
Petri Net Analyses via y
Action Planning g

Stefan EdelkampStefan Edelkamp

Computer Science Department
University of Bremen, Germany

O iOverview
 Directed Model Checking for Petri Nets

 Heuristics for the Analysis of Petri Nets
 Planning for the Directed Analysis of Petri Nets

 From Petri Nets to Graphs and Back: p
 Graph Transformation for Planning
 Graph Transformation via Planningp g
 Approximation via Petri Nets & Planning

 Extending Expressiveness of Petri Nets: Extending Expressiveness of Petri Nets:
 Colored Petri Nets [Jensen]
 Predicate/Transition & Administration Nets Predicate/Transition & Administration Nets

[Hartmann et al.,Wedde]

Motivation

 Can reachability analysis in Petri nets be
accelerated by exploiting heuristic accelerated by exploiting heuristic
estimates ?

Action Planning for Directed Model
Checking of Petri Nets - Edelkamp, Jabbar

P i NPetri Nets
 A Bipartite Directed Graph with two nodes

set – places and transitions.

 Formally, a 4-tuple (P, T, I-, I+) where, Formally, a 4 tuple (P, T, I , I) where,
 P : Places
 T : Transitions T : Transitions
 I- :P x T N –Backward incidence matrix
 I+: T x P N –Forward incidence matrix I+: T x P N Forward incidence matrix

E iExecution
 Marking – Tokens Enabled/Live

Transition

Tokens p1

p3

M0 = <1,1,0>

p3
t1

p2 Markings

 Firing

p1 M1 = <0 0 1>p1

p3
t1

M1 = <0,0,1>

Disabled
p2

Disabled
Transition

G l C di iGoal Condition
 Specific Goal Condition: An explicit

marking.

 General Goal Condition: A set of different General Goal Condition: A set of different
markings satisfying a particular property.
E.g., A deadlock in the system – no E.g., A deadlock in the system no
transition is enabled.

Example: Dinning Philosphers

thinking thinking

waiting waiting

Pick right fork Pick right fork

waiting waiting

Pick left fork Pick left fork

eating eating

Put forks down Put forks down

Philosopher 1 Philosopher 2

Deadlock in Dinning
Philosphers No

transition
enabled

thinking thinkingthinking thinking

Pick right fork Pick right fork

waiting waiting

Pick left fork Pick left fork

eating eating

f k d f k d

Philosopher 1 Philosopher 2

Put forks down Put forks down

osop e osop e

Distance Heuristics for Petri
Nets – Basics

H i ti E l ti f ti th t ti t th Heuristics: Evaluation functions that estimate the
number of transitions necessary to achieve a goal
condition.co d t o

 Goal condition:
 Shortest path between two markings M and M’ is p g

the minimum number of firings necessary to
reach M’ from M.

 Shortest path to the goal: Shortest path to the goal:
(M,) = min{(M,M’) | M’ |= }

 Admissible: if h(M) ≤ (M) Admissible: if h(M) ≤ (M,)
 Monotone: if h(M) – h(M’) ≤ 1 for MM’

1. Hamming Distance
Heuristics

 H pMpMMMh)(')()',(

 where [M(p) ≠ M’(p)] evaluates to {0,1}

Pp

[(p) ≠ (p)] a ua s o { , }

Since a transition can Admissible Since a transition can
add/delete more than

one tokens

•Admissible

•Consistent

2. Subnet Distance Heuristics
(Abstraction)

4-Philosophers 2-Philosophers4 Philosophers 2 Philosophers

 φ φ

Abstraction preserves
triangular property

•Admissible
•Consistent•Consistent

3 A i H i i3. Activeness Heuristic
 Specialized heuristic for Deadlock detection.
 Deadlock => No enabled transition.
 Prioritize the marking that has the minimum

number of diabled transitions.

A tenabledMh)()(
Tt

Since a single firing can •Admissible Since a single firing can
effect the enableness of
two or more transitions

•Admissible

•Consistent

Pl i Di d Planning as Directed
M d l Ch kiModel Checking

 Motivation: Can we utilize planning
h i ti b d li P t i t l i heuristics by modeling Petri nets analysis
problem as a planning problem ?

PDDL M d li f P i NPDDL Modeling for Petri Nets
PDDL id d li f li f PDDL provides a modeling formalism for
planning domains and problems.

P
L
Adomain.pddl

N
N
Eproblem.pddl

PLAN

 PDDL Level 2 allows numerical predicates =>

R

p
Necessary to model number of tokens in a Petri
net

M d li f T lModeling of Topology:
Pl Places :(?p – place)

 Transitions :(?t – transition)

 Incoming arcs to transitions
 (incoming ?p – place ?t – transition)

O t i f t iti Outgoing arcs from transitions
 (outgoing ?t – transition ?p – place)

 Number of tokens Number of tokens
 (number-of-tokens ?p – place)

M d li f G l di i Modeling of Goal conditions
 Blocked Transition

(:derived block (?t - transition)
(i (? l) (exists (?p - place)

(and (incoming ?p ?t)
(= (number-of-tokens ?p) 0))))(= (number of tokens ?p) 0))))

 Deadlock: Deadlock:
(:derived deadlock

(forall (?t - transition)
(blocked ?t)))

Propositional / ADL Encoding
 ADL provides a flexible planning formalism

providing support for
 Negation Negation
 Disjunctive preconditions
 Conditional effects
 Universal/existensial quantification of objects

 Transformation of Petri net model to ADL
 Unary encoding of tokens (?n – number)

 zero, one, two, three, .. Etc.

P di t f th i i l ti Predicates for their manipulations
 (is-not-zero ?n – number)
 (inc ?n1 ?n2 – number)

Propositional Planning Operator
for Transition Firing
(:action fire-transition
:parameters (?t - transition)
:precondition
(f ll (? l)

If all incoming
places to t

have tokens ?(forall (?p - place)
(or (not (incoming ?p ?t))

(exists (?n - number)
(and (number-of-tokens ?p ?n) (is-not-zero ?n)))))

have tokens ?

((p) ()))))
:effect
(and
(forall (?p - place ?n1 ?n2 - number)

(when

Delete tokens
from input

places(when
(and (incoming ?p ?t) (inc ?n1 ?n2) (number-of-tokens ?p ?n2))
(and (not (number-of-tokens ?p ?n2)) (number-of-tokens ?p ?n1))))

(forall (?p - place ?n1 ?n2 - number)

places

((p p)
(when
(and (outgoing ?t ?p) (inc ?n1 ?n2) (number-of-tokens ?p ?n1))
(and (not (number-of-tokens ?p ?n1)) (number-of-tokens ?p ?n2)))))))

Add tokens at
output places

Pl i H i i Planning Heuristic
Post-

di i Action a = (pre(a), add(a), del(a)) condition
droped

 Relaxed action a+ = (pre(a), add(a), Ø)

 Heuristic = length of the shortest plan that
solves the relaxed problemsolves the relaxed problem.

E iExperiments
 Used FF Planner developed by Hoffmann.
 Relaxed Planning Heuristic.g
 Extensive testing on deadlock checking

benchmarks by Corbett.benchmarks by Corbett.
 1-safe Petri nets models.

 A net is called 1 safe if M(p) ≤ 1 for all p A net is called 1-safe, if M(p) ≤ 1 for all p

 Compared with the results by Heljanko
and Niemelä on Bo nded Model Checkingand Niemelä on Bounded Model Checking.

Experimental Results:
Analysis of 1-safe petri nets with FF vs. Analysis of 1 safe petri nets with FF vs.
Bounded Model Checking

3 2 GHz 450 MHz

Prob. P T Dep. TimeFF Expl. TimeBMC
DARTES(1) 331 257 2 0 28 6 5

3.2 GHz 450 MHz

DARTES(1) 331 257 2 0.28 6 .5
DP(10) 60 40 10 0.08 19 3.3
DP(12) 72 48 12 0.08 23 617.4()
ELEV(2) 146 299 16 0.2 74 3.9
ELEV(3) 327 783 18 2.08 106 139.0
HART(75) 377 227 76 0.71 77 15.5
HART(100) 502 302 101 1.45 102 45.9
Q(1) 163 194 21 0 25 258 2 733 7Q(1) 163 194 21 0.25 258 2,733.7

W UWrap-Up
H i ti f l i P t i t Heuristics for analyzing Petri nets.
 Hamming distance, abstraction, activeness.
M d li f d l h ki bl Modeling of a model checking problem as
a planning problem.

E bl t tili l i h i ti f Enable us to utilize planning heuristics for
analysis of Petri nets.

 Experimental results show the potential of Experimental results show the potential of
the approach.

 Can incorporate more complex goal Can incorporate more complex goal
conditions like assertions.
 (<= (number-of-tokens ?p) ?m)((p))

Graph Transformation
SSystem

U l O iUsual Operations

Di S i P lDirectory Service Protocol
A di t ib t d i t Assume a distributed environment.

 Clients: The nodes in the distributed network
e g different computerse.g., different computers.

 Mobile Objects:
 Could be a file, a process or any other data structure., p y
 It can be transmitted over a network from one node to

another.
 It “lives” only on one node at a time It lives only on one node at a time.

 Purpose of a Directory Service:
 Navigation: To provide the ability to locate a mobile

object.
 Synchronization: To ensure mutual exclusion in the

presence of concurrent requests.p q

U l A hUsual Approach
 “home”-based structure.
 Each object has its own “home”.
 “home” keeps track of the object’s location.
 All requests are send to the “home”.
 “home” sends a message to the client currently

holding the object.
h li f d h bj h i That client forwards the object to the requesting

client.
Bottleneck Comm nication costs bet een Bottleneck: Communication costs between
“home” and clients.

The Arrow Distributed Directory
Protocol (Demmer and Herlihy)
 Based on the idea of a trail of pointers
 Distributed Network G = (V,E,w)(, ,)

z v

u4
u3 u2 u1link(u3) = u

u w

S i T

link(u) = u Following green links
will take you to the

object.
o

Mobile
Object

Spanning Tree –
defined by the link

predicates.

P i f h P lProperties of the Protocol
 If link(v) = v (self-loop) => The object

either resides at v, or will soon reside at v.
 Else, the object resides some where in

the region of the directory containing g y g
link(v).

v w

link(v) = w o

M d CMessages and Constructs
f h link(u,v): Defines the spanning tree.

 find(v): Request for the object issued by the node
v.

 move(v): The object is free to be moved to v. It
travels with the object following the links in the travels with the object, following the links in the
original graph.

 pending(u v): Every link(u v) has a buffer that keeps pending(u,v): Every link(u,v) has a buffer that keeps
the request. Not a FIFO, but reliable.

 queue(u) = {v, NULL}: A predicate attached with queue(u) {v, NULL}: A predicate attached with
every node. Tells that u has to transfer the object
to v when it is finished with the object.

W ki f h P lWorking of the Protocol
 v issues a request find(v) for the object.

z v
find(v)

u4
u3 u2 u1

u wo move(v)

u issues move(v)
when it is

finished with the find(v) inserted in the
A queue predicate is

declared for v:

The object is moved to v
following the shortest

h (bl d)object
f ()

pending buffer
declared for v:

queue(u) = v path in G (blue edges)

C RConcurrent Requests
 find(v) stuck in the communication channel.
 w also issues a request in the meanwhile.q

z v
queue(v) = wfind(z)queue(z) = v

find(v)
stuck in

the u4 u

w’s request
would be

diverted to
z also

issues a

find(v)

com.
channel

u w

u3 u2 u1 v insteadrequest

o fi d()
All future

find(w)

o
queue(u) = z

find(v)
released

requests
will be

forwarded
to wObject Path: find(w) to wObject Path: u – z – v - w

AdAdvantages
 A distributed queue structure.
 Object request messages travel the j q g

shortest path in the spanning tree and not
in the original graph.g g p

 The queue structure ensures locality: all
requests will go directly to the object or to requests will go directly to the object or to
another terminal. Do not have to pass
through a “home”.through a home .

Properties to Verify / Types of
Goals
 Can a particular node u be a terminal? (Subgraph

matching)

 Can a particular node u be a terminal and all
arrow paths end at u? (Graph Matching)arrow paths end at u? (Graph Matching)

 Can an arbitrary node u be a terminal? Can an arbitrary node ui be a terminal?
(Subgraph isomorphism)

 Can an arbitrary node ui be a terminal and all
arrow paths end at ui? (Graph isomorphism)i

PDDL: Morphism as Actions
A hi ti th t i A morphism operation that inverses an
edge can easily be defined as a very
simple actionsimple action.

 (:action morphism-inverse
:parameters(?u ?v - node):parameters(?u ?v - node)
:precondition

(link ?u ?v)(link ?u ?v)
:effect

(and(
(not (link ?u ?v))
(link ?v ?u)))

PDDL Encoding of Goals:
Graph and Subgraph Matching
 Subgraph and graph matching are easy to

encode.
 Encode the goal graph with (link u v)
 and owner with (owner w) predicates.() p

PDDL Encoding of Goals:
Subgraph Isomorphism

l l Goals are strictly more expressive.
 Need an existential quantification over all

h d b d b dthe nodes to be described.
 ADL (Pednault 1989)

 (:goal <existential-expression>
<goal-condition>)

 Using ADL, subgraph isomorphism can be
d d encoded as

 (:goal (exists (?n - node) (owner ?n)))

PDDL Encoding of Goals:
Graph Isomorphism
 Existential quantifier can again be used ..

(:goal (exists ?v0 ?v1 ?v2 ?v3 ?v4
?v5 - node)?v5 - node)

(and (link ?v0 ?v0) (link ?v1 ?v0)
(link ?v2 ?v0) (link ?v3 ?v1)
(link ?v4 ?v0) (link ?v5 ?v4)
(owner ?v3)))

Performance: Model Checker vs.
Planner– Subgraph Matching
Star DFS BFS + hf EHC + RPH
Stored nodes 6,253 30 6

Sol. length 134 58 5

Chain DFS BFS + hf EHC + RPH
Stored nodes 78,112 38 6

Sol. length 118 74 5

Tree DFS BFS + hf EHC + RPH
Stored nodes 24,875 34 6

Sol. length 126 66 5

Graph Transformation &
Planning [E., Rensink ICKEPS-07-WS]

Graph Transformation &
Planning [E., Rensink ICKEPS-07-WS]

GRaphs for Object-Oriented
VE ifi iVErification

The GROOVE tool set includes an editor for creating graph
production rules, a simulator for visually computing the production rules, a simulator for visually computing the

graph transformations induced by a set of graph production
rules, a generator for automatically exploring state spaces,

and an imaging tool for converting graphs to images.g g g g p g

Arend Rensink, University of Twente
http://groove.cs.utwente.nl/groove-home/

AUGUR (B K i l)AUGUR (B. König et al.)

 Tool for the verification of systems described
by (attributed) graph transformations using by (attributed) graph transformations using
approximated unfoldings.

 The obtained over-approximation consists of The obtained over approximation consists of
an underlying hypergraph and an Petri net.

 Properties of graph transformation systems Properties of graph transformation systems
can be verified by analyzing the
approximation, using regular expressions,
fi d l i d bili h ki first order logic and coverability checking
techniques for Petri nets.

P i N A i i Petri Net Approximation

Af Ab i R fiAfter Abstraction Refinement

Graph Transformation via
Pl i f P i NPlanning for Petri Nets
 Zaks (2007) showed that finding

counterexample in Petri-Net approximations
within a graph transformation refinement
loop is seemingly faster when exporting the
domain to PDDL and use a from-shelf action
planner

 Analysis Algorithms for Petri Nets
[S. Turan, Bachelor Thesis, Stuttgart 2004][S. Turan, Bachelor Thesis, Stuttgart 2004]
 Optionally one can use MetricFF for checking

coverability of non-attributed PNscoverability of non attributed PNs

R lResults
M t i FF P t i N t l BWRA MetricFF vs. Petri Net analyzer BWRA.

 Problem BWRA MetricFF Error
d bl k 947 1 red-black 947s 1s yes

 red-black 948s 1s yes
f ll firewall2 7s 1s yes

 firewall2 338s 1s yes
 firewall2 6s 1s yes
 server2 1s – no
 server2 6s – no
 server2 545s 1s yes

1`(1,"COL ")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4 "PET") Coloured Petri Net

Packets
R i d

Packets
T S d

1 (4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Coloured Petri Net
Place

(n,d)

ReceivedTo Send
NOxDATA NOxDAT

ArcNodes

(n,d)(n,d)

(n,d)

(n,d)(n,d)Transmit
PacketA

NOxDATA

B

NOxDATA

Send
Packet

Transition

n

Receive
PacketNextSend

1`1

Net inscriptions

n n+1

Packet
NO

p

n n n
Receive

Ack
Transmit

Ack C

NO

D

NO

Jensen & Kristensen
Coloured Petri Nets, http://www.cs.au.dk/~cpnbook/slides/
Department of Computer Science

Enable Transition
1 (5, RI)++

ab e a s t o

W h f d bi di

Packets
To Send

(,)
1`(6,"NET")

6

1`(1,"COL ")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5 "RI ")

We have found a binding
so that each input arc
expression evaluates to
a colo r that is present

(n,d)

NOxDATA 1`(5,"RI ")++
1`(6,"NET")

(1,"COL")

a colour that is present
on the corresponding
input place

(n,d)(n,d)
A

NOxDATA

Send
Packet

Binding: < n=1 , d="COL" >

n

N tS d

1`1

1 1`1

1
Transition is

enabledNextSend

NO

1 1 1 enabled
(ready to occur)

Fire Transitione a s t o

Packets

1 (5, RI)++
1`(6,"NET")

6

1`(1,"COL ")++
1`(2,"OUR")++
1`(3,"ED ")++

Remove:
(1,"COL")

(n,d)

To Send
NOxDATA

6 (,)
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

(1 "COL")

(n,d)(n,d)
ASend

Packet

(1,"COL")

Add a new token:

(1,"COL")

n

NOxDATA

1`1

(1,"COL")

1

NextSend

1 1

NO

1 1`1 Remove: 1

Propositional and
Administration Nets

P i iPropositions
(incoming ?p place ?t transition ?c class) (incoming ?p - place ?t - transition ?c - class)
denoting input arcs connecting places with transitions and the

class that is associated with it.
(incoming inh ?p place ?t transition ?c class) (incoming-inh ?p - place ?t - transition ?c - class)
denoting inhibitor arcs and the class that is associated with it.
(outgoing ?t - transition ?p - place ?c - class)
d ti t t d th l th t i i t d ith itdenoting output arcs and the class that is associated with it.
(of-type ?m - marking ?c - class)
denoting to which class a token element belongs to.
(at-place ?p - place ?m - marking)
denoting the current place of a token.
(selected ?p - place ?c - class ?m - marking) (p p g)
denoting if a token of a certain class at a certain position is

selected for firing.

Planning for Extended PNPlanning for Extended PN
(:action fire-transition
:parameters (?t - transition) :effect:parameters (?t transition)
:precondition
(forall (?p - place)
(f ll (? l)

:effect
(forall (?c - class)
(forall (?pin - place)

(forall (?c - class)
(and (or (not (incoming-inh

?p ?t ?c))

(forall (?pout - place)
(forall (?m - marking)
(when

(forall (?m2 - marking)
(or (not (of-type ?m2 ?c))
(not (at-place ?p ?m2)))))

(when
(and (selected ?pin ?c ?m)
(incoming ?pin ?t ?c)
(t i ?t ? t ?))(not (at-place ?p ?m2)))))

(or (not (incoming ?p ?t
?c))

(i t (? 1 ki)

(outgoing ?t ?pout ?c))
(and (not (selected ?pin ?c

?m))
(exists (?m1 - marking)
(and (selected ?p ?c ?m1)
(of-type ?m1 ?c)

(not (at-place ?pin ?m))
(at-place ?pout ?m))))))))

(yp)
(at-place ?p ?m1)))))))

