The APSI framework: a Planning and Scheduling Software Development
Environment

Amedeo Cesta, Gabriella Cortellessa, Simone Fratini, Angelo Oddi and Riccardo Rasconi
ISTC-CNR, National Research Council of Italy
Institute for Cognitive Science and Technology
Rome, Italy
{name.surname } @istc.cnr.it

Abstract

The Advanced Planning and Schedule Initiative (APSI) is a
study performed for the European Space Agency (ESA) be-
tween 2007 and 2009 aimed at facilitating the deployment
and operational validation of an Al approach for planning and
scheduling for space applications. The effort has been dedi-
cated to designing both a software architecture and a set of
re-usable functional modules that overall constitute a general
framework to facilitate P&S software development.

The purpose of the demonstration is twofold: (1) describing
the APSI framework also providing examples of how it can
be used to build P&S applications and (2) showing two ex-
amples of APSI use: a complete application, the Mars ex-
pRess Science Planning Opportunities Coordination Kit (Mr-
SPOCK), a planner built during the project and currently in
final deployment phase at ESA, and a family of constraint-
based schedulers built for research purposes.

Framework Overview

A planner and/or a scheduler consists not only of an out-
standing algorithm, rather it entails the development of a
significant piece of software that identifies it as a “system”.
A software development effort is involved both in applied
and in experimental research. In fact developing a complete
application requires so many details that it would be good
to have the support of a software environment and a struc-
tured methodology to avoid starting from scratch. On the
other hand the need for a software environment is also rel-
evant to support experimental research, e.g., when develop-
ing an implementation for robust experiments connected to
some innovative algorithm. A desiderata for all these cases
would be to have the possibility to shorten the time spent to
synthesize the software while dedicating more time to the
innovative aspects rather than to the implementation details.

Following this broad requirement idea, we have been
working in an European Space Agency (ESA) project
whose goal is to create a software development environ-
ment grounded on a timeline based approach to planning
and scheduling (the so-called ESA Advanced Planning and
Schedule Initiative (APSI)). This short paper provides a
demonstration on the status of our effort and focuses on the
features of the APSI software framework, showing how it
can be used to support the development of both a complex
space application and a family of constraint-based sched-
ulers for research purposes.

The philosophy underlying the APSI framework inher-
its from current literature on timeline-based planning and
scheduling (see (Jonsson et al. 2000; Chien et al. 2000;
Cesta, Oddi, & Smith 2002)). It is also inspired by classi-
cal control theory, in that the planning and scheduling prob-
lem is modeled by identifying a set of relevant components
whose temporal evolutions need to be controlled to obtain a
desired behavior.

The APSI framework’s theoretical background is what
we call component-based approach, that unifies timelines of
different nature under the unique concept of component, an
entity that may assume a set of different legal temporal evo-
lutions over a temporal interval, and the horizon, over which
these evolutions are defined. Component evolutions are af-
fected by planning and scheduling decisions. An underlying
domain theory specifies temporal and logical relationships
among decisions that can be possibly taken. The framework
provides functionalities for temporal information manage-
ment, component definition and integration, domain theory
modeling and basic planning and scheduling features. In
this approach components are primitive entities for knowl-
edge modeling, and represent logical or physical subsystems
whose properties may vary in time (see (Fratini, Pecora, &
Cesta 2008) for a detailed description of a planning system
based on such approach).

The APSI software architecture consists of layers orga-
nized in a hierarchy. Each layer deals with a particular as-
pect of the problem, and each layer uses the services pro-
vided by the underlying layers to implement its function-
alities. The constraint-based nature of the approach is ex-
tremely visible in the way the different layers exchange in-
formation: constraints are posted on the underlying levels
as a consequence of decisions taken on higher levels, and
decisions are taken on higher levels by analyzing the do-
mains of the variables in the underlying levels. The archi-
tecture has been conceived to be easily extensible by adding
components. This capability is very important to achieve
a good balance between general, domain independent plan-
ning (easily customizable to various domains) and special-
ized, efficient reasoning (often needed in real world domains
for efficiency reasons).

The APSI architecture is subdivided into three levels:
a Time/Parameters layer, a Component layer and a Do-
main layer. Layers are organized according to the hierar-
chy shown in Figure 1. The lower level represents the infor-

mation shared among the timelines, temporal information
and parameter information, the middle level represents the
extension point where the modeler plugs the components,
while the upper level provides a unified, shared represen-
tation of the plan. The planning domain is modeled as a
set of concurrent threads (the timelines) and the Planning &
Scheduling problem is reduced to synthesizing a set of deci-
sions to obtain a desired behavior and to synchronizing the

threads.
i
|
i » Add/Remove/Propagate
| 3 :
H <V,E> = <Decisions,Relations> 1 re\athns among decisions
Domain | ! » Domain Theory Management
H H » Timeline resolution (scheduling
1 Decision Network and completion) & Behavior extraction
' i
Component, Component,
P - » Add/Remove/Propagate decisions
Component . T T

i »Timeline Management
i (extraction, gap & inconsistency detecti

Decisions Decisions

on)

=y

Temporal Network

<V,E> = <Time Points,

Temporal and parameter constraints
Temporal Constraints> po P

Time &

Parameter:
arameters <V,E> = <Parameters,

lower and upper bounds, distance
Parameter Constraints> (PP)

Constraint Network and parameter values

v » Query Temporal Elements Occurrence

i
i
i
|
!
H » Add/Remove/Propagate
|
i
1
i
1
i
i
i
i
i

Figure 1: The layered implementation of the APSI framework.

Time and Parameters Layer. This is the lowest layer in
the APSI architecture. Temporal and parameter informa-
tion is managed at this level. The interface provided by
this level is simple and straightforward. Higher levels cre-
ate temporal elements and parameters, impose constraints
on them and query the database to access the information
on events temporal positions and parameters values. The
temporal information is managed in shape of Temporal Con-
straint Networks (TCNs). TCNs allow representing events,
also called time points, and temporal constraints that rep-
resent distances, separation constraints, etc. This layer is
endowed with propagation algorithms to maintain the con-
sistency of the possible value assignments to time points.
Parameters are currently managed through an external CSP
solver, CHOCO (CHOCO 2008).

Component Layer. The component layer is the point of
expansion of the APSI architecture. In this architecture
a component is a software module that encapsulates the
logic for (1) computing a timeline resulting from decisions;
(2) evaluating the consistency of the computed timeline with
respect to a set of given rules and (3) computing a set of tem-
poral and/or parameter constraints and further decisions to
solve (if possible) any threat to the consistency of the com-
puted timeline. A component provides the higher levels with
basic timeline-management primitives (like timeline extrac-
tion and inconsistency detection). This layer represents a
point of expansion because components can generally be de-
signed transparently with respect to the implementation of
the functionalities they provide, encapsulating component-
specific algorithms and hiding differences about behaviors,
inconsistency detection and resolution processes behind a
common interface.

In the current implementation the APSI framework pro-
vides two types of standard components: state variables and

10

reusable resources. State variables have behaviors that are
piecewise constant functions over a finite, discrete set of
symbols which represent the values that can be taken by the
state variable. Each behavior represents a different sequence
of values taken by the component. The consistency notion is
stated as a set of sequence constraints expressed in terms of
a timed automaton which specifies the set of rules represent-
ing the legal transitions between allowed values. Resource
behaviors are real functions over time. Each behavior repre-
sents a different profile of resource consumption.

Domain Layer. The Domain layer provides the frame-
work’s users with primitives to represent both domain theory
and plans, and in general allows to use components. A plan
is represented as a decision network: given a set of compo-
nents C, a decision network is a graph (V, E), where each
vertex dc € V is a component decisions defined on a com-
ponent C' € C, and each edge (6%, d,;) is a relation among
component decisions 675, and d7;.
DURATION [15,20]

Ty

8
A(x3) v B(x) v C(x;
(X3) v B(xg) v C(xs) DEADLINE
\ [100]
| EQUALS

DURATION [20,45]

DURATION [30,77]

8let | A vB(x,)

BEFORE
[10,+]
DURATION [15,23]

Relations
— Temporal

&'c, 2
BEFORE O ki .
BEFORE [30,+]
W DEADLINE [105]

—— Parameter

Xg=3

Figure 2: Decision Network.

Fig. 2 represents a decision network for a domain with two
state variable components, C; and Cs, with two decisions
for each component. A decision specifies a disjunction of
required values for the corresponding state variable timeline
(for instance ¢, requires either a value A(z1) or a value

B(x4) for the state variable C7). The fundamental tool for
defining dependencies among component decisions are re-
lations, provided of three types by the framework; tempo-
ral, value and parameter. Given two component decisions,
a temporal relation is a constraint among the temporal el-
ements of the two decisions (continuous arrows in Fig. 2,
where for example the DEADLINE constraint for 62, and 0g,

or the BEFORE constraint between ¢, and 62, are temporal
relations). A temporal relation among two decisions A and B
can prescribe temporal requirements such as those modeled
by Allen’s interval algebra, e.g., A EQUALS B, or the hybrid
variant qualitative/quantitative, e.g., A OVERLAPS [L,u] B. A
value relation between two component decisions is a con-
straint among the values of the two decisions. A value rela-
tion among two decisions A and B (the dashed line in Fig.
2 between 62, and 62, for instance) can prescribe require-
ments such as A EQUALS B, or A DIFFERENT B (meaning
that the value of decision A must be equal to or different
from the value of decision B). Lastly, a parameter relation
among component decisions is a constraint among the val-
ues of the parameters of the two decisions (the continuous
line between df, and 62, that states z7 = 26 in Fig. 2

for example). Such relations can prescribe linear inequal-
ities between parameter variables. For instance, a param-
eter constraint between two decisions with values “avail-
able(?antenna, ?bandwidth)” and “transmit(?bitrate)” can be
used to express the requirement that transmission should not
use more than half the available bandwidth, i.e., ?bitrate
< 0.5-?bandwidth.

The domain level is where concurrent threads represented
by each component in the underlying level are put together
to create the component-based domain. The decision net-
work provides a unified vision of the current solution, while
the synchronizations that constitute the domain theory pro-
vide a unified means for expressing the constraints that the
decisions must satisfy. In the current implementation of
the framework an extension of the DDL.3 language (Fratini,
Pecora, & Cesta 2008) is used for specifying the domain
theory.

It is worth pointing out that the decision network and
the domain theory are flexible enough for representing a
wide range of different problems. It is possible to model
a timeline-based planning problem and represent a plan. In
fact, a timeline-based domain independent planner as OMPS
can be easily refactored as a solver on top of the APSI
framework with state variables. The solver implements
search procedures and heuristics, while the framework main-
tains the planner search space, also providing powerful func-
tionalities for helping in building such a search space. But
also a pure scheduling problem (and its solution) can be rep-
resented with a decision network. The next section presents
some use cases of the framework, showing how a sched-
uler for RCPSP/max problems can also be built on top of the
framework.

The APSI Framework at Work

In this demonstration we survey two different cases in which
the APSI framework has been used to develop specific
solvers. The first is a space application, named MrSPOCK,
deployed within a real mission scenario, the second one
is a more research oriented case: a family of constraint-
based schedulers developed to import previous research re-
sults within the APSI framework.

MrSPOCK. MrSPOCK, the “MARS EXPRESS Science
Plan Opportunities Coordination Kit”, is a tool which re-
quired a combination of various research aspects from the
planning and scheduling area. The system solves an in-
teresting multi-objective optimization problem that entails
the satisfaction of several temporal and causal constraints to
produce long term plans for the MARS EXPRESS spacecraft
activities. An interesting aspect is the hybrid combination
of a constraint-based representation that supports timeline-
based planning and scheduling, an optimization algorithm
that exploits such representation and an interaction front end
which has multiple features. The system has been first de-
ployed to end users during May 2008 and has been further
refined to perfectly match the ESA daily use requirements.
Apart the fielded application it is worth highlighting the in-
teresting leverage we obtained with respect to our previous
experience in ESA projects, e.g., (Cesta et al. 2007), thanks

11

to the use of the APSI framework. This general framework
has allowed us to capture a number of constraints with a
basic domain description language. Additionally the use of
the timeline-based representation as a central concept for the
user interaction front-end demonstrates its particular suit-
ability to capture the way of working of human planners in
space domains.

The open problem we addressed at ESA with the Mr-
SPOCK application was to support the collaborative prob-
lem solving process between the science team and the oper-
ation team of the space mission. These two groups of human
planners iteratively refine a plan containing all activities for
the mission. The process starts at the long term plan (LTP)
level — three months of planning horizon — and is gradu-
ally refined to obtain fully instantiated activities at short term
plan level — one week of planning horizon. This process con-
tinuously leads to weekly short term plans, which are then
further refined every two days to produce final executable
plans. MrSPOCK is essentially a pre-planning optimization
tool for spacecraft operations planning and, it specifically
build a pre-optimized skeleton LTP which will then be sub-
ject to cooperative science team and/operation team refine-
ment (see (Cesta et al. 2008) for a more detailed description
of the whole work).

A critical point in developing an application to produce
the MARS EXPRESS skeleton LTP is the need to consider
a great number of operational constraints that cannot be re-
moved after four years of daily mission operation practice.
In order to capture the work practice we had to cope with
very specific constraints that are difficult for the general pur-
pose solving framework but easier to be taken into account
in a domain specific solver, hence the choice of creating such
solver on top of the APSI framework. In general it is worth
underscoring that in developing application of planning and
scheduling in real contexts, the trade-off between general-
ity and specificity is a relevant one even if it is usually not
mentioned in official literature.

MrSPOCK uses the APSI domain modeling capabilities
to capture the main entities of the problem.

/ Orbit Events ‘ Apo Peri \
- L—:-[\

- | aw s oo
(A B ft
\ pacecra
Oprates Hace. |Ej0m NG| |
(“siew \ (| ainten g e \swéw
\[sa.:m] / _[90,90) b
Vs NOan . a (B
Sk 0% b P ,,,,,,,,,, e
[\\ ([6°D°:’I";"F| L (151300.u.gl 70m)
(~ \EoiNEy Ground Station
\ - Availability | & Mw- ,,,,,,,,,,, ‘
N Timelines | © | IHGTA00GISIH)
(/science' | &
= . W B}
N, Operative Modes _/ — L_)

N e/

Component Definition
Domain Theory

Figure 3: MrSPOCK domain model.

Figure 3 shows how the MARS EXPRESS LTP domain is
captured in the current release of MrSPOCK. In particular in
this case we only use the component type “state variable”.
A single state variable models the spacecraft’s point-
ing mode (Spacecraft Operative Mode), which specifies the
temporal occurrence of Science and Maintenance operations
as well as the spacecraft’s Communication to Earth. The val-
ues that can be taken by this state variable, their durations

(represented as a pair [min, max]) and the allowed transi-
tions among the possible states are synthesized by the au-
tomaton shown in the left side of Figure 3.

Besides the spacecraft pointing mode we represent
ground stations (GS) availability and the occurrence of
the key orbit events (Apocentre and Pericentre). The
temporal occurrences of pericentres and apocentres are
shown in the right of Figure 3 (“Apo” and “Peri” values
on the timeline, top part of the picture) and are defined
in time according to an orbit event file decided by the
flight dynamics team. The other state variable main-
tains the visibility information of three ground stations
(“MAD”,“CEB” and “NNO” timelines, bottom part of
the figure). The allowed values of these state variables
are: {Available (?rate, ?ul_dl, ?antennas),
Unavailable ()}, where the ?rates parameter in-
dicates the bitrate at which communication can occur,
?ul_dl indicates whether the station is available for
upload, download or both, and the ?antennas parameter
indicates which dish is available for transmission.

Any valid plan needs temporal synchronizations among
the spacecraft operative mode timeline and the other two
state variables. These synchronization constraints are repre-
sented in the right part of the figure: Science operations must
occur during Pericentres, Maintenance operations must oc-
cur during Apocentres and Communication must occur dur-
ing ground station visibility windows. As mentioned, in ad-
dition to those synchronization constraints, the Spacecraft
Operative Mode timeline should satisfy the transition con-
straints among values specified by the automaton in the left
part of the figure and the minimal and maximal duration
specified for each value (in the automaton as well). A so-
lution is obtained when a set of consistent timelines for the
components are defined and all the operational constraints
are satisfied.

A distinctive aspect of MrSPOCK is the synthesis of a
problem solver directly connected to the timeline represen-
tation. In this way we exploit the APSI framework con-
straint engines for propagating several types of constraints,
while using specialized search engines partly general, partly
tailored to the problem. In particular, MrSPOCK integrates
a greedy one pass constructive search procedure with a
generic optimization cycle that uses a genetic algorithm ap-
proach as discussed in (Cesta et al. 2008). One of the in-
teresting achievements in this work is the hybridization of
a timeline based general purpose approach with a wrapping
module that implements a genetic optimization search. It
is worth underscoring again how the framework is endowed
with propagation algorithms hence it is not just a bookkeep-
ing data structure; rather, it has an active role as is cur-
rent practice of constraint satisfaction engines. In creating
a complete architecture we situate MrSPOCK at an inter-
mediate stage between generic timeline-based planners, e.g.,
our own OMPS architecture, and a domain specific timeline-
based solver like MEXAR?2 (Cesta et al. 2007).

Schedulers. One of the general goals in designing the
APSI framework is to obtain a unified software framework
that supports both planning and scheduling. Actually the
idea of component-based architecture was initially inspired

12

by the need to identify an abstract architectural concept able
to capture the commonalities between early timeline-based
planning and constraint-based scheduling. Having resources
as primitive components facilitates us in implementing a
profile-based scheduler like the one based on conflict analy-
sis of the earliest start time resource profile projection (for a
detailed analysis see the ESTA algorithm in (Cesta, Oddi, &
Smith 1998)). In APSI terminology this implies including a
component for each resource in the problem and then insert-
ing in an initial decision network the representation of the
problem in form of the project graph with activities, tempo-
ral precedences among them and resource requirements for
each of them. Such a problem representation is then manip-
ulated by a profile analysis procedure that returns a set of
conflict violations on the resource contention peaks.

APSI has been thought out as a generic development en-
vironment. Among the applications deployed with APSI
in our group we present in this demonstration a family of
schedulers based on the ESTA algorithm and on the IFLAT
procedure introduced in (Cesta, Oddi, & Smith 2000). Vari-
ants of the algorithm have been implemented and used for
carrying out research on scheduling on top of the framework.
Competitive results on a new benchmark of 200 activities for
the resource constrained problem has been recently obtained
and described in (Oddi & Rasconi 2008).

Acknowledgments. The study has been supported by European Space
Agency (ESA) within the Advanced Planning and Scheduling Initiative (APSI). APSI
partners are VEGA GmbH, ONERA, University of Milan and ISTC-CNR. We ac-
knowledge the role played by our colleagues in our current effort.

References

Cesta, A.; Cortellessa, G.; Denis, M.; Donati, A.; Fratini, S.; Oddi, A.; Policella,
N.; Rabenau, E.; and Schulster, J. 2007. MEXAR2: Al Solves Mission Planner
Problems. IEEE Intelligent Systems 22(4):12-19.

Cesta, A.; Cortellessa, G.; Fratini, S.; and Oddi, A. 2008. Looking for MrSPOCK:
Issues in Deploying a Space Application. In SPARK-08, Scheduling and Planning
Applications woRKshop at ICAPS.

Cesta, A.; Oddi, A.; and Smith, S. F. 1998. Profile Based Algorithms to Solve
Multiple Capacitated Metric Scheduling Problems. In AIPS-98. Proceedings of the
A" International Conference on Artificial Intelligence Planning Systems, 214-223.
Cesta, A.; Oddi, A.; and Smith, S. F. 2000. Iterative Flattening: A Scalable Method
for Solving Multi-Capacity Scheduling Problems. In AAAI-00. Proceedings of the
17" National Conference on Artificial Intelligence, 742-747.

Cesta, A.; Oddi, A.; and Smith, S. F. 2002. A Constraint-based method for Project
Scheduling with Time Windows. Journal of Heuristics 8(1):109-136.

Chien, S.; Rabideau, G.; Knight, R.; Sherwood, R.; Engelhardt, B.; Mutz, D.; Estlin,
T.; Smith, B.; Fisher, F.; Barrett, T.; Stebbins, G.; and Tran, D. 2000. ASPEN -
Automating Space Mission Operations using Automated Planning and Scheduling.
In Proceedings of SpaceOps 2000.

CHOCO. 2008.
http://choco.sourceforge.net/.

Choco Project Web Site.

Fratini, S.; Pecora, F;; and Cesta, A. 2008. Unifying Planning and Scheduling
as Timelines in a Component-Based Perspective.
18(2):231-271.

Jonsson, A.; Morris, P.; Muscettola, N.; Rajan, K.; and Smith, B. 2000. Planning in

Interplanetary Space: Theory and Practice. In Proceedings of the Fifth Int. Conf. on
Artificial Intelligence Planning and Scheduling, AIPS-00.

Oddi, A., and Rasconi, R. 2008. Iterative Flattening Search in RCPSP/max Prob-
lems: Recent Developments. In Proceedings of the Constraint Solving and Con-
straint Logic Programming Workshop (CSCLP 2008), LNAI 5655.

Archives of Control Sciences

