
Interactive Gantt Viewer with Automated Schedule Repair

Roman Barták, Tomáš Skalický

Charles University, Faculty of Mathematics and Physics
Malostranské nám. 2/25, 118 00 Praha 1, Czech Republic

bartak@ktiml.mff.cuni.cz, skalicky.tomas@gmail.com

Abstract
Users of automated scheduling systems frequently require
an interactive approach to scheduling where they can
manually modify the schedules. Because of complexity and
cohesion of scheduling relations, it may happen that manual
modification introduces flaws to the schedule, namely the
altered schedule violates some constraints such as
precedence relations or limited capacity of resources. It is
useful to automatically correct these flaws while minimizing
other required changes of the schedule. This automated
correction of violated preferences is one of the core features
of interactive Gantt viewer presented in this paper.

Introduction
Fully automated scheduling seems like the Holy Grail of
scheduling community, but most practitioners frequently
require the freedom of manually altering the generated
schedules, for example, to introduce some aspects of the
particular area that were hard to formalize and hence are
not reflected in the automatically generated schedule.
Despite the high experience of human schedulers, there is a
high probability that after a manual modification some
flaws are introduced to the schedule. This probability is
higher if the density of scheduling constraints is large and
the constraints are highly coupled. For example, delaying
one activity may delay other dependent activities due to
precedence constraints between them or due to limited
capacity of resources. It might be enough just to detect
such violations and report them to the user who will be
responsible for manual correction. Nevertheless, such
manual corrections may be boring and sometimes very
hard because of interconnectivity of the constraints
(correction of one flaw introduces other flaws etc.).
Another approach is based on constrained modification of
schedules where satisfaction of certain constraints is kept
automatically while the user modifies the schedule. For
example, the approach in (Barrett and Starbird 2006)
maintains temporal consistency between the activities
while the user moves a particular activity or a set of
activities. As these changes are realized interactively, it is
not possible to guarantee satisfaction of all constraints
(many scheduling problems belong to the class of NP-hard
problems). The interactive Gantt viewer presented in this
paper uses a fully automated (“push button”) approach to
correcting schedules after manual modification. The user

may alter the schedule in any way and on request the
automated system corrects all violated precedence
constraints and unary resource constraints by shifting
locally the affected activities in time.
 In this paper we focus on solving the problem of
correcting general schedules. The primary motivation for
the research is providing an automated tool for correcting
manually altered schedules in interactive Gantt chart
environments (a “push button” approach). Nevertheless,
the proposed repair techniques can also be used for
example in the intensification stage of scheduling
algorithms based on genetic algorithms or meta-heuristics.
From another perspective, the proposed techniques belong
to the group of re-scheduling algorithms where the
schedule must be repaired after some event that makes the
current schedule invalid. Right shift rescheduling
(Brandimarte et al. 2000) and affected operation
rescheduling (Abumaizar and Svestka 1997) are the most
frequently used techniques for such repairs, but they
typically repair only one violation at a time.
 We assume that the initial allocation of all activities to
time is known. This time allocation may violate some
precedence or resources constraints. The goal is to correct
the schedule (re-schedule) by shifting the activities in time,
that is, to find a feasible schedule that does not violate any
constraint. Moreover, the new schedule should not differ a
lot from the initial time allocation of activities. Note that
finding a feasible schedule is always possible unless there
is a loop in the precedence constraints – activities can
always be shifted to future as there are no deadlines. To
minimize the number of changes between the initial and
the final schedule we apply a local approach, where
particular flaws are repaired by local changes of affected
activities rather than generating a completely new schedule
from scratch. A local repair may introduce other flaws in
the neighborhood which spread like a wave until all flaws
are resolved. We use a three-step approach to repair the
schedule. In the first step, loops of precedence constraints
are detected and the user is asked to break each loop by
removing at least one precedence constraint from it. In the
second step, we repair all precedence constraints; two
methods are suggested for this repair. Finally in the third
step we repair the violation of resource capacity constraints
while keeping the precedence constraints valid. Each repair
step is realized by shifting the affected activities locally in
time (resource allocation is not modified).

5

Problem Formulation
The interactive Gantt viewer can display, modify, and
automatically correct schedules consisting of non-
interruptible activities connected via precedence
constraints and allocated to one or more unary resources.
The Resource-Constrained Project Scheduling Problem
(RCPSP) (Błazewicz et al. 1983) is probably the closest
classical scheduling problem though there are some
differences as described below. In the following
paragraphs, we will formally introduce the type of
schedules that the Gantt viewer manages.
 We assume a finite set of activities Act, each activity
A ∈ Act has a fixed duration dA and it is non-interruptible
(activity must run from its start till its end without
interruption). Let sA be the start time of activity A – the
minimum start time of any activity is zero (schedule start),
but there is no deadline. There is a set Prec of precedence
constraints between the activities in the form (A→B); A is
called a predecessor of B and B is called a successor of A.
Formally for each precedence relation (A→B) ∈ Prec the
following constraint must hold:
 sA + dA ≤ sB (1)
Let Res be a finite set of unary resources, that is, each
resource can process at most one activity at any time. For
each activity A ∈ Act there is a set of required resources
r(A) ⊆ Res. Activity A requires all resources from the set
r(A) for processing, that is, A occupies each resource
R ∈ r(A) for the time period 〈 sA, sA + dA 〉. The resource
constraints can be formally expressed as follows:

 ∀A,B∈ Act s.t. r(A) ∩ r(B) ≠ ∅:
sA + dA ≤ sB ∨ sB + dB ≤ sA (2)

The above resource constraint says that two activities A
and B sharing the same resource cannot overlap in time
(either A precedes B or B precedes A).
 A schedule is a particular allocation of activities to time,
formally it is a mapping of all variables sA to natural
numbers N0 (including zero). A feasible schedule is a
schedule that satisfies constraints (1) and (2). Notice that
resource allocation is not part of the problem (activities are
already allocated to resources). It is easy to prove that a
feasible schedule always exists provided that there is no
loop in the precedence constraints (for example
A→B→C→A). It is possible to topologically order all
activities respecting the precedence constraints (precedence
constraints define the partial ordering of activities) and
then to allocate activities in this order to earliest possible
times while respecting the precedence (1) and resource (2)
constraints (activity can always be shifted to future if
resource is not available at some time). The schedule (even
infeasible one) can be loaded to the viewer, any part of it
can be interactively modified by the user and after the
modification the schedule can be saved to a file.
 The problem of automated schedule correction can be
formulated as follows: given some schedule S, find a
feasible schedule S’ that does not differ a lot from S. The

difference between schedules S and S’ can be formalized
in the following way:
 difference(S,S’) = ΣA∈ Act | sA – s’A | (3)
where sA is the start time of activity A in S and s’A is the
start time of A in S’. Notice that the only way to modify
the schedule is via changing the values of variables sA. It
should be noted that we are not strictly minimizing the
objective (3), we try to achieve a good value of
difference(S,S’) by changing the values of sA as little as
possible (locally) to repair a violated constraint.

Re-scheduling (Repair) Algorithm
We assume a typical scenario, where the human scheduler
modifies an automatically generated schedule to reflect
better the peculiarities of particular environment. The
modification can affect any part of the scheduling problem
introduced above – it is possible to change duration of
activities, their position in time and required resources, to
add or delete precedence constraints or even to add or
delete activities and resources (in case of changing the set
of activities, it is necessary to introduce a different measure
of schedule difference, see for example (Barták et al.
2003)). By these modifications, it is quite easy to obtain an
infeasible schedule where some constraints are violated
(we call the violated constraint a flaw). Though it is easy to
detect and visualize the violated constraints (see Figure 1),
it is frequently more complicated to repair them without
introducing other flaws.

Fig. 1. Gantt charts visualization of violated precedence
(top) and resource (bottom) constraint.

6

We suggest a schedule-repair method that mimics the
behavior of a human scheduler by repairing flaws via local
changes of time allocation of activities participating in the
flaw. Naturally, this may introduce other flaws which need
to be repaired and hence a systematic approach is
necessary to prevent an infinite number of repairs
(repairing one flaw introduces another flaw whose repair
brings back the original flaw etc.). While such a systematic
approach may be boring for a human, it is easy for a
computer. The suggested method consists of three stages:

- detecting and breaking loops of precedence
constraints,

- repairing violated precedence constraints,
- repairing violated resource constraints.

By modifying the set of precedence constraints, the user
may unwittingly introduce a cycle between activities which
prevents existence of the feasible schedule. Hence the first
stage is detecting such loops and asking the user to remove
some precedence constraint from each such loop. This is
the only stage where user intervention is necessary1, the
other two repair stages are fully automated. Recall that if
there are no loops of precedence constraints then a feasible
schedule always exists.

Loop Detection
We represent the scheduling problem as a directed graph
G = (E,V), where the set V of nodes equals the set Act of
activities and there is edge (A,B) in E if and only if
(A→B) ∈ Prec. There exist standard methods for finding
cycles in graphs and we adopted one of them that
incrementally deletes nodes that are not part of any loop.
As soon as a loop is found, it is presented to the user who
decides which arcs (precedence relations) are removed.

Precedence Repair Techniques
The goal of the second stage of the repair algorithm is to
remove violation of all precedence constraints (1). This is
possible for any schedule that does not contain loops in
precedence relations which is exactly the schedule
resulting from the first stage described in the previous
section. We ignore violation of resource capacity
constraints (2) at this stage.
 The precedence (A→B) ∈ Prec is violated if
sA + dA > sB. The size of violation can be described by the
following variable:

 diff(A,B) = sA + dA – sB.

Cleary, diff(A,B) is positive if and only if precedence
(A→B) is violated. To locally repair the violated
precedence (A→B) we can shift A backward in time
(decrease sA) or shift B forward in time (increase sB) or

1 It is possible to randomly remove some precedence constraint from each
loop or even to minimize the number of removed precedence constraints
to break all loops, but in our opinion, the human decision is more
appropriate.

shift together A backward and B forward. Naturally, if we
do not want to stretch the schedule (increase makespan)
then decreasing sA as much as possible (but no more than
constraint (1) requires) is the preferred way of repair. To
find out how much time is available for shifting A
backward we introduce the following variable:

 freeOnLeft(A) = sA if A has no predecessors
 sA – (slp(A) + dlp(A))

if A has some predecessor and lp(A)
denotes the latest predecessor of A in
the schedule;
lp(A) = argmax C: (C→A) ∈ Prec (sC + dC).

The straightforward technique of repairing a violated
precedence constraint (A→B) is shifting A backward as
much as possible and then shifting B forward if necessary.
This can be formally described by the following
assignments:

 sA ← sA – min(freeOnLeft(A), diff(A,B))
 sB ← sA + dA

If we repair the violated precedence constraints in the right
order, namely from left to right, then it is enough to repair
each violation exactly once. Nevertheless, this technique
that we call PrecRep may introduce unnecessary gaps to
the schedule. Though the algorithm can shift activity A
backward when repairing (A→B), it can shift A at most as
the latest predecessor lp(A) of A allows (see the definition
of FreeOnLeft). Hence lp(A) may block shifting A
backward even if there is time. In particular, it might be
possible to shift lp(A) backward as well and hence to
increase the time available for A (see Figure 2). To
improve this behavior, we suggest a modification of the
repair algorithm called PrecRep-2 that exploits better
available time on the left of activity A by shifting it beyond
the horizon defined by lp(A).

D

Fig. 2. Algorithm PrecRep does not exploit fully available
time on the left of D.

B

C

A

D

C

A

unexploited
time

B

7

The idea of PrecRep-2 algorithm is to shift A backward
similarly to PrecRep, but if this is not enough to satisfy the
constraint (A→B) (diff(A,B) is still positive) then we shift
A backward slightly more, in particular by
truncate(diff(A,B)/2), where truncate(X) is the closest
integer between X and 0, for example truncate(3.7) = 3.
This way, we violate the constraint (lp(A)→A) which can
be repaired later by shifting lp(A) backward and so on. By
this process, we can exploit better available time by
shrinking the schedule. We only ensure that we do not
violate the constraint 0 ≤ sA so the schedule does not
stretch beyond the schedule start.

 algorithm PrecRep-2
1 while any precedence is violated do
2 select violated precedence (A→B)i such that i is minimal
3 sA ← sA – min(freeOnLeft(A), diff(A,B))
4 sA ← max(0, sA – truncate(diff(A,B)/2))
5 sB ← sA + dA
6 end while
 end PrecRep-2

Resource Capacity Repair Techniques
The final stage of the proposed repair algorithm consists of
repairing the resource conflicts. Recall that activities
require for their processing unary resources; it is possible
that an activity requires more than one resource (for
example, machine, tool, and worker). There is a resource
conflict if two (or more) activities require the same
resource at the same time.
 From the previous stage we have a schedule that does
not violate precedence constraints so it is either feasible or
some resource constraints are violated. We now present a
technique that repairs resource conflicts while keeping the
precedence constraints satisfied. This technique resolves
the conflict by shifting one of the activities forward in
time. The algorithm ResRep iteratively repairs resource
conflicts and each time a new precedence conflict is
introduced then all precedence conflicts are repaired before
continuing to the next resource conflict. By sweeping the
schedule from past to future we remove all violated
constraints (recall that there are no deadlines so any
activity can be shifted forward).

 algorithm ResRep
1 while any constraint is violated do
2 if precedence is violated then
3 select violated precedence (A→B) with smallest sA
3 else
4 let A,B be activities violating resource constraint (2)
5 such that sA ≤ sB and sA is smallest among such pairs
6 end if
7 sB ← sA + dA
8 end while
 end ResRep

Summary
Interactive Gantt Viewer is a Java program for displaying,
modifying, and repairing general schedules that can be
loaded and saved in specified TXT and XML formats so
the viewer can be connected with other automated planners
and schedulers. The schedule consists of a set of non-
interruptible activities connected via precedence
constraints. Each activity can be allocated to one or more
(or none) unary resources. The user can modify any aspect
of the schedule, including adding and removing activities
and resources. The position of activity in time and space
(resource allocation) can be easily changed by dragging;
violation of precedence and resource constraints is visually
indicated. The most advanced feature of the software is
fully automated correction of violated constraints that is
based on local repairs and hence mimics a human approach
to schedule repair. This paper focuses on the description of
these local repair techniques. The proposed techniques are
fully automated and problem independent so it is not
necessary to describe specific repair rules for the problem
as for example in modified Affected Operations
Rescheduling (Subramanian and Raheja 2003). The
technical details including proofs of correctness are given
in (Barták and Skalický 2009).

Acknowledgements. The research is supported by the
Czech Science Foundation as contract no. 201/07/0205.

References
Abumaizar RJ, Svestka JA, 1997. Rescheduling job shops
under random disruptions. International Journal of
Production Research 35(7):2065–2082.
Barrett A, Starbird T. 2006. Drudgery Relieving
Commands for Mixed Initiative Planning. Proceedings of
5th International Workshop on Planning and Scheduling
for Space. pp. 60-67, Space Telescope Science Institute.
Barták R, Müller T, Rudová H. 2003. Minimal
Perturbation Problem – A Formal View. Neural Network
World 13(5): 501–511.
Barták R, Skalický T. 2009. A local approach to automated
correction of violated precedence and resource constraints
in manually altered schedules. In Proceedings of
Multidisciplinary International Conference on Scheduling:
Theory and Applications (MISTA 2009), pp. 507–517.
Błazewicz J, Lenstra JK, and Rinnooy Kan AHG. 1983.
Scheduling projects to resource constraints: Classification
and complexity. Discrete Applied Mathematics, 5:11–24.
Brandimarte P, Rigodanza M, Roero L. 2000. Conceptual
modeling of an object oriented scheduling architecture
based on the shifting bottleneck procedure. IIE
Transactions 32(10):921–929.
Subramaniam V, Raheja AS. 2003. mAOR: A heuristic-
based reactive repair mechanism for job shop schedules.
The International Journal of Advanced Manufacturing
Technology 22: 669–680.

8

