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Preface 
 
For any field of research, one of the most essential tasks is to attract and to 
support young researchers. The aim of the Doctoral Consortium series is to 
provide a forum for students to discuss their work with other students and 
senior researchers working in the same area.  
 
In ICAPS 2009, the Doctoral Consortium featured a full day workshop on 
September 19th, where all accepted papers were given a short time slot for 
oral presentation in small themed clusters of common interest with students 
and senior researchers. Participants also had further opportunity to present 
at the poster session of the main conference to receive feedback from other 
researchers.  
 
This volume contains the 19 papers accepted for presentation at the DC of 
ICAPS 2009. These papers were selected from a total of 40 submissions. 
Papers only containing an abstract correspond to papers already accepted 
for the main technical conference. The remaining papers received two 
reviews, and preference was given to students who had moderately mature 
works but still far enough along to have formulated their dissertation topics. 
 
The accepted papers were distributed in five themed clusters around the 
main area and topics of each paper. Each themed working group was thus 
formed by four students and, at least, two mentors. Each of the students 
was assigned a senior researcher to mentor him/her during the group 
discussions. Students had also the opportunity at the end of the DC session 
to present and share their roadmap with the students of other clusters.  
 
We thank all the reviewers of the Programme Committee for their work in 
reviewing the students’ papers. Our special thanks to those reviewers who 
also kindly accepted to participate in the mentoring activity. 
 
 
Eva Onaindia  
Antonio Garrido 
Universidad Politécnica de Valencia, Spain 
 
ICAPS 2009 Doctoral Consortium Chairs 
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Abstract

Humans are often able to solve extremely large
probabilistic planning problems reasonably well by
exploiting problem structure, heuristics, and vari-
ous approximations. Each of these aspects seems
indispensable for achieving high scalability and has
been studied in detail by the automated planning
community. However, most existing solvers use
only a proper subset of them.
In an initial attempt to bridge this gap we introduce
RETRASE, a novel MDP solver that derives ap-
proximate policies by extracting problem structure
and learning its parameters under heuristic guid-
ance. RETRASE uses classical planning to dis-
cover basis functions for value-function approxi-
mation and applies expected-utility analysis to this
compact space. Experiments demonstrate that RE-
TRASE outperforms winners from the past three
probabilistic-planning competitions on many hard
problems. We outline several extensions of RE-
TRASE and new directions for unifying paradigms
in probabilistic planning prompted by RETRASE’s
success.

1 INTRODUCTION
As humans, we are often able to solve probabilistic planning
problems far larger than state-of-the-art planners are capable
of. Even though we tend to miss the problems’ probabilistic
subtleties, our solutions are in many cases reasonably good.
We find them by using heuristics and various approximations
(“intuition”), and exploiting problem structure (i.e. disregard-
ing weakly relevant information). Each of these aspects has
been studied in detail by the automated planning community.

A popular framework for formulating probabilistic plan-
ning problems is Markov Decision Processes (MDPs). One
of the most popular algorithms for solving MDPs that yields
high-quality solutions is RTDP [1], a technique that explores
the state space under the guidance of a heuristic. Unfortu-
nately, being based on dynamic programming, it suffers from
a critical drawback — it represents the value function exten-
sionally, i.e., as a table, thus requiring memory (and time)
exponential in the number of domain features.

Two broad approaches have been proposed to avoid cre-
ating a state/value table. One method involves domain de-
terminization and uses a classical planner as a subroutine
in computing a policy. Such determinization planners, e.g.,
FFReplan [11], tend to disregard the probabilistic nature of
actions and often have trouble with probabilistically interest-
ing [7] domains. In other words, their approximation, while
computationally efficient, frequently results in poor solution
quality.

The other method, dimensionality reduction, maps the state
space to a parameter space of lower dimension. Typically, the
mapping is done by constructing a small set of basis func-
tions, learning weights for them, and combining the weighted
basis function values into the values of states. This can
be viewed as discovering problem structure while abstract-
ing away unimportant details. Researchers have successfully
applied dimensionality reduction to domains after manually
defining a domain-specific mapping but automatic basis func-
tion discovery in nominal (e.g., “discrete” or “logical”) do-
mains, such as those used in the IPPC, remains a challenge.

Thus, each technique has its advantages but also drawbacks
that prevents it from dominating others. In fact, all of them
seem indispensable for achieving high scalability and accept-
able solution quality simultaneously. However, most exis-
ting solvers use only a proper subset of them. This paper
bridges the gap — proposing a fusion of these ideas that re-
moves the drawbacks of each. Our algorithm RETRASE,
which stands for Regressing Trajectories for Approximate
State Evaluation, learns a compact value function approxima-
tion successful in a range of nominal domains. It discovers
problem structure by planning in a determinized version of
the domain at hand and thereby automatically obtaining a set
of basis functions, learns the weights for these basis functions
by heuristically-guided decision-theoretic means, and aggre-
gates them to compute state values. The set of basis functions
is normally much smaller than the set of reachable states, thus
giving our planner a large reduction in memory requirements
as well as in the number of parameters to be learned.

We demonstrate the practicality of our framework by com-
paring it to the top IPPC-04, 06 and 08 performers and
other state-of-the-art planners, on challenging problems from
these competitions. RETRASE demonstrates orders of mag-
nitude better scalability than the best optimal planners, and
frequently finds significantly better policies than the state-
of-the-art approximate solvers. The success of RETRASE
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prompts several promising ideas for future work, outlined at
the end of the paper.

2 BACKGROUND
MDPs. In this paper, we focus on probabilistic plan-
ning problems that are modeled by factored indefinite-
horizon MDPs. They are defined as tuples of the form
〈S,A, T , C,G, s0〉, where S is a finite set of states, A is a
finite set of actions, T is a transition function S × A × S →
[0, 1] giving the probability of moving from si to sj by exe-
cuting a, C is a map S × A → R+ specifying action costs,
s0 is the start state, and G is a set of (absorbing) goal states.
Indefinite horizon refers to the fact that the total action cost
is accumulated over a finite-length action sequence whose
length is unknown.

In factored MDPs, each state is represented as a conjunc-
tion of values of the domain variables. Solving an MDP
means finding a good (i.e. cost-minimizing) policy π : S →
A that specifies the actions the agent should take to eventu-
ally reach the goal. The optimal expected cost of reaching the
goal from a state s satisfies the following conditions, called
Bellman equations:

V ∗(s) = 0 if s ∈ G, otherwise (1)

V ∗(s) = min
a∈A

[C(s, a) +
∑
s′∈S
T (s, a, s′)V ∗(s′)]

Given V ∗(s), an optimal policy may be com-
puted as follows: π∗(s) = argmina∈A[C(s, a) +∑

s′∈S T (s, a, s′)V ∗(s′)].

Solution Methods. The above equations suggest a dynamic
programming-based way of finding an optimal policy, called
value iteration (VI), that iteratively updates state values us-
ing Bellman equations in a Bellman backup and follows the
resulting policy until the values converge.

VI has given rise to many improvements. Heuristically-
guided methods, e.g. RTDP, explore the state space in a series
of trials and update the value function over the states in the
trial path using Bellman backups. A popular variant, LRTDP,
adds a termination condition to RTDP by labeling those states
whose values have converged as ‘solved’ [2].

3 ReTrASE
On a high level, RETRASE explores the state space in the
same manner as RTDP, but, instead of performing Bellman
backups on states themselves, backups are performed over
properties of the visited states. For each property, modified
RTDP learns a weight that reflects the quality of the plans
enabled by that property. A state’s value may then be com-
puted by aggregating the weights of all its properties. Con-
ceptually, there are three kinds of states at runtime: ones that
have been deemed dead ends, ones for which some properties
are known, and ones not yet assigned to the other two cat-
egories. When RETRASE encounters a state s of the third
type, it applies a classical planner (e.g., FF [5]) to a deter-
minized version of the domain starting from s. If no clas-
sical plan exists, then every probabilistic policy from s has
zero probability of reaching the goal, and s is marked as a
dead end. If FF finds a plan, however, RETRASE regresses

the goal conjunction through the plan to generate a logical
formula which is a property holding in s. Learning in the
property space supports information transfer between similar
states (e.g., all states that share a given property) even be-
fore some of these states are visited. Our approach is efficient
because fast classical planners can quickly derive these prop-
erties, and because the number of properties is typically far
smaller than the number of reachable states.
Definitions. We define a trajectory to be a sequence t =
s, a1(oj1), . . . , an(ojn

) where s is the trajectory’s starting
state, and each action ak(ojk

) represents the jk-th outcome
of the probabilistic action ak. We say that t is a goal tra-
jectory if s modified by t’s action sequence is a goal state.
Further, we define a state property to be a conjunction of lit-
erals1. We say that a state s possesses property p if p holds in
s. With each property p, we associate a unique basis function
that has value 1 in s iff s possesses p.We say that a property
p (and the corresponding basis function bp) enables a set of
trajectories T to the goal if the goal can be reached from any
state possessing p by following any of the trajectories in T . 2

A dead-end is a state with no trajectory to the goal.
Algorithm Intuition. Consider a trajectory tg =
s, a1(oj1), . . . , an(ojn

) that ends in a goal state. This
is an indication that the sequence of probabilistic actions
a1, . . . , an is potentially causally important, since their out-
comes oj1 , . . . , ojn

have positive probability. To discover the
causal properties p1, . . . , pn that allow the successful execu-
tion of a1, . . . , an, we simply regress sequence t from the
goal conjunction. We can now claim that action sequence
ak, . . . , an executed starting from any state possessing prop-
erty pk will lead us to the goal with positive probability,
though the magnitude of the probability is yet unknown. Note
that t essentially chooses specific outcomes per action and
thus the execution of a1, . . . , an may not always reach the
goal. Nevertheless, all properties that enable any positive-
probability trajectory to the goal may be important for our
purposes because they act as a basis for further planning. In
essence, this step can be thought of as unearthing the relevant
causal structure necessary for the planning task at hand.

To obtain goal trajectories all we need is to find plans that
reach the goal in the deterministic version of the domain (by
using a classical planner). Every such plan corresponds to a
positive-probability trajectory in the original domain.

We can now define a new probabilistic planning problem
over a state space consisting of these properties. In practice,
the space of properties is much smaller than the original state
space, since only the relevant causal structure is retained3,
giving us large reductions in space requirements. Solving this
new problem amounts to learning the weights for the proper-
ties. The weights will be a quantitative measure of each prop-
erty’s importance. There are many imaginable ways to learn
them; in this paper, we try one of such methods — a modified
version of RTDP. The use of RTDP enables us to leverage the
power of heuristic guidance in exploring the state space.

1Our algorithm can easily extend to properties specified using
general logical formulas.

2assuming that the desired outcome is obtained for each action
on the trajectory.

3We may approximate this further by putting a bound on the
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Algorithm 1 ReTrASE
1: Input: probabilistic domain D, problem P =
〈init. state s0, goal G〉, trial length L

2: declare global map M from basis functions to weights
3: declare global set DE of dead ends
4: compute global determinization Dd of D
5: // Do modified RTDP over the basis functions
6: for all i = 1 :∞ do
7: declare state s← s0
8: declare numSteps← 0
9: while numSteps < L do

10: declare action a′ ← arg mina{ExpActCost(a, s)}
11: ModifiedBellmanBackup(a′, s)
12: s←execute action a’ in s
13: numSteps← numSteps+ 1
14: end while
15: end for
16:
17: function ExpActCost(action a, state s)
18: declare array So ← successors of s under a
19: declare array Po ← probs of successors of s under a
20: return cost(a) +

∑
i Po[i]V alue(So[i])

21:
22: function Value(state s)
23: if s ∈ DE then
24: return a large penalty // e.g., 1000000
25: else if some member f ′ of M holds in s then
26: return minbasis functions f that hold in s{M [f ]}
27: else
28: GetBasisFuncsForS(s)
29: return V alue(s)
30: end if
31:
32: function GetBasisFuncsForS(state s)
33: declare problem p′ ← 〈init. state s, goal G〉
34: declare plan pl← DeterministicPlanner(Dd, p

′)
35: if pl == none then
36: insert s into DE
37: else
38: declare basis function f ← goal G
39: declare cost← 0
40: for all i = length(pl) through 1 do
41: declare action a← pl[i]
42: cost← cost+ cost(a)
43: f ← (f ∪ precond(a))− effect(a)
44: insert 〈f, cost〉 into M if f isn’t in M yet
45: end for
46: end if
47:
48: function ModifiedBellmanBackup(action a, state s)
49: for all basis functions f in s that enable a do
50: M [f ]← ExpActCost(a, s)
51: end for

The weights reflect the fact that the properties differ in the
total expected cost of trajectories they enable, as well as in
the total probability of these trajectories. This happens partly
because each trajectory considers only one outcome for each
of its actions. The sequence of outcomes the given trajectory
considers may be quite unlikely. In fact, getting some action
outcomes that the trajectory does not consider may prevent
the agent from ever getting to the goal. Thus, it may be much
“easier” to reach the goal in the presence of some properties
than others. Now, given that each state generally has several
properties, what is the connection between the state’s value
and their weights? In general, the relationship is quite com-
plex: under the optimal policy, trajectories enabled by several
properties may be possible. Therefore, the exact value of a
state is a summation of weights over a subset of the state’s
properties. However, determining this subset is at least as
hard as solving the MDP exactly. Instead, we approximate
the state value by the minimum weight of all properties that
the state possesses. This amounts to saying that the “better”
a state’s “best” property is, the “better” is the state itself.

Thus, deriving useful state properties and their weights
gives us an approximation to the optimal value function. The
algorithm’s pseudocode is presented in Listing 1.
Theoretical Properties. A natural question about RE-
TRASE is that of convergence. As it turns out, there exist
problems on which RETRASE does not converge. We
stress, however, that the lack of theoretical guarantees is not
indicative of a planner’s practical success or failure. Indeed,
the experimental results show that RETRASE performs
quite outstandingly on many of the planning community’s
benchmark problems.

4 EXPERIMENTAL RESULTS
Our experiments explore two important aspects of RETRASE
– (1) quality of solutions in complex domains and (2) scala-
bility. We ran RETRASE on six probabilistically interesting
hard problem sets — Triangle Tire World (TTW) from IPPC-
06 and -08, Drive from IPPC-06, Exploding Blocks World
(EBW) from IPPC-06 and -08, and Elevators from IPPC-06.
The experiments were conducted under the restrictions re-
sembling those of IPPC: for each problem, RETRASE had
a maximum of 40 minutes for training and then had 30 at-
tempts to solve each problem. The parameter we measured
was success rate (the percentage of 30 trials in which RE-
TRASE managed to solve the given problem) — the factor
that decides the winner in IPPC. The runs were performed on
a 2.8 GHz Intel Xeon processor with 2GB of RAM.

While analyzing the results, it is important to be aware
that our RETRASE implementation is not optimized. Con-
sequently, RETRASE’s efficiency is likely even better than
indicated by the experiments.

On TTW-06 and -08, RETRASE achieved the perfect
100% success rate across all the problems. For TTW-06, this
result is unmatched by the IPPC participants, while on TTW-
08 one other planner, HMDPP, achieved the same result. On
Elevators, RETRASE’s performance was rather average, as it
could not solve many of the problems. This is probably due

number of properties we are willing to handle in this step.
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Figure 1: RETRASE dominates on Exploding Blocks World-06.

to the poor set of basis functions it managed to extract for this
domain. On Drive, RETRASE’s average success rate was at
par with the best of IPPC participants (FFReplan and FPG).
RETRASE distinguished itself particularly on EBW-08 and
EBW-06. On both domains its performance was better than
that of all the IPPC competitors. The advantage is especially
impressive on EBW-06 because it grows with the complexity
of the problem (Figure 1). Space constraints prevent us from
presenting the results from other domains in graphical form.

We note also that RETRASE’s scalability is far better than
that of heuristically guided optimal or suboptimal planners.
For instance, LRTDP with FF heuristic ran out of memory
on problems 8, 9, and 10 of TTW-08, whereas RETRASE
solved them easily.

5 DISCUSSION
RETRASE’s potential is clearly indicated by the experimen-
tal results, so we would like to extend RETRASE’s ideas to
other areas of automated planning. One field that would ben-
efit from RETRASE’s scalability is POMDP solvers. To be
capable of handling POMDPs, RETRASE will need to use a
conformant deterministic planner to come up with basis func-
tions. The state of the art in conformant planning will largely
determine RETRASE’s success as a POMDP solver.

The lack of theoretical guarantees of RETRASE can
be perceived by some to be its weakness. To address this
concern, we can modify RETRASE’s learning mechanism.
Space constraints prevent us from specifying the details, but
the main idea involves reducing a given MDP to a maximum
independent set problem over a “conflict graph” whose
vertices are basis functions with associated weights. The
independent set problem can then be solved using one of the
many theoretically strong approximators for it.

6 RELATED WORK
Besides basis function approximation (discussed in Section 1)
other flavors of dimensionality reduction include PCA and al-
gebraic and binary decision diagram (ADD/BDD). In practice
algorithms that use ADD/BDD do not scale to large problems.
APRICODD [10] is an exception, but it is not clear whether it
is competitive with today’s top methods. In continuous state
spaces, some researchers have applied non-linear techniques
like exponential-PCA and NCA for dimensionality reduction
[8].

Most basis function based techniques are not applied in
nominal domains. A notable exception is FPG [3] but RE-
TRASE outperforms it consistently on several domains.

RETRASE is described in more detail [6]. It is also related
in spirit to the probabilistic planners that use determinized
domains for probabilistic planning, e.g. FFReplan [11] and
FFHop [12].

The idea of using determinization followed by regression
has parallels to some research on relational MDPs, e.g., [4;
9].

7 CONCLUSION
Exploiting problem structure, heuristics, and various approx-
imations all seem to be essential components of highly scal-
able successful probabilistic planners. However, most exis-
ting solvers use only a proper subset of them. Our work
bridges this gap by introducing RETRASE, an algorithm that
combines the power of these approaches. It extracts problem
structure in a domain-independent way and learns the param-
eters in the reduced parameter space under the guidance of a
heuristic. We empirically demonstrate that RETRASE out-
matches state-of-the-art planners on hard problems from sev-
eral IPPC competitions and scales drastically better than exis-
ting heuristically guided planners. Developing RETRASE’s
underlying ideas further, we are planning to extend them to
POMDPs and add theoretical guarantees on the solution qual-
ity by modifying the parameter learning mechanism.
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Abstract

In this paper, we present an integrated planning system that
actively directs an agent engaged in an urban search and res-
cue (USAR) scenario. We describe three salient features that
comprise the planning component of this system, (1) the abil-
ity to plan in a world open with respect to objects, (2) execu-
tion monitoring and replanning abilities, and (3) handling soft
goals, and detail the interaction of these parts in represent-
ing and solving the USAR scenario at hand. We show that
though insufficient in an individual capacity, the integration
of this trio of features is sufficient to solve the scenario that
we present. We test our system with an example problem that
involves soft and hard goals, as well as goal deadlines and ac-
tion costs, and show via an included video that the planner is
capable of incorporating sensing actions and execution moni-
toring in order to produce goal-fulfilling plans that maximize
the net benefit accrued.

Introduction
Consider the following problem: a human-robot team is ac-
tively engaged in an urban search and rescue (USAR) sce-
nario inside a building of interest. The robot is placed inside
this building, at the beginning of a long corridor. The hu-
man team member has intimate knowledge of the building’s
layout, but is removed from the scene and can only interact
with the robot via on-board wireless audio communication.
The corridor in which the robot is located has doors leading
off from either side into rooms, a fact known to the robot.
However, unknown to the robot (and the human team mem-
ber) is the possibility that these rooms may contain injured
humans (victims). The robot is initially given a hard goal of
reaching the end of the corridor by a given deadline based
on wall-clock time. As the robot executes a plan to achieve
that goal, the team is given the (additional) information re-
garding victims being in rooms. Also specified with this
information is a new soft goal, to report the location of vic-
tims.

It is natural to encode this soft goal as a quantified goal,
since it is expected that the planner will report the location
of as many victims as it can find given its time and cost con-
straints. The planner must reason about the net benefit of

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

attempting to find a victim, since it is a soft goal and can
be ignored if it is not worth the pursuit; it must then direct
the robot to sense for the information that it needs in order
to determine the presence of a victim in a particular loca-
tion. This can be modeled as a partial satisfaction planning
(PSP) problem, and solved using planners that can handle
PSP problems.

Unfortunately, the dynamic nature of the domain coupled
with the partial observability of the world precludes com-
plete a priori specification of the domain, and forces the
robot and its planner to handle incomplete and evolving do-
main models (Kambhampati 2007). This fact, coupled with
the fallibility of human experts in completely specifying the
information that is relevant to the given problem and goals
up-front, makes it quite likely that information crucial to
achieving some soft goals may be specified at some later
stage during the planning process. In our USAR scenario,
for example, the knowledge that victims are in rooms may
be relayed to the planner while it is engaged in planning for
the executing robot. In order to handle the specification of
such statements in the midst of an active planning process,
and enable the use of knowledge thus specified, we need to
relax two other crucial invariants that most modern planners
rely on. The first is the closed world assumption with re-
spect to the constants (objects) in the problem—the planner
can no longer assume that the only objects in the scenario
are those that are mentioned in the initial state. The other
modification requires that we interleave planning with ex-
ecution monitoring and, if required, replanning in order to
account for the new information.

In this paper, we explore the issues involved in engineer-
ing an automated planner to guide a robot towards maximiz-
ing net benefit accompanied with goal achievement in such
scenarios. We will start by noting that the planning prob-
lem that we face here involves partial satisfaction (in that
the robot has to weigh the rewards of the soft goals against
the cost of achieving them). It also requires replanning abil-
ity (in that the robot has to modify its current plan based on
new goals that are added). An additional (perhaps more se-
vere) complication is that the planner needs to handle goals
involving objects whose existence is not known in the ini-
tial state (e.g., the location of the humans to be rescued in
our scenario). The system described in this paper was used
to guide a Pioneer P3-AT robot as it navigated the scenario
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presented previously in order to achieve the hard goal of get-
ting to the end of the corridor, while trying to accrue the
maximum net benefit possible from the additional soft goal
of reporting the location of injured humans (Talamadupula
et al. 2009). A video of the robot performing these tasks can
be viewed via the following link:
http://hri.cogs.indiana.edu/videos/USAR.avi

Planning in an Open World
The planning for the robot is performed by SapaReplan,
a forward state-space planner based on SapaPS (Do and
Kambhampati 2004). SapaReplan adds the ability to han-
dle updates to the state through the use of a monitor process.
We additionally introduce a novel goal construct called an
open world quantified goal (OWQG) that combines infor-
mation about the open world and partial satisfaction aspects
of the problem.

Goals in an Open World
Our approach seeks to open the world by allowing state-
ments, called open world quantified goals, that label sections
of the domain as open with respect to objects. Using these,
the domain expert can furnish details about when new ob-
jects may be encountered through sensing and include goals
that relate directly to the sensed objects. This can be seen
as a complementary approach to handling open world envi-
ronments using local closed world (LCW) information pro-
duced by sensing actions (Etzioni, Golden, and Weld 1997).

An open world quantified goal (OWQG) is defined as a
tuple Q = 〈F,S,P, C,G〉. Here, F and S are typed vari-
ables that are part of the problem Π, where F belongs to
the object type that Q is quantified over, and S belongs to
the object type about which information is to be sensed. P
is a predicate which ensures sensing closure for every pair
〈f, s〉 such that f is of type F and s is of type S, and both
f and s belong to the set of objects in the problem, O ∈ Π;
for this reason, we term P a closure condition. C =

∧
i ci

is a conjunctive first-order formula where each ci is a state-
ment about the openness of the world with respect to the
variable S. For example, c = (in ?hu - human ?z -
zone) with S = ?hu - human means that c will hold for
new objects of the type ‘human’ that are sensed. Finally G
is a quantified goal on S.

Newly discovered objects may enable the achievement of
goals, granting the opportunity to pursue reward. For ex-
ample, detecting a victim in a room will allow the robot to
report the location of the victim (where reporting gives re-
ward). Note that reward in our case is for each reported
injured person. As such, there exists a quantified goal that
must be allowed partial satisfaction. In other words, the uni-
versal base (Weld 1994), or total grounding of the quantified
goal on the real world, may remain unsatisfied while its com-
ponent terms may be satisfied. To handle this, we use par-
tial satisfaction planning (PSP) (van den Briel et al. 2004),
where the objective is to maximize the difference between
the reward given to goals, and the cost of actions. Reward is
given for each term g ∈ G satisfied, u(G). Additionally each
term g is considered soft in that it may be “skipped over”
and remain unachieved.

As an example, we present an illustration from our sce-
nario: the robot is directed to “report the location of all vic-
tims”. This goal can be classified as open world, since it ref-
erences objects that do not exist yet in the planner’s object
database O; and it is quantified, since the robot’s objective
is to report all victims that it can find. In our syntax:

1 (:open
2 (forall ?z - zone
3 (sense ?hu - human
4 (looked_for ?hu ?z)
5 (and (has_property ?hu injured)
6 (in ?hu ?z))
7 (:goal (reported ?hu injured ?z)
8 [100] - soft))))

In the example above, line 2 denotes F , the typed variable
that the goal is quantified over; line 3 contains the typed
variable S about which information is to be sensed. Line 4
is the unground predicate P known as the closure condition
(defined earlier). Lines 5 and 6 together describe the formula
C that will hold for all objects of type S that are sensed.
The quantified goal over S is defined in line 7, and line 8
indicates that it is a soft goal and has an associated reward
of 100 units.

Of the components that make up an open world quantified
goal Q, P is required1 and F and S must be non-empty,
while the others may be empty. If G is empty, i.e., there is
no new goal to work on, the OWQG Q can be seen simply
as additional knowledge that might help in reasoning about
other goals.

Interleaving Planning and Execution
For most of the sensors on the robot, it is too expensive to
sense at every step, so knowing exactly when to engage in
perceptual monitoring is of critical importance. Low-level
sensing for navigation is handled through action scripts on
the robot’s end, but for more expensive, high-level opera-
tions we use OWQGs. Planning through an open world in-
troduces the possibility of dangerous faults or nonsensical
actions. While in some sense, this can be quantified with a
risk measure (see (Garland and Lesh 2002), for example),
indicating the risk of a plan does nothing to address those
risks. A more robust approach in an online scenario involves
planning to sense in a goal-directed manner. When plans are
output to the ADE goal manager, they include all actions up
to and including any action that would result in closure (as
specified by the closure condition).

Problem Updates and Replanning Regardless of the
originating source, the monitoring process receives updates
from the robot and correspondingly modifies the planner’s
representation of the problem. Updates can include new ob-
jects, timed events (i.e., an addition or deletion of a fact at a
particular time, or a change in a numeric value such as ac-
tion cost), the addition or modification (on the deadline or

1If P were allowed to be empty, the planner could not gain
closure over the information it is sensing for, which will result in
it directing the robot to re-sense for information that has already
been sensed for.
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reward) of a goal, and a time point to plan from. As dis-
cussed in (Cushing and Kambhampati 2005), providing for
updates to the planning problem allows us to look at unex-
pected events in the open world as new information rather
than faults to be corrected. In our setup, problem updates
cause the monitor process to immediately stop the planner (if
it is running) and update its internal problem representation.
The planner is then signaled to replan on the new problem.
In the presence of reward and action cost2, the replanning
process also allows the planner to exploit new opportunities,
potentially finding plans that may achieve better net benefit
than previous ones.

Implementation

To handle open world quantified goals, we developed a
methodology that grounds the problem into the closed world
using a process similar to Skolemization. More specifically,
we generate runtime objects from the sensed variable S that
explicitly represent the potential existence of an object to be
sensed. These objects are represented with a suffixed excla-
mation mark on the object type, followed by a number (e.g.,
human!1). One can look at S as a Skolem function of F ,
and runtime objects as Skolem entities that substitute for the
function. Runtime objects are then added to the problem and
ground into the closure conditionP , the conjunctive formula
C, and the open world quantified goal G. In other words,
runtime objects substitute for the existence of S dependent
upon the variable F . The facts generated by following this
process over C are included in the set of facts in the problem
through the problem update process. The goals generated
by G are similarly added. This process is repeated for every
new object that F may instantiate.

We treat P as an optimistic closure condition, meaning a
particular state is considered closed once the ground closure
condition is true. On every update the ground closure con-
ditions are checked and if true the facts in the corresponding
ground values from C and G are removed from the problem.

Consider the scenario at hand and its open world quanti-
fied goal. Given a known zone, zone1, the process would
generate a runtime object human!1. Subsequently, the facts
(has property human!1 injured) and (in human!1
zone1) and the goal (report human!1 injured
zone1) (with reward 100) would be generated and added to
the problem. A closure condition (looked for human!1
zone1) would also be created. When the planning system
receives an update including (looked for human!1
zone1), it will update the problem by deleting the facts
(has property human!1 zone1) and (in human!1
zone1) and the goal (report human!1 injured
zone1) at the apprioriate time point. Recall that the planner
must only output a plan up to (and including) an action that
will make the closure condition true. The idea behind the
closure condition is that after it becomes true we can expect
closure on certain aspects of the world. Once the condition
becomes true, the truth values of the facts in C are known.

2In our scenario, the action costs are determined by a combina-
tion of the temporal and resource costs incurred by the robot.

Discussion
It has been a regrettable reality in planning ranks that as the
time required to generate a complete plan has decreased,
so too has the ability to encode interesting details about
the world. This has led to a situation where state-of-the-
art planners can only deal with a subset of the features
necessary to encode any domain of interest with a real
world perspective. To be sure, there do exist planners that
can handle the expressivity required to model some or all
of the problems that delineate our USAR scenario from
existing planning benchmarks (Penberthy and Weld 1992;
Golden, Etzioni, and Weld 1994); unfortunately, none of
these planners combine all the features necessary to solve
our problem in the real world. Planning technologies and
systems have been analyzed previously (Smith 2003) in or-
der to move these techniques closer to being able to step up
and perform in the real world (albeit other-worldly) domains
used at NASA.

We took a similar approach towards our problem—we
first considered the assumptions we would need to relax
in order for a state-of-the-art planner to be able to reason
about and solve our problem. In doing so, we found that
these assumptions—about the closed world, the separation
of planning and execution stages, and all goals being hard—
had a direct correspondence to the features that we wished
to model. We also discovered the lack of a planner that com-
bines solutions to these problems in one integrated system.

The first (and in some ways most important) assumption
we had to relax was one that most modern day planners have
come to take for granted—the assumption that the world is
closed with respect to facts, objects and operators. Since our
scenario involved the specification of new knowledge con-
cerning the world at any stage during the robot’s progress,
we had to allow for the possibility that there may be objects
in the world that are not specified to the robot initially. We
retained the closed nature of the world with respect to op-
erator templates, since it is only reasonable that the robot is
made aware of its capabilities initially and does not gain any
additional powers on the way.

In order to deal with objects that the robot may either dis-
cover or attempt to discover to achieve some reward, it is
essential that the planner not close its possibilities with re-
gard to objects in the world. To enable this, we introduced
the open world quantified goals defined in the previous sec-
tion and equipped the planner with a mechanism to parse
and use the information specified within these goals.

The issue of planning with an open versus closed world
representation has been dealt with before, notably in the
work of Etzioni et al. (Etzioni, Golden, and Weld 1997) via
the specification of local closed world (LCW) statements.
However, there exists at least one major difference between
their work and this attempt. We note that the representation
used in that work, of closing a world that is open otherwise
via the LCW statements, is complementary to our represen-
tation. Since our interest in providing support for open world
quantified goals (OWQGs) is to relax our planner’s assump-
tion of a world closed with respect to object creation, we are
opening parts of a completely closed world with the aid of
OWQGs.

11



However, the ability to recognize and represent new ob-
jects that appear during execution in the world means noth-
ing if the planner cannot actively use these objects in order to
output new plans that improve the quality metric (be it time,
cost or net-benefit). To support this requirement, we had to
endow our planning system with the capability to interleave
planning and execution monitoring, so that changes to the
world could be transmitted to the planner in the form of up-
dates and subsequently parsed into the planner’s database,
as outlined in the previous section. This kind of online plan-
ning seems to be a case-restrictive yet simple solution to the
complex problem of dealing with sensing actions. Specifi-
cally, this approach seems to be restricted to problems that
contain simple reward models where it is reasonable to take
a greedy approach.

It may be argued that XII, the planning system used by
Etzioni et al. (Etzioni, Golden, and Weld 1997) handles the
twin problems of an open world and interleaving planning
and execution monitoring described above. However, these
two features alone are not sufficient to model the USAR sce-
nario. As described in earlier sections, we wanted the robot
(and the planner that creates plans for it to execute) to look at
tasks like reporting the presence of victims in rooms as op-
portunities, rather than as hard goals that must be achieved.
That is to say, we wanted the robot to do its utmost to satisfy
the quantification implied in the open world quantified goal,
and to report the location of all victims; however, we did not
want the pursuit of this objective to cloud the primary goal,
which remained getting to the end of the corridor.

To handle this problem, we needed to consider a third
relaxation—one that allowed for some goals to be specified
as soft goals. We used ideas from the field of Partial Satisfac-
tion Planning (PSP) (Smith 2004) and the planner SapaPS
(Benton, Do, and Kambhampati 2009) to include support for
reasoning about soft goals and net-benefit, as specified in the
previous section. Enabling the usage of soft goals mitigates
some of the more difficult problems in fully open worlds—
in the USAR scenario, when certain rooms are completely
undiscoverable, it is infeasible to expect complete satisfac-
tion of certain quantified goals.

Conclusion
In this paper, we presented a novel approach to reconcile a
planner’s closed world representation with the open world
that a robot has to typically execute it. To enable this ap-
proach, we presented the integration of techniques which
when combined are sufficient to represent and solve the sce-
nario described. We showed that we could handle informa-
tion about new objects in the world using open world quanti-
fied goals, and that our replanning and execution monitoring
system is able to handle the new information specified by
these goals in order to produce plans that achieve a higher
net benefit. We also detailed that our system could sup-
port soft goals, thus ensuring that opportunities retain their
“bonus” nature, and do not metamorphise into additional
hard goals that may constrain existing hard goals. We im-
plemented all novel techniques and algorithms on a robot,
and provided a video to demonstrate the robot’s new-found

abilities. We rounded off with a discussion of work related
to our approach.
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Abstract
Knowledge compilation consists in transforming a problem
offline into a form which is tractable online. In this paper,
we introduce new structures, based on the notion of interval
automaton, adapted to the compilation of decision policies in-
volving both discrete and continuous variables. We show that
two of these structures support polytime processing of the two
main operations needed to use a policy online: conditioning
and model extraction.

Introduction
Controlling an autonomous system requires to be able to
make decisions automatically, depending on the current ob-
servations and goals. If decision-making is completely per-
formed online with the embedded computational capabili-
ties, the reactivity of the system can be compromised. On
the other hand, if all decisions to be made in every possible
situation are computed offline, the limited size of embedded
memory may not allow the potentially huge set of different
alternatives to be recorded on-board.

A possible way of solving this contradiction is to use
knowledge compilation, which consists in transforming a
problem offline in such a way that its online resolution be-
comes tractable. For example, given a non-deterministic
planning problem, it can be possible to solve it offline and
then to express the obtained decision policy in some tar-
get compilation language. The compiled form must then
be both as compact as possible, so that embedded memory
constraints are respected, and as tractable as possible, so that
some relevant queries can be processed efficiently online.

In our planning application domain, the two main queries
we are interested in are conditioning and model extraction.
Conditioning consists in focusing the policy on the observed
situation; model extraction then provides a suitable decision
for this particular situation.

Efficient target compilation languages were proposed for
planning domains involving variables with boolean or enu-
merated domains (e.g. OBDDs (Bryant 1986), finite-state
automata (Vempaty 1992), DNNFs (Darwiche and Marquis
2002), etc.). However, many real applications involve con-
tinuous variables, such as time or energy. The goal of this
paper is to define new target compilation languages for ex-
pressing mixed policies, involving both continuous and dis-
crete features.

Interval Automata
Structure and Semantics
Definition 1. (Interval automaton) An interval automaton
(IA) is a couple φ = 〈X,Γ〉, with

• X (denoted Var(φ)) a finite and totally ordered set of real
variables, whose domains are representable by the union
of a finite number of closed intervals from R;

• Γ a directed acyclic graph with at most one root and at
most one leave (the sink), whose non-leaf nodes are la-
belled by a variable of X , and whose edges are labelled
by a closed interval from R.

This definition allows an interval automaton to be empty
(no node at all) or to contain only one node (together root
and sink) and ensures that every edge belongs to at least one
path from the root to the sink. Figure 1 gives an example of
interval automaton.

For x ∈ X , Dom(x) ⊆ R denotes the domain of x, which
can either be enumerated (Dom(x) = {1, 3, 56, 4.87}) or
continuous (Dom(x) = [1, 7] ∪ [23.4, 28]). For Y =
{y1, . . . , yk} ⊆ X , such that the yi are sorted in ascend-
ing order, Dom(Y ) denotes Dom(y1) × · · · × Dom(yk),
and ~y denotes an Y -assignment of variables from Y , i.e.
~y ∈ Dom(Y ). Last, ~y(yi) denotes the value assigned to
yi in ~y.

Let φ = 〈X,Γ〉 be an interval automaton, N a node and
E an edge in Γ. We can then define the following elements:
• Root(φ) the root of Γ and Sink(φ) its sink;
• |φ| the size of Γ, i.e. its number of edges;
• Out(N) (resp. In(N)) the set of outgoing (resp. incom-

ing) edges of N ;
• Var(N) the variable labelling N (we decide to denote

Var(Sink(φ)) = ∅);
• Src(E) the node from which E comes and Dest(E) the

node to which E points;
• Itv(E) the interval labelling E, and Var(E) the variable

associated with E, defined as Var(E) = Var(Src(E)).
An interval automaton can be seen as a compact repre-

sentation of a boolean function over discrete or continuous
variables. This function is the interpretation function of the
interval automaton:
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Figure 1: An example of interval automaton. The domains of values of variables are Dom(x) = [0, 100], Dom(y) = [0, 100] and
Dom(z) = {0, 3, 7, 10}. The two nodes marked (1) are isomorphic (Def. 5); the node marked (2) is stammering (Def. 6); node (3) is
undecisive (Def. 7); the edges marked (4) are contiguous (Def. 8); and edge (5) is unreachable (Def. 9).

Definition 2. (Semantics of an interval automaton) An
interval automaton φ on X (i.e. Var(φ) = X) represents a
function from Dom(X) to {>,⊥}. This function, called its
interpretation function I(φ), is defined as follows: for every
X-assignment ~x, I(φ)(~x) = > if and only if there exists a
path from the root to the sink of φ such that for each edge E
on this path, ~x(Var(E)) ∈ Itv(E).

The model set of φ is the subset of Dom(X) defined by
Mod(φ) = {~x ∈ Dom(X) | I(φ)(~x) = >}. Its elements
are the models or solutions of φ. φ is said to be equivalent
to another IA ψ (denoted φ ≡ ψ) iff Mod(φ) = Mod(ψ).

Note that the interpretation function of the empty automa-
ton always returns ⊥, since an empty IA contains no path
from the root to the sink. Conversely, the interpretation func-
tion of the one-node automaton always returns >, since in
the one-node IA, the only path from the root to the sink con-
tains no edge. We can now introduce useful definitions:
Definition 3. (Consistency, context) An interval automa-
ton φ is said to be consistent if and only if Mod(φ) 6= ∅.

A value ω ∈ R is said to be consistent for a variable
y ∈ X in an interval automaton φ on X if and only if there
exists an X-assignment ~x in Mod(φ) such that ~x(y) = ω.

The set of all consistent values for y in φ is called the
context of y in φ.

Definition 4. (Conditioning of an interval automaton)
Let φ be an interval automaton on X, Y ⊆ X be a set
of variables, and ~y be an Y -assignment. An interval au-
tomaton ψ is a conditioning of φ by ~y, denoted ψ ≡ φ|~y , if
and only if ψ does not mention any variable from Y , and
for every X-assignment ~x, I(ψ)(~x) = I(φ)(~x′), with ~x′

the X-assignment such that ~x′(y) = ~x(y) if y ∈ Y , and
~x′(y) = ~x(y) otherwise.

Reduction
An interval automaton can be reduced in size without chang-
ing its semantics by merging some nodes or edges. The re-
duction operations introduced thereafter are based on the no-
tions of isomorphic, stammering and undecisive nodes, and
of contiguous and unreachable edges. Some of these no-
tions are just generalizations of definitions introduced in the
context of BDDs (Bryant 1986), while others are specific to
interval automata. Each definition is illustrated in Figure 1.

Definition 5. (Isomorphic nodes) Two nodesN1, N2 of an
IA φ are isomorphic if and only if

• Var(N1) = Var(N2);
• there exists a bijection σ from Out(N1) onto Out(N2),

such that ∀E ∈ Out(N1), Itv(E) = Itv(σ(E)) and
Dest(E) = Dest(σ(E)).

Definition 6. (Stammering node) A non-root node N of
an IA φ is stammering iff all parent nodes of N are labelled
by Var(N), and either |Out(N)| = 1 or | In(N)| = 1.

Definition 7. (Undecisive node) A node N of an IA φ is
undecisive iff ∀E ∈ Out(N),Dom(Var(E)) ⊆ Itv(E).

Definition 8. (Contiguous edges) Two edges E1, E2 of an
IA φ are contiguous if and only if

• they both come from the same node: Src(E1) = Src(E2);
• they both point to the same node: Dest(E1) = Dest(E2);
• Itv(E1) ∩ Itv(E2) 6= ∅.
Definition 9. (Unreachable edge) An edge E of an IA φ is
unreachable if and only if Itv(E) ∩Dom(Var(E)) = ∅.
Definition 10. (Reduced interval automaton) An interval
automaton φ is said to be reduced if and only if

• no node of φ is isomorphic to another, stammering or un-
decisive;

• no edge of φ is contiguous to another or unreachable.

In the following, we can consider only reduced IAs since
reduction is polynomial.
Lemma 11. (Numbering of an IA) There exists a polytime
algorithm that numbers the nodes of any IA φ in such a way
that if Ni is a child of Nj , then i < j.

Proposition 12. (Reduction of an IA) Any IA φ can be
transformed into an equivalent reduced IA in polytime.

Proof. Verifying that a node is stammering and eliminating
it is linear (suppress it after having created, for each couple
(EI , EO) of incoming and outgoing edges, an edge labelled
by Itv(EI) ∩ Itv(EO), coming from Src(EI) and going to
Dest(EO)). Verifying that a node is undecisive and eliminating
it is linear (suppress it after having redirected its incoming edges
to one of its children N , and created edges labelled by R going out
of N and pointing to each of its other children). Ensuring that a



node has no contiguous or unreachable outgoing edges is O(|φ|2),
as well as testing whether two nodes are isomorphic.

At any time during process, if an edge has no source or destina-
tion, it is suppressed; so are non-leaf nodes without outgoing edges
and non-root nodes without incoming edges. All these operations
can therefore only decrease |φ|. We have to process them during
a traversal from the sink to the root of φ. One traversal takes time
O(|φ|3).

Yet, it is not sufficient, because some operations can modify
nodes treated previsouly. As a result, the traversals must be re-
peated while changes in φ occur. But the algorithm remains poly-
nomial: as a traversal can only remove edges and nodes, it will not
be repeated more than |φ| times.

Operations on Interval Automata
Interval automata can be used to represent decision policies.
Indeed, a decision policy can be seen as a function δ over
two kinds of variables, the state variables S and the decision
ones D. For any S-assignment ~s and any D-assignment ~d,
δ(~s.~d) = > if and only if ~d is a suitable decision in state ~s.

Suppose that δ is compiled as an IA φ. In order to exploit
φ online, it suffices to condition φ by the observed state ~s,
then extract a model of the resulting IA, whose interpretation
function characterizes the set of decisions that suit ~s. This
process can be applied each time a decision must be made.

Let us now check whether the two required operations,
conditioning of an interval automaton and model extraction
for an interval automaton, are polytime.
Proposition 13. (Conditioning of an IA) There exists a
polytime algorithm that builds, for any interval automaton
φ, any set of variables Y ⊆ Var(φ) and any Y -assignment
~y, an IA that is a conditioning of φ by ~y.

Proof. We just have to replace, for each edge E in φ such that
Var(E) ∈ Y , Itv(E) by R if ~y(Var(E)) ∈ Itv(E), and by ∅
otherwise. This operation is polynomial. After this step, some
nodes may still be labelled by variables in Y ; but all the outgoing
edges of these nodes are labelled either by R or by ∅. They will
therefore be suppressed via a (polytime) reduction operation.

As a result, conditioning is polynomial. As for model ex-
traction, we first need to prove two lemmas.
Lemma 14. (Relation between IAs and BDD) Any sen-
tence in the BDD language can be expressed in the form of
an equivalent IA, in time polynomial in the sentence’s size.

Proof. As boolean variables can be represented by real variables
with domain {0, 1}, a BDD sentence can be transformed into an
IA by removing its “false” node, and by recursively removing all
edges pointing to no node, and all non-leaf nodes without outgo-
ing edges. The graph obtained then becomes an IA if each “then”
edge is replaced by a [1, 1]-labelled edge, and each “else” edge is
replaced by a [0, 0]-labelled edge.

Lemma 15. (Consistency of an IA) Unless P = NP, there
exists no polytime algorithm able to check whether any IA φ
is consistent.

Proof. If such an algorithm existed, we could check in polyno-
mial time whether a BDD sentence is consistent; yet it is impossible
(unless P = NP), as shown in (Darwiche and Marquis 2002).

Proposition 16. (Model extraction for an IA) Unless P =
NP, there exists no polytime algorithm able, for any IA φ on
X, either to return aX-assignment ~x such that ~x ∈ Mod(φ),
or to stop without returning anything if Mod(φ) = ∅.
Proof. Such an algorithm would invalidate Lemma 15.

Thereby, interval automata do not satisfy one of the re-
quired properties, model extraction. This is why we intro-
duce two particular subsets of interval automata.

Globally Consistent Interval Automata
Let us now introduce a subset of IAs, called globally consis-
tent IAs (GCIAs), for which model extraction is easier.
Definition 17. (Global consistency) An edge E in an in-
terval automaton φ is said to be globally consistent if and
only if every α in Itv(E) is consistent for Var(E) in φ.

An interval automaton φ is said to be globally consistent
if and only if all its edges are globally consistent.

Note that except for the particular case of the empty au-
tomaton, any GCIA that is reduced is consistent.

We now show that reduction maintains global consistency.
Lemma 18. (Context in a GCIA) There exists a poly-
time algorithm that computes, for any GCIA φ and any
x ∈ Var(φ), the context of x in φ.

Proof. The context of x is simply the union of all labels of edges
associated with x, unless φ is empty or does not mention x.

Proposition 19. (Reduction of a GCIA) Any GCIA φ can
be turned into an equivalent reduced GCIA in polytime.

Proof. We only need to slightly modify the algorithm given in the
proof of Proposition 12: when processing undecisive nodes, in-
stead of labelling the newly created edges with R, they are labelled
with the context of the variable they affect. This ensures that each
labelling interval contains only consistent values.

Both needed operations, conditioning and model extrac-
tion, are polytime for GCIAs.
Proposition 20. (Conditioning of a GCIA) There exists
a polytime algorithm that builds, for any GCIA φ, any set
of variables Y ⊆ Var(φ) and any Y -assignment ~y, a GCIA
that is a conditioning of φ by ~y.

Proof. The method proposed for IAs in the proof of Prop. 13 can
also be used for GCIAs, since neither changing all intervals to ∅ or
R nor reducing can compromise global consistency .

The second operation is proved to be polynomial thanks
to an important lemma:
Lemma 21. (Consistency of a GCIA) The consistency of
any GCIA φ can be checked in time polynomial in |φ|.
Proof. φ is consistent iff it is non-empty when reduced. Indeed,
if φ is reduced and has at least one edge, there exists a consistent
value for some variable in φ. The other cases are obvious.

Proposition 22. (Model extraction for a GCIA) There ex-
ists a polytime algorithm able, for any GCIA φ on X , either
to return an X-assignment ~x such that ~x ∈ Mod(φ), or to
stop without returning anything if Mod(φ) = ∅.



Proof. First, we can check in polytime whether φ is consistent
(Lemma 21). If yes, we only have to apply the following algorithm
(which is polynomial):
1: create some X-assignment ~x
2: while Root(φ) 6= Sink(φ) do
3: select any value ω in any edge of Out(Root(φ))
4: ~x(Var(Root(φ))) := ω
5: condition φ by the Var(Root(φ))-assignment (ω)

No variable will be encountered twice, because conditioning re-
moves occurrences of already-assigned variables. When the loop
is over, the variables not encountered can be assigned to any value;
as it is already the case, there is nothing left to do.

Tree-Decomposable Interval Automata
The definition of GCIAs is based on the semantic property
of global consistency; they may be hard to produce. In this
section, we propose another tractable subset of IAs that re-
lies on a syntactic property called tree-decomposability.
Definition 23. (Tree-decomposability) A non-leaf node N
in an interval automaton φ is said to be tree-decomposable
if and only if for all couples (E1, E2) of distinct edges s.t.
• Var(E1) = Var(E2);
• there exists a path from Dest(E1) toN not containingE2

and a path from Dest(E2) to N not containing E1,
the following statement is true: neither N nor any of its
descendants are labelled by Var(E1).

An interval automaton φ is said to be tree-decomposable
if and only if each non-leaf node in φ is tree-decomposable.

This property is called tree-decomposability, because it
implies that for each variable x, if we keep only the x-
labelled nodes in φ, a tree is obtained.

It is important to note that reducing a tree-decomposable
interval automaton (TDIA) does not necessary maintain
tree-decomposability, unless we define a strengthened ver-
sion of isomorphism: denoting AN the set of all ancestor
edges E of a node N s.t. Var(E) = Var(N), two nodes N1

and N2 are considered as strongly isomorphic iff they are
isomorphic and either AN1 = AN2 , AN1 = ∅ or AN2 = ∅.

Deciding whether an IA is tree-decomposable can easily
be done by a traversal from the root to the sink. Moreover,
TDIAs satisfy our required queries:
Proposition 24. (Conditioning of a TDIA) There exists a
polytime algorithm that builds, for any TDIA φ, any set of
variables Y ⊆ Var(φ) and any Y -assignment ~y, a TDIA
that is the conditioning of φ by ~y.

Proof. The method proposed for IAs in the proof of
Proposition 13 can also be used for TDIAs, if we use a
reduction adapted to strong isomorphism.

Proposition 25. (Model extraction for a TDIA) There ex-
ists a polytime algorithm able, for any TDIA φ on X , either
to return an X-assignment ~x such that ~x ∈ Mod(φ), or to
stop without returning anything if Mod(φ) = ∅.
Proof. The idea is to associate with each node N in φ, |X| empty
sets SNx1 , . . . , S

N
x|X| , to assign SRoot(φ)

xi := Dom(xi), and then to
traverse φ from the root to the sink, doing for each outgoing edgeE
of each nodeN the following operations:

if Itv(E) ∩ SNVar(E) = ∅ then
suppress E

else
assign, for all x ∈ X , SDest(E)

x := SNx
S

Dest(E)

Var(E) := Itv(E) ∩ SNVar(E)

At the end, return either any X-assignment ~x s.t. ∀x ∈ X ,
~x(x) ∈ SSink(φ)

x , or nothing if ∃x ∈ X,SSink(φ)
x = ∅.

Conclusion
Both structures, GCIA and TDIA, support polytime process-
ing of conditioning and model extraction, and could conse-
quently be used to represent decision policies. Interestingly
enough, it should be noted that they both generalize, each
in a quite different way, free decision diagrams. Deciding
whether they are polynomially equivalent is an open ques-
tion, left for further research.

GCIAs are interesting theoretically, but may be difficult
to build; TDIAs, on the other hand, are probably easier to
produce. Indeed, following (Huang and Darwiche 2005),
we could use the trace of a search algorithm to build TDIAs.
More precisely, we plan to use RealPaver, a CSP solver on
real domains (Granvilliers and Benhamou 2006).

In the present work, we considered the simplified prob-
lem of exploiting a compiled policy and focused on two op-
erations, conditioning and model extraction. We shall also
study the problem of generating the policy, e.g. by an ap-
proach similar to planning as model checking (Giunchiglia
and Traverso 1999). In this perspective, we need to check
whether GCIAs and TDIAs support other operations, such
as forgetting and conjunction. More generally, a natural con-
tinuation of our work is to build a knowledge compilation
map for real-valued domains.

If the policy to be exploited is extremely complex, our
target languages (and maybe knowledge compilation in gen-
eral) may not be helpful: the space gain is not important
enough to allow the policy to be embedded. For these kind
of problems, a solution could be approximate compilation
(O’Sullivan and Provan 2006); yet, complete compilation
shall nevertheless be used to solve problems of intermediate
complexity, such as controller synthesis.
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Abstract

The predicates that are used to encode a planning domain in
PDDL often do not include concepts that are important for
effectively reasoning about problems in the domain. In par-
ticular, the effectiveness of rule-based policies in a domain
depend on the concepts that can be expressed in the language
used to capture those policies. In previous work we have in-
vestigated providing solutions to these limitations in the form
of special purpose solvers and in that work we demonstrate
how the solvers can lift the language limitations in experi-
ments with hand written policies. In this work we look to
integrate these solvers with policy learning technology. We
present an architecture that allows certain rule-based policy
learners to learn policies that can utilise the features provided
by the solvers. We provide evidence to suggest that our archi-
tecture could allow control knowledge learners to learn poli-
cies that provide control in structurally rich domains.

1 Introduction
The standard language for modelling planning domains,
PDDL [4], is an action-centred language. Predicates are used
to model relationships between objects in problem instances
and actions are modelled in terms of the propositional for-
mulae that must hold before application and the update ef-
fects that follow after application. These models are good
for capturing state-transition systems cleanly and simply, but
are not ideal for expressing certain kinds of meta-structures
that are relevant to them. In particular, concepts that influ-
ence choices of actions in particular problems are often de-
pendent on richer language than is available in the domain
descriptions themselves. This observation has inspired some
researchers to explore ways to automatically extend the col-
lection of concepts in a planning domain [8], while others
have used hand-crafted concepts to extend the descriptions
of specific domains [1, 2].

Control rules are one example of such extended concepts
and the success of TLPlan and TALplanner has demon-
strated that they offer an effective approach to efficient plan-
ning. TLPlan provides a very rich control rule language,
extending the expressiveness of the action encodings them-
selves to include modal formulae that constrain the trajec-
tories plans can follow. This rich language allows abstract
concepts and methods of comparison to be constructed and
used within the framework of the planning domain descrip-

tion. Unfortunately, encoding control rules demands a thor-
ough understanding of the dynamics of the system being
controlled and a challenge for domain-independent planning
is to construct similar control knowledge automatically.

There are several approaches for learning control rules [6,
5, 8] and the inclusion of a domain knowledge learning track
in the 2008 international planning competition indicates the
level of interest in this area within the planning commu-
nity. A key focus in this field has been to investigate what
language features are necessary to capture the concepts re-
quired for particular domains. We argue that adding a lan-
guage feature to the rule language causes the learner to at-
tempt to use that feature in rules for any domain, even if rules
can be expressed for a domain without it. As more language
features are added to support learning concepts in more do-
mains this could reduce the effectiveness of the learner.

In previous work [7]. we have shown that domain analy-
sis can be used to identify structures in a domain, and that
concepts can be provided automatically forming an extended
domain model. The key benefit is that the domain model
can be extended by concepts that are necessary for reason-
ing in that domain. We have shown that by expressing the
policy’s rules using concepts in the extended model, the pol-
icy can provide control in the Driverlog and Goldminer do-
mains. Handwritten policies were used in these experiments
to demonstrate that control is possible with a limited lan-
guage. In this work we describe our approach to integrat-
ing the machinery to automatically extend the domain model
with a policy learner. In this paper we discuss the rule lan-
guages for rule based policies, overview the process for ex-
tending the domain model, describe our architecture, pro-
vide our preliminary results and present our conclusions.

2 The Language of Policy Learners
Many approaches have been used to learn rule-based poli-
cies and various languages have been used to capture the
rules of these policies. The language features available limit
the concepts that can be expressed in the rules. If a con-
cept is not provided in the domain model and cannot be con-
structed in the language, then the policy rules will not be
able to reason with this concept. If the concept is necessary
for effective reasoning in a domain, then bad action choices
could be mapped to by the policy. In this section we define a
policy mapping used in several policy learners and describe
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an efficient way of providing the mapping. We then discuss
two rule languages and argue that adding language features
is not an extendable approach for a domain independent pol-
icy learner.

2.1 Policy
A policy is a map from states to actions, and although this
can be used in planning to solve a single planning prob-
lem, the learning community has focussed on learning par-
tial generalised policies that can be used to solve groups of
problems.

Definition 2.1 A partial generalised policy, π, is a partial
map π: States × Goals→ Actions.

We use policy to mean partial generalised policy in the rest
of this paper.

To use policies effectively in planning their representation
must be computable and efficient. A representation that has
been used successfully in previous work is to capture a pol-
icy as an ordered list of rules [5, 8, 3, 6]. Each rule in the list
has two conditions and a corresponding action, in the form:
ifφ ∧Gψ then do A where φ is a formula that is checked in
the current state, while ψ is a formula that is checked against
the goal conditions of the problem and A is an action.

2.2 Language Limitations
In the rule language of the L2Plan [6] and L2Act[5] systems
the condition formulae φ and ψ are simply conjunctions of
literals. The rules are parameterised, so there can be several
bindings in a given state. These bindings can be interpreted
as an efficient compression of a sequence of policy applica-
tions. Concepts captured by this language are constructed
directly from the predicates in the domain model and this
tightly constrains the policies that can be described. It has
been shown that in some cases the language limitations can
be lifted by providing hand-crafted support predicates; how-
ever, this requires a domain expert to decide which predi-
cates are appropriate.

Martin and Geffner [8] and Fern et al [3] observe that rules
of the form ’if an object is in a certain class, then do action
a on that object’ are often useful in planning. The rule lan-
guages developed in the papers are concept languages with
extra language features, such as the transitive closure, and
are suited to expressing and reasoning with classes of ob-
jects. The learning strategy adopted by Fern et al is a variant
of approximate policy iteration. In this work they demon-
strate that the language can capture concepts necessary for
reasoning in several benchmark planning domains.

Individual language features are often suited to building
concepts in domains with a particular structure. For ex-
ample, the transitive closure is particularly useful for ex-
pressing concepts in domains with recursive structures. This
language feature is not useful however in domains without
recursive structures. In the Blocksworld domain, describ-
ing the blocks in a stack requires reasoning over the chain
of ’on’ relationships between blocks and the transitive clo-
sure is vital in capturing the necessary concepts, whereas the
transitive closure provides no benefit in constructing rules

over the original Logistics domain model, as these structures
do not exist.

The rules of TLPlan are expressed using a very rich lan-
guage with many language features. The language features
are necessary to express the numerous concepts that sup-
port reasoning in the benchmark planning domains. A rule
learner using this language would attempt to use all of the
features to describe concepts in each domain, however it is
likely that the features will not be useful for forming con-
cepts in most of these domains. Adding language features
expands the search space for learning policies in all do-
mains, but only provides a useful building block for express-
ing concepts in a small number of domains. We have inves-
tigated learning policies for domains with various structures,
however, we have focussed on automatically extending the
domain model with concepts that are relevant to the domain.

In this work we focus on the rule language of L2Plan.
This allows us to investigate extending the domain model,
without also examining the interaction between language
features and model extensions.

3 Automatically Extending the Domain
Model

The domain model includes the predicates used to describe
the state of a planning problem and the actions that can be
applied to those states. We have explored automatically ex-
tending the domain model in two ways: adding predicates
and adding actions. The extra predicates can be used to pro-
vide extra state information for reasoning and additional ac-
tions can be used to make meta level decisions or to make
abstract actions. In this section we describe how special pur-
pose solvers are used to provide these extra features and give
an example of how this can support policy control.

3.1 Special Purpose Solvers
A special purpose solver is a hand constructed solution to a
specific problem feature. We have developed solvers that
provide solutions to problems that are present in several
benchmark domains, in particular, graph traversal and re-
source management. The solvers are automatically invoked
when specific features are present in the domain. This en-
sures that the domain model is extended with actions and
predicates that are relevant to the particular domain.

The solvers can introduce predicates to provide extra
state information relevant to their particular problem fea-

Extended State

Policy

Extra State
Information

Abstract Action

Request Action

Domain Action

Solvers

Figure 1: The interaction between the policy and the solvers.
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ture. These extra concepts can be used in the rule condi-
tions, providing a view of a complex structure that could
not be captured in the rule language. The special purpose
solvers can also extend the action set so that the policy can
map to actions that make abstract actions or meta level deci-
sions. An abstract action will be translated by the solver into
a domain language action, whereas extended actions request
further state information and are interpretted as internal ac-
tions upon the extended state (Figure 1).

The form of a L2Plan rule is: ifφ ∧Gψ then do A. The
formula φ is evaluated in the current state, however the addi-
tional predicates supported by the solvers form an extended
state; to make use of this information we evaluate φ in the
current state and the extended state. An example of a con-
cept that a solver may provide is a resource allocation de-
cision. A predicate is used to represent the allocation and
can be included in a rule condition. This will restrict the
application of the rule with respect to the allocation.

The actions that the solvers can interpret extend the pos-
sible actions fired by a rule. We allow a policy to map to
an extended action if there is an associated solver that can
interpret that action. The action A is an action that is either
a domain action, or an extended action. An example of an
extended action is a request of a solver to make a resource
allocation decision. The result of this action will be a pred-
icate that represents the allocation decision being added to
the extended state.

3.2 Moving in a Graph Structure
A spatial structure can be encoded as a graph where
(p n1 n2) holds precisely for connected pairs of nodes, n1

and n2. When moving an object through a graph, from ni

to nj , the destination node nj is usually identifiable. How-
ever, it is unlikely that the nodes along the path between ni

and nj , have any distinguishing features. For example, a
truck might move between these nodes in order to pickup
a package at nj . This location is clearly identifiable by the
location of the package, however, there is no information at
the nodes in between to indicate that the truck is moving to-
wards the package. To understand the spatial relationship
the planner must reason across all of the connecting pred-
icates (p ni nk), ..., (p nm nj). As the number of edges be-
tween two nodes depends on the structure defined in a partic-
ular problem, this chain of predicates could be of any length.

A solver can be used to provide a solution to this problem.
In our experiments our solver extends the action language,
allowing the policy to map to actions that move an object
through multiple transitions. The solver translates this ac-
tion as a single transition along the shortest path to the desti-
nation indicated in the action. Actions can be used to reason
about moving the object to a node that is easily describable,
lifting the level of reasoning. The solver then translates this
abstracted action back into the domain language.

In our previous work we demonstrated how solvers can
allow the policy rules to reason with complex structures,
demonstrating this for the dynamic graph in the Goldminer
domain and the graph structures and resource management
issues in Driverlog.

4 Learning Architecture
The learning architecture that we propose extends the
L2Plan learning system to learn rules that are expressed us-
ing an extended domain model. The key to this extension
is introducing the special purpose solvers into the evalua-
tion function of the policies. In this section we overview
the L2Plan learning algorithm and present our approach to
support learning rules that harness the functionality of the
special purpose solvers.

4.1 L2Plan
L2Plan is a rule-based policy learner that uses a genetic algo-
rithm to evolve generations of policy populations. The initial
population is generated randomly using generator functions.
Each subsequent population is made by applying operators
to policies in the previous population. Policies are selected
from the previous population using a selection process that
favours better policies, with respect to a given fitness func-
tion. The possible fitness functions in L2Plan include evalu-
ating the policy using example states and using the policy to
solve problems.

4.2 Initialising the Extended Domain Model
The input to the learner is a domain file and the example
states and problems used to evaluate the learned policies.
The domain and a problem are analysed using domain anal-
ysis. The interesting domain structures are identified and
the relevant solvers are selected. As the example states and
problems are used many times, we construct the extended
state for each example and the initial state of each problem
once at the beginning. This is achieved by presenting each of
the states to the solvers and giving the solvers the opportu-
nity to respond by extending them with additional concepts.

The generators are used by the learner to provide any
predicates or actions that are required for the learned poli-
cies. In the L2Plan system these are selected randomly
from the available predicates and actions in the domain.
We extend the actions and predicates of the domain with
the actions and predicates supported by the special purpose
solvers. The population of policies in the learner will now
have policies represented by rules that use the extended do-
main model.

4.3 Using the Extended Domain Model
The architecture of L2Plan is particularly suited to this ex-
tension. The learning process is separated from the genera-
tor functions and the fitness function. The learner uses the
fitness of the policies to power its decisions, so the use of the
extended domain model has no effect on the learning algo-
rithm. However, the fitness function must be able to evaluate
policies captured with concepts in the extended model.

The Fitness Function The fitness function that we use in
our experiment evaluates a policy by evaluating it against
example states and full problems. In both of these situations
the policy is used to map the state and goal into an action. In
example state evaluations the action is given a score based
on how appropriate it is and in problem evaluations the ac-
tion forms part of a plan that is evaluated based on quality.
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Figure 2: The Fitness Function Architecture.

The policy can map to extended actions, that have effect in
the extended state, but do not yield a domain action. Our
fitness function architecture, illustrated in Figure 2, uses an
abstract action filter that continues to query the policy and
solvers until it achieves a domain level action.

The abstract action filter ensures that the action chosen to
evaluate is a domain action. The policy is applied to an ex-
tended state by the policy applier. If the policy maps to an
action in the extended language, provided by the solvers, the
abstract action filter uses the appropriate solver to translate
the action. If the action is a request for extended state infor-
mation, such as a resource allocation, the solver will update
the extended state and provide nothing to the abstract action
filter. In this case the abstract action will apply the policy
again, in the updated state. If the action is an abstract action
then it is translated by a solver into a domain action. An
example of this is an action that moves an object through
several transitions in a graph, a solver could translate this as
one step in the direction of the actions destination.

The fitness score for a policy is then calculated from the
domain actions yielded by the abstract action filter. Any
intermediate internal actions are ignored. The use of the
solvers is therefore not directly encouraged, however, it is
encouraged indirectly in that the features provided by the
solvers will assist the policy in mapping to a good domain
action.

5 Results
This preliminary experiment was set up to investigate
whether a policy learned using our architecture could be
used with our solvers to provide effective control. We

Pfile 1 2 3 4 5 6 7 8 9 10
Policy 1 9 - 11 14 4 9 16 11 14
FF 1 9 9 10 16 5 9 16 15 15
Pfile 11 12 13 14 15 16 17 18 19 20
Policy 17 21 20 21 - 44 58 64 - -
FF 16 21 20 27 41 46 70 74 103 -

Figure 3: Number of plan steps for transportation problems
comparing a learned policy and FF.

learned a policy for a transportation domain with multiple
trucks and a graph structure using small problems and exam-
ple states. The domain analysis identified the graph structure
in the domain and invoked a graph abstraction solver and the
policy uses the concepts provided by this solver. The policy
was used to solve 20 transportation problems. These were
the Driverlog problems from the 2002 planning competition
modified by removing the drivers and paths. Figure 3 shows
the quality results of running our policy using breadth first
search and the planner FF. The results give some evidence
that our policy is providing control in this domain. The
problems that the policy failed to solve exhibit properties
not present in the example problems. In general the plans
that the policy does make are of better quality than FF.

6 Conclusion
In this paper we use an approach to automatically extend
domain models with concepts that are useful for reason-
ing in their domains. The approach makes use of special
purpose solvers that provide concepts relevant to particular
structures. Domain analysis is used to identify if a particular
domain contains these structures and in this way the solvers
that are relevant to that domain can be chosen to extend the
domain model.

We present an architecture that allows the L2Plan rule-
based policy learner to learn rules that utilise the concepts
in the extended domain. This approach is attractive as the
learner does not need to search using many possibly irrele-
vant language features, but instead is provided with concepts
that are useful in the domain. Our preliminary results pro-
vide some evidence that policies can be learned that utilise
the extended domain model. Our future work is to continue
to investigate learning using the presented architecture.
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Abstract

Current state of the art satisficing planners can produce plans
that contain a surprisingly large number of irrelevant actions,
redundancies, or unneccessarily complicated or costly action
sequences. The recent trend, as in the planning competi-
tion IPC-2008, has emphasized plan quality. This paper pro-
poses and evaluates two methods for plan improvement: Ac-
tion Elimination improves an existing plan by repeatedly re-
moving sets of irrelevant actions. Plan Neighborhood Graph
Search finds an improved plan as the shortest path in a neigh-
borhood graph NG(P) of a given plan P. Both methods are
implemented in the ARAS postprocessor. They are empiri-
cally evaluated on the output of several leading planners.

The Problem of Plan Quality
In deterministic planning, satisficing planners are able to
solve much harder instances than optimal planners. How-
ever, they may generate plans that are far from optimal.
While previous competitions put much emphasis on the raw
speed of planners, the focus of IPC-2008 was on plan qual-
ity - achieving the best possible plan within a given time.
This paper studies two relatively simple methods for plan
improvement, and shows that they are effective for all the
planners tested.

Related Work
Weighted A*, or WA* (Pohl 1970), produces plans that are
within a constant factor W of optimal.

The LAMA planner, winner of the IPC-2008 competition,
uses weighted A* with a large initial value of W to quickly
produce an initial plan, then gradually reduces the weight
W , while using the best found plan for additional pruning
(Richter, Helmert, and Westphal 2008). Other related ap-
proaches are Anytime A* (Hansen and Zhou 2007) and Any-
time Window A* (Aine, Chakrabarti, and Kumar 2007).

The two similar techniques Joint and LPA* (Ratner and
Pohl 1986) improve a given solution by running a shortest
path solver between any two selected states which are a fixed
distance d apart in the input solution.

In planning by rewriting (Ambite and Knoblock 2001),
domain-specific rewriting rules transform a given plan into

Copyright c© 2009, Association for the Advancement of Artificial
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a better quality plan. Rewriting rules can be given by an
expert, or learned from training examples (Upal 1999).

The LPG planner (Gerevini and Serina 2002) uses heuris-
tic local search in plan space. It tries to optimize an objective
function that measures the difficulty of resolving the incon-
sistencies and the cost of a given partial plan. LPG can be
used as a post-processor to improve the quality of an input
plan. This is done by imposing some random inconsisten-
cies to the input plan. Each time a valid plan with a cost not
less than the initial plan is found, new random inconsisten-
cies are injected to the plan.

Several post-processing approaches reduce the make-
span of a given totally-ordered plan by converting it
into a partially-ordered plan (Do and Kambhampati 2003;
Kambhampati 1994; Veloso, Pérez, and Carbonell 1990;
Bäckström 1998).

Two Approaches to Plan Improvement
While there is a number of recent algorithms for plan im-
provement in the weighted A* family, there has been no
recent work on such methods for the general case, when
the quality of the initial plan is unknown. This is surpris-
ing since such plans are arguably most in need of improve-
ment! The two methods presented here take any plan pro-
duced by a satisficing planner, and try to improve it. As a
pragmatic approach, the methods by themselves produce no
global guarantees on the solution quality. Improvement is
measured relative to the original plan. However, if a qual-
ity bound for the input plan is known, then a corresponding
bound on the improved plan can be easily computed.

The plan improvement methods described here are de-
signed to be used as fast postprocessors, independent of any
specific planner. For example, the experiments typically use
less than 10 seconds for Action Elimination, and less than
4 minutes (out of 30 total under contest conditions) for Plan
Neighborhood Graph Search.

Both methods implement different concepts of local op-
timality: they try to compute the best possible plan within
a “neighborhood” of similar plans. They differ in how they
define the neighborhood. Action Elimination only removes
actions from a given plan. In Plan Neighborhood Graph
Search, the neighborhood is a graph consisting of states that
are “close” to the states encountered when executing the ini-
tial plan.
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Action Elimination
Given a plan π, the goal of Action Elimination is to find a
shorter plan by removing actions from π.

Definition 1 (Reduction). Let Π be a planning task, π a
solution of Π, and π′ a subsequence of π. π′ is a reduction
of π, denoted by reduct(π, π′), iff π′ is also a plan for Π.

Algorithm 1 A greedy algorithm to remove irrelevant ac-
tions
Input Initial State s0, Plan π = (a1, . . . , an), and

goal condition G
Output A plan reduction

s← s0
i← 1
repeat

mark ai {try to remove ai}
s′ ← s
for j ← i+ 1 to length(π) do

if aj is not applicable to s′ then
mark aj

else
s′ ← Γ(s′, aj)

end if
end for
if s′ satisfies G then
{commit to the reduction}
remove marked actions from π

else
unmark all actions
s← Γ(s, ai)

end if
i← i+ 1

until i > length(π)
return π

Action Elimination iteratively improves a given plan π =
(a1, . . . , an) by computing a plan reduction in each itera-
tion. The details are given in Algorithm 1. Starting from
a1, the algorithm tries to remove each action in turn. Af-
ter removing the action, other actions that consequently lose
their support - at least one of their preconditions becomes
unsatisfied - are removed from the plan. If the reduced se-
quence remains a solution, the algorithm commits to it as a
new plan, otherwise, the removed actions are restored, and
the plan remains unchanged. The process terminates when
the last action in the remaining plan is tried. Validating a sin-
gle reduction takes O(n× p) time, where p is the maximum
number of preconditions of an action. The time complexity
of the whole algorithm is O(n2 × p).

Algorithm 1 does not identify all the removable actions.
Consider a planning task with initial state {p, q}, goal state
{p, q, r} and the four actions defined in Table 1. In the
plan π = (OPk, OPp, OPr, OPq), only OPr is necessary
and OPk, OPp and OPq can be removed. The algorithm
first marks OPk, causing OPq to lose its support and be
marked as well. However, since the remaining sequence

Name pre add del
OPk φ {k} {p}
OPr φ {r} φ
OPp φ {p} {q}
OPq {k} {q} φ

Table 1: Definition of actions in a planning task example.

(OPp, OPr) is not a plan, this step fails and nothing is re-
moved. Next, the algorithm triesOPp, but again the remain-
ing sequence is not a plan. Therefore, no action is removed
from the plan by Algorithm 1.

Plan Neighborhood Graph Search

Let π = (a1, . . . , an) be a plan and d be a nonnegative
integer. Let Sπ = {s0, . . . , sn} be the set of all states
visited when executing π. Let S be the set of all states
reachable from s0 by any sequence of actions. Then the d-
neighborhood graph NG[π, d] = (V,E) of π is a directed
graph defined as follows: A vertex s ∈ S is contained in V
iff there is a path of length ≤ d from some state si ∈ Sπ to
s. An edge (s, s′) is in E iff both s and s′ are in V and there
exists an action a such that s′ = Γ(s, a).

Algorithm 2 Computation of a Plan Neighborhood Graph
Input Sπ = {s0, . . . , sn}, local search method M
Output A graph G = (V,E)

for i← 1 to length(π) do
M.initialize(si)
for j ← 1 to NODES PER STEP do
s←M.get next state()
V ← V ∪ s
E ← E ∪ (parent(s), s)

end for
end for
return G

In practice, for efficiency the computation can be re-
stricted by running a local search method M for a fixed
number of steps starting from each si. Algorithm 2 com-
putes such an approximation. Let G be the resulting graph
and d be the furthest distance of any state s ∈ V from its
closest state in Sπ . Then G is a subgraph of NG[π, d]. The
size of G is bounded by NODES PER STEP × n.

Method M for the experiments reported here is simply
the baseline uniform cost search algorithm from the opti-
mal track of IPC-2008 (Helmer, Do, and Refanidis 2008).
This algorithm implements an A* search with the follow-
ing heuristic h: h = 0 for goal states and h is equal to the
minimum action cost in the problem otherwise. As above,
the search is stopped after NODES PER STEP expanded
nodes.

After building a neighborhood graph, the lowest-cost path
from s0 to sn is computed.
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Experiments
The ARAS postprocessor can be used with any plan. ARAS
was used to improve the results for the plans produced by the
five top planners in IPC-2008: LAMA, FFsa, FFha, C3,
and SGPLAN6. Results are reported for three configura-
tions of ARAS: E: a single run of Action Elimination using
Algorithm 1. S*: repeat running Plan Neighborhood Graph
Search until there is no more improvement. (ES)*: run Ac-
tion Elimination and Plan Neighborhood Graph Search al-
ternatingly until neither can improve the plan.

Tests in Figure 1 were run on a 2.5 GHz machine using
2GB memory. The same scoring function as in the compe-
tition was used: cost of best known plan divided by cost of
generated plan. For each planner/configuration pair the to-
tal score, and the score obtained in each domain are shown.
The Openstacks domain is omitted since none of the config-
urations lead to any improvement in this domain.

While both E and S* are already effective by themselves,
the combined (ES)* performs better. Usually, Plan Neigh-
borhood Graph Search alone is more effective than only Ac-
tion Elimination. E does not find any improvements in a
number of domains, but S* is effective in almost all of them.
No run took more than 4 minutes. Interestingly, (ES)* is not
only superior to S* in terms of plan improvement, but also
faster in the worst case.

All three configurations are most effective in problems
consisting of several loosely coupled subtasks. In these do-
mains, due to low interaction between different parts of a
plan, effective local improvements are possible. For exam-
ple, all configurations perform very well in the Transport and
Elevator domains. Both of these domains are transportation
domains in which several objects or persons must be trans-
ported to their destinations.

Conclusions and Future Work
Experiments with Action Elimination and Plan Neighbor-
hood Graph Search show substantial improvements of a
large variety of plans produced by all tested planners. Ac-
tion Elimination can quickly remove some useless actions.
Plan Neighborhood Graph Search is an anytime algorithm,
as long as the underlying local search method M is any-
time. Both methods can only find local improvements near
the previous plan. There are many promising directions for
future work:

• Improve Action Elimination to be more efficient and find
more reductions. Action Elimination can be formulated
as an optimization problem. Search algorithms such as
hill-climbing could be used to find better solutions.

• Experimental results show a rather large variation in the
improvability of different plans for the same problem in-
stance. Therefore, using a large number of input plans
should increase the chances of the system to find good
improved plans. Inputs for ARAS could include many
diverse plans as in (Srivastava et al. 2007), or multiple
randomized solutions generated by a Monte-Carlo based
planner such as ARVAND (Nakhost and Müller 2009).

• Turn ARAS into an anytime system by incrementally con-
trolling the size of the A* searches. Focus on the neigh-
borhood of states with high expected potential for im-
provements.

• Use ARAS to compute more accurate heuristic values:
Most domain-independent heuristic functions use the cost
of a solution in an abstract problem as a heuristic value.
These solutions could be postprocessed by ARAS to im-
prove their quality.
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Figure 1: The scores of five base planners (LAMA, FFsa, FFha, C3, and SGPLAN6) using three different configurations of
ARAS (E, S*, (ES)*) in seven IPC-2008 domains. The base results show the score of the planner without using any configuration
of ARAS. The bottom right figure shows the total score, including scores gained at Openstacks domain.
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Abstract
Usually, combining admissible heuristics for optimal search
(e.g. by using their maximum) requires computing numerous
heuristic estimates at each state. In many cases, the cost of
computing these heuristic estimates outweighs the benefit in
the reduced number of expanded states. If only state expan-
sions are considered, this is a good option. However, if time
is of the essence, we can do better than that. We propose a
novel method that reduces the cost of combining admissible
heuristics for optimal planning, while maintaining its bene-
fits. We first describe a simplified model for deciding which
heuristic is best to compute at each state. We then formulate
an active learning approach to decide which heuristic to com-
pute at each state, online, during search. The resulting tech-
nique, which we call selective max is evaluated empirically,
and is shown to outperform each of the individual heuristics
that were used, as well as their regular maximum, in terms of
number of solved instances and average solution time.

Introduction
One of the most prominent approaches to cost-optimal plan-
ning (and cost-optimal search in general) is using the A∗

search algorithm with an admissible heuristic. Many admis-
sible heuristics for domain-independent planning have been
proposed (Bonet and Geffner 2001; Helmert, Haslum, and
Hoffmann 2007; Haslum et al. 2007; Coles et al. 2008;
Katz and Domshlak 2008; Karpas and Domshlak 2009;
Helmert and Domshlak 2009; Katz and Domshlak 2009),
varying from cheap to compute and not very informative
(Bonet and Geffner 2001) to expensive to compute and very
informative (Katz and Domshlak 2008).

Although some heuristics perform better than others on
some planning problems, it is difficult to choose a clear-cut
“best” heuristic for domain-independent planning in gen-
eral. Sometimes it is even difficult to choose the best heuris-
tic for a specific planning domain, as different heuristics per-
form differently on different problem instances in the same
domain. Furthermore, it is very hard (if not impossible) to
predict how well a given heuristic will perform on a new
domain.

One way of producing a more robust planner is by com-
bining several heuristics. The simplest way of doing this
is by using their point-wise maximum at each state. Pre-
sumably, each heuristic is better (i.e. has a higher esti-
mate) in different regions of the search space, and thus the

maximum is more informative than each of the individual
heuristics. Another way to combine several heuristics is to
use additive heuristics (Katz and Domshlak 2008; Haslum,
Bonet, and Geffner 2005; Felner, Korf, and Hanan 2004) or
even use both addition and maximum (Coles et al. 2008;
Haslum et al. 2007). The problem with both max-based and
sum-based approaches is that sometimes the cost of comput-
ing numerous heuristic estimates at each state outweighs the
benefit in the reduced number of states expanded.

While performing additive combination of heuristics re-
quires computing all of their values, combining heuristics
using their maximum does not. Observe that, in every state,
the maximum value comes from one of the heuristics. If
we had an oracle indicating the most informed heuristic at
each state, then computing only that heuristic would result in
the same search behavior as max-based combination. How-
ever, even if we had such an oracle, it is possible that the
extra time spent on computing the more informed heuristic
may not be worth the reduction in expanded states. In fact,
the results from the last International Planning Competition
(IPC-2008) show that it is pretty hard to beat blind search
(i.e. A∗ with a heuristic which returns 0 for goal states and 1
for non-goal states) – the least informative, and at the same
time fastest to compute, heuristic possible.

In this paper we propose a novel method that reduces the
cost of combining admissible heuristics, while maintaining
its benefits, which we call selective max. We first describe
a simplified formal model for deciding which heuristic to
compute at each state in order to reduce the total search time.
We then describe an online active learning scheme that uses
a decision rule, derived from our formal model, to decide
which heuristic to compute at every state, and can therefore
be seen as a hyper-heuristic (Burke et al. 2003). An ex-
perimental evaluation of our approach using the hLA heuris-
tic (Karpas and Domshlak 2009) and the hLM-CUT heuris-
tic (Helmert and Domshlak 2009) shows that it solves more
planning problems than both of these heuristics individually,
as well as their max-based combination, and does it faster on
average 1. Our approach is also shown to exhibit better any-
time behavior.

1A full version of this paper appears in the workshop on Plan-
ning and Learning.
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Figure 1: State Space Tree

Notation
We consider planning in the SAS+ formalism (Bäckström
and Nebel 1995); a SAS+ description of a planning task
can be automatically generated from its PDDL descrip-
tion (Helmert 2009). A SAS+ task is given by a 4-tuple
Π = 〈V,A, s0, G〉. V = {v1, . . . , vn} is a set of state
variables, each associated with a finite domain dom(vi).
Each complete assignment s to V is called a state; s0 is
an initial state, and the goal G is a partial assignment to V .
A is a finite set of actions, where each action a is a pair
〈pre(a), eff(a)〉 of partial assignments to V called precondi-
tions and effects, respectively.

An action a is applicable in a state s ∈ dom(V ) iff
pre(a) ⊆ s, and applying such a changes the value of each
state variable v to eff(a)[v] if eff(a)[v] is specified. The re-
sulting state is denoted by sJaK; by sJ〈a1, . . . , ak〉K we de-
note the state obtained from sequential application of the (re-
spectively applicable) actions a1, . . . , ak starting at state s.
Such an action sequence is a plan if G ⊆ sJ〈a1, . . . , ak〉K.

Model for Heuristic Selection
In order to analyze when computing one admissible heuristic
should be preferred to computing another, we need to make
certain assumptions about the state space. We assume that
the state-space is a tree with a constant branching factor b,
uniform cost actions, and that there exists a single goal state
(as in the classical results on heuristic-search effort (Pearl
1984)). We also assume that the heuristics are consistent,
and that the time ti required for computing hi for a state s
is independent of s. These assumption do not hold in many
planning problems, but we explain how to deal with that in
the next section.

A∗ expands states according to f = g + h, where g(s) is
the length of the shortest path to s, and h(s) is the heuristic
estimate of the distance from s to the goal. Suppose we have

two admissible heuristics: h1 and h2. Define maxh(s)
4
=

max(h1(s), h2(s)), we then use the notation f1 = g + h1,
f2 = g + h2, and maxf = g + maxh.

Assuming the goal state is at depth c∗, let us consider the
states satisfying f1(s) = c∗ (the dotted line in Fig. 1) and
those satisfying f2(s) = c∗ (the solid line in Fig. 1). The

states above the f1 = c∗ and f2 = c∗ contours are those that
are surely expanded by A∗ with h1 and h2, respectively. The
states above both these contours (the grid-marked region in
Fig. 1) are those that are surely expanded by maxh. These
states, which we denote SE (for “surely expanded”), are
SE = {s | maxf (s) < c∗}.

Observe that the optimal decision for any state s ∈ SE is
not to compute any heuristic at all, because all these states
are surely expanded anyway. The optimal decision for states
that are not surely expanded by maxh is a bit more com-
plicated. Let us consider the states where f1(s) < c∗ and
f2(s) = c∗ (that is, in Fig. 1, the states on part of the
f2 = c∗ contour that separates between grid-marked and
lines-marked areas). Since g(s) is the same in f1(s) and
f2(s), we know that h2(s) > h1(s) (i.e. h2 is more infor-
mative in state s). If we consider only state expansions, h2

would be the best heuristic to compute at state s. However,
h2 could be more expensive to compute than h1, so if we
consider search time, the choice is not straightforward.

If we compute h2(s), then s is no longer surely expanded
(because f2(s) = c∗, and therefore it may be expanded or
not, according to tie-breaking). In contrast, if we compute
h1(s), then s is surely expanded, because f1(s) < c∗. Note
that computing h2 for one of the descendants of s is surely
sub-optimal, as we pay the cost of computing h2, yet only
part of the search sub-tree rooted in s is no longer surely
expanded. Therefore, our choices can be restricted only to
either computing h2 for s, or computing h1 for all the states
in the sub-tree rooted at s on the f1 = c∗ line (i.e. the leaves
of the sub-tree rooted at s and ending at the f1 = c∗ line).

Assume we need to expand l complete levels of the state-
space from s to reach the f1 = c∗ line. This means we need
to generate on the order of bl states, and then calculate h1

for all of the states on the f1 = c∗ line, which would take
blt1 time. If, instead, we compute h2, the time required to
“explore” the sub-tree rooted in s would be t2 (assuming
favorable tie-breaking). Given that, the optimal decision is
thus to calculate h2 iff t2 < blt1, or if we rewrite this, if
l > logb(t2/t1). As a special case, if both heuristics take the
same time to compute, this decision rule boils down to l > 0,
that is, the optimal choice is simply the more informed (for
state s) heuristic.
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From Model to Practice
The above simplified formal model for deciding when it is
best to evaluate which heuristic makes several assumptions,
some of which appear to be problematic to meet in prac-
tice. Here we examine these assumptions more closely, sug-
gest pragmatic compromises when possible, and then de-
scribe an algorithm, called selective max, for speeding up
heuristic-search optimal planning according to the principle
suggested by our model for exploiting an ensemble of ad-
missible heuristics.

Dealing with Model Assumptions
First, the simplified model assumes that the search space is
a tree with a single goal state and uniform cost actions, and
that the ensemble heuristics are consistent. Although the
first assumption does not hold in most planning problems,
and the second assumption is not satisfied by some state of
the art heuristics, they do not prevent us from using the de-
cision rule suggested by the model. Considering the expo-
nential growth of the search space “from s” as a function of
the heuristic’s error, there is some empirical evidence to sup-
port the conclusion from the simplified model. For instance,
Helmert and Röger (2008) prove for many planning domains
that heuristics with a small constant additive error lead A∗ to
expand an exponential number of states, and the authors also
illustrate this phenomenon experimentally. From the per-
spective of our goals here, from the same empirical results
of Helmert and Röger (2008) it is also evident that the num-
ber of expanded states increases exponentially as the (still
very small and additive) error increases. The latter suggests
that the connection between the number of nodes to be ex-
panded in our model and in practice can actually be quite
right.

The next step is to somehow estimate the “depth to go”
l. For that, we need to make another assumption about the
rate at which f1 grows in the sub-tree rooted at s. Although
there are many possibilities here, we will look at two likely
options. The first option is that the heuristic estimate h1 re-
mains constant in the subtree rooted at s (i.e. the additive
error increases by 1 for each level below s). In this case, f1
increases by 1 for each level expanded (because h1 remains
the same, and g increases by 1), and it will take expanding
∆h(s) = h2(s) − h1(s) levels to reach the f1 = c∗ line.
The second option we examine is when the absolute error of
h1 remains constant (i.e. h1 increases by 1 for each level
expanded, so f1 increases by 2). In this case, we will need
to expand ∆h(s)/2 levels. This can be generalized to the
case where the estimate h1 increases by any constant addi-
tive factor c, which results in ∆h(s)/(c + 1) levels being
expanded. In either case, l is linear in ∆h(s), and our de-
cision would be to compute h2 if ∆h(s) > α logb(t2/t1),
where α is a hyper-parameter for our algorithm.

Next, the model assumes that the branching factor is con-
stant, and that the times to compute the heuristics are the
same across all states. We deal with these two assumptions
by estimating and relying upon the average branching factor
and average heuristic computation times. These estimates
are made on the basis of a random sample of states; the pre-
cise estimation procedure is described later on. Third, the

model also assumes we know if a state is surely expanded
or not. Since we do not, in fact, know this, we treat every
state as if it was on the decision border, and thus apply the
decision rule at every state.

Learning the Selection Rule Online
Without loss of generality, assume that t2 > t1. Accord-
ing to the model, the correct decision rule is to use h2 when
∆h(s) = h2(s) − h1(s) > α logb(t2/t1) (since we do not
know c∗, we apply this decision rule at every state). In order
to do this, we learn a binary classifier that predicts whether,
for a given state s, ∆h(s) > α logb(t2/t1). The learning
procedure we devise is an online active learning procedure.
In this procedure, the classifier is presented with a series
of examples (states). For every example, the classifier can
choose whether to classify the current example using the
model learnt so far, or to ask an oracle for the classification
of the current example, and then learn from it.

To build a classifier, we first need to collect training ex-
amples, which should be representative of the entire search
space. One option for collecting the training examples is to
use the first k states of the search (where k is the desired
number of training examples). However, this method has
a bias towards states that are closer to the initial state, and
therefore is not likely to represent well the structure of the
states in the search space. Hence, we instead collect training
examples by sending “probes” from the initial state. Each
such “probe” simulates a stochastic hill-climbing search, un-
til a certain depth-limit is reached. All the states generated
by such a probe are used as training examples. We send
several such probes, until we have collected enough training
examples. A more complex sampling method was proposed
in (Haslum et al. 2007), but our approach is simpler, and
works well in practice.

There are several parameters for this probing procedure.
The maximum depth of each probe was set to twice the
heuristic estimate of the initial state, that is 2 maxh(s0).
Choosing a successor state to continue the probe from was
done according to the inverse of the heuristic value (that is,
the probability of choosing a successor s is proportional to
1/maxh(s)). The “inverse heuristic” selection biases the
sample towards states with a lower heuristic value, which
have a higher chance of being expanded by the search.

After the training examples T are collected, they are first
used to estimate b, t1 and t2 by averaging the respective
quantities over T . Once b, t1 and t2 are estimated, we can
compute the threshold α logb(t2/t1) for our decision rule.
We generate a label for each training example by calculating
∆h(s) = h2(s) − h1(s), and comparing it to the decision
threshold. If ∆h(s) > α logb(t2/t1), we label s with h2,
and otherwise with h1. If t1 > t2 we simply switch between
the heuristics; our decision is always whether to evaluate the
more expensive heuristic or not (i.e. the default is to evaluate
the cheaper heuristic, unless the classifier says otherwise).

Another requirement for building a classifier is deciding
what features characterize states with respect to the deci-
sion rule. We decided to start our investigation with the sim-
plest and most accessible features possible, notably the ac-
tual state variables of the planning problem, and postpone
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evaluate(s)

1. 〈class, confidence〉 ← CLASSIFY(s, model)
2. if (confidence > ρ)

(a) return hclass(s)
3. else

(a) ∆h ← h2(s)− h1(s)
(b) label← (∆h > α logb(t2/t1))
(c) Update model with 〈s, label〉
(d) return max(h1(s), h2(s))

Figure 2: The state evaluation algorithm.

feasibility analysis for automatic generation of more com-
plex features for later.

Once we have a classifier (constructed from the initial
training set), we start the search from the initial state. For
every state we evaluate, we use the classifier to decide which
heuristic to compute. If the confidence for one of the pos-
sible answers is greater than some confidence threshold ρ,
then we follow that decision (i.e. compute the heuristic that
was chosen, and use its value). Otherwise, we do not have
sufficient information about that state to predict the best
heuristic to use, and therefore want to learn from it. This
is done by computing the values of both heuristics, gener-
ating a label, and learning from this new example2. This is
described in pseudo-code in Figure 2.

Although many classifiers can be used here, for several
reasons we decided to use the Naive Bayes classifier. First
of all, both training and classification with Naive Bayes are
very fast, which is extremely desirable in the time-bounded
setting we are interested in. Another advantage is that it is an
incremental classifier, which allows us to learn from a new
example very quickly. Finally, when classifying an exam-
ple, Naive Bayes provides us with a probability distribution
over possible classifications, and these probabilities have a
natural semantics in terms of the classification confidence.

The Naive Bayes classifier assumes that the features are
independent. Although this is not a fully realistic assump-
tion for planning problems, using a SAS+ formulation of the
problem instead of STRIPS helps, as instead of many binary
variables which are highly dependent upon each other, we
have a small number of variables which are less dependent
upon each other. The PDDL to SAS+ translator (Helmert
2009) which is used in our implementation, does not gen-
erate the “best” possible SAS+ formulation, but gets pretty
close to it, by detecting one kind of dependence between
propositions in the PDDL representation (mutual exclusion),
and creating a single SAS+ state variable that represents all
of them. This is most likely part of the reason Naive Bayes
works well here.

As a final note, extending selective max to use more than
two heuristics is rather straightforward—simply compare
the heuristics in a pair-wise manner, and choose the best

2We do not change the estimate for b, t1 and t2, so the decision
threshold remains fixed.

heuristic by a vote, which can either be a regular vote (i.e. 1
for the winner, 0 for the loser), or weighted according to the
classifier’s confidence. Although this requires a quadratic
number of classifiers, training and classification time (at
least with Naive Bayes) appear to be much lower than the
heuristic computation time, and thus the overall learning and
classification overhead is likely to remain relatively low.

Extending the proposed approach for use with non-
uniform action costs remains as future work. Altough the
decision rule proposed here can be used “as is” with non-
uniform action costs, it is likely that it should be adjusted to
account for the different action costs.
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Abstract
Incremental search algorithms reuse information from
previous searches to speed up the current search and are
thus often able to find shortest paths for series of sim-
ilar search problems faster than by solving each search
problem independently from scratch. However, they do
poorly on moving target search problems, where both
the start and goal cells change over time. In this pa-
per, we thus develop Fringe-Retrieving A* (FRA*), an
incremental version of A* that repeatedly finds shortest
paths for moving target search in known gridworlds. We
demonstrate experimentally that it runs up to one order
of magnitude faster than many state-of-the-art incremen-
tal search algorithms applied to moving target search.

1 Introduction
Moving target search is the problem where a hunter has to
catch a moving target [Ishida and Korf, 1991; Moldenhauer
and Sturtevant, 2009]. Motivated by video games, we per-
form moving target search in known gridworlds with blocked
and unblocked cells, where the hunter always knows its cur-
rent cell and the current cell of the target. The moving tar-
get search problem is solved once the hunter reaches the
current cell of the target. The hunter needs to determine
quickly how to move. A*-based incremental search algo-
rithms reuse information from previous searches to speed up
the current search and are thus often able to find the short-
est path faster than by solving each search problem indepen-
dently from scratch [Koenig et al., 2004]. Incremental search
algorithms generally fall into two classes:

• The first class uses information from the previous
searches to update the h-values of the current search
so that they become more informed and focus the cur-
rent search better. Examples include MT-Adaptive A*
[Koenig et al., 2007] and its generalization Generalized
MT-Adaptive A* [Sun et al., 2008].

∗This material is based upon work supported by, or in part by, the
U.S. Army Research Laboratory and the U.S. Army Research Office
under contract/grant number W911NF-08-1-0468 and by NSF un-
der contract 0413196. The views and conclusions contained in this
document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the
sponsoring organizations, agencies, companies or the U.S. govern-
ment.

• The second class transforms the previous search tree to
the current search tree so that the current search does not
need to start from scratch. Examples include Differential
A* [Trovato and Dorst, 2002], D* [Stentz, 1995] and D*
Lite [Koenig and Likhachev, 2005].

All listed incremental search algorithms from the second
class are efficient only if the start cell remains unchanged
from search to search. These incremental search algorithms
are thus not efficient for moving target search. In this pa-
per, we develop Fringe-Retrieving A* (FRA*), an incremen-
tal version of A* from the second class that repeatedly finds
shortest paths for moving target search in known gridworlds.
We demonstrate experimentally that it runs up to one order of
magnitude faster than a variety of state-of-the-art incremental
search algorithms applied to moving target search.

2 Search Problem and Notation
We perform moving target search in known gridworlds. We
use the following notation: S denotes the finite set of un-
blocked cells, sstart ∈ S denotes the current cell of the hunter
and the start cell of the search, and sgoal ∈ S denotes the
current cell of the target and the goal cell of the search.
N(s) ⊆ S denotes the set of neighbor cells of cell s ∈ S,
namely the at most four adjacent unblocked cells for four-
neighbor gridworlds and the at most eight adjacent unblocked
cells for eight-neighbor gridworlds. c(s, s ′) > 0 denotes the
distance from cell s ∈ S to cell s′ ∈ N(s). We use one if
they are horizontal or vertical of each other and

√
2 if they

are diagonal of each other. d(s, s ′) denotes the distance from
cell s ∈ S to cell s′ ∈ S. The h-value h(s, s′) needs to be
consistent. We use the Manhattan distances for four-neighbor
gridworlds and the octile distances for eight-neighbor grid-
worlds [Bulitko and Lee, 2006]. The objective of each search
is to find a shortest path from the start cell to the goal cell.

3 A*
A* is the basis of all incremental search algorithms discussed
in this paper. We use the following properties of A*:

• Property 1: Every cell s in the CLOSED list satis-
fies the following conditions: (a) If s is not the start
cell, then the parent of s is in the CLOSED list with
g(s) = g(parent(s)) + c(parent(s), s). (b) The g-value
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Figure 2: Principle of FRA*.

of s satisfies g(s) = g(sstart)+d(sstart, s). Property 1 im-
plies that one can identify a shortest path from the start
cell to s in reverse by following the parents from s to the
start cell. Property 1 also implies that the CLOSED list
forms a contiguous area in known gridworlds.

• Property 2: The OPEN list contains the following cells:
(a) If the CLOSED list is empty, then the OPEN list
contains only the start cell. Otherwise, the OPEN list
contains exactly all cells that are not in the CLOSED
list but have at least one neighbor cell in the CLOSED
list. Property 2 (a) implies that the OPEN list con-
tains exactly all cells that on the outer perimeter of the
CLOSED list. Every cell s in the OPEN list satisfies
the following conditions: (b) The parent of s is the cell
s′ in the CLOSED list that minimizes g(s′) + c(s′, s).
(c) The g-value of s satisfies g(s) = g(parent(s)) +
c(parent(s), s).

4 Fringe-Retrieving A*
Fringe-Retrieving A* (FRA*) is an incremental version of A*
that repeatedly transforms the previous search tree to the cur-
rent search tree (see the pseudo code in [Sun et al., 2009]).
Assume that FRA* finds a shortest path from the start cell,
which is the current cell of the hunter, to the goal cell, which
is the current cell of the target. Properties 1 and 2 hold after-
wards since FRA* performs A* searches. Then, the hunter
moves along the shortest path. When the target moves off the
shortest path, FRA* changes the OPEN and CLOSED lists
as well as the parents of the cells in them to guarantee that
Properties 1 and 2 hold again and then starts an A* search
with these OPEN and CLOSED lists to find a shortest path
from the new start cell to the new goal cell. We use the four-
neighbor gridworld in Figure 1 to illustrate the steps of FRA*.
The current cell C2 of the hunter is labeled S, and the current
cell E6 of the target is labeled G. Figure 1(a) shows the very
first search of FRA*, which is an A* search from C2 to E6.
Cells in the OPEN and CLOSED list are labeled with their g-
values in their lower right corners. The outgoing arrows point
to their parents. Cells in the OPEN list are labeled OPEN.
The shortest path is C2, C3, C4, B4, B5, B6, C6, D6 and E6.
The hunter then moves along the shortest path to C3, and the
target moves off the shortest path to F6. FRA* now finds a
shortest path from C3 to F6 using the following steps.

4.1 Step 1: Starting A* Immediately
If the new start cell is the same as the previous start cell and
the new goal cell is in the previous CLOSED list, then one can
identify a shortest path from the new start cell to the new goal
cell in reverse by following the existing parents from the new
goal cell to the new start cell according to Property 1. If the

new start cell is the same as the previous start cell but the new
goal cell is not in the previous CLOSED list, then FRA* starts
an A* search with the previous OPEN and CLOSED lists and
does not need to execute the following steps. In our example,
these conditions are not satisfied and FRA* thus executes the
following steps.

4.2 Step 2: Changing Parents
The new CLOSED list needs to satisfy Property 1 with re-
spect to the new start cell. The previous CLOSED list sat-
isfies Property 1 with respect to the previous start cell since
FRA* performs A* searches. If the new CLOSED list con-
tains exactly all cells of the subtree of the search tree rooted at
the new start cell that are in the previous CLOSED list, then
Property 1 holds with respect to the new start cell. Property
1(a) holds trivially, and Property 1(b) holds for the follow-
ing reason: Consider the shortest path from the previous start
cell s′start to any cell s in the new CLOSED list that results
from following the parents from s to s ′

start in reverse. Since
the new start cell sstart is on this shortest path, it holds that
d(s′start, s) = d(s′start, sstart) + d(sstart, s). Since cell s satis-
fies Property 1(b) with respect to the old start cell, it holds
that g(s) = g(s′start) + d(s′start, s). Since cell sstart satisfies
Property 1(b) with respect to the old start cell, it holds that
g(sstart) = g(s′start)+ d(s′start, sstart). Thus, cell s also satisfies
Property 1(b) with respect to the new start cell since g(s) =
g(s′start)+d(s′start, s) = g(sstart)−d(s′start, sstart)+d(s′start, s) =
g(sstart)+ d(sstart, s). However, the new CLOSED list should
be as large a subset of the previous CLOSED list as possible.
Cells from the previous CLOSED list often satisfy Property
1(b) with respect to the new start cell but not Property 1(a)
since there are typically many alternative shortest paths from
the previous start cell to a cell s in the previous CLOSED list.
If the new start cell is on the shortest path from the previous
start cell to s that results from following the parents from s
to the previous start cell, then s is in the subtree of the search
tree rooted at the new start cell and thus in the new CLOSED
list. If the new start cell is not on the shortest path, then s
is not in the subtree of the search tree rooted at the new start
cell. FRA* finds such cells and changes their parents to make
them part of the search tree rooted at the new start cell so
that they can be part of the new CLOSED list. First, FRA*
makes the new start cell its current cell, faces the parent of
its current cell and performs checks in the counter-clockwise
direction. It turns counter-clockwise to face the next neigh-
bor cell s′ of its current cell s that is in the previous CLOSED
list and checks whether it holds that g(s′) = g(s) + c(s, s′).
If the check is successful, then FRA* sets the parent of s ′ to
s, which is possible because this change does not affect its
g-value. Due to this change, all cells in the subtree rooted at
s′ now belong to the subtree rooted at the new start cell and
their g-values remain unaffected. FRA* then makes s ′ its cur-
rent cell, faces the new parent of its current cell s and repeats
the process of turning and checking the neighbor cell that it
faces. If the check is unsuccessful, FRA* repeats the process
of turning and checking the neighbor cell that it faces.

If, during the process of turning and checking the neigh-
bor cell that it faces, FSA* faces the parent of its current cell
again, then it makes the new start cell its current cell again,
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Figure 1: Example Trace of FRA* on a Four-Neighbor Gridworld.

faces the parent of its current cell and now performs similar
checks in the clockwise direction. The resulting search tree is
one that an A* search could have generated if it had broken
ties among cells with the same sum of g-value and h-value
appropriately. Step 2 traverses at most the inner perimeter
of the new CLOSED list, which can be expected to contain
fewer cells than the CLOSED list itself.

In our example, the cells in the subtree of the search tree
rooted at the new start cell C3 before Step 2 that are in the pre-
vious CLOSED list are B4, B5, B6, C3, C4, C6, D6 and E6.
However, D3 could have C3 as parent rather than D2 since
this change does not affect its g-value. Then, all cells in the
subtree of the search tree rooted at D3 belong to this subtree
and their g-values remain unaffected. FRA* starts at the new
start cell C3 and performs checks in the counter-clockwise di-
rection. First, FRA* is at C3 facing its parent C2 and checks
D3 successfully. It then sets the parent of D3 to C3. Second,
FRA* is at D3 facing its parent C3, checks D2 unsuccessfully
and then checks E3 successfully. It then sets the parent of E3
to D3. Third, FRA* is at E3 facing its parent D3, checks
E2 unsuccessfully and then checks F3 successfully. It then
sets the parent of F3 to E3. Fourth, FRA* is at F3 facing its
parent E3, checks F2 unsuccessfully and then checks F4 suc-
cessfully. It then sets the parent of F4 to F3 (which does not
change its parent). Fifth, FRA* is at F4 facing its parent F3
and checks E4 unsuccessfully. FRA* then starts again at the
new start cell C3 and performs similar checks in the clock-
wise direction until it reaches E6, see Figure 1(b). The cells
in the subtree of the search tree rooted at the new start cell C3
after Step 2 that are in the previous CLOSED list are B4, B5,
B6, C3, C4, C6, D3, D4, D6, E3, E4, E6, F3 and F4. The big
triangle rooted in C2 in the conceptual Figure 2 represents all
cells in the search tree that are in the previous CLOSED list,
the triangle T rooted in C3 in the big triangle represents all
cells in the subtree of the search tree rooted at the new start
cell before Step 2 that are in the previous CLOSED list, and
the area in the big triangle below and including the cells tra-
versed by FRA* in the counter-clockwise direction (C3, D3,
E3, F3 and F4) and the clockwise direction (C3, C4, B4, B5,
B6, C6, D6, and E6) represents all cells in the subtree of the
search tree rooted at the new start cell after Step 2 that are in
the previous CLOSED list.
4.3 Step 3: Deleting Cells

FRA* now generates the new CLOSED list, which contains
exactly all cells of the subtree of the search tree rooted at the

new start cell that are in the previous CLOSED list. FRA*
uses breadth-first search to traverse the search tree except for
the subtree rooted at the new start cell, starting with the previ-
ous start cell, and delete the visited cells that are in the previ-
ous CLOSED list from the previous CLOSED list to form the
new CLOSED list. FRA* remembers the parent of the new
start cell (that we call the anchor cell). It then sets the parent
of the new start cell to NULL to disconnect this subtree from
the search tree and uses breadth-first search to traverse the re-
sulting search tree, starting with the previous start cell, and
deletes the visited cells that are in the previous CLOSED list
from the previous CLOSED list to form the new CLOSED
list. It also deletes the visited cells that are not in the previous
CLOSED list from the previous OPEN list to form the new
OPEN list. Afterwards, the new CLOSED list is complete.
The parents and g-values of all cells in the new CLOSED list
satisfy Property 1. In our example, FRA* sets the parent of
C2 to NULL, it then deletes C2, D2, E2 and F2 from the pre-
vious CLOSED list and deletes B2 from the previous OPEN
list, see Figure 1(c).

4.4 Step 4: Terminating Early
If the new goal cell is in the new CLOSED list then one can
identify a shortest path from the new start cell to the new
goal cell in reverse by following the parents from the new
goal cell to the new start cell according to Property 1. In
our example, this condition is not satisfied and FRA* thus
executes the following steps.

4.5 Step 5: Inserting Cells
The new CLOSED list forms a contiguous area according
to Property 1. FRA* thus completes the new OPEN list by
circumnavigating the part of the outer perimeter of the new
CLOSED list that contains the anchor cell, starting with the
anchor cell, and inserting every visited unblocked cell that is
not yet in the new OPEN list into the new OPEN list. After-
wards, the new OPEN list is complete. However, the parents
and g-values of some cells in the new OPEN list might not
satisfy Property 2. FRA* therefore sets the parent of every
cell s in the new OPEN list to the cell s′ in the new CLOSED
list that minimizes g(s′)+c(s′, s) and then the g-value of s to
g(parent(s)) + c(parent(s), s). The parents and g-values of
all cells in the new OPEN list now satisfy Property 2. Step 5,
different from [Edelkamp, 1998], traverses at most the outer
perimeter of the new CLOSED list, which can be expected to
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Four-Neighbor Random Gridworld Eight-Neighbor Random Gridworld
searches moves cells cells removed total searches moves cells cells removed total

per per expanded from CLOSED runtime per per expanded from CLOSED runtime
test case test case per search per search per search test case test case per search per search per search

A* 387 688 14013 (31.2) 7250 335 475 8418 (19.3) 6098
MT-Adaptive A* 387 688 12351 (28.2) 6002 335 475 8001 (21.9) 6078
Differential A* 387 688 14013 (40.1) 9533 335 475 8418 (19.3) 7355
FRA* 391 688 515 (13.0) 362 (11.6) 397 336 477 325 (3.8) 256 (7.5) 438

Table 1: Experimental Results in Random Gridworlds.

contain fewer cells than the CLOSED list itself. In our exam-
ple, FRA* circumnavigates the part of the outer perimeter of
the new CLOSED list that contains C2, starting with C2, and
inserts C2, D2, E2 and F2 into the previous OPEN list and
then corrects all of their parents and g-values. For example,
the parent of D2 was C2 and its g-value was one. FRA* sets
the parent of D2 to D3 and its g-value to three, see Figure
1(d).

4.6 Step 6: Starting A*

FRA* starts an A* search with the new OPEN and CLOSED
lists. The g-value of the new start cell is not necessarily zero
at this point in time since FRA* has not changed it since its
previous search.

5 Experimental Evaluation

We compare FRA* experimentally against A*, MT-Adaptive
A*, Differential A* and D* Lite. We use comparable imple-
mentations for all search algorithms. For example, all of them
use binary heaps as priority queues. We use four-neighbor
and eight-neighbor random gridworlds in which 25 percent of
randomly chosen cells were blocked. We average over 1000
gridworlds of size 1000 × 1000 whose start and goal cells
were randomly chosen. The target always follows a shortest
path from its current cell to a randomly selected unblocked
cell and repeats the process once it reaches that cell. The
target skips every tenth move, which enables the hunter to
catch it. Tables 1 reports two measures for the difficulty of
the moving target search problems (that vary slightly among
moving target search algorithms due to different tie breaking
among several shortest paths), namely the average number of
searches and the average number of moves of the hunter until
it catches the target. The tables report two measures for the
efficiency of the moving target search algorithms, namely the
average number of expanded cells per search and the average
runtime per search in microseconds on a Pentium D 3.0 Ghz
PC with 2 GByte of RAM. The tables also report the aver-
age number of cells per search that FRA* removes from the
CLOSED list. Finally, the tables report the standard devia-
tion of the mean for the number of expanded cells per search
and the number of cells removed from the CLOSED list per
search (in parentheses) to demonstrate the statistical signifi-
cance of our results. D* Lite is not listed in the table because
it exceeds our runtime limit of 10 hours for the 1000 grid-
worlds that we average over and is thus not competitive.

In all cases, the sum of the average number of cells that
FRA* expands and the average number of cells that it re-
moves from the CLOSED list is an order of magnitude
smaller than the average number of cells that the other search
algorithms expand. Accordingly, the average runtime of

FRA* is an order of magnitude smaller than the average run-
time of the other search algorithms.

6 Conclusions
In this paper, we developed Fringe-Retrieving A* (FRA*),
an incremental search algorithm that repeatedly finds short-
est paths for moving target search in known gridworlds. We
demonstrated experimentally that it runs up to one order of
magnitude faster than a variety of state-of-the-art incremental
search algorithms applied to moving target search in known
gridworlds. FRA* is thus the first incremental search algo-
rithm that efficiently transforms the previous search tree to
the current search tree for moving target search.
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Abstract

Although the first algorithm many associate with heuristic
search is A*, an algorithm for finding optimal solutions to
search problems, many applications of heuristic search only
require that we find a good enough solution or a solution
quickly enough where good enough and quickly enough are
defined by the needs of a user. Both problems have been ad-
dressed previously, by bounded suboptimal search and any-
time search respectively, but these approaches are not satis-
factory. My doctoral work will address these problems by
developing new bounded suboptimal algorithms which per-
form better than the previous approaches. I will show that
anytime searches can incorporate these new algorithms to im-
prove their own performance. I will demonstrate that anytime
search is not the correct approach when a deadline is known
at the beginning of the search, and introduce deadline aware
search algorithms which address this problem directly.

The Problem
Heuristic search is used to solve a wide variety of prob-
lems, such as pathfinding in a grid or temporal planning. By
systematically exploring the space outwards from a starting
state, a solution will eventually be found if one exists. When
sufficient resources are available, optimal solutions can be
found using A∗ search with an admissible heuristic (Hart,
Nilsson, and Raphael 1968). Unfortunately optimal solu-
tions take a large amount of time and memory to calculate.
In practical applications this is unacceptable, and a search
which finds solutions of reduced quality while consuming
fewer resources might be more desirable.

In these practical settings we must accept suboptimal so-
lutions in order to reduce the computation required to find
solutions. When abandoning solution optimality we still
have ways of retaining control over the search. We can
choose to bound the quality of the solution returned by de-
signing searches which return a solution within a given fac-
tor of optimal. Alternatively we can limit the time used in
finding an the solution. When bounding the quality of a so-
lution our aim then becomes to solve problems as quickly as
possible while guaranteeing that the solutions found have a
cost within a bounded factor of optimal. When we choose

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to bound the time, our goal is to produce the best possible
solution within the given deadline.

Although the problems can be stated separately, they
are closely interwoven. Searches which find solutions of
bounded quality quickly are typically applicable in the set-
ting where expedient problem solving is desirable, and
searches which find solutions of good, but unbounded, qual-
ity quickly can be extended to find solutions of bounded
quality. In my thesis, I will investigate improvements to both
of these closely related problems.

Bounding Solution Quality
First I consider the setting in which one wants the fastest
possible search where the solution is guaranteed to be within
a bounded factor of the optimal solution. For a given factor
w, we call an algorithmw-admissible if it is guaranteed to
return a solution that is no more thanw times more expen-
sive than an optimal solution.

Weighted A∗ is an elegant answer to this problem (Pohl
1970). In weighted A∗ the traditional node evaluation func-
tion of A∗, fA∗(n) = g(n) + h(n), is modified to place
additional emphasis on the heuristic evaluation functionh,
as infwA∗(n) = g(n)+w ·h(n). The additional focus onh
causes the search to become greedy. Any solution found by
weighted A∗ can be shown to bew-admissible.

Weighted A∗ often finds solutions within a given qual-
ity bound quickly, but it is not the fastest algorithm for a
given suboptimality bound. The dissertation will present
three approaches for improving bounded suboptimal search
in an effort to outperform current state of the art algorithms.
These new algorithms will improve performance by focus-
ing on finding solutions, improving the heuristic online, and
exploiting the average case performance of existing algo-
rithms.

Focus on Finding the Solution

The purpose of bounded suboptimal search is not really to
find a solution whose cost is within a given bound of the
optimal, but rather, given a desired quality bound, to pro-
duce an acceptable solution as quickly as possible. These
solutions should be of high quality but not at the expense of
speed. To do this, bounded suboptimal algorithms make a
controlled transition between performing like A∗ when the
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Figure 1: Greedy search ond outperforms search onh.

bound is tight and performance like that of greedy search
when the bound is lax.

In some domains all actions have the same cost and be-
coming greedy with respect to the cost of a solution is equiv-
alent to becoming greedy with respect to the length of a so-
lution. Not all domains have unit cost actions, and so it is
useful to separate the idea of pursuing solutions which are
cheap and pursuing those which are close. Searches that
consider both the estimated cost-to-go, given by a heuristic
evaluation functionh, as well as the search-distance-to-go,
given by a distance estimation functiond, should have an
advantage over searches which do not make use of this ad-
ditional information, particularly in domains whereh andd

differ. In these domains a search that is greedy with respect
to solution cost may take longer than a search that focuses
on finding the nearest solution. Figure 1 demonstrates the
extreme case, where no bound is placed on the quality of the
returned solution in a grid pathfinding problem. We see that
not only do we find solutions faster when greedily search-
ing on d than when we do onh, but that the performance
gap between these two approaches increases with problem
size. Domains where solution cost and length differ are com-
mon, including popular benchmarks such as temporal plan-
ning and many variations of pathfinding.

Many algorithms fail to take advantage of the information
provided byd. Although there were several proposals in
the 70s and 80s, A∗ǫ (Pearl and Kim 1982) and dynamically
weighted A* (Pohl 1973) among them, using distance esti-
mates has fallen out of favor. This is caused in part by the
poor performance of these two algorithms. The root of this
poor performance has been identified (Thayer, Ruml, and
Kreis 2009), and it will be corrected as part of my thesis.

A∗

ǫ works well for loose bounds, where the algorithm
searches greedily ond, but can take longer than A* to find
suboptimal solutions for tighter bounds (Thayer and Ruml
2009). A∗ǫ considers nodes who appear to have cost close
to that of the optimal solution, preferring to expand nodes
which appear to be close to a goal first. While this sounds
like a wonderful idea in principle, in practice these two node
orderings can conflict with one another and lead to poor per-
formance. When the orders are conflicting, nodes which are
close to the goal do not appear to have costs within a de-

sired bound, and nodes which have desirable costs do not
seem close to a solution. The end result is that A∗

ǫ slowly
empties the set of nodes which appear to be good candi-
dates for expansion until the lower bound on optimal solu-
tion cost is raised. Then, the process starts over again. This
repeated flushing and refilling of the focal list causes poor
performance.

Dynamically weighted A∗ performs poorly in domains
where the search proceeds unevenly towards goals. Decreas-
ing the weight by which the heuristic evaluation function is
multiplied as depth increases encourages progress in any di-
rection. This is fine in when each step away from the goal,
regardless of the action, takes the search equally closer toa
goal but is bad in general.

These two algorithms are exemplary of the two ap-
proaches for incorporating a focus on search distance into
general heuristic search. We can either use the distance-to-
go estimate to augment the apparent cost of a node, thereby
altering the search order, or we can use the estimates to se-
lect from a subset of promising candidates. Methods have
already been developed to correct the poor performance of
dynamically weighted A* (Thayer and Ruml 2009), and im-
provements to A∗ǫ have also been made (Thayer, Ruml, and
Kreis 2009). Both approaches deserve further study.

Improve Heuristics
If the heuristics used in the search were perfectly accurate,
then we would expand nodes directly along an optimal so-
lution path into the goal. As the heuristics degrade in qual-
ity, optimal solutions become harder to find at an alarming
pace (Helmert and R̈oger 2007), but suboptimal solutions
can still be easy to find (Davis 1991). As the heuristics typi-
cally used are admissible, that is they always underestimate,
inflating them by a set factor can be seen as an attempt to
correct for an underestimating heuristic. A more principled
approach to correction can lead to better performance.

Clamped adaptive search (Thayer, Ruml, and Bitton
2008) is an algorithm which allows for the use of an inad-
missible cost-to-go heuristic so long as an admissible heuris-
tic is also provided. In short, it follows a, presumably, more
accurate inadmissible heuristic so long as the costs calcu-
lated by this heuristic fall within some bound. More specifi-
cally, clamped adaptive search is a best first search order on
the functionf̃(n) = max(g(n), (min(w ∗ f(n), f̂(n)))).
g(n) is the cost of arriving at noden when traveling from
the root.f(n) = g(n) + h(n) whereh(n) is some admissi-
ble heuristic. Similarly,̂f(n) = g(n) + ĥ(n) whereĥ(n) is
an inadmissible heuristic. The question then becomes how
do we derive reasonably accurate inadmissible heuristics au-
tomatically. One approach is to use regression techniques to
learn the heuristics. There are at least three possible sources
of information to learn from: the truth, single step heuristic
error, and backwards looking heuristics.

Truth One obvious thing to do when attempting to evalu-
ate the performance of heuristics is to look at the true values
which they are trying to estimate. The true values can be cal-
culated by exhaustively searching the space backward from
the goal. Error in the admissible heuristic can then be calcu-
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lated by means of subtraction. Comparing to the truth is de-
sirable because the error measurements are known to be ex-
actly correct and completely removed from the search being
performed. Unfortunately it also requires a large amount of
pre-computation which solves the problem as a by-product.
As such, learning techniques which rely on the truth are pri-
marily interesting as a benchmark. They show us the limits
of a particular model when learned under the best possible
conditions. In practice, models learned on the truth of one
instance appear to be reasonable for other very similar in-
stances, a phenomena I will explore more thoroughly in my
thesis.

Single Step Heuristic Error During the course of a
search, nodes are selected for expansion and their children
are generated. These single expansions can tell us a great
deal about the performance of a heuristic. If the cost-to-go
heuristich were perfect, then thef value of a parent node
would be the same as the lowestf among its children. Ad-
missible heuristics underestimate the cost to go, and so the
cost of the cheapest child may be larger than that of the par-
ent. The rise in value from a parent to its best child is a
measurement of the error in the heuristic. To use the single
step error to correct the heuristic, an estimate of the num-
ber of steps to go must be provided. This estimate can be
derived from the cost to go heuristic, in fact for unit cost
domains they are identical, or can be generated separately.

Backwards Looking Heuristics Another possibility re-
quires us to create a separate set of heuristics which, rather
than looking forward from a node towards the goal, estimate
the cost and distance of arriving at the root from the current
node. It is important that they be as similar to the forward
heuristics as possible. The reverse heuristics are then com-
pared to the cost of arriving at the current node. If the heuris-
tics are similar then we should be able to infer things about
the performance of the forward looking heuristic from the
backwards looking heuristic. We can reduce from here to
the single step error case by distributing the observed error
over the number of steps needed to reach the current node.

Exploit Average Case Performance

We begin by noting that previous approaches to subopti-
mal heuristic search, including weighted A∗, dynamically
weighted A∗, and A∗ǫ , are very strict in so much as no node is
ever expanded which could not lead to aw-admissible goal.
While this strict approach tow-admissibility has a certain
conservative appeal, there is also a long history in AI re-
search of exploiting the fact that worst case behavior rarely
occurs. This gives rise to an optimistic approach in which we
allow ourselves to expand nodes more aggressively, without
a strict guarantee that they lead to aw-inadmissible solution.
Any fast search method with an open list can be used. In the
experiments below, we use weighted A∗ with a high weight.
Crucially, once we have found a solution using the aggres-
sive search, we will then expand additional nodes until we
can either prove our solution isw-admissible.

Figure 2 shows the true quality of solutions found by
weighted A∗ compared to the suboptimality bound, and used
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Figure 2: The suboptimality of solutions returned by
weighted A* versus the suboptimality bound, averaged over
20 grid-world path-finding problems.

weighting factor,w. The liney = x is also included to
show the theoretical limit. Clearly, not only is it possible
for weighted A∗ to return solutions far better than the bound
suggests, it is also common in some domains. This gap rep-
resents the difference between worst case and average case
performance.

The optimistic search algorithm exploits this gap by us-
ing a two phased search. First, it employs an aggressively
greedy search phase to find a solution that is not guaranteed
to be w-admissible, but usually is. This is followed by a
‘clean-up’ phase, in which the algorithm attempts to prove
that the solution obtained by the aggressive part of the search
is w-admissible.

Bounding Solving Time
Additionally, I will consider the problem of finding solu-
tions under a time pressure. Here, the user is constrained by
time and not by solution cost, though ideally we’d like to
find the best solution possible within the deadline. In these
problems, only the best solution returned found within the
time allotted counts, and not returning a solution within the
deadline is unacceptable. Even with these restrictions, these
problems still fall into two categories. We may or may not
know the deadline ahead of time.

Unknown Deadlines
The current crop of anytime heuristic search algorithms di-
rectly address the problem of finding solutions to prob-
lems within an unknown deadline. Anytime heuristic
search (Hansen and Zhou 2007), ARA∗ (Likhachev, Gor-
don, and Thrun 2004), and restarting weighted A∗ (Richter,
Thayer, and Ruml 2009) are a natural fit for problems where
a deadline exists, but we do not know what it is at the outset
because they greedily search towards an initial solution and
then return a stream of ever improving solutions. Both of
these algorithms rely on weighted A∗, which may not be the
best bounded suboptimal algorithm for all domains.

We can adapt our improved bounded suboptimal search
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algorithms into anytime algorithms following a technique
outlined by Hansen and Zhou, 2007 If the underlying al-
gorithms are better than weighted A∗ we would expect the
anytime versions of these algorithms to outperform anytime
searches relying on previous state of the art techniques.

Fixed Deadlines
Anytime searches naturally work for the case of deadlines
which are fixed before the search begins. They race towards
an initial solution and then incrementally improve upon it
until the deadline arrives and the search is halted. The main
flaw in using the anytime approach to search under a spec-
ified deadline is that only the final solution is returned. In
a sense all of the computational effort spent finding all of
the solutions save for the final solution which is returned is
wasted.

For problems with known deadlines, we would ideally in-
vest all of the time up until the deadline in finding a sin-
gle solution. This should allow the search to find a solution
of better quality than if it had invested its time in finding a
stream of solutions. The problem of search within a fixed
deadline has two parts which must be addressed: How do
we predict the time it will take a search to complete and how
do we quickly find solutions of good quality?

The second question will have been addressed previ-
ously by my work in improving bounded suboptimal search.
Searches which find solutions of a know quality as quickly
as possible are a natural fit for the problem of quickly find-
ing solutions of a good quality as we have simply put a strict
limitation on the good qualifier. The first question, how
can we predict the time it will take a search to complete,
is more complicated. There is previous work for predict-
ing the time it will take to find an optimal solution using
IDA* (Korf, Reid, and Edelkamp 2001), and some work has
been done on predicting the progress of search as it is being
conducted (Hiraishi, Ohwada, and Mizoguchi 1998). Nei-
ther of these techniques directly addresses the problem of
predicting the time a suboptimal search, and so they will
have to be built upon and expanded in order to address the
problem at hand.

Conclusions
General heuristic search is one of the cornerstones of more
advanced methods in artificial intelligence. There are a great
many techniques which rely on systematic search, and im-
provements to systematic search should extend to techniques
which rely on it. Although the prevailing sentiment is that
the problem of bounded suboptimal search has been solved,
leading approaches to the problem do not directly address
the issue of solving problems within the bound as quickly as
possible; the loosening of the suboptimality bound simply
has the pleasant side effect of reducing the time needed to
find a solution. Directly addressing the problem should lead
to better solutions.

Improvements to bounded suboptimal search will extend
directly to anytime search, by virtue of the fact that bounded
suboptimal searches can be directly extended into anytime
search. Improvements in anytime search will help better ad-
dress the problem of search under an unspecified deadline.

It will not optimally solve the problem of search under a
known deadline however. Doing this will require an exten-
sion of existing techniques, or perhaps the development of
new techniques, in order to predict the time it will take an
algorithm to find a solution. Again, the expectation is that a
direct approach to perform better as it is designed to directly
address the problem at hand.
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Introduction
People’s first reaction to the term “robotic assembly” is usu-
ally a mental picture of an industrial assembly line where
stationary robots perform repetitive tasks at high speeds and
with high precision. That is not the kind of “assembly” our
work is about. Instead, we consider mobile manipulators
retrieving components from a storage location, transporting
them through their environment and assembling them into
a large structure. We are developing a framework for plan-
ning assembly tasks that, given a desired goal structure, au-
tomatically decomposes the task and commands robots to
execute them. Our system seamlessly reacts to execution-
time failures – which inevitably will occur – by repairing
and re-planning the task as necessary.

Assembly is naturally a step-by-step process where a
sequence of actions transforms an initial (disassembled)
state into a desired final (assembled) state. For assembly
tasks performed by real robots and in non-trivial environ-
ments, symbolic plan solutions at the level of intermedi-
ate structure configurations are insufficient to generate de-
sirable plans. To overcome this limitation, the planner re-
quires a way to reason about physical feasibility of the as-
sembly steps it considers. Motion planning techniques are
uniquely suited to provide such information, but they require
the large assembly problem to be broken down into smaller
sub-problems to be able to find solutions.

We present a hybrid planning system that combines a
graph-based symbolic representation of an assembly prob-
lem with continuous (motion planning) reasoning about
physical feasibility of assembly steps during planning. We
consider lattices of beams and nodes (see Fig. 1) that have
to be assembled by mobile manipulators in constrained en-
vironments. Our planner has been successfully applied to
assembly problems in simulation and with real robots.

Vision and Motivation
We envision an assembly planning system where the user
or operator only has to supply a desired goal structure to
be assembled and a place where the final assembly is to be
located within the environment, and an automatic planner
takes care of the rest. In cases where full autonomy is not

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A nearly completed lattice of 21 components.
Structural (internal components before external compo-
nents) and environmental (the workspace is tight – can the
robots get to where they need to be to perform their tasks?)
constraints need to be considered by the planner.

desirable, an operator could be informed of key steps along
the assembly task and help make decisions, or he could be
involved more actively by assisting the robots (on request or
proactively) to resolve and avoid problems.

Such a system will be of great interest to NASA in the
context of establishing planetary outposts or habitats where
human presence (especially during early phases of construc-
tion) is prohibitively expensive, not to mention dangerous
for the workers. If robots can be sent ahead to prepare the
necessary infrastructure with little supervision or help from
remote humans, astronauts can focus on aspects of the mis-
sion they are better suited for, such as science experiments.

As a more down-to-earth example, imagine furnishing a
new apartment with your favorite assemble-yourself furni-
ture – or rather, have robots assemble all the furniture ac-
cording to your plan of where the bed/desk/shelf/... go while
you are exploring your new neighborhood.
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State of the Art
Assembly is a challenging and difficult task (even for hu-
mans) with such complicating factors as tight tolerances,
heavy and/or large parts to manipulate and more. By defini-
tion, robots will have to operate close to other objects, and
they have to be able to sense, navigate, manipulate while
constructing a growing obstacle in their already constrained
workspace. Intertwined with the necessity to reason about
motion through the environment, there is inherent structure
to an assembly where internal components must be installed
before the outer layer is complete.

Existing approaches to assembly planning are limited to
highly structured environments (e.g., work cells, (Homem
de Mello and Sanderson 1988; Kaufman et al. 1996)). Other
applicable work focuses on the motion planning aspects
of the problem (Karagöz, Bozma, and Koditschek 2004;
Lengyel et al. 1990), but plans produced by those ap-
proaches do not always satisfy critical structural constraints
imposed by the structure to be assembled. Manipulation
planning is faced with similar challenges to assembly plan-
ning at a finer level of detail (e.g., dextrous motions to
grasp and re-grasp components (Nielsen and Kavraki 2000;
Gravot, Alami, and Siméon 2002)). An assembly plan sets
up manipulation planning problems for each step in the plan.
To our knowledge, there is currently no system that is able
to automatically generate assembly plans for mobile manip-
ulators assembling large structures in realistic environments.
While various parts of the overall problem have been ad-
dressed by previous work, a comprehensive solution has not
yet been developed.

We have worked on robotic assembly scenarios for sev-
eral years. This paper extends our previous work (Heger
2008) with a more efficient implementation to handle struc-
tures of up to 21 components (instead of 8 previously), a
task executive that takes generated plans and directly turns
them into task trees for robots to execute, and plan repair and
re-planning capabilities throughout all levels of the planning
hierarchy to allow the system to effectively react to and re-
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Figure 2: High-level overview of our assembly planning sys-
tem. The user specifies an assembly goal. The assembly
planner generates nominally feasible assembly plans, which
the executive converts into a task tree to be executed by
robots. Execution-time exceptions are handled to repair/re-
plan the assembly sequence as necessary.

solve execution-time exceptions. The planner is tied to the
simulated or real-robot scenario using a task sequencing ex-
ecutive that also provides capabilities for sliding autonomy
interaction with a user. This work is motivated by earlier
experiments with real robots (Sellner et al. 2006) where a
rather simple assembly plan was scripted by hand – a task
that is not feasible for larger and larger structures.

Contributions
Our work makes the following key contributions toward the
goal of a more general and useful assembly planning system:

1. An expressive representation of assemblies that decom-
poses the problem into sub-problems that can be attacked
using existing planning methods.

2. A method to automatically generate plans for mobile ma-
nipulators to assemble a desired structure.

3. Seamless repair and re-planning of assembly sequences in
response to execution-time failures and exceptions.

Approach and Implementation
Our assembly planning framework consists of four main
components (see Fig. 2): the assembly planner itself that
generates the assembly sequence, an executive responsible
for parameterizing robot behaviors, real or simulated robots
to execute those behaviors and exception handling mecha-
nism to recover from execution-time failures.

Assembly Planner
The assembly planner is the workhorse of the system. Given
a desired goal structure, an environment, available robots
and a final pose for the assembly, its goal is to produce
a sequence of assembly steps (i.e., AssembleComponent 1
→ AssembleComponent 2→ ... → AssembleComponent N)
that are nominally feasible (assuming some characteristic in-
formation about the robots involved and no significant devi-
ations from the plan during execution). Obviously, nominal
feasibility is no guarantee for success, but it is usually a good
start, and fewer plan repairs are necessary.

Assembly Graph The underlying representation of the as-
sembly planning problem (Heger 2008) is a directed graph
with unique assembly states (intermediate configurations of
the structure as it is being assembled) at its vertices and
the plans necessary to add a new component to the grow-
ing structure on its edges. Edges are weighted by the good-
ness of their associated plans, and vertices are scored on the
structural properties of the partial assembly they represent.
Assembly plans are traces through this graph from an initial
configuration (usually the disassembled state) to a final con-
figuration (usually the assembled state). The chosen graph
edges contain all the parameters necessary to enable the ex-
ecutive to create the corresponding task tree. The planner
searches the assembly graph using A* to find the assembly
sequence to publish to the executive.

The basic version of the assembly graph contains vertices
for each structure state between completely disassembled
and fully assembled and edges with the appropriate com-
ponent being added to transition from one state to the next
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Figure 3: (left) Basic graph representation of a simple assembly problem (a one-square subset of the assembly shown in Fig. 1).
Vertices mark structure configurations, edges indicate assembly steps to transition from one configuration to another (by adding
a new component to the structure). (right) Graph expansion to include robot state in addition to structure state.

(Fig. 3 (left), see (Heger 2008) for more detail). The graph
is constructed goal-to-start by beginning with the fully as-
sembled structure at vertex 0 and then considering all valid
components for removal (only components external to the
structure are considered – internal components are consid-
ered not reachable by robots working around the structure).
This graph generation process makes the implicit assump-
tion that removing a component from a structure state is sim-
ply the reverse of installing it in the previous state. This is a
common assumption in assembly planning, and all assembly
steps considered in this paper meet this requirement.

For planning, we use an extended graph(see Fig. 3 (right))
that encodes both the state of the structure as well as the
state of of assembling robot(s) around the structure. This ex-
pansion allows us to explicitly include costs associated with
robots moving through the environment in order to accom-
plish their tasks as part of the planning process. While it
takes more time up-front to construct the extended graph,
the greater expressive power of this representation allows
the planner to find better plans for larger structures. In ad-
dition, the assembly graph is static for a given structure (the
graph structure does not change, only the weights of vertices
and edges during the search step depends on the specific en-
vironment) and can be pre-computed and stored.

Graph Search and Plan Generation With the assembly
problem represented as an assembly graph, finding a plan
becomes a graph search problem. Any trace through the
graph from the vertex marking the fully disassembled struc-
ture to the vertex marking the completed assembly is a can-
didate plan that satisfies all assembly requirements at a sym-
bolic level (i.e., all states are valid along the way, internal
components are dealt with while they are reachable, etc.).
In addition, motion costs can be taken into account when
searching the extended graph. The graph search directly re-
turns a plan that is guaranteed to be at least nominally feasi-
ble and fully parameterized for immediate robot execution.

Our work to date has been focused on enabling planning
for realistic structures like the ones we can build in our test
bed and to provide recovery capabilities for execution-time
failures that we must anticipate with any real-robot system.
Given that the robots’ speed of operation during assembly is

fairly slow, optimizing for efficiency has been a lower pri-
ority than increasing system robustness. The planner in its
current implementation examines approximately 70% of the
graph edges and spends 0.11-0.16 seconds per edge.

Plan Repair and Re-Planning
The generated assembly plan is guaranteed to be nominally
feasible. As the real robot attempts to follow the planned
motions, or as other run-time exceptions occur (e.g., targets
out of the field of view of the camera, some error during
manipulation tasks, etc.), the system will have to be able to
handle various exceptions. Some of these exceptions may
be “caused” by the rather simple motion planning methods
we are currently using. Our observations of the system in
operation suggest that a lot of the time these methods are
sufficient, and when they are not, the robots are able to de-
tect that they are in an off-nominal state, stop and request
help. The most useful place to introduce more sophisticated
planning techniques will be for error recovery where we can
leverage additional capabilities without requiring unneces-
sarily complex computation throughout the entire system.

We consider three distinct levels of failure recovery. At
the lowest level, as a first recovery attempt, each robot
should have simple contingency responses for things that are
known to go wrong from time to time. Often “try again” is
a valid recovery strategy. For such contingency recovery ac-
tions, the assembly planner never gets involved. However,
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. . .. . .
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Motion Planner
re-parameterize task

exception

new parameters

✗

✓ . . .

. . .. . .

. . .

Assembly Planner
update task cost

exception

new sequence

✗

Figure 4: Plan repair (left) and re-planning (right) in re-
sponse to execution-time failures.
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after a number of contingency attempts fail, more work is
required to continue on with the task.

Failed assembly operations are associated with assembly
graph edges. The next recovery attempt is to repair the failed
step only (Fig. 4 (left)). Enforcing continuity with the orig-
inal plan and taking into account any new information due
to the failure, the planner tries to re-parameterize the failed
task. Depending on how far along the assembly step the er-
ror occurred, the planner may have different options to repair
a step. If a repair is possible, the affected assembly step is
reparameterized and execution continues.

If no repair is possible the exception jumps up to a higher
level in the executive and the planner is queried for a new
sequence from the current state of the assembly to the de-
sired goal state. In this case, the offending graph edge is
marked impassable, and a new graph search is run from the
source state of the failed edge to the original target state
(Fig. 4 (right)). Since the failed assembly step left the robot
somewhere along its task, the re-planned sequence may need
to be prepended with setup tasks that return the robots to a
clean state before continuing with the new plan. While the
requirement to “physically backtrack” to a clean state can
pose challenges to the planner, they provide opportunities
where operator input (e.g., via sliding autonomy (Sellner et
al. 2006)) can provide great benefit to improve the robust-
ness of the overall system.

The Planner at Work
We use a simulator/visualizer based on OpenRAVE (http://
openrave.programmingvision.com/) to examine the output
of the planner and to exercise the system’s repair and re-
planning capabilities. The executive interacting with the
planner and tasks the robots is the same for the simulated
robot case as it will be for real robots.

Figure 5: Two simulated example assembly scenarios.

The base case to demonstrate the planner’s capabilities is
a scenario we had worked with previously: robots assem-
bling a square of four nodes and four beams (Fig. 5 (left))
according to a hand-written script (Sellner et al. 2006). For
this scenario, the assembly graph contains 246 vertices, 924
edges and 1.3·105 candidate assembly sequences.

We increased the complexity of the structure via a two-
square lattice of 13 components up to a four-square lattice
(Fig. 5 (right)). That is the largest structure we can build
with the hardware we have, and we are working toward be-
ing able to show this assembly using real robots. This 21-
component assembly is represented by a graph with 66,566
vertices, 460,511 edges and 1.6·1017 candidate traces and

is the largest structure the current implementation of the as-
sembly planner can represent.

This progression in graph sizes for still fairly simple struc-
tures clearly indicates that just continuing in this manner
does not scale sufficiently to be able to plan for structures
of 100+ components. In order to solve this problem, we
are currently investigating approaches that avoid construct-
ing the entire assembly graph explicitly but rather only con-
struct as much graph as is needed to find a solution.

Summary
We have presented a hybrid planner for assembly problems
that combines symbolic graph-search with motion planning
techniques to evaluate nominal feasibility of the considered
actions. The resulting plan can be executed directly by mo-
bile assembly robots without additional operator interven-
tion. As execution-time exceptions occur, the executive con-
trolling the robots interacts with the planner to repair and re-
plan the assembly sequence as necessary and appropriate.

While we have made some progress toward a system as
described in our vision, many issues remain to be tackled.
We are evaluating recent advances in motion and manipula-
tion planning to extend the capabilities of our planner.
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Karagöz, C. S.; Bozma, H. I.; and Koditschek, D. E. 2004.
Feedback-Based Event-Driven Parts Moving. IEEE Trans-
actions on Robotics 20(6):1012–1018.
Kaufman, S. G.; Wilson, R. H.; Jones, R. E.; Calton, T. L.;
and Ames, A. L. 1996. The Archimedes 2 Mechanical
Assembly Planning System. In Proceedings of the Inter-
national Conference on Robotics and Automation (ICRA),
volume 4, 3361–3368.
Lengyel, J.; Reichert, M.; Donald, B. R.; and Greenberg,
D. P. 1990. Real-Time Robot Motion Planning Using Ras-
terizing Computer Graphics Hardware. Computer Graph-
ics 24(4):327–335.
Nielsen, C. L., and Kavraki, L. E. 2000. A Two Level
Fuzzy PRM for Manipulation Planning. In Proceedings
of the International Conference on Intelligent Robots and
Systems (IROS).
Sellner, B.; Heger, F. W.; Hiatt, L. M.; Simmons, R.; and
Singh, S. 2006. Coordinated Multi-Agent Teams and Slid-
ing Autonomy for Large-Scale Assembly. Proceedings of
the IEEE 94(7).

40



Issues in Temporal Planning using Timed Petri Nets

Melissa Liew
Doctorial Consortium Extended Abstract

School of Electrical and Electronics Engineering, University of Adelaide

Abstract

Temporal planning problems with concurrency is the main
focus of this paper. An introduction to solving concurrent
temporal planning problems using Timed Petri Nets (TPNs)
is described. We use an innovative method, whereby
temporal planning problems are translated into TPNs and
representing the TPNs into an algebraic description. The
key approach that is presented here is Policy Evaluation.
It details how this approach efficiently obtains optimal
temporal plans. In addition, as the definition of concurrency
is not uniform in the planning community, we provide the
definition of concurrency in our framework.

Introduction
Over the recent years, progress has been made in the area
of Temporal Planning, in hope that it will solve real-world
problems. However, many complexities arise due to the con-
current and probabilistic nature of real-world planning prob-
lems. The interest of this paper is temporal planning prob-
lems with concurrency. As a consequence, we will disregard
probabilistic planners such as, PROTTLE (Little, Aberdeen,
and Thiébaux 2005), PARAGRAPH (Little and Thiébaux
2006), and CoMDP (Mausam and Weld 2005), that handles
probabilistic temporal planning problems. Many architec-
tures for temporal planning have been researched. Some of
which will be discussed here : State-space search [SGPlan
(Chen, Hsu, and Wah 2006), Sapa(Do and Kambhampati
2003), TP4(Haslum and Geffner 2001), TLPlan (Bacchus
and Addy 2001) and TALplanner (Doherty and Kvarnstrom
2000)]; Planning Graph [LPGP (Long and Fox 2003)] and
Petri nets [Directed Unfolding (Hickmott 2008)].

(Agha 1985) defined concurrency to execute a number
of processes concurrently without assuming anything about
their concrete realisation. As the key interest of this paper
is concurrency, we ask the question: ”Is there a uniform
semantics of concurrency in Temporal planning?”. It is
observed from literature that the concurrency semantics is
not uniform in the planning community. In our approach,
concurrency is defined to be independent of actions.
Whereas the planning community defines actions happening

Copyright c© 2009, Association for the Advancement of Artificial
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at the same time to be concurrency. Hence we will further
describe what concurrency means in our approach, and
point out the differences in our definition as compared to
other planners.
The motivation for our research is from (Hickmott 2008)’s
efficient way of solving classical planning problems using
Place-transition nets. (Hickmott 2008) is able to efficiently
model and solve concurrent planning problem using
McMillan’s method called unfolding (McMillan 1995). We
apply timing constraints to the Place-transition describe
in (Hickmott 2008), by introducing durative actions. This
leads us to an extension of Petri nets: Timed Petri nets.
Hence we present the key difference and indeed innovation
of our approach: modelling concurrent temporal plans,
using Timed Petri Nets (TPNs), and representing them
in an algebraic description. A key aspect of the planning
approach that we present here is Policy Evaluation. It
is an efficient and innovative method based on solving a
set of dynamic equations, described by a (min, max, +)
hybrid dynamical system. The solution defines the dynamic
evolution of the planning problem under a specified policy.
Our approach works in a so-called ”plan space” or the
space of propositions and durative actions. Thus this avoids
the problem of having a combinatorial explosion faced by
state-space methods, due to the artificial interleaving of
concurrent actions (McMillan 1995). Actions represented in
our TPN framework do not depend on the global clock. The
duration associated to the actions are not decision epochs
(Cushing et al. 2007), that is we do not restrict possible
start time of actions to a small set of special time point. We
quote (Cushing et al. 2007) that, ”by anchoring actions to
absolute times appears doomed”.
The reader should be aware that the purpose of this paper is
to raise problems such as concurrency in temporal planning
to the community, discuss our proposed approach and
describe its semantics. We also address the issues that the
reviewers have brought up. The layout of the paper is as
follows: First, various temporal planning methods will be
examined. Next, we introduce the notion of concurrency
defined in our framework. We then present our approach
on temporal planning and Timed Petri nets. Finally, we
conclude by establishing future work.
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Temporal Planning Methods
State-space Search
State space methods were originally used for classical
planning method. But have now been extended to include
temporal and logic conditions. Many efficient techniques
have been developed to conduct state-space search, both
in the classical and temporal domains. In the state-space
approach, there is a total ordering of the planning problem
where all possible states are enumerated. As cited by (Do
and Kambhampati 2003), temporal planning problems have
larger planning state spaces. This then results in the state-
explosion problem that is commonly faced by state-space
methods. Examples of state-space temporal planners are
as followed: SGPlan (Chen, Hsu, and Wah 2006), TP4
(Haslum and Geffner 2001) , Sapa (Do and Kambhampati
2003) , TLPlan (Bacchus and Addy 2001) and TALplanner
(Doherty and Kvarnstrom 2000). Concurrency in the state
space becomes complicated due to all the interleaving of
actions. It should be noted that state-space approaches tend
to lose the notion of true concurrency. This is due to the
fact that they are less expressive and the heuristics used
for state-reachability are mainly for classical non-temporal
planning problems, as described in (Cushing et al. 2007).

Planning Graph
Long and Fox (2003) produced a temporal planner, LPGP
(Long and Fox 2003), to exploit the use of Graphplan
(Blum and Furst 1997) in order to handle temporal planning
problems. LPGP models the logical structure of the plan by
using the layers of the graph. That is a duration is assigned
to each state, hence each layer of the planning graph is
associated with a duration. Sometimes, longer temporal
plans tends to have simpler activity structure than fewer
plan graph layers (Long and Fox 2003). This approach
retains some concurrency, however optimality is sacrificed.

Petri Nets
Petri nets is a mathematical and graphical tool that is origi-
nally used for analysis and modeling of distributed systems
(Hickmott 2008). (Hickmott 2008) exploits this represen-
tation to solve classical planning problem. As described in
(Hickmott 2008), Petri nets encourage a partial ordering on
actions in accordance with the cause and effect relation, re-
sulting it to be a plan-space methodology. (Hickmott 2008)
solves untimed Petri nets (which describes a classical plan-
ning problem) via Directed Unfolding. In her thesis, she
suggested and tested using this methodology on temporal
planning problems. In this approach, durative action was
added as a cost function in the analysis. We shall argue that
this approach to solving temporal planning problems is inef-
ficient in terms of computational and memory utilisation.

Timed Petri nets is an extension of the work of (Hickmott
2008), where we assign a duration to every action. TPN
models partially ordered concurrent temporal plans, where
preconditions are held at the beginning of an action and
removed at the end of the duration of the action. In this

framework, there is no global clock, which means that we
do not anchor actions to any fixed time. TPN is observed
to be Ls

e, a temporally expressive language according to
the definition in (Cushing et al. 2007). Timed Petri nets,
as addressed by (Baccelli, Cohen, and Gaujal 1992), can
be described in an algebraic description. A set of dynamic
equations is then resulted from the TPN. By solving this set
of equations, we are able to efficiently obtain the optimal
plan for a given policy. As a result, this solution and the
set of equations obtained from the TPN, provide structural
insights to planning algebraically.

Concurrency
Petri nets (PN) without timing constraints has a structural
property of concurrency. This property is true if and only
if independent actions do not change the preconditions of
the actions and are not causally connected. As TPN is an
extension of the Place-transition nets, TPN inherits this
structural property. However, TPNs have an additional
condition for actions to be concurrent. Actions in the
temporal case, are temporally concurrent if and only if the
actions are first structurally concurrent and the actions have
to have the same duration. The ordering of the actions in
the concurrent temporal plan does not matter, as it will
reach the goal regardless. Our definition of concurrent in
the temporal case is different to the standard definition of
concurrency in the temporal planning community - actions
that happen at the same time are defined to be concurrent.

Our Approach
Temporal planning problems are first converted into 1-safe
Petri nets. Then it is translated to our TPN framework.
With the temporal planning problem represented in our
TPN framework, we are able to describe it in an algebraic
semantics that is in the form of (min, max, +) hybrid
equations. By applying a set of (max,+) operation on the
algebraic formula, a solution of the temporal planning
problem is obtained. The solution is optimal for a stationary
policy. We strongly argue that the approach is efficient in
processing and generating an optimal plan for the stationary
policy.

Temporal Planning
A temporal plan consists of a set of actions, each having
a strictly positive duration, and a set of preconditions
and postconditions. Preconditions and postconditions are
each sets of logical literals, ie the values taken by a set
of propositions. There is an initial state, which is a set of
literals which are initially true. In addition, there is a goal
state. A feasible plan is a partially ordered set of actions
which take the state for the system from the initial state
to the goal state. An action is enabled whenever all its
preconditions are true. After the action has completed it
sets all its postconditions to be true. The plan terminates
when all the goal literals are true. Often we are interested
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in finding an optimal plan, namely a partially ordered set
of actions that results in the goal being achieved in the
minimum time over all feasible plans.

TPN Semantics and Algebraic Specification
A timed Petri net (TPN) consist of two sets (of nodes) P =
{p1, . . . , pM} and T = {t1, . . . , tN} (called places and
transitions respectively), and a flow relation→⊆ (P×T )∪
(T ×P) which relates transition and places. Here M and N
are positive integers which denote respectively the number
of places and transitions in the TPN. We assume that every
transition has at least one input place and one output place,
ie for each ti ∈ T ,∃ pj , pk ∈ P 3 (pj → ti) ∧ (ti → pk).
We also assume that each place is connected to at least one
transition, ie ∀pj ∈ P,∃ ti ∈ T 3 pj → ti∨ ti → pj . There
is a mapping τ : {1, . . . , N} → (0,∞) where τ(i) is called
the firing duration of transition ti. The state of the system is
described by tokens. We say a place p is marked when there
is a token present in p. We will assume that every TPN un-
der consideration is 1-safe which means that there is either
no token in p or a single token in p. Let M : [0,∞) → 2P
be a mapping which describes which places have a token at
a given time, ie the set M(s) ⊆ P is precisely the subset
of places which have tokens at time s. We denote the ini-
tial marking M(0) by M0 ⊆ P . For any transition t, let
π(t) ⊆ P be the set of upstream places, ie all p such that
p → t, and σ(t) ⊆ P denote the set of downstream places,
ie all p such that t → p. We similarly define π(p) and σ(p)
as the upstream transitions and downstream transitions of a
place p respectively.

The semantics of TPNs which we shall adopt here is as
follows. A transition ti is said to be enabled if every up-
stream place of ti contains a token. When ti becomes en-
abled, each upstream token is “reserved” and cannot con-
tribute to the enabling of any other transition. After a time
period of τ(i) elapses, tokens will be removed from all up-
stream places and a token will be put in all downstream
places. A place is said to have choice if it has more than
one downstream transition. A place is said to have conflict
if it has more than one upstream transition. Let Pch and Pco

denote the set of places with choice and conflict respectively.
We’ll denote the number of places with conflict byMco, and
the number of places with choice by Mch. Associated with
each place having choice is a function which specifies which
downstream transition that place will “route” its token to.
Thus a place can only contribute to the enabling of one of
its downstream transitions. The collection of all such rout-
ing functions constitutes a policy. We shall, for the moment,
only consider stationary policies, namely those policies for
which the routing function associated with each place inPch

is constant for all time. In such a case, we can associate
a TPN for each policy, where every place has at most one
downstream transition. Such a TPN is called choice free.
The description of the dater equations and the algebraic op-
erations on those equations can be found in more detail in
(Liew and White 2007).

The solution of the general equations obtained from
the algebraic operation is complicated by the presence of

non-causality. Causality in the (max,+) part of the equation
can be resolved by use of the *-operator (Baccelli et al.
1992). However resolution of acausality involving (initially
unmarked) places with conflict needs to be resolved in
an iterative manner until all such places become causal.
This occurs when every upstream transition has completed
at least one firing. Space limitations preclude a more
expansive description of this process. We would however
remark that the complete (causal) dynamic evolution of the
system is achievable once all such conflicts are resolved.

Converting a Temporal Plan to a TPN
Temporal planning domains are expressed in PDDL2.1 as
described in (Fox and Long 2004). To apply our approach,
we need to translate the planning problems into 1-safe TPN.
This conversion is done so with the aid of an extension of
Petrify, a translator described in (Hickmott et al. 2007). This
translator takes the planning problems and establish 1-safety
by replacing every planning operator (action) by a set of 1-
safe operators which lead to 1-safe TPNs. It also eliminates
negative preconditions which is a property that cannot be
handled consistently using place-transition PNs. It can be
shown that any valid partially ordered set of firings of tran-
sitions of the TPN leads to a feasible plan to the original
planning problem and vice versa. 1-safety holds true when
preconditions cannot be re-initialised by the fired actions.

Solution to the Dynamic Equations for a TPN
One aspect of our solution approach is to dynamically re-
duce the size of the state space (by which we mean the num-
ber of active transitions) as events evolve. We thus remove
all inactive transitions from the state vector y[k]. We par-
tition the remaining transitions into the subset of those ini-
tially enabled, and the rest. Those transitions which are ini-
tially enabled always lead to evolution equations which are
causal. The remaining transitions may be associated with
places with conflict, and in such a case, will lead to acausal-
ity which needs to be resolved. We have a greedy algorithm
for conflict resolution which is guaranteed to lead to a cor-
rect solution in a finite number of steps. At each step, we
also remove transitions which we infer will never fire subse-
quently. This is done with the aid of the *-operator referred
to earlier. We can show that provided every transition has a
strictly positive firing duration, the system will reach causal-
ity in a finite time. Computational complexity is of the order
of N4 at worst. However we point out that most TPNs re-
sulting from choosing a policy for a planning problem lead
to sparse matrices in the system equations, and thus con-
siderable computational savings. We also note that many
computational platforms support IEEE floating point stan-
dard arithmetic implemented in the hardware, so computa-
tions involving infinities can be performed most efficiently
if these attributes can be exploited.

Our solution approach differs considerably from that
presented in (Baccelli, Cohen, and Gaujal 1992) which is
heavily concerned with the causal resolution of switching
conflicts. We avoid this by separately generating a choice-
free TPN for each policy. As we are concentrating on
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stationary policies at present, this iteration (of choice-free
nets) without switching functions gives us a causal solution.
Hence, our solution is more efficient as compared to
(Baccelli, Cohen, and Gaujal 1992).

Generating a Plan
For each policy, the procedure is used to generate the tran-
sition firing sequence epochs. In the PNs produced by
petrify, there is a unique transition, called the goal tran-
sition with zero firing duration 1 Generally, we will continue
the determination of the solution until the first firing of the
goal transition. Under some policies, the goal may be un-
reachable, so we need to set a maximum plan length, which
if exceeded, is taken to mean that the goal is unreachable in
a reasonable time under that policy. In some cases, the plan
will reach an absorbing state (the TPN becomes deadlocked)
before the goal is reached. A policy which results in the goal
being reached before the specified maximum time is called
admissible.

This approach may certainly be applied to evaluate the
makespan (total duration of the plan) under each admissible
policy, and thus select an optimal plan from among these.
We also make the observation that the above approach can
be used to determine a full plan-space reachability graph for
any TPN with each policy choice explicit in the graph.

Concluding Remarks and Future Work
Here we have described some of the temporal planning
methods. In addition, we have introduced the application of
Timed Petri nets to Temporal planning problems. As there
is no uniform definition of concurrency in the temporal
planning community, we defined what concurrency is in our
proposed framework of using TPNs. We argue that this ap-
proach that we have found, is an efficient way of obtaining
optimal solution for a given stationary policy. It is efficient
as we are able to solve the planning problem for every
given policy using an algebraic equation. This efficiency
is obtained by reducing the size of the state space (the size
of the active transitions) as events evolve. However, we
do realise that this approach is too restrictive to real-world
problems, as stationary policies are not optimal over all
the possible policies. Hence we intend to use heuristic to
improve policies generated. In addition, we are interested in
extending this approach to non-stationary policy by adding
policy switching.
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Abstract

This paper proposesMarket-based Iterative Risk Allo-
cation (MIRA), a new market-based distributed plan-
ning algorithm for multi-agent systems under uncer-
tainty. In large coordination problems, from power grid
management to multi-vehicle missions, multiple agents
act collectively in order to optimize the performance of
the system, while satisfying mission constraints. These
optimal plans are particularly susceptible to risk when
uncertainty is introduced. We present a distributed plan-
ning algorithm that minimizes the system cost while
ensuring that the probability of violating mission con-
straints is below a user-specified level.
We build upon the paradigm ofrisk allocation (Ono
& Williams 2008), in which the planner optimizes not
only the sequence of actions, but also its allocation of
risk among each constraint at each time step. We ex-
tend the concept of risk allocation to multi-agent sys-
tems by highlighting risk as a commodity that is traded
in a computational market. The equilibrium price of
risk that balances the supply and demand is found by
an iterative price adjustment process calledtâtonnement
(also known asWalrasian auction). Our work is distinct
from the classical t̂atonnement approach in that we use
Brent’s method to provide fast guaranteed convergence
to the equilibrium price. The simulation results demon-
strate the efficiency of the proposed distributed planner.

Introduction
Motivation
There is an increasing need for multi-agent systems that per-
form optimal planning under uncertainty. An example is
planning and control of power grid systems. A power grid
consists of a numbers of generators and electric transformers
whose control should be carefully planned in order to max-
imize efficiency. A significant issue in power grid planning
is the uncertainty in demand for energy by consumers. As
the use of renewable energy, such as solar and wind power,
become more popular, uncertainty in supply increases due
to weather conditions. Another example is the Autonomous

∗This research is funded by The Boeing Company grant MIT-
BA-GTA-1
Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Ocean Sampling Network (AOSN), which consists of mul-
tiple automated underwater vehicles (AUVs), robotic buoys,
and aerial vehicles. AOSN should maximize science gain
while being exposed to external disturbances, such as tides
and currents.

In order to deploy AI planning algorithms on such sys-
tems, we need a robust plan execution capability. Robust
execution often involves 1) handling continuous system dy-
namics, 2) handling uncertainty in the environment, 3) oper-
ating the system at a risk level that the user find acceptable,
and 4) scaling to multi-agent system.

To address the four problems, we developedMarket-
based Iterative Risk Allocation(MIRA), a multi-agent op-
timal planning algorithm that operates within user-specified
risk bounds. MIRA optimally allocates risk among agents,
and computes optimal control sequence for each agent in a
distributed manner.

Approach
Planning under uncertainty, and risk allocation When
planning actions under uncertainty, there is always a risk of
failure that should be avoided. However, in many cases, per-
formance can be improved only by taking extra risk. For
example, we can reach a destination faster by driving a car
at a faster speed and accepting a higher risk of an accident.

Without taking any risk, nothing can be done; however, no
one dares to take unlimited risk. In many cases, people want
to maximize performance, but with an upper-bound on the
risk they take (chance constraint). For example, a race car
driver would like to drive as fast as possible while limiting
the probability of a crash to 0.1%. Therefore, we formulate
the stochastic planning problem as an optimization problem
with a chance constraint. With this formulation, (Ono &
Williams 2008) showed that the planner should plan not only
the sequence of actions but also therisk allocationin order
to maximize the performance under a risk bound.

The example shown in Figure 1 illustrates the concept of
risk allocation. A race car driver wants to plan a path to
get to the goal as fast as possible. However, crashing into
the wall leads to a fatal accident, so he wants to limit the
probability of a crash to 0.1%. An intelligent driver would
plan a path as shown in Figure 1, which runs mostly in the
middle of the straightaway, but gets close to the wall at the
corner. This is because taking a risk (i.e. approaching the
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Figure 1: Risk allocation in a race car path planning sce-
nario.

Forest fire

Water tanker
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Figure 2: Multi-UAV fire-fighting scenario.

wall) at the corner results in a greater time saving than tak-
ing the same risk along the straightaway; in other words, the
utility of taking risk is greater at the corner than the straight-
away. Therefore the optimal plan allocates a large portion of
risk to the corner, while allocating little to the straightaway.
As illustrated by this example,risk allocationneeds to be
optimized across the constraints, in order to maximize the
performance.

Distributed risk allocation for multi-agent system The
concept of risk allocation can be naturally extended to multi-
agent systems. Figure 2 shows an example of a multi-agent
system with two unmanned air vehicles (UAVs), whose mis-
sion is to extinguish a forest fire. A water tanker drops wa-
ter while a reconnaissance vehicle monitors the fire with its
sensors. The loss of either vehicle results in a failure of the
mission. Two vehicles are required to extinguish the fire
as efficiently as possible, while limiting the probability of
mission failure to a given risk bound, say, 0.1%. The water
tanker can improve efficiency by flying at a lower altitude,
but it involves risk. The reconnaissance vehicle can also im-
prove the data resolution by flying low, but the improvement
of efficiency is not as great as the water tanker. In such a
case the optimal risk allocation is to allow the water tanker
to take a large portion of risk by flying low, while keeping
the reconnaissance vehicle at a high altitude to avoid risk.
This is because the utility of taking risk (i.e. flying low)
is greater for the water vehicle than for the reconnaissance
vehicle.

Then, the question is how to find the optimal risk alloca-
tion between multiple vehicles in a distributed manner.
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Figure 3: Demand and supply curves of the risk market with
two agents. Note that we followed the economics conven-
tion of placing the price (independent variable) on the verti-
cal axis.

Tâtonnement: market-based risk allocation Our ap-
proach is to use the market-based mechanism to optimize
the risk allocation between agents. In a computational com-
petitive market, each agent demands risk in order to improve
its own performance. However, it cannot take risk for free;
it has to purchase it from the market at a given price.

Agents are price takers. Therefore the demand is a func-
tion of the price of risk (demand curve). The higher the price
is, the less each agent demands. Each agent has a different
demand curve according to its sensitivity to risk. On the
other hand, the supply of risk is constant, since the upper-
bound of total risk is given.

Figure 3 gives the graphical interpretation of the market-
based risk allocation in a system with two agents, who have
different demand curves. The aggregate demand curve is ob-
tained by adding the two demand curves horizontally. The
supply curve is a vertical line since it is constant. The equi-
librium pricep? lies at the intersection of the aggregate de-
mand curve and the supply curve. It can be proven that the
optimal risk allocation for the two agents are their demands
for the risk at the equilibrium price (∆??

1 and∆??
2 in Figure

3).
However, in practice, the demand curve is not available as

a function. Therefore it is not easy to find the intersection of
the demand curve and supply curve. Instead, the equilibrium
price is found by the following intuitive iterative process,
calledtâtonnementor Walrasian auction(Tuinstra 2000):
• Increase the price if aggregate demand exceeds supply,
• Decrease the price if supply exceeds aggregate demand,
• Repeat until supply and demand are balanced.

Related Work
Market-based approach has recently been recognized as an
effective tool for decentralized multi-agent systems in AI
community (Wellman 1993)(MacKie-Masonet al. 2004).
Although t̂atonnement has drawn less attention than auc-
tions, it has been successfully applied to various problems
such as the distribution of heating energy in an office build-
ing (Voos 2006), and resource allocation in communication
networks (Kelly, Maulloo, & Tan 1998). The convergence of
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tâtonnement has been an issue in economics for a long time;
with a simple linear price update rule, it can only be guar-
anteed under a quite restrictive condition (Tuinstra 2000).
We solved this problem by applying a root-finding method
called Brent’s method(Atkinson 1989).

Derivation
Risk Allocation The concept of risk allocation is derived
from Boole’s inequality:

Pr

[∪
i

Fi

]
≤
∑

i

Pr [Fi] (1)

Assume thatFi in the above inequality represents the
event that theith agent fails. Then the left hand side means
the probability that at least one agent in the system fails (i.e.
system failure). It is upper-bounded by the right hand side,
which is the sum of the individual probabilities that each
agent fails.

The user of the system limits the probability of system
failure toS. This constraint is calledjoint chance constraint.

Pr

[∪
i

Fi

]
≤ S (2)

Using Boole’s inequality Eq.(1), it can be easily shown that
the following condition is the sufficient condition of the orig-
inal joint chance constraint Eq.(2).

∀i Pr [Fi] ≤ ∆i (3)

∧
∑

i

∆i ≤ S (4)

Eq.(3) constrains the probability that each individual
agent fails (individual chance constraints). Eq.(4) states that
the sum of the risk bounds of all individual chance con-
straints must not exceed the risk bound of the original joint
chance constraintS. Here, the analogue to the resource allo-
cation is found;S is the total amount of resource (i.e. risk),
which is distributed to agents in the system;∆i is the amount
of resource allocated to theith agent.

Once the risk is allocated to each agent, a joint chance
constraint over multiple agent Eq.(2) is decomposed into in-
dividual chance constraints over individual agents Eq.(3).

Distributed Optimization of Risk Allocation The objec-
tive of our problem is to minimize the system cost, which is
the total of the cost of all agents in the system, while limiting
the probability of system failure (joint chance constraint).
As explained above, the joint chance constraint Eq.(2) is
implied by the individual chance constraints Eq.(3) and the
total risk inequality Eq.(4). Therefore, our optimization is
formulated as follows:

min
∆1:N

N∑
i=1

Ji(∆i) (5)

s.t. (3)(4)

whereJi is the cost ofith agent, andN is the number of
agents in the system. We assume that there is no coupling
between agents through constraints. This formulation de-
scribes a centralized algorithm since the risk allocations of
all agents are planned in one optimization problem. We omit
the plant model (as linear constraints) and control limit con-
straints to keep the equations simple. See (Ono & Williams
2009) for the formulation with all constraints.

Solving the centralized optimization problem Eq.(5)(3)(4)
is equivalent to solving the followingN unconstrained op-
timization problems, since two formulations have the same
Karush-Kuhn-Tucker (KKT) conditions for optimality.

min
∆i

Ji(∆i) + p∆i (for i = 1 · · ·N) (6)

wherep ≥ 0 is the Lagrange multiplier. In order to be opti-
mal,p and∆i must satisfy the following condition:

p

(∑
i

∆i � S

)
= 0 (7)

Since the optimization problems Eq.(6) contains only the
variables related to theith agent, it can be solved by each
agent in a distributed manner.

Economic Interpretation The interpretation of these
mathematical manipulations becomes clear by regarding the
Lagrange multiplierp as theprice of risk. Each agent can
improve the performance by taking risk∆i, but not for free.
Note that a new termp∆i is added to the cost function
Eq.(6). This is what the agent has to pay to take the amount
of risk ∆i. Given the pricep, each agent computes the op-
timal demand for risk∆?

i (p) by solving the optimization
problem Eq.(6). The total amount of riskS can be inter-
preted as thesupply of risk, which is given by the user.

In order to minimize the system cost, the pricep must
satisfy the condition Eq.(7). Such a pricep? is called the
equilibrium price. The demand for risk of each agent at the
equilibrium price∆?

i (p
?) is the optimal risk allocation for

the agent.
Eq.(7) illustrates the relation between the equilibrium

pricep?, optimal demand∆?
i (p

?), and supplyS; in the usual
case where the equilibrium price is positivep? > 0, the ag-
gregate demand

∑
i ∆?

i (p
?) must be equal to the supplyS,

as illustrated in Figure 3; in a special case where the supply
always exceeds the demand for allp ≥ 0, the optimal price
is zerop? = 0. If the aggregate demand always exceeds the
supply for allp ≥ 0, there is no solution that satisfies the
constraint Eq.(4), and hence the problem is infeasible.

Finding Equilibrium Price According to Eq.(7), the
equilibrium price is the root of the following equation:∑

i

∆?
i (p) � S = 0 (8)

The classical approach in economics is to iteratively ad-
just the price with the increment that is proportional to the
excess demand

∑
i ∆?

i (p) � S, until the price converges.
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However, the convergence is guaranteed only under a strong
condition called gross substitutability(Tuinstra 2000). The
slow convergence is also an issue.

Our breakthrough is to use a root-finding algorithm called
Brent’s method. It is guaranteed to convergence at a super-
liner convergence rate, by combining three methods: the bi-
section method, the secant method, and the inverse quadratic
interpolation (Atkinson 1989). The only conditions for con-
vergence is the continuity of the aggregate demand curve,
which typically holds. As far as we know, the use of Brent’s
method for t̂atonnement has not been discussed before. This
is probably because adjusting price with such a complex
method is not a natural model of the real-world economy.
Nonetheless, this limitation is not relevant to our computa-
tional economy, since our objective is to obtain the optimal
plan, not to model the real-world economy.

The Algorithm
The entire algorithm is summarized below. We call this al-
gorithm as Market-based Iterative Risk Allocation (MIRA).

1. Sets the initial pricep and announce it to all agents.
2. Each agent computes its optimal demand at the price

∆?
i (p) by solving Eq.(6), and bids it.

3. Terminate the algorithm if the aggregate demand is equal
to the supply; otherwise, adjust the pricep by computing
one step of Brent’s method, and announce it.

4. Go to Step 2.
The price converges to the equilibrium pricep? in this itera-
tive process. The optimal risk allocation for each agent is its
demand at the equilibrium price∆?

i (p
?).

Simulation
Simulations were conducted on a machine with Intel(R)
Core(TM) i7 CPU clocked at 2.67 GHz and 8GB RAM. See
(Ono & Williams 2009) for the used parameters.

To evaluate the efficiency of MIRA algorithm, the compu-
tation time of the following three methods were compared:

1. Centralized optimization,
2. Distributed optimization (tâtonnement) with a linear price

increment, and
3. MIRA: distributed optimization (t̂atonnement) with

Brent’s method.
Table 1 shows the results. The three algorithms were tested
with different problem sizes - two, four, and eight agents.
Each algorithm was run 10 times for each problem size with
randomly generated constraints. The average running time
is shown in the table. The computation of the distributed
algorithms was conducted parallelly. Communication delay
is not included in the result.

The computation time of the centralized optimization al-
gorithm quickly grows as the problem size increases. Dis-
tributed optimization with a linear price increment is even
slower than the centralized algorithm.

MIRA, the proposed algorithm, outperforms the other two
for all problem sizes. The advantage of MIRA becomes
clearer as the problem size increases. More simulation re-
sult is presented in (Ono & Williams 2009).

Table 1: Comparison of the computation time of three opti-
mization algorithms.

Computation time [sec]
Number of

agents Centralized
Distributed

(linear increment) MIRA
2 13.9 80.6 6.4
4 63.8 540.5 18.1
8 318.5 797.8 37.5

Conclusion
We have developed Market-based Iterative Risk Allocation
(MIRA), a multi-agent optimal planning algorithm that op-
erates within user-specified risk bounds. The three key in-
novations that enabled MIRA were:
1. Extension of the concept of risk allocation to multi-agent

system.
2. Derivation of distributed optimization method for multi-

agent risk allocation using KKT conditions.
3. Introduction of Brent’s method to tâtonnement as a price

update rule.
The simulation result showed that MIRA achieved sub-
stantial speed-up compared to centralized optimization ap-
proach, particularly in a large problem.
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Introduction
Many of the existing techniques for controlling goal-
directed agent behavior fall into two primary approaches:
heuristic-search planning (HSP) and reinforcement learning
(RL). Each has its advantages and disadvantages. For in-
stance, heuristic-search planning does not traditionally learn
from previous experience, and can only be applied in do-
mains for which a complete domain model exists. On the
other hand, reinforcement learning often performs poorly in
new situations until it has gained enough experience to learn
an effective policy, and it is difficult to scale RL up to large,
complex domains.

Both RL and HSP also face difficulties in domains that
require long action sequences. Heuristic-search state-space
planning is intractable in such domains, because of the very
large search spaces, and reinforcement learning may require
exponentially many execution traces to converge.

In order to address both the unique and the shared prob-
lems of HSP and RL, we propose a new research direction
called skill bootstrapping (SB). The goal of SB is to provide
an integrated learning and planning architecture that can im-
prove its performance over time in complex domains. An SB
agent starts with a basic set of primitive actions (and their
preconditions and effects) as its model of the world. Over
the course of solving numerous problems by applying HSP
to the primitive actions, SB identifies recurring subgoals, for
which it uses RL to create skills that can be applied within
the HSP process to solve these subgoals more efficiently.
The skills behave as partial policies that can be used reac-
tively, without lengthy deliberative reasoning.

Once a new skill is learned, it becomes available for use
by the planner along with the other primitive actions, al-
lowing for more compact plans. Additionally, just as future
plans can use learned skills, future skills may be built upon
lower-level skills. Over the course of the agent’s experience,
this will eventually result in a hierarchy of skills that support
high-level reasoning.

The proposed SB approach is still in its very early stages,
so all of the design issues have not been solved. We present
here our preliminary ideas about how to create SB; we use
the present tense throughout the paper, but wish to empha-

Copyright c© 2009, Association for the Advancement of Artificial
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size that this is proposed research, for which no implemen-
tation yet exists. We will detail the architecture of the pro-
posed SB framework, and describe how SB relates to other
current research.

SB Approach
The SB architecture consists of three primary components:
planning, memory, and skill learning (Figure 1).

The heuristic-search planning component takes as input
the current goal to be achieved and a list of available ac-
tions. In a newly created SB agent, the planner simply uses
a heuristic to guide a state-space search for the goal. The
resulting plan is sent to the memory component, where the
plan is stored and indexed in a plan library. A skill identifier
monitors the plan library to find common types of goals for
which large numbers of plans have been indexed. We say
common type because goal states need not be identical, but
must only share similar properties. For instance, picking up
block A is not the same goal as picking up block B, but it is
the same type of goal. These goal similarities can be deter-
mined using the organization of the plan library, similar to
techniques used by case-based planning algorithms such as
CHEF (Hammond 1989).

Once a common goal type with sufficient relevant plans
has been detected, a new skill is created to achieve that goal.
Skill learning uses the traces stored in the plan library to cre-
ate a policy for the skill. In other words, each plan retrieved
from the plan library is rerun and the Q-values of the state-
action pairs (the utility for taking an action given a state) in
the plan are learned by the RL process as described later.
(The reward value received at each state is set to 0 for all
non-goal states and 1 for the goal state.)

Since learned skills become part of plans that are stored
in the plan library, over time, skills will be developed that
utilize other skills. This property is desirable because the
resulting hierarchies of skills permit efficient planning and
execution without a lengthy deliberative reasoning process.

The execution process, and possible replanning that may
occur if a skill fails, are discussed next.

Plan execution and replanning
After producing a plan, the sequence of actions is executed
by the execution modules. Primitive actions are simply ap-
plied. Skills, however, require some execution monitoring,
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Figure 1: The SB architecture has three primary components: Planning, Memory, and Skill Learning. The planning component
takes a set of actions and a goal, and uses heuristic search to find a plan that achieves the goal. Successful plans are stored in a
plan library which is monitored by a skill identifier to find sets of plans that share common types of goals. These sets of plans
are used to learn a parametrized skill that accomplishes that goal type. Learned skills augment the action set, and can then be
used by the heuristic search planner. This process is applied repeatedly, resulting in a hierarchy of skills.

since their outcomes are not known with complete certainty.
Specifically, when a skill is executed from a given state (real,
or in the search’s model), an ε-greedy policy is used. The ε-
greedy policy is followed until the subgoal associated with
the skill has been achieved, at which point control is returned
to the top-level planning and execution process. RL updat-
ing is applied to the skill, so that performance can be im-
proved even after a skill is first learned.

If at any point a skill becomes “stuck” and cannot reach
its goal state, then the skill is terminated and the planner
replans the current subgoal from the current state. Such ex-
ecution failures may be detected either through cycles in the
execution, unusually long execution, or perhaps by associat-
ing certainty values with each skill that estimate how often
each state has been explored in the past.

Skill learning
Planning complex problems can be computationally expen-
sive. In such cases, we would like to restrict planning to an
abstract level that is easier to solve. The purpose of a skill
is to facilitate this abstraction by learning how to reactively
accomplish a type of goal, independent of the specific prob-
lem formulation. Additionally, it is useful to invoke a skill
multiple times within the same problem, but parameterized
to different contexts. The planner would then be able to fo-
cus on the outcomes of skills, and skills would provide the

reactive mapping to achieve the outcomes. To provide this
capability, a parameterized representation of the world state
must be provided as part of the input to the skill learning al-
gorithm. This parameterized representation would be used
both when a skill is initially learned and when it is invoked
by future plans.

Consider the previous example of forming a skill for pick-
ing up a block. In this case, we may use plans that resulted
in picking up Block A and plans that resulted in picking up
Block B. In order for the skill to be parameterized—that is,
applicable to any kind of block—the world state represen-
tation for this particular skill must explicitly indicate which
block in the world is the target block. Furthermore, each
such object may have relevant attributes (such as its position
and size) that should be used when applying the skill. There-
fore, a state representation is created for each skill using an
appropriate vector format that includes any such parameters.

Even with a skill-specific representation of the world
state, the skill still needs to be invariant across all possible
goals. In the pickup-block example, there may be a des-
ignated position in the state vector that represents the tar-
get block’s position and size, so the learning must capture
a policy that respects differences in position and size. Tra-
ditional look-up table RL techniques would quickly become
insufficient in this context. Saving an entry for every possi-
ble state that may be seen in a domain would be intractable,
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in terms of both memory usage and learning time. Instead,
skill learning is performed with a TD(λ) function approxi-
mation approach (Sutton 1988) that allows for compact stor-
age of skills. Function approximation also enables the learn-
ing process to generalize to multiple states, which is neces-
sary to allow the skill to perform well on variants of the goal
type that have not previously been explored.

There are a number of different techniques for function
approximation with TD(λ). Two methods we are currently
exploring are locally weighted linear regression (LWLR)
techniques, such as those used in the Hedger algorithm
(Smart and Kaelbling 2000), and artificial neural networks
(ANN). LWLR function approximation allows for fast non-
linear value function approximation, and is guaranteed to
converge when values are not extrapolated. A potential
drawback of LWLR is that it traditionally stores every data
point explored, which may prove to be too expensive. To
avoid this, a mechanism to store only crucial points may be
needed.

ANNs provide compact storage of the function, and can
also approximate non-linear value functions. Historically,
ANNs were not guaranteed to converge with off-policy
TD(λ), and algorithms that did guarantee convergence were
either computationally complex, or required a large number
of episodes to learn. Recently, Sutton et al. have proposed
a new algorithm for gradient-based function approximation
that is guaranteed to converge and learns quickly (2009).
While these new advances may make ANNs viable, a draw-
back of using ANNs is that it is unclear how many hidden
nodes would be required to capture the expressiveness of the
value function. For any given domain, the number of hidden
nodes could be specified in advance by the designer, but this
approach may be infeasible in complex or poorly understood
domains. LWLR techniques, on the other hand, can dynam-
ically control the expressivity of the representation by ad-
justing the kernel bandwidth and the number of stored data
points.

Traditionally, RL algorithms can require a very large
number of trials to converge to a good policy, and will per-
form very poorly in the early learning stages. However, we
would like to learn skills without having to exhaustively it-
erate through many trials. RL techniques may seem to be in-
sufficient for these demands. However, because every skill
in SB is learned after a number of source plans have been
produced, the skill’s learning time can be reduced by seed-
ing the process with the planning traces. A similar approach
is taken by the Hedger RL algorithm which seeds learning
with example traces provided by a human (Smart and Kael-
bling 2001). By combining HSP and RL in this way, we
eliminate the poor early performance exhibited by RL, at the
cost of incurring the additional deliberation time required for
planning.

Skill-driven goal selection
The SB architecture assumes that the agent will be tasked
with numerous goals to achieve over the course of its life,
and that through these experiences, a hierarchy can be built
that allows the agent to scale to even more complex tasks.
Ideally, there would be meaningful tasks that are tractably

solvable by the agent, even when only the primitive actions
available. This would allow the agent to perform meaning-
ful work from its creation, while also being able to perform
more complex activities later in its life.

In some domains, however, the first meaningful tasks may
be intractable to plan using primitive actions alone. One way
to solve this problem would be to provide teacher guidance
(from a human, or perhaps even from another agent) during
the early stages of the agent’s existence. The teacher could
provide progressively more complex tasks for the agent that
were designed to give the agent the needed experience to
solve the desired higher-level tasks. This approach places
some of the burden of structure implementation back onto
the designer, which of course is what learning is intended to
avoid. However, a teacher who provides progressively more
complex tasks is providing only partial knowledge about the
domain, at a level of abstraction that is relatively natural to
express. The agent still provides most of the knowledge
modeling through its learning process: discovering the re-
lationship of the skills to each other, determining the neces-
sary subskills for each skill, and identifying any unnecessary
subskills.

To further automate the process of skill development and
remove the need for a teacher, an agent can proactively gen-
erate its own set of goals. To choose these goals, the agent
can begin by random walking from its current state. The ran-
dom walk can be augmented to choose less frequently used
actions when they become possible. When a unique (statis-
tically unusual) change in a state space feature occurs after
some sequence of random walking, the agent can identify
this as a goal state of interest. For example, if randomly act-
ing in the world resulted in a box being in an agent’s hands,
this could be identified as a goal of interest. The agent can
then enter a trial phase where it again randomly walks, and
continues to do so for some time after the goal state is no
longer valid. The agent can then specify the same type of
goal for it to solve, and the SB architecture continues as de-
scribed. The agent can repeatably try variants on the goal
of interest, using random walking to reset into new start
states before each trial. As skills are developed, this random
walking can quickly take the agent to goal shifts that require
much longer action sequences, facilitating the development
of higher-level skills.

Related Work
The concept of policy control that builds on lower-level ac-
tion primitives to achieve a goal is not new to agent control.
In planning fields, this notion is usually referred to as macro-
operators or macro-actions. Macro-actions are generally
constructed as a fixed sequence of primitive actions. Botea
et al. (2005) present an algorithm called Macro-FF that ex-
amines a planning domain for potential sequences of actions
to create macro-actions, and then filters that list based on
heuristics and experience in training problems. Newton et
al. (2005) use genetic algorithms on training problems to
determine useful sequences of actions for use as macro-
actions in planning. Marvin (Coles and Smith 2007) is a
learning algorithm that uses macro-actions to escape heuris-
tic plateaus. Coles et al. (2007) extended Marvin to allow
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macro-actions learned in previous problems of the same do-
main to be applied to solve future problems. This large col-
lection of macro-actions is stored in a macro-action library
that is managed and pruned.

Two key commonalities of these approaches are that
macro-actions are a fixed sequence of actions, and that the
list must be pruned to avoid large collections of macro-
actions. The SB approach proposed here differs in that skills
are not fixed sequences of actions. Instead, they are policy
control mechanisms that vary the action sequence depend-
ing on the particular state of the world. Because skills can
vary their action sequence depending on the situation, a sin-
gle skill could effectively represent a collection of macro-
actions as one succinct unit.

Marthi et al. propose a hierarchical planner, AHA* (2008)
using high-level actions (HLAs) to specify partial plans that
are refined in the planning process. Planning can take place
at a high level by constructing abstract lookahead trees.
HLAs may result in different primitive action sequences, de-
pending on the specific problem, unlike the macro-operators
described above. A key difference from the SB approach is
that SB creates plans using skills — reactive learned policies
for solving sub goals — whereas AHA* must plan at every
step. Further, AHA* requires a designer to specify the full
HLA hierarchy structure, whereas SB can learn its skill hier-
archies through experience, by partial design from a teacher,
or in an automated exploratory manner.

Using hierarchies of actions in reinforcement learning
has also been an area of active research. The MaxQ algo-
rithm (Dietterich 2000) used a designed hierarchy of sub-
tasks to efficiently solve more complex problems. These
subtasks are often referred to as temporally extended ac-
tions. More recent work has focused on automatically iden-
tifying the action hierarchy. Jonsson and Barto (2005) pre-
sented the VISA algorithm, which uses a Dynamic Bayesian
Network (DBN) to assist in construction of the action hier-
archy. The HI-MAT algorithm (Mehta et al. 2008) is similar
to the VISA algorithm, but couples a DBN with a success-
ful trajectory of a source reinforcement learning problem to
determine the hierarchy.

With these algorithms, the action hierarchies are fixed
structures that have a defined root structure and are specific
to a single problem. With the SB architecture, skills form
hierarchies, but are not fixed in structure and can grow over
time. Additionally, skills learned in the SB architecture are
not explicitly structured. That is to say, skills that are ref-
erenced by parent’s skills do not have to be invoked by the
parent. Rather, any skill can be independently invoked if it is
pertinent to the problem at hand. This also means that skills
can be shared among different problems, and their structure
does not have to be relearned.

Other work on forming action abstraction comes from
Simsek and Barto (2007). They use the same terminology
of skills to represent policies that achieve some subgoals in
a task. To identify skills, they examine the graph structure
of reinforcement learning problems to identify states that are
likely to be important in the problem. The SB architecture
differs in that instead of explicit states being used to identify
places for skills, types of goals are identified that may result

in different states, but states that share similar properties and
may be parameterized. SB also differs in that skills can be
hierarchical, building on the abilities of lower-level skills.
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Abstract

This thesis work concerns the area of automated acquisition
of planning domain models from one or more examples of
plans within the domain under study. It assumes that an ad-
equate domain model for a domain can be composed of ob-
jects arranged in collections called object sorts. Recently, two
systems have had success in using this underlying assump-
tion: the Opmaker2 system (McCluskey et al. 2009), and
the LOCM system (Cresswell, McCluskey, and West 2009).
The former requires only one solution plan as input, as long
as it contains at least one instance of each operator schema
to be synthesized. It does require a partial domain model as
well as the example plan, and the initial and goal states of
the plan. In contrast LOCM requires no background infor-
mation, but requires many instances of plans before it can
synthesize domain models. Our aim is to build on these sys-
tems, and establish an experimental and theoretical basis for
using object - centred assumptions to underlie the automated
acquisition of planning domain models.

Introduction
This thesis work concerns the area of automated acquisition
of full or partial domain models from one or more examples
of plans within the domain under study. One motivation is
that the knowledge engineering of such domain models by
hand into languages such as PDDL is inefficient and labo-
rious. Another is to help planning agents become more au-
tonomous. Agents that have planning capabilities may need
the ability to acquire and refine domain models, if they en-
counter new domains.

Our work assumes that an adequate domain model for
a domain can be composed of objects arranged in collec-
tions called object sorts. We use the assumptions of Simp-
son et al’s object-centric view of domain models (Simpson,
Kitchin, and McCluskey 2007). Here a planning domain
model consists of sorts of object instances, where each ob-
ject behaves in the same way as any other object in its sort.
Sorts have a defined set of states that their objects can oc-
cupy, and an object’s state may change (called a state transi-
tion) as a result of a domain action’s execution.

Recently, two systems have had success using this under-
lying assumption: the Opmaker2 system (McCluskey et al.
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2009), and the LOCM system (Cresswell, McCluskey, and
West 2009). The former requires only one solution plan as
input, as long as it contains at least one instance of each
operator schema to be synthesized. It does require much
background knowledge, however, including a partial domain
model, as well as the training plan itself, and the initial and
goal states of the plan. In contrast LOCM requires no back-
ground information, but requires many training plans before
it can synthesize domain models. We aim to build on these
systems, and establish an experimental and theoretical basis
for using object - centred assumptions to underlie the auto-
mated acquisition of planning domain models.

Related Work
Work in the general area of knowledge acquisition for plan-
nig is growing, with current events such as ICKEPS 2009,
and the ICAPS 2009 workshop in ”Learning Structural
Knowledge From Observations”, both of which are very rel-
evant to the thesis study. One can classify work by consider-
ing what inputs the systems require, and what their outputs
are, as given in the list below. Let us assume a system ”ob-
serves” training plans containing action instances, and tries
to synthesize operator schema representing groups of these
action instances. The features of the systems may include
the following.
• Observations(s): Are many sequences of training plans

required or just one? Are the plans assumed to be correct?
How are they represented e.g. as an action name followed
by a list of parameters representing objects affected?

• Training help: As well as the observed plan, is there other
data supplied? e.g. a system might be supplied with the
initial and goal state that the plan solves, as well as partial
or full intermediate state information.

• Constraints: is there a background set of constraints as-
sumed about the world which help in the synthesis stage?
For example, in the object-centric approach we assume
that objects are affected by actions, and an object is input
to an action in the state that it leaves the previous action.

• Partial Model: is there a pre-defined specified language
of predicates or fluents? e.g. most systems assume that
the user has specified a set of fluents in which the world
is described, thus constraining the system’s range of ap-
plications.
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• Algorithm: this refers to the characteristics of the algo-
rithm used to synthesize operators: does it use deduction
and/or induction, or hill climbing or other search tech-
niques?

• Output: this is normally a set of operator schema or meth-
ods, but could also include a set of heuristics to be used
to speed up planning. The expressiveness of the out-
put schema language is important in determining where
a system is capable of adequately synthesizing a domain
model. One way of characterising this is to use the levels
in PDDL as a form of measure.

There has been a great deal of related work in this area un-
der the assumption that the output is a literal-based STRIPS-
like domain model. In this work, it is generally the case
that predicates or fluents are predefined, and the aim of the
system is to use example plans, either incrementally or all
at once, to induce or deduce operator schema in terms of
these fluents. We will mention several recent systems. In the
ARMS system (Wu, Yang, and Jiang 2005), a domain model
is output in the form of STRIPS-type operator schema, with
the input being multiple examples of training plans. ARMS
does not require intermediate state information, but requires
background knowledge such as types, relations,initial and
goal states, and relies on many training plans containing
valid solution sequences. In the SLAF approach (Shahaf
and Amir 2006) expressive operator schema can be output
(at least to ADL level), but SLAF requires as input speci-
fications of fluents, as well as partial observations of inter-
mediate states between action executions. Learning expres-
sive theories from examples is a central goal in the Inductive
Logic Programming (ILP) community, and some systems
build on this considerable body of work. For example, in
his thesis (Benson 1996), Benson describes an ILP method
for learning very expressive operator schema, using multiple
examples, in an incremental fashion.

There is also a body of research aimed at learning hierar-
chical domain models, mainly in the ”HTN” variety. Prac-
tical planning domains are based on ‘hierarchical task net-
work’ decomposition, and it could be claimed that these sys-
tems learn heuristics encapsulated within an HTN method.
HTNs can be very difficult to construct manually and au-
thors have worked in producing these using methods from
machine learning. In (Nejati, Langley, and Konik 2006)
the authors describe how they induce teleoreactive logic pro-
grams from expert traces. The teleoreactive programs index
methods by the goals they achieve. They use methods de-
rived from explanation based learning to chain backwards
from the end result of the sample trace. Theoretical work on
HTN planning is presented in (Ilghami et al. 2005). This pa-
per introduces a formalism whereby situations are modelled
where general information is available of tasks and sub-
tasks, together with some plan traces. In the early work all
information about methods was required except for the pre-
conditions. This limitation is overcome in later work by the
same group (Ilghami, Nau, and Munoz-Avila 2006) a new
algorithm ‘HDL’ (HTN Domain Learner) is presented which
learns HTN domain descriptions from plan traces. Between
70 and 200 plan traces are required to induce the descrip-

tions. HTN-MAKER is presented in (Hogg and Munoz-
Avila 2007). This receives as input a STRIPS domain model,
a collection of STRIPS plans and task definitions and pro-
duces an HTN domain model. The experimental hypothesis
is that after a few problems have been analysed an HTN do-
main model will be ultimately obtained able to solve most
solvable problems. A version of the logistics-transportation
domain is chosen for the experiment and good results are ob-
tained. However these good results are not replicated for the
blocks-world domain. One problem is the large number of
methods which have to be learned, where one method might
subsume another.

A motivating example
The Ring World
To motivate the work on synthesizing domain models from
an object perspective, we use an example from computer
games, called the ”Ring World”. The idea is, for each group
of characters in the game, we need to create a domain model
specifying the actions that they can take. After this, a plan-
ning engine can then be used to generate plans and create
the illusion of goal directed behaviour. The game was de-
signed as follows: there is one overall ’database’ which can
completely describe any state of the game. Different sets of
characters have different sets of capabilities: one is a set of
knights that attempt to bring about a set of goals (eg acquire
the Ring, kill orcs). Another is a set of orcs, with goals such
as blocking doors, disabling knights etc. Each set of char-
acters can use deliberative planning to try to achieve their
goals, execute their plans and replan when their plans are
no longer executable. The player character within the game
could, for example, play the role of a ’wizard’ that observed
one force’s plans and attempted to help achieve them.

A step towards implementing the game might be to con-
struct a planning domain model with operator schema rep-
resenting the capabilities of the characters, and the effects
of their actions. Sets of operator schema, representing the
views of the overall domain model, have to be generated for
this, one for each set of characters. These views would con-
stitute distinct operator sets, whereas the object structures
would be common to all and constitute the central database.

An example snapshot (or state) of the Ring World is illus-
trated in Figure 1. For example, from the point of view of
the force controlling the knights:
• knights can move between rooms and passages. Move-

ment will take place via propositional steps such as
“move-into-room” and “move-to-passage”;

• passages can be blocked by orcs or locked doors;
• locked doors need to be opened by the correct key;
• knights can acquire keys from trolls if they are near them

and offer them some treasure in exchange;
• orcs that are sleeping can be killed by a knight if it is

near them and has a weapon (however the weapon is then
spent);

• orcs that are awake are similar to sleeping orcs except the
knight needs to pick up protection first (a shield or a spell)
before fighting them;
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Figure 1: A state of the Ring World

• hidden treasure can found by a knight if it is in the same
room as the treasure.

For example, consider the state in Figure 1. Assume that
a goal to be achieved is for the knight “Aragorn” to acquire
the ring. Then the planner would have to generate a plan for
him to move through rooms and passages to acquire a key to
unlock one of the passages leading to r2 (the only route to
the ring in r1); and to acquire some treasure so that he can
trade it for protection, so that he will be able to overcome
the orc guarding room r1, when he eventually arrived there.

Use of Object Centred Constraints in Determining
Object Transitions
We will use the Ring World example to illustrate the idea of
how object constraints can help with the domain model syn-
thesis process. In this case, we would like to use constraints
to determine the complete set of transitions of individual ob-
jects as they are effected by actions in a training plan.

We assume that a correct training plan is input, with
initial and goal state as training help. Additionally, assume
that we have partial domain model that includes only a
propositional encoding of the Ring World, with the treasure
object necklace being described as in one of 4 states:
hidden, held by knight, taken by troll, offered for barter.
Assume a training plan of

“Find necklace, Offer necklace, Exchange necklace”

The initial state is ”hidden”, and the final state is
taken by troll. As shown in Figure 2, there are 7 possible
paths through the object state space, using the assumption
that the object changes state at each step. In this case it
would not be possible to trace a deterministic path through
the space of propositions, from the training sequence, as the
constraints on initial and goal states are insufficient.

If we introduce a relational, object representation, then
this introduces extra constraints. Assume that any piece of
object treasure (?t) can occupy one of four abstract states,
where it might be related to a ring (?r), a knight (?k), or a
troll (?m), as follows:

hidden(?t,?r)
holding(?t,?k)
taken(?t,?m)
offered(?t,?k,?m)

Returning to the example with the new representation, as-
sume the initial state is “hidden(necklace,r7)”, the final is
“taken(necklace,troll1)”, and we use the training sequence
from the example above. We reproduce this in the syntax
used by the Opmaker system (McCluskey et al. 2009), be-
low (where the character ‘@’ is used to distinguish an object
that does not change state as a result of an action):
find_treasure(@knight1,@r7,necklace),
move_to_passage(knight1,p67,r7),
present(@george,@p67,@troll1,necklace),
exchange(necklace,key1,@george,@p67)

We can now trace a unique path through the state space of
the necklace, using object constraints, from the initial state
”hidden(necklace,r7)”. The first four possible transitions
are:
hidden(necklace,r7)=>

holding(necklace,knight1)
hidden(necklace,r7)=>

offered(neckalce,knight1,?troll)
hidden(necklace,r7)=>

taken(necklace,?troll)
hidden(necklace,r7)=>

hidden(necklace,?r)

Given that the first step in this sequence does not refer to a
troll, or two different rooms, only the first of the four possi-
ble forms of transition below would be possible, as it is the
only one which leads to an instantiated transition. The last
transition would only be possible if two distinct rooms had
been specified in the sequence step. The transitions effected
by move to passage do not affect the necklace, so this step
can be ignored. The next step leads to the following transi-
tions:
holding(necklace,knight1)=>

holding(necklace,?knight)
holding(necklace,knight1)=>

offered(neckalce,knight1,troll1)
holding(necklace,knight1)=>

taken(necklace,troll1)
holding(necklace,knight1)=>

hidden(necklace,?room)

Hence the second and third transitions are possible. The first
is ruled out as there is no new knight object specified to in-
stantiate ”?knight”, and in the last there is no value specified
for ”?room”. Keeping both these options open, we can ex-
amine the last transition, which must change the necklace
into state “taken(necklace,troll1)”. This constraint eliminate
the third option in the step above, leaving transition
offered(neckalce,knight1,troll1) =>

taken(necklace,troll1)
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Figure 2: Seven paths through object space

Figure 3: A unique path through object space

as the only option available. This unique path of transi-
tions through the object state space of sort treasure is illus-
trated in Figure 3.

Summary
The aim of this thesis work is to explore the scope and po-
tential of using object-centred constraints to assist the ac-
quisition of planning domain models from examples. We
plan to build on the recent work embodied in the object-
centred systems of Opmaker2 (McCluskey et al. 2009), and
LOCM (Cresswell, McCluskey, and West 2009); whereas
they have produced promising experimental results, there is
a need to analyse them theoretically, to find the limits of their
output domain models, and the conditions under which they
are successful.

In this paper we have reviewed some of the large amount
of related work, and introduced a classification for systems
that learn planning operator schema. We introduced an ex-
ample domain to illustrate the kind of constraints that an ob-
ject centred approach can bring, and stepped through an ex-
ample sequence showing how a unique object transition path
can be determined.
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Abstract

In this paper we extend dynamic controllability of temporally-flexible plans to temporally-flexible reactive 
programs.  We consider three reactive programming language constructs whose behavior depends on 
runtime observations; conditional execution, iteration, and exception handling. Temporally-flexible 
reactive programs are distinguished from temporally-flexible plans in that program execution is 
conditioned on the runtime state of the world.  In addition, exceptions are thrown and caught at runtime in 
response to violated timing constraints, and handled exceptions are considered successful program 
executions.  Dynamic controllability corresponds to a guarantee that a program will execute to completion, 
despite runtime constraint violations and uncertainty in runtime state.  An algorithm is developed which 
frames the dynamic controllability problem as an AND/OR search tree over possible program executions.  
A key advantage of this approach is the ability to enumerate only a subset of possible program executions 
that guarantees dynamic controllability, framed as an AND/OR solution subtree. 
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Abstract 
Explaining policies of Markov Decision Processes (MDPs) is complicated due to their probabilistic and sequential nature. We present a 
technique to explain policies for factored MDP by populating a set of domain-independent templates. We also present a mechanism to 
determine a minimal set of templates that, viewed together, completely justify the policy. Our explanations can be generated automatically 
at run-time with no additional effort required from the MDP designer. We demonstrate our technique using the problems of advising 
undergraduate students in their course selection and assisting people with dementia in completing the task of handwashing. We also 
evaluate our explanations for course-advising through a user study involving students. 
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Abstract

Current state-of-the-art planners solve problems, easy and
hard alike, by search, expanding hundreds or thousands of
nodes. Yet, given the ability of people to solve easy prob-
lems and to explain their solutions, it seems that an essen-
tial inferential component may be missing. The reasons ex-
pressed by people for selecting actions appear to be related
to causal chains: sequences of causal links ai → pi+1,
i = 0, . . . , n − 1, such that a0 is applicable in the current
state, pi is a precondition of action ai, and pn is a goal. Some
of these causal chains or paths appear to be good, some bad,
others appear to be impossible. In this work, we focus on such
paths and develop three techniques for performing inference
over them from which a path-based planner is obtained. We
define the conditions under which a path is consistent, pro-
vide an heuristic estimate of the cost of achieving the goal
along a consistent path, and introduce a planning algorithm
that uses paths as decomposition backbones. The resulting
planner, called C3, is not complete and does not perform as
well as recent planners that carry extensive but extremely ef-
ficient searches such as LAMA, but is competitive with FF
and in particular, with FF running in EHC mode which yields
very focused but incomplete searches, and thus provides, a
more apt comparison. Moreover, many domains are solved
backtrack-free, with no search at all, suggesting that planning
with paths may be a meaningful idea both cognitively and
computationally.
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Dynamic plan execution strategies allow an autonomous
agent to respond to uncertainties while improving robust-
ness and reducing the need for an overly conservative plan.
In previous work, Williams et al. introduced the Reac-
tive Model-Based Programming Language (RMPL), which
is designed to allow engineers to simply and intuitively ex-
press the desired behavior of the system (2003). Then the
agent’s executive determines the correct sequence of actions
to accomplish this behavior. This paper presents a novel sys-
tem called Drake that makes steps towards executing an ex-
panded set of choices and temporal constraints dynamically,
without significant latency.

RMPL programs can include simple interval constraints
on durations and include choices between possible threads
of execution. These choices require disjunctive constraints,
making the temporal constraints of a special case of the Dis-
junctive Temporal Problem (DTP).

One effective technique for handling uncertainty is to fol-
low a strategy of least commitment and to delay decision
making until execution time. Previous work has developed
efficient execution strategies by breaking the executive into
a dispatcher and a compiler. The off-line compiler exposes
all the implicit constraints in the original plan. The dis-
patcher uses the dispatchable form to quickly make dynamic
scheduling decisions.

However, developing flexible executives for plans with
choices has been difficult, especially for tightly coupled sys-
tems, for example robots working with humans or walking
robots with fast dynamics. Recently, Shah and Williams
extended the compiler and dispatcher model to Temporal
Constraint Satisfaction Problems (TCSPs), a type of tempo-
ral problems with choice (2008). Their executive improved
upon the response time of previous systems by reducing the
storage and propagation of redundant information. We gen-
eralize their algorithm to work with DTPs by recording the
minimal differences between the plans required by the dis-
patcher.

We evaluated Drake’s performance on randomly gener-
ated structured problems. In Figure 1, we compare the
spaced requirements for the compiled form of Drake’s com-
pilation of Tsamardinos et al.’s approach of enumerating all
the consistent component STPs (2001). Especially on larger
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Figure 1: The space used by the dispatchable graphs com-
piled with Drake’s method and by listing component STPs
with disjunctive constraints with two and three clauses each.

problems, Drake uses much less space than prior art, by two
orders of magnitude when compared for disjuncts of order
two and three. These encouraging results suggest that Drake
will support fast flexible execution of plans with choice.
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The growing presence of household robots in inhabited
environments arises the need for new robot task planning
techniques. These techniques should take into consideration
not only the actions that the robot can perform or unexpected
external events, but also the actions performed by a human
sharing the same environment, in order to improve the co-
habitation of the two agents, e.g., by avoiding undesired sit-
uations for the human.

This article presents a planning technique able to deal
with the presence of the human in the environment. This
technique is applied to situations in which there is a con-
trollable agent (the robot) whose actions we can plan, and
an uncontrollable agent (the human) whose action we can
only try to predict. For simplicity, we assume there are only
one robot and one human. Multiple alternative human plans
(agendas) are considered, and the domain is partially observ-
able. Therefore the planner generates policies conditional on
what the human is observed doing. Actions have duration,
but for the purpose of this paper we assume that durations
are deterministic.

The planner is progressive, and it searches over belief sit-
uations, starting from a given initial belief situation. Each
belief situation is a probability distribution over situations.
A situation is a tuple 〈s, rt, ht, ha〉 where s is a state, rt ∈
R+ is the time when the robot’s latest action ended, ht ∈ R+

is the time when the human’s latest action ended, and ha is
the remaining agenda of the human. An agenda is a finite list
of consecutive human actions: (a1, a2, ..., an). By associat-
ing different situations with different agendas, the planner
can maintain alternative hypotheses about what the human
will do.

Each time the planner applies an action of the robot in a
belief situation, one or more new belief situations are gen-
erated. To compute these new belief situations, the planner
takes into account:

• what actions in the human’s agenda will finish before or
at the same time as the robot’s action

• the effects of those human actions and the robot’s action

• the observations generated both by the human’s and the
robot’s actions.
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Figure 1: The home environment used in our experiment.

The planner searches for a policy that achieves the given
goals. In addition, the user can include interaction con-
straints, which are logical conditions which the policy is not
allowed to violate. For instance, the robot may be forbidden
to vacuum clean a room where the human is watching TV.

The planning system has been tested on an advanced dis-
tributed robotic system called the PEIS home — a small
apartment equipped with actuators and sensors of various
complexity, including mobile robots (Figure 1). In this
setting, the human agendas were produced by a human
plan recognition module taking input from a vision system.
These agendas were then given to the planner together with
other information (world state, goals etc), and the planner
generated policies that were then executed on the distributed
robotic system (in particular the mobile robot).

In our experiment, the user was executing daily activities
in the morning, from 8 am to 1 pm, following one of six pre-
defined agendas. During the same time span, a robotic vac-
uum cleaner had the task to clean the floor in all the rooms
that needed it, minimizing the interference with the user. In
our case, this means that the robotic vacuum cleaner had to
both operate and wait in rooms that the system had predicted
as not occupied by the human at that time. Initially, two pos-
sible agendas with identical prefixes were identified, and a
policy was generated and successfully executed.
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The field of automated plan generation has recently sig-
nificantly advanced. However, while several powerful
domain-independent planners have been developed, no one
of these clearly outperforms all the others in every known
benchmark domain. It would then be useful to have a multi-
planner system that automatically selects and combines the
most efficient planner(s) for each given domain.

The performance of the current planning systems is typi-
cally affected by the structure of the search space, which de-
pends on the considered planning domain. In many domains,
the planning performance can be improved by deriving and
exploiting knowledge about the domain structure that is not
explicitly given in the input formalization. In particular, sev-
eral approaches encoding additional knowledge in the form
of macro-actions have been proposed, e.g., (Botea, Müller
& Schaeffer 2005; Newtonet al. 2007). A macro-action is
a sequence of actions that can be planned at one time like
a single action. When using macro-actions there is a trade-
off to consider. While their use can reduce the number of
search steps required to reach a solution, it also increases
the search space size; moreover, the effectiveness of a set of
macro actions can depend on the particular planner using it.

In this abstract paper we sketch a planner, calledPbP
(Portfolio-based Planner), which automatically configures
a portfolio of domain-independent planners. The configu-
ration relies on some knowledge about the performance of
the planners in the portfolio and the observed usefulness of
automatically generated sets of macro-actions. This config-
uration knowledge is “learned” by a statistical analysis and
consists of: an ordered selected subset of the planners in the
initial portfolio, which are combined through a round-robin
strategy; a set of useful macro-actions for each selected plan-
ner; and some sets of planning time slots. A planning time
slot is an amount of CPU-time to be allocated to a selected
planner (possibly with a set of macro-actions) during plan-
ning.

WhenPbP is used without this additional knowledge, all
planners in the portfolio are scheduled by a simple round-
robin strategy where predefined and equal CPU-time slots
are assigned to the (randomly ordered) planners. WhenPbP
uses the knowledge computed for the domain under consid-
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∗The work described in this abstract is a joint work with Al-
fonso E. Gerevini and Alessandro Saetti.

eration, only the selected cluster of planners (and relative
sets of macro actions) is scheduled, their ordering favors the
fastest planners for the domain under consideration, and the
planning time slots are defined by the learned knowledge.

It should be noted that inPbP the computed macro-
actions are not always used by a planner. Assume that a
plannerP performs very well in a domainD, and thus it is
in the set of the planners selected byPbP for solving the
problems inD. If in the learning phasePbP observes that
the set of macro-actions computed for plannerP does not
improve the performance ofP in D, thenPbP schedules the
run ofP without using macro-actions.

PbP has two variants:PbP.s focusing on speed, and
PbP.q focusing on plan quality.PbP.s entered the learn-
ing track of the sixth international planning competition
(IPC6), and was the overall winner of this competition track
(Fern, Khardon & Tadepalli 2008). However, as observed
by the IPC6 organizers, for the IPC6 problems the use of
the learned knowledge does not speedup the competition
version ofPbP.s significantly. This behaviour depends on
some implementations bugs contained in the preliminary
version ofPbP.s concerning both the learning phase and the
planning phase, and the inefficient use of some Linux shell
scripts (evident especially for small or easy problems).

An experimental analysis about an improved implemen-
tation of the competition version ofPbP.s and aboutPbP.q
confirms the effectiveness ofPbP.s, indicate thatPbP.q per-
forms better than the IPC6 planners, and show that, contrary
to the preliminary version ofPbP.s, the learned configura-
tion knowledge is useful forPbP.

For a more detailed description about PbP, the interested
reader can see Gerevini, Saetti & Vallati 2009.
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