (Bresina et al. 2005).

Figure 1: PR2 plugging in
to a standard outlet.

The experiment was
part of a fully integrated
demonstration of PR2
capabilities involving
autonomous naviga-
tion, door-opening, and
recharging using standard
electrical outlets. The
goal of this experiment
was to evaluate the appli-
cability of a model-based,
planning centric approach
for practical robot pro-
gramming on a large
scale.

The paper is structured
as follows. We begin
with a description of PR2
and the demonstration re-
quirements that motivated
our work. Next we review
alternative approaches for building an Executive for PR2 and
indicate why TREX was chosen. We then describe TREX
and present selected details of its application to this domain
to convey how it worked in practice. This is followed by a
presentation of quantitative and qualitative results which are
the main contribution of the paper. We close with a discus-
sion of our results and their implications for future work.

Requirements
Our experimental system is an alpha prototype of the PR2
mobile manipulation platform (Fig. 1). The PR2 comprises
an omni-directional wheeled base, telescoping spine, two
force-controlled 7-DOF arms and an actuated sensor head.
Each arm has a 1-DOF gripper attached to it. The robot
can negotiate ADA-compliant1 wheelchair-accessible envi-
ronments, and its manipulation workspace is similar to that
of an average-height adult.

1
http://www.ada.gov/

42

The sensor head comprises a Hokuyo UTM-30 planar
laser range-finder on a tilt stage, and a pan-tilt stage holding
both a Videre stereo camera and a 5 mp Prosilica camera.
The laser is tilted up and down continuously, providing a 3D
view of the area in front of the robot. The resulting point
clouds are input to our perception system, which in turns
drives our manipulation system. A second Hokuyo UTM-30
laser sensor, attached to the base, is used for navigation.

The PR2 carries multiple computers, connected by a giga-
bit LAN. The current computing configuration is four dual-
core 2.6GHz machines running Linux. One of the four
machines is modified to run a real-time kernel, providing
a guaranteed 1KHz control loop, via EtherCAT,2 over the
robot’s motors and encoders. PR2 uses ROS (Robot Oper-
ating System) (Quigley et al. 2009) for synchronous and
asynchronous inter-process communication.

The Challenge
This experiment was conducted in the context of a challenge
designed to test the capabilities of PR2 and ROS, and show
that the system could operate robustly and autonomously in
an indoor office environment. This challenge consisted of
two main parts. The first was a navigation marathon, con-
ducted on a stripped down version of PR2 (no arms). This
was largely a matter of making our core navigation behavior
robust, with only limited demands for top-level control. The
second part of the challenge, and the focus of this work, was
more of a triathlon, integrating planar navigation, navigation
through closed, partially-open, or fully open doorways, and
recharging by plugging in to one of a range of standard elec-
trical outlets located around our building. Given an occu-
pancy grid map of the building, plus approximate locations
of doors and outlets, PR2 had to autonomously navigate to
each of 10 outlets, selected by a user at the start, where-
upon it would plug itself in, unplug and move on to the next
one. In the course of driving from one outlet to another, PR2
would traverse doorways as needed. If an outlet was in an
office with a locked door, it could give up on that goal (or
try again later). It had to accomplish this in under 2 hours.
Once underway, human intervention was prohibited.

Figure 2: Regions in the topological map. Doorways are
special regions, indicated in red. The map is derived from a
metric map constructed from laser data.

2
http://www.ethercat.org/

The Work Breakdown
The system was divided into 4 key sub-domains:
• Navigation. Handled planar navigation on a metric

costmap derived from laser data. This provided a capa-
bility for global navigation around the building, and local
positioning of the robot over smaller scales, each based
on achieving a target 3-DOF pose.

• Doors. Handled doorway traversal, including door and
handle detection, local navigation for positioning the
base, and arm commands for contacting and manipulating
the door and handle. These capabilities were encapsulated
as a set of 10 durative actions.

• Plugs. Handled outlet and plug detection, local navigation
around the outlet, as well as arm commands for grasping
and manipulating the plug. The plug was mounted on the
base via a magnet and would be removed and restored to
that position on each recharge cycle. These capabilities
were also encapsulated as a set of durative actions.

• Topological map. A topological map (Fig. 2) was de-
veloped providing a graph based representation of re-
gions and connectors derived from the underlying metric
map. This enabled path planning for higher-level control.
The topological map was annotated with prior informa-
tion about doors, outlets and reachable approach points
for each.
Substantial capabilities were required in each area, in-

volving innovations in perception, planning and control.
However, their specifics are outside the scope of this pa-
per. Rather, we consider the products of each sub-domain
as modular building blocks for higher level control. This ap-
proach allowed us to develop and test specific capabilities, in
a decoupled fashion, as well as script specific combinations
within each domain, for testing and demonstration.

The role of an Executive
Explicit scripting of actions is suitable for the testing of spe-
cific action sequences. A more sophisticated integration is
required, however, to achieve a greater degree of robustness.
The system should be able to assemble all capabilities in a
coherent manner and recover in the event of failure. Such
behavior co-ordination and system configuration manage-
ment at this level are the job for the Executive. Co-ordination
must be driven by top-level goals (e.g. recharge at outlet 6).
These goals must be planned in a prudent order to provide
for efficient execution. Safety constraints must be obeyed.
For example, to avoid collision when driving around, the tilt
laser must be running and the arms must be stowed. Also,
shared resources must be managed. For example specific
configurations of realtime controllers are required for each
action, e.g. untucking the arms (useful to obtain a clear view
of the base when looking for the plug) uses a joint-space tra-
jectory controller, whereas grasping the handle uses an effort
controller.

It is almost possible to operate with purely sequential ac-
tion execution. However, some actions may be executable in
parallel (e.g. it is possible to switch controllers and change
the configuration of the tilt laser at the same time), and some

43

actions must be executed in parallel (e.g. drive the base
through the doorway while pushing the door open with the
arm). Moreover, we foresee that future scenarios involving
both arms will require a greater degree of co-ordination be-
tween concurrent actions than those mentioned above.

In summary, the Executive must be commanded by high-
level goals, and integrate high-level planning, durative and
concurrent actions, discrete and continuous states, substan-
tial uncertainty in the duration that actions might take, and
in their outcomes. In addition, actions are subject to timing,
safety and resource constraints.

Related Work
There are many approaches to consider for building an Ex-
ecutive. We will consider purely reactive methods, three-
layer architectures, and model-based, planning centric ap-
proaches.

Reactive, procedural methods

Pre-sequenced linear plans are out of the question due to
the high-degree of uncertainty in action outcomes. For the
most part, individual subdomains (i.e. plugs, doors and nav-
igation) might be handled using purely reactive techniques
encoded as finite-state machines or teleo-reactive programs
(Nilsson 1994). However, these approaches require encod-
ing all conditional behavior as part of the state machine,
or part of the condition logic of a TR program, explicitly
checking if the arm is tucked prior to driving (for exam-
ple), and inserting the action to tuck the arms if it is not.
Similarly, these procedural methods would have to check
the controller configurations for mechanisms they require
(i.e. base, head, arm) and generate suitable configuration
switching statements as needed. Purely reactive methods
do not allow for scheduling action execution to account for
these requirements since they are only discovered as they
are needed. Moreover, there is still the need for planning for
higher level goals which makes integration of deliberation
and reaction inevitable.

Three Layer Architectures

The most common method for integrating deliberative and
reactive behavior is based on layered architectures that in-
tegrate deliberative planning at the top layer, reactive con-
trollers at the bottom, and a sequencer in the middle to co-
ordinate controller execution, guided by the plan. Examples
of this approach abound (Gat et al. 1997). One limitation
of 3-tier architectures is that they confine the role of formal,
deliberative techniques to only the highest levels of abstrac-
tion and render subsequent robot behavior subject to infor-
mal, reactive approaches that do not consider problematic
implications of local decisions. For our purposes, this would
offer little advantage over reactive, procedural approaches.
Furthermore, the separation of deliberative and reactive be-
haviors into separate layers with separate technologies and
separate specifications compounds the complexity of inte-
gration.

Model-based, planning centric methods
More recently, a number of researchers have developed ex-
ecutives that emphasize model-based approaches and deep
integration of automated planning (Shanahan 2000), (Beetz
2000), (Williams et al. 2003). IDEA (Muscettola et al.
2002) is notable for the richness of the underlying timeline-
based semantics which are founded on constraint-based tem-
poral planning (CTP) (Frank and Jónsson 2003), and the ex-
tent to which it exploits automated planning and plan-based
reasoning techniques at the core of execution. CTP has been
applied in a number of practical applications ((Muscettola et
al. 1998), (Bresina et al. 2005)). IDEA was implemented on
top of the open-source EUROPA 3 planning framework , and
was fielded in a number of technology demonstrations (As-
chwanden et al. 2006). EUROPA supports metric time and
resources, durative and concurrent actions, discrete and con-
tinuous states, and an expressive and extendable language
for temporal and non-temporal constraints.

TREX ((McGann et al. 2008b), (McGann et al. 2008a))
was developed initially for deployment on Autonomous Un-
derwater Vehicles (AUVs) based on the same foundations as
IDEA (i.e. the CTP paradigm and a deep integration of plan-
ning techniques in execution). TREX is distinct from IDEA
in a number of ways. Most notably, it identifies scalability
as a key issue and uses a formal framework for partitioning
an agent structure into a collection of co-ordinated control
loops to allow planning based approaches to scale to more
complex applications efficiently. Secondarily, it utilizes a
more direct mapping to the underlying EUROPA planning
system which exposes greater functionality with less in-
tegration complexity. This is an important practical con-
cern. Even though TREX had been successfully deployed
on AUVs, it was an open question how well it would ap-
ply to a more complex and reactive robotic system like PR2
since it possesses more demanding requirements for reaction
times than did previously deployed systems. After a brief re-
view of the core concepts, we will describe how TREX was
applied in practice to this domain.

Key TREX Concepts
TREX models the world as a set of state variables, whose
evolution is captured in timelines. The work of planning and
control is partitioned into a set of reactors, each of which im-
plements a sense-plan-act-loop. Information flows between
reactors via timelines. There are three main ideas to under-
stand. First, the notion of how a timeline-based representa-
tion maps to execution. Second, how planning and planning
techniques are deeply integrated in a control loop based on
the Sense-Plan-Act model. And finally, how an agent con-
trol structure, founded on the semantics of timelines, can be
partitioned and composed.

Timelines, Tokens and Timeline-based Execution
Informally, a timeline captures the trajectory of a state vari-
able. The value of a state variable is described by a pred-
icate and its temporal extent is captured by start and end

3
http://babelfish.arc.nasa.gov/trac/europa

44

time-points. Time is broken up into discrete ticks. Listing 1
provides a NDDL 4 declaration for a sub-type of an Agent-
Timeline capturing the pose of a robot with position (x, y, z)
and orientation (qx, qy, qz, qw)5. Instances of a predicate are
referred to as tokens, which include variables for each pred-
icate parameter as well as implicit variables for its temporal
scope.

1 c l a s s Pose e x t e n d s Agen tT ime l ine {
2 p r e d i c a t e Holds{ f l o a t x , y , z , qx , qy , qz , qw ; }
3 } ;

Listing 1: NDDL class declaration for Pose.

An external action can be modeled as a timeline with
states for when it is Active or Inactive. For example, con-
sider an action to move the robot to a target pose using planar
navigation. The Active state indicates the action is actively
pursuing a goal pose. The Inactive state indicates it is not
active, and provides feedback, including if the action suc-
ceeded or failed in some way. Listing 2 illustrates how this
is declared in NDDL. Note that predicate declarations allow
values on timelines to have different structure if necessary.
A model may also impose constraints on the evolution of
state in a timeline. In this example, the temporal relations
meets and met by (Allen 1983) ensure the timeline cannot
be switched directly from one active state to another without
first becoming inactive.

1 c l a s s MoveBase e x t e n d s Agen tT ime l ine{
2 p r e d i c a t e A c t i v e{
3 f l o a t x , y , z , qx , qy , qz , qw ;
4 }
5 p r e d i c a t e I n a c t i v e {
6 R e s u l t S t a t u s s t a t u s ;
7 f l o a t x , y , z , qx , qy , qz , qw ;
8 }
9 } ;

10 MoveBase : : A c t i v e{
11 met by (I n a c t i v e) ;
12 meets (I n a c t i v e) ;
13 }

Listing 2: NDDL declarations for MoveBase action

A planner (perhaps a very trivial one) can be used to fill up
timelines in the future. Fig. 3a) illustrates a plan containing
2 instances of a MoveBase action. Time-points are captured
as intervals, reflecting flexibility or uncertainty about the du-
ration of each action. The timeline is the data store for both
planning and execution. The red arrow indicates the current
tick in execution, called the execution frontier. As the clock
advances, time bounds must be propagated approriately.

SPA and the Deliberative Reactor
Fig. 4 depicts an implementation of a Sense-Plan-Act con-
trol loop using constraint-based temporal planning. TREX
refers to this as a Deliberative Reactor which is a special

4NDDL (pronounced ’noodle’) is the modeling language of EUROPA and is di-
rectly used by TREX.

5Orientations are 4-tuples as we represent them as quaternions

case of the more general idea of a teleo reactor. The Plan-
Database stores timelines and tokens for both planning and
execution. It includes algorithms and data structures for con-
sistency checking, and propositional inference to apply the
model. The Synchronizer integrates observations with the
plan. The Planner monitors the PlanDatabase for flaws and
resolves them. Flaws arise due to inbound goals, and by im-
plication of the model. The Dispatcher dispatches tokens in
the plan as goal requests. The Planner and PlanDatabase
are EUROPA components.

Figure 4: Internal structure of a Deliberative Reactor

Partitioning and Composition
The symmetry of inbound and outbound goals and obser-
vations enables natural composition of reactors. TREX de-
fines an ownership and usage model of timelines to make
the composition explicit, and the rules for information flow
and conflict resolution unambiguous. If a reactor owns a
timeline, it is solely responsible for deciding what value that
timeline has as execution unfolds. Such timelines are inter-
nal to that reactor. If a reactor uses a timeline, it will receive
new values for that timeline as they arise, and it may dis-
patch any goals it has for that timeline to the owner reactor.
Such a timeline is external to its user. The user of a timeline
depends on it’s owner. This dependency dictates the flow of
information in TREX. The key to scalability is that the scope
of computation for each reactor is restricted to only the set
of timelines it explicitly owns or uses, over the time horizon
it cares to deliberate. This modularity, coupled with the de-
pendency directed information flow, makes TREX amenable
to divide-and-conquer strategies to scale up to larger scale
systems efficiently in a unified computational framework.

Executive Design
We now elaborate on the application of TREX to a challeng-
ing mobile manipulation demonstration. We first outline the
overall structure, and then explore salient details from the
domain to convey the richness and scale of the problem.

Reactor Graph
Fig. 5 indicates the reactor graph used for our PR2 exper-
iments. It depicts the set of reactors and dependencies be-
tween them. Each reactor and its dependent links are color-
coded. Goals flow in the direction of these links. Observa-
tions flow in the reverse direction. Each reactor is annotated
with a name, its look-ahead indicating how far ahead to plan,
its latency giving an upper bound on plan completion time,

45

(a) The move base timeline after 2 goals have been planned. The timeline is a sequence of tokens (rectangles). A token is a temporally
scoped predicate (the text in each rectangle). The temporal scope is captured with timepoints (indicated with circles). There is a precedence
constraint (directed arc) between token timepoints. Each token has a minimum duration of 1 tick. Note that the timepoints are flexible. The
latest end time for a goal is always less than the overall mission horizon for the agent (e.g. 1000). Each goal expresses that an external
action is actively going to a target pose. The parameters for goals are bound. The expected feedback states (e.g. Inactive) do not have their
parameters bound yet, though they can be constrained to precise values if desired. They will be bound in execution.

(b) Communication events between the external move base action and the agent. The red line represents the advance of time from left to
right. Perpendicular arrows are communication events occurring during execution. Blue arrows capture goal dispatch events. Green arrows
capture observation notifications. The events are totally ordered, but are not to scale. At initialization, the move base action’s current state
is published to the executive, indicating it is inactive. At tick 1, the first token in the plan is dispatched. This is manifest as a message to
activate the move base action where the parameters of the token become the goal arguments to move base. Once activated, the move base
action will generate a message indicating it has transitioned to the state of active with the given goal parameters. This becomes an observation
at tick 1 which is inserted in the plan by merging it with the existing planned token, and thus restricting the start time bound to a singleton.
At tick 567, the move base action achieved the goal pose within a given tolerance and thus transitioned inactive. This transition is published
to the executive as an observation, which is inserted in the plan by merging the token. Now, unbound parameters in the plan are bound via
intersection with the observed values from execution. At tick 568, the second goal is dispatchable. The same process repeats. In this example,
there were no failures in execution.

(c) The resulting timeline at tick 977. Note that all timepoints and token parameters have been grounded. In practice, parts of the timeline
that are in the past, and no longer impacting future tokens, can be discarded.

Figure 3: A timeline and its execution.

and parameters i and e indicating the number of internal and
external timelines respectively.

The Robot Control Subsystem has no external timelines.
It is mapped to a single exogenous state variable giving the
planar pose of the robot, as well as each of 25 external ac-
tion primitives previously described. This reactor is imple-
mented as an adapter mapping ROS messages to goal re-
quests, recalls and observations. All other reactors were
instances of a DeliberativeReactor varying in their func-
tional and temporal scopes. Real-time controller configu-
ration management was handled in the Mechanism Control
reactor. The Doorman encapsulated behavior for navigat-
ing doorways in the topological map. The Driver was used
for navigation in all other regions (i.e. offices, hallways and
open areas). The Recharger encapsulated all behavior for
plugging in and unplugging. At the top level, the Master
was used to plan the overall tour given high-level goals, and

decompose these goals into successive calls to the Doorman,
Driver and Recharger. The topological map played an im-
portant role, providing cost estimates for point-to-point nav-
igation for the planner, and integrating data about doors and
outlets to drive navigation. The Safety reactor monitored
execution to track a number of variables of interest for en-
suring PR2 safety and enabled these variables to be shared
by reactors. Note that it has a 0 lookahead, thus no goals
will be dispatched to it. It simply derives estimates of safety
state variables through the synchronization process and the
domain model.

The Doorman state machine
Robust traversal of doorways proved a substantial challenge,
where doorways could be in a variety of locked, closed,
partially and fully open states. Fig. 6 illustrates the states
and transitions for the door controller, which is planned and

46

Figure 5: The reactor topology for PR2.

executed incrementally within the context of the Doorman.
These states and transitions are hidden from other reactors.
A state machine is a common and convenient way to specify
a control strategy. In TREX, we merge this concept with
temporal planning to decompose states into actions using
explicit decomposition as well as implicit action generation
through planning. One can think of the reactive generation
of a successor state as producing a near term goal to plan
and execute.

Figure 6: States and transitions for the door domain.

The state machine begins by checking for a clear path
through the doorway. Space constraints preclude a detailed
description of what occurs in each case. Suffice to say that
each state maps to one or more external actions, and that
successor states are specified based on the success or oth-
erwise of any actions executed. Listing 3 shows a partial
declaration of the door controller class that implements this
state machine.

1 c l a s s D o o r C o n t r o l l e r e x t e n d s S t a t e M a c h i n e {
2 p r e d i c a t e I n a c t i v e {}
3 p r e d i c a t e D e t e c t i n g D o o r{}
4 p r e d i c a t e OpenDoor{ boo l u s e h a n d l e ; }

Listing 3: NDDL declaration of the door controller class

The model fragment in Listing 4 provides a simple illus-
tration of mapping a state to an action, and generating the
successor state conditionally based on action feedback. The
model indicates a subgoal that ensures a detect door action
executes within the temporal scope of this state, and links
the end times of this state with the end time of the action.
A status parameter of the action, which is only bound when
the action completes and its feedback produces a result, gen-
erates the successor state. All requirements for this action
dictated by the model must also be met.

1 D o o r C o n t r o l l e r : : D e t e c t i n g D o o r{
2 c o n t a i n s (d e t e c t d o o r . A c t i v e cmd) ;
3 ends cmd ;
4 i f (cmd . s t a t u s == SUCCESS){
5 cmd meets (d e t e c t d o o r . I n a c t i v e f e e d b a c k) ;
6 i f (f e e d b a c k . l a t c h s t a t e == LATCH STATE UNLATCHED){
7 meets (ApproachingDoor) ;
8 } e l s e {
9 meets (D e t e c t i n g H a n d l e) ;

10 }
11 } e l s e {
12 meets (CheckingDoorway) ;
13 }
14 }

Listing 4: A decomposition rule for DetectingDoor

Concurrent and interacting actions
Not surprisingly, getting through the doorway while ma-
nipulating the door is the most involved aspect of doorway
traversal. In particular, the decomposition of the OpenDoor
state involves a number of actions with concurrency and or-
dering requirements. Listing 5 describes a model fragment
expressing the decomposition for the case where the door is
already unlatched (i.e. not using the handle). PR2 starts by
touching the door, and then begins pushing. Once pushing
begins, the robot can move the base. When the base reaches
the goal, pushing may complete, but not before. Fig. 7 il-
lustrates the resulting plan with appropriate temporal con-
straints.

1 D o o r C o n t r o l l e r : : OpenDoor{
2 c o n t a i n s (move base doo r . A c t i v e cmd mb) ;
3 cmd mb b e f o r e (s t o p a c t i o n . A c t i v e cmd s top) ;
4 i f (u s e h a n d l e == f a l s e){
5 c o n t a i n s (t o u c h d o o r . A c t i v e cmd td) ;
6 cmd td b e f o r e (p u s h d o o r . A c t i v e cmd pd) ;
7 ends cmd pd ;
8 eq (cmd td . s t a t u s , SUCCESS) ;
9 cmd pd s t a r t s b e f o r e cmd mb ;

10 eq (cmd s top . ac t i o n na me , ” p u s h d o o r ”) ;
11 }
12 i f (cmd mb . s t a t u s == SUCCESS){
13 meets (I n a c t i v e s) ;
14 eq (s . s t a t u s , SUCCESS) ;
15 } e l s e {
16 meets (OpenDoor s) ;
17 eq (s . u s e h a n d l e , f a l s e) ;
18 }
19 }

Listing 5: NDDL model fragment for the OpenDoor state

47

Figure 7: Tokens, timelines and temporal constraints for go-
ing through a doorway without a grasp on the door handle.
The plan has not been executed yet.

Generative planning to apply the model

Figure 8: Subgoals generated by regression from the
recharge controller state Positioning.

There are a number of constraints that apply to actions that
are not specified directly as part of a state machine. For
example, consider the simple case when the robot is posi-
tioning itself at an approach point for outlet detection. In
order to move the base, the tilt laser must be ready and the
arms must be tucked. These states are achieved by actions
to set the tilt laser and tuck the arms respectively. Tucking
the arms requires that the plug is stowed, which is achieved
by stowing the plug. Finally, stowing the plug requires that
the plug is unplugged, which is accomplished by the unplug
action. This example is illustrated in Fig. 8. The relevant
model elements are shown in text. Tokens are colored ac-
cording to the reactor that owns them (Fig. 5). Lines with
single arrows indicate a precedence constraint ≤, and dou-
ble arrowed lines indicate an equality constraint. Note that

if the conditions are satisfied at one step (e.g. the arm is
already stowed), then no further subgoal generation occurs.
The full plan is not shown. This example illustrates how a
state machine for expressing control objectives is integrated
with generative planning, greatly simplifying the specifica-
tion of a single component since so many implied require-
ments can be handled automatically.

Results
Over the course of 3 weeks, PR2 and TREX were used to
run different demonstrations using different target outlets,
with doors and offices in different states. Notably, a criti-
cal demonstration required 10 recharge goals to be accom-
plished consecutively without any human intervention. This
demonstration was accomplished in under an hour. In this
and other demonstrations, TREX gracefully handled a wide
range of failure conditions to succeed in each case. The data
in this section is based on a single run given 9 recharge goals.

Measurement Value
Executive control rate 10 Hz
Total number of internal timelines 47
Total number of external timelines 66
Total number of EUROPA timelines 87
Mission duration 3799 seconds
Total number of actions executed 494
Total number of action failures 29
Total number of planning cycles 907
Memory consumption for the executive 10 MB
Estimated model line count 1207
TREX CPU utilization (mean) 9.8%
TREX CPU utilization (std) 5.0%

Table 1: Summary metrics of complexity and performance

Table 1 provides a summary listing of key metrics. The
executive operated at a control rate of 10 Hz. This provides
snappy transitions from one action to another but requires
synchronization of the complete executive once every 100
ms. The overall scale of the system is indicated by the num-
ber of internal and external timelines. The number of inter-
nal timelines reflects the total number of state variables ref-
erenced by the executive. This number includes 26 timelines
that are internal to the Robot Control Subsystem. The total
number of EUROPA timelines excludes these. The mission
ran for just over an hour. 3 doors were locked when tried.
The Executive deferred them till later. One of them was
opened when revisited. The remaining 2 were continually
retried until we terminated the test. In total, 494 external
robot actions were executed, of which 29 aborted or timed-
out. 907 planning cycles occurred across all deliberative re-
actors. A planning cycle is initiated when a reactor receives
a goal, or when a flaw is entailed by the model. There were
no plan failures. TREX memory consumption was flat at
10 MB. The total line count for the model provides a coarse
metric of program complexity. It includes all constraints and
class declarations. The modest number reflects the leverage

48

from automated planning and a very high level programming
model.

Recall that TREX was running on a dual-core 2.6GHz
Linux machine. CPU load is a key measure of the scala-
bility of the system. The mean and standard deviations for
CPU utilization are at 9.8% and 5.0% respectively. This in-
dicates that even at a control rate of 10 Hz, TREX was com-
fortably able to handle the load. Time series data for CPU
utilization over the full run is shown in Fig. 9. The base-
line cost is under 10.0%, mainly due to synchronization of
new pose observations at every tick, and propagating tempo-
ral constraints for all reactors. Increases arise where action
transitions and planning occur, but remain well within our
time budget.

0 500 1000 1500 2000 2500 3000 3500
0

5

10

15

20

Time [s]

Pe
rc

en
t C

PU
 U

sa
ge

CPU Usage by TREX During PR2 Run

Figure 9: CPU utilization throughout execution

Discussion
The results obtained in this experiment were very encourag-
ing, suggesting a promising pathway for deep integration of
declarative models, and automated planning as a paradigm
for practical robot programming. Not only did TREX play
an important role in accomplishing the milestone, which was
in itself a significant achievement in autonomous robotics,
but it did so with modest computational overhead and sys-
tem complexity. The combination of familiar state-machine
specifications with generative planning proved very power-
ful and greatly simplified program complexity. We found the
declarative temporal programming paradigm to be highly
expressive, and very powerful, for capturing concurrency
and ordering constraints among actions. The partitioning
scheme was particularly important, allowing planning and
synchronization costs to be localized on a need-to-know ba-
sis. While there might be large changes internal to the door-
man, the driver and the master remain unaffected. Partion-
ing also enabled reactors to be incrementally integrated and
tested, and easily stubbed out. Notably, 5 of the 6 deliber-
ative reactors used the same base configuration of the EU-
ROPA planner. Only the master required specialized com-
ponents to formulate and solve an orienteering problem for
sequencing top-level goals. Despite a number of action fail-
ures, no replanning was required because of the incremental
refinement of plans in the driver, doorman, and recharger
based on action feedback.

Conclusions and Future Work
In order to aid adoption of TREX, we will focus on usability
challenges, concentrating on improvements in the underly-

ing language, and the tools used for monitoring and analysis.

Acknowledgements
We thank all resident and visiting engineers at Willow
Garage for their hard work getting PR2 hardware and soft-
ware to the point where we could conduct our experiments.
We thank NASA and MBARI for making EUROPA and
TREX available as open-source software. Finally, we thank
Willow Garage for supporting this work.

References
Allen, J. F. 1983. Maintaining knowledge about temporal
intervals. Commun. ACM 26(11):832–843.
Aschwanden, P.; Baskaran, V.; Bernardini, S.; Fry, C.;
Moreno, M.; Muscettola, N.; Plaunt, C.; Rijsman, D.; and
Tompkins, P. 2006. Model-unified planning and execution
for distributed autonomous system control. In Workshop
on Spacecraft Autonomy, AAAI Fall Symposium.
Beetz, M. 2000. Runtime plan adaptation in structured
reactive controllers. In in Proceedings of the Fourth ICAA.
Bresina, J. L.; Jónsson, A. K.; Morris, P. H.; and Rajan, K.
2005. Activity planning for the mars exploration rovers. In
ICAPS, 40–49.
Frank, J., and Jónsson, A. K. 2003. Constraint-based at-
tribute and interval planning. Constraints 8(4):339–364.
Gat, E.; Bonnasso, R. P.; Murphy, R.; and Press, A. 1997.
On three-layer architectures. In Artificial Intelligence and
Mobile Robots, 195–210. AAAI Press.
McGann, C.; Py, F.; Rajan, K.; Ryan, J.; and Henthorn,
R. 2008a. Adaptive control for autonomous underwater
vehicles. In AAAI, 1319–1324.
McGann, C.; Py, F.; Rajan, K.; Thomas, H.; Henthorn, R.;
and McEwen, R. 2008b. A deliberative architecture for
auv control. In ICRA, 1049–1054.
Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams, B. C.
1998. Remote agent: To boldly go where no ai system has
gone before. Artif. Intell. 103(1-2):5–47.
Muscettola, N.; Dorais, G. A.; Fry, C.; Levinson, R.; and
Plaunt, C. 2002. Idea: Planning at the core of autonomous
reactive agents. In in Proceedings of the 3rd International
NASA Workshop on Planning and Scheduling for Space.
Nilsson, N. J. 1994. Teleo-reactive programs for agent
control. J. Artif. Intell. Res. (JAIR) 1:139–158.
Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.;
Leibs, J.; Berger, E.; Wheeler, R.; and Ng, A. 2009.
Ros: an open-source robot operating system. In Proc. of
the IEEE Intl. Conf. on Robotics and Automation (ICRA)
Workshop on Open Source Robotics.
Shanahan, M. 2000. Reinventing shakey. Norwell, MA,
USA: Kluwer Academic Publishers.
Williams, B. C.; Ingham, M. D.; Chung, S. H.; and Elliott,
P. H. 2003. Model-based programming of intelligent em-
bedded systems and robotic space explorers. In In Proceed-
ings of the IEEE: Special Issue on Modeling and Design of
Embedded Software, 212–237.

49

